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REGIONAL MONTE CARLO SOLUTION OF ELLIPTIC

PARTIAL DIFFERENTIAL EQUATIONS

by

Thomas E. Booth

ABSTRACT

A continuous random walk procedure for solving some elliptic
partial differential equations at a single point is generalized
to estimate the solution everywhere. The Monte Carlo method
described here is exact (except at the boundary) in the sense
that the only error is the statistical sampling error that tends
to zero as the sample size increases. A method to estimate the
error introduced at the boundary is provided so that the boundary
error can always be made less than the statirtical error.
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REGIONAL MONTE CARLO SOLUTION OF ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS
by

Thomas E. Bosth

Introduction:

A continuous random walk procedure for solving some elliptic
partial differential equations at a single point is generalized
to estimate the solution everywhere. The Monte Carlo method
described here 1s exact (except at the boundary) in the sense
that the only error is the statistical sampling error that tends
to zero as the sample size increases. A method to estimate the
error introduced at the boundary is provided so that the boundary
error can always be made less than the statistical error.

Monte Carlo methods have been suggested 1,2 for solving
alliptic partial differential equations at a single point. The
theory described in Ref. 1 can be generalized to estimate the
solution everywhere,

I shall show how to sclve some partial differential
equations of the form:

2 2
U + ugy = o u= 20, o  constant, (1)
This 1is an important class of partial differential equations
because any elliptic partial differential equation witn constant
coefficients can de reduced, by suitable transtormations.3 to the
canonical form of Eq. 1.

Dirichlet Problem in Polar Coordinates

We shall consider solving Eq. 1 with u specified on the
boundary. A sveparation of variables in polar coordinates
yields:

a [ ]
u(r,8) = 39 In(ar) + ] 1 (ar)(a cos ne + b sinne) (2)
n=]

where the L, are the modified Bessel functions. The expansicn
coefficients are obtained in the usual manner by integrating with
cos nd and sin nd to give:

21 ¢
a_ =+ J u(r,8) cos ne do , (3)
n InZars E;ﬂ'
e : } u(r,8) sin ne de (4)
n Iniars 5;:1 ! *
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However, thes: coefficients may he estimated by s:mpling 64
uniformly on [0,2¢x] and using:

- M
2 1
an = wﬁ 12-1 u(!‘,ei) cos n&i (5)
- 2 1 M
by " TGO M ) u(r,8,) sin no, . (6)

n i=]

Now if we wish to solve Eq. 1 in the vicinity of a point Pg
(see Fig. 1) we draw the largest circle (with center at Pg)
that lies entirely within D and proceed to sample

Fig., 1

the 04 of Eqs. 5 and 6. We do not know u(r,84) and so we use

the single point cheory1 to get a one particle estimate u(r,8y)
and then use:

~

M a
2 1
n Infcrf ﬁ'izl “(fnﬁi) cos n¢,
A ) 1 M A
by = i I u(r,8,) #in nd .
n In ar) M {=] i {

Thus, the solution at any point inside D may be estimated bny:

A 0 N . .
u(py¢) = ) I(ap) + ) In(a(,)(ln coa(ng) + b, sin(ng)) .

n=1] (9)
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Examgle

Consider solving Eq. 1 in a rectangle of dimensions /2 by 1
with u on the boundary equal to sin x. Using superpoition we may
use an iterative approach to solve for the difference (or
residual) between the true solution and the estimated solution.
The approximate solution was taken to be:

-
~

- a 8 - 2
u(r,8) --—g Jo(r) + z Jn(r) (an cos n® + bn sin no) (10)
n=l

where the coefficients were taken to be zero until the estimate
was at least three times the standard deviation of the estimata.
Furthermore, the sample size on each iteration was doubled if the
estimated error was more than .7 times the estimated error on the
previous iteration, otherwise the sample size wms takan to he the
same sizeAas on the previous iteration. Table I shows how the

error in u(.2x + .4, .5) decr2ases with the number of iterations.

Estimation of the Boundary Error

To estimate the boundary error we occasionally (eay on every
tenth sample) require the random walk to get within some smaller
€, say €/10, of the bounaary. We then score the difference
in the estimates of the coefficients batween applying the ¢ or
€ /10 rule for termination to the same random walk. Thus we can
estimate how Aifferent our andwer would have been {f the random
walke had terminated within ¢/10 of the boundary rather than
withine.

Application to Other Coordinate Systems

There i8 nothing special about the pclar axpansion
coefficients. The expansion coefficiients can be generated for
any coorcinate system that Eq. 1 is separable in bacause the
expansion coefficients always involve an integral that may be
estimated by Monte Carlo,
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TABLE 1
. Last u(x) ,y;)
Number Total - o Non~Zero -
Iteration Samples Samples u(x;,yy) (er%or) COEFF —ulx;,y;)
1 100 1oo 80428 8., 1F-2 - 5+ 2E-2
2 200 300 « 87097 1. 0E-2 A(D -1.5E-2
3 200 500 «85455 2.6E-3 A(2) 1.9E~3
4 200 700 + 85640 4,6E-4 A(3) 3.3E=-5
5 200 900 «85565 1. 4E-4 A(3) 7.9E-4
6 200 1100 .85633 1.8E-4 A(3) 1.0E=4
7 4cn 1500 «85645 9.7E-5 A(3) -2.0E-5
8 400 1900 « 85651 7.8E-5 A(3) -7.7E=5
9 200 2700 85642 1. 1E=5 A(4) 8.5E-6
10 800 3500 « 85643 4,8E-6 A(4) 3.9E~6
11 800 4300 +85643 8. 5E-7 A(S) 1.9E-7
12 800 5100 «85643 4, 1E=7 A(5) -2,4E=-7
13 800 5900 +85643 5. 6E-7 A(5) -1.1E-6
14 160C 7500 «85643 3. 5E-7 A(S) 1.6E-6
15 1600 9100 +85643 2.1"-7 A(5) 8.5E-7
16 1600 10,700 +85643 1. 3E-7 A(6) 2.7E=-7
17 1600 12,300 +85643 9,9E~-8 A(6) 1.8E-8
18 3200 15,500 +85643 6. 4E-8 A(6) -2,2E~7
19 3200 18,700 +85643 7.9E-8 A(6) 2. 2E=~7
20 6400 25,100 +85643 1. 7E-8 A(6) -2,0E=-8
21 6400 31,500 +85643 1.9E-8 A(6) -2.1E~-8
22 12,800 44,300 « 85643 1, 5E-8 A(6) -5.4E~8

23 25,600 69,900 +85643 6. 7E~9 A(6) 7.2E-9



Iteration
24
25
26
27
28
29

Number
Samples

25, 600
51,200
51,200
51,200
51,200

51,200

Total
Samples

95, 500
146,700
197,900
249, 100
300, 300
351, 500

TABLE I (cont)
;(11.71)
.85643
+85643
+85643
. 85643
+856473

« 85643

o
u
(error)

5.9E~9

5.0E~10
2.8E~10
1.2E~10
5.8E=11

2.1E-11

last
Non~Zero

COEFF
A(7)
A(7)
A(7)
A(8)
A(8)

A(8)

Note: mean time per sample 1is independent of the iteration index.

u(x;,y;)
-;(xl.Y1)
-4, 0E-9
8. 6a-10
-5.7E-10
1.8E-10
2.4E-11

5. 9E-12
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