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REGIONALMONTECARLOSOLUTIONOF ELLIPTIC

PARTIAL DIFFERENTIAL EQUATIONS

by

ThOIMS E. t300th

ABSTRACT

A continuous random walk procedure for solving some ●lliptic
partial differential equations at a eingle point IIS generalized
to esrimate the solution everywhere. The Monte Carlo method
described here is exact (except at the boundary) in the sense
rhgt the only error is the statistical sampling error that tends
to zero as the sample eize increases. A method to estimate the
error introduced at the boundary is provided so that the boundary
error can always be made less than the statistical error.
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Introduction:

A continuous random walk procedure for solving some elliptic
partial differential equations at a single point is generalized
to estimate the solution everywhere. The Monte Carlo method
described here is exact (except at the boundary) in the sense
that the only error is the statistical sampling error that tends
to zero as the sample size Increases. A method to estimate the
error introduced at the boundary ~S providerl so that the boundary
error can always be made less than the statistical error.

Monte Carlo methods have been suggested 1,2 for solving
elliptic partial differential equations at a single point. The
theory described in Ref. 1 can be generaliz~d to estimate the
oolution everywhere.

I shall 8hoW how to solve some partial differential
equations of the form:

+U
2 2u

xx YY
-a u - 0, a constant. (1)

This is an important class of partial differential equutione
becauue any elliptic partial differential equation wltn constant
coefficients can be reduced, by suitable transformation, 3 to the
canonical form of Eq. 10

Dirichlet Roblem in Polar Coordinates

We shall consider eolving Eq. 1 with u specified on the
boundar .

r
A ~eparntion of variables in polar coordinates

yields:

af)
u(r,9) D ~ Io(ar) + ~ In(ar)(en coe nO + bn eln ne) (2)

n-l

wi~ere the ~ arc the modified Bessel functione. ‘the expansicn
coefficients are obtained in the usual manner by integrating with
con d and sin n6 to give:

(3)

(4)

Ut.?hi.$i
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However, thes? coefficients may he estimated by s:.mpling 61
uniformly

.
a=n

.
bn .

Now if w
(see Fig.
that lies

on [O, Zn ] and using:

-T-&ii1:1u(r, ei) cos nt3i

I&Tii)1u(r,Oi) sin nOi .

wish to uolve Eq. 1 in the vicinity of a point P@
1) we draw the largest circle (with center at Po)
entirely within D and proceed to sample

(5)

(6)

Fig. 1

the ei of Eqs. 5

the single point
and then use:

A

and 6. We do not know u(r,Oi) and ao ~ use

theoryl to get a one particle estimate u(r,ej)

A

a
fi “T&j

a

Thus, the solution at any point inside Dmny be

a
A A

A &

b l~(W) ‘nfl ‘n(w’)(anu(p)+) - 2 coa(n~)

estimated l>Y:

a

+ in ain(n$)) .
(9)
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ExamIIle

knaider solving Eq. 1 in a rectangle of dimenaiona w/2 by 1
with u on the boundary ●qual to ein x. Ueing euperpoition W ❑ay
use an iterative approach to mlve for the difference (or
residual) betwen the true solution and the estimated solution.
The approximate solution was taken to be:

A A

.

a.
a

u(r,e) -~Jo(r) +n~l Jn(r) (an cos ne + ;n sin ne) (:0)

where the coefficients wre tak~n to be zero until the estimate
was at least three times the standard deviation of the ●stimate.
Furthermore, the sample size on each iteration uaa doubled if the
estimated error wan ❑ore than .7 times th~ estimated error on the
previous iteration, otherwise the qample size so taken to he the
same size as on the previous itaration. Table I shows how the

●

error in u(.~ + .4P .5) decr~ases with the number of iterations.

Estimation of the Boundarv Error

To ●stimate the boundary error w occasionally (may on every
tenth rnample) require the rmndom -lk to get within rome smaller
c) say c/10~ of the bounmry. We then score the difference
in the ●stimates of the coafficienta between applying the c or
c/10 rule for termination to the same random walk. Thus * can
estimate how different our aflawer=ld have been if the random
walke had terminated within c/10 of the boundary rather than
within c.

Application to Othar Coordinate Systemt

There ie nothina ep~cial about the polar axpansion
coefficients. 7%e expansion coafficiients can be generated for
any coordinate system that ~. 1 Is eaparabla in bacauee the
expanoion coefficients always involve an integral that may be
estimated by Mnta Carlo.
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Iteration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

!9

20

21

22

23

Number
Samples

100

200

200

200

200

200

4:0

400

800

800

800

800

800

160C

1600

1600

1600

3200

3200

6400

6400

12,800

25,600

Total
Samples

100

300

500

700

900

1100

1500

1900

2700

3500

4300

5100

5900

7500

9100

10,700

12,300

15,500

18,700

25, 100

31,500

44,300

69,900

TABLE I

A

u(xl)Y~)

.80428

.87097

.85455

.85640

.85565

.85633

.85645

.85e51

.85642

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.85643

.

(e%or)

8. 1%2

1.OE-2

2. 6E-3

4. 6E-4

1. 4E-4

1. 8E-4

9. 7E-5

7.8E-5

1. lE-5

4. 8E-6

8. 5E-7

4. lE-7

5. 6E-7

3. SE-7

2.1”:-7

1. 3E-7

9. 9E-8

6. 4E-8

7, 9E-8

1. 7E-8

1. 9E-8

1. 5E-8

6. 7E-9

Last
Non-Zero

COEFF

--

A(l)

A(2)

A(3)

A(3)

A(3)

A(3)

A(3)

A(4)

A(4)

A(5)

A(5)

A(5)

A(5)

A(5)

A(6)

A(6)

A(6)

A(6)

A(6)

A(6)

A(6)

A(6)

U(XI >Yl )

-2X1 SY1 )

5. 2E-2

-1.5E-2

1.9E-3

3. 3E-5

7. 9E-4

1. OE-4

-2. OE-5

-7. 7E-5

8. SE-6

3. 9E-6

1. 9E-7

-2.4 E-7

-1. IE-6

1● 6E-6

8. SE-97

2. 7E-7

1.8E-8

-2. 2E-7

2. 2E-7

-2. OE-8

-2, lE-9

-5. 4E-8

7. 2E-9
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TABLE I (cent)

last

Number Total .
n

Non-Zero
Iteration 8amplet3 Samples U(%1SY1) (e%or) COEFF

24 25,600 95,500 .85643 5. 9E-9 A(7)

25 51,20i3 146,700 .85643 5. OE-10 A(7)

26 51,2(!9 197,900 .85643 2. 8E-10 A(7)

27 51,200 249,100 .85643 1.2E-10 A(8)

28 51,200 300,300 .85643 5. 8E-I 1 A(8)

29 51,200 351,500 .85643 2. lE-11 A(8)

U(q DY1)
.

-(q oYl )

-4. OE-9

-5.7E-1O

1.8E-lo

2.4E-11

5.9E-12

Note: memn time per sample is independent of the iteration index.
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