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ABSTRACT. We studied the relationship between the stability properties of

ideal low-n internal modes and the three-dimensional (3-D) ideal Mercier criterion

for t = 2 torsatron configurations. For the low-n stability studies, we used the

stellarator expansion as implemented in the FAR code. The 3-D Mercier criterion

was applied to equilibria calculated with the VMEC code. We found that (1) low-n

modes with singular surfaces lying in a Mercier region are, in general, unstable and

(2) the critical beta given by the Mercier criterion agrees well with the critical beta

for the lowest-n unstable mode. This is verified even in the case of global n = 1

modes. Therefore, the 3-D Mercier criterion is a useful guide in mapping the ideal

stability beta limits for these torsatron configurations.

INTRODUCTION

Gruber et al. [1] and Merkel et al. [2] compared the unstable regions and equi-

librium beta limits for low-n Mercier modes and high-n ballooning modes for a he-

lically symmetric equilibrium. We compared stability limits for ideal low-n modes

and Mercier modes for more general equilibria using different techniques.
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CONFIGURATIONS UNDER STUDY

The vacuum magnetic flux surfaces were generated from a magnetic field pro-

duced by currents in axisymmetric coils and £ = 2 helical coils having the winding

law ^ = ^0 + Q/M, where <fi and 0 are the geometric toroidal and poloidal angles.

We studied torsatron configurations with different average plasma minor radius

ap and coil minor radius ac, different numbers of field periods A/, and different

values of the rotational transform at the axis r̂0 and at the boundary ta. These

configurations had the following parameters:

M

10

12

14

19

Ap

7.6

7.8

9.2

10.0

Pc

1.27

1.44

1.31

1.38

0.45

0.33

0.52

0.50

0.95

0.98

1.45

2.3

Here Ap is the aspect ratio of the configuration and pc — acMjRQI is the coil pitch

parameter, with Ro the major radius.

NUMERICAL METHODS

2-D equilibrium and low-n modes

For the two-dimensional (2-D) equilibria and low-n stability, we used the stel-

larator expansion as implemented in the FAR code [3]. In this code, a perturbed

potential 5 is expanded as

rmn{p)S\n{m6 + n()

where n and m denote the toroidal and poloidal modi: numbers. In this initiKi

value code, a component with helicity q (= \/t = m/n) is initially perturbed. In

this study, we considered n between 1 and G. We used 800 radial grid points in
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the numerical calculation, with convergence studies using 200 and 400 points. The

growth rate is interpolated to zero radial grid spacing. The higher the value of n,

the more localized the mode and the more resolution needed.

3-D equilibrium and Mercier modes

For Mercier modes, only equilibrium quantities are needed. For this part of

the study we used the VMEC code [4]. Closed flux surfaces were assumed and

expressed in the inverse coordinate representation:

R = y Rmn{s) cos(ma — n<j))

Z = ^2 Zmn{s) sin(ma - n<j))
mn

Here a is a poloidal-like angle and the flux label s is proportional to the toroidal

magnetic flux. In calculating the VMEC equilibrium we used the set of modes

n = ( - 3 M , - 2 M , - M , M , 2 i l / , 3 M ) and m = (0,1,2,3,4,5,6). A radial grid of 61

points is considered.

The Mercier criterion is a necessary condition for stability that must be eval-

uated on each flux surface. The ideal stability analysis is based on the energy

principle. We write the condition for stability a la Bauer, Betancourt, and Garabe-

dian [5] as DM = Ds + Dw + D{ + DG > 0, where

Ds = U . ; shear

D" = (9-~) P'V" ' (P>)2 ( ^ ) ( ^ f ) well

~- ( X"I' - X"*' ~~zF } ) net currents

/(J-B)2 g \ l&g\ /g±B% '
S e o d e s i c



with g the Jacobian. The prime indicates the derivative with respect to the flux

label s, V is the magnetic well, / is the toroidal net current enclosed in the flux

surface, <£> is the toroidal flux, and x 1S the poloidal flux; g" = Vs • V.s, and the

angle brackets indicate the operation ((x)) — J J da d<f> (x).

NUMERICAL RESULTS OF THE STABILITY ANALYSIS

Our results on stability for low-n and Mercier modes for the configurations with

M = 10, 14, and 19 are presented in Figs. 1-3, which shows the unstable regions

and the positions at which the dominant component of the low-n modes is localized

(thick lines). The helicities of the most dominant modes are also indicated. Figure 1

shows the results for two flux conserving M = 10 configurations, one unshifted

and the other with an inward shift in magnetic axis of 2.5% of the major radius.

Figure 2 shows the flux-conserving and zero-current modes of operation for the

M — 14 configuration. Figure 3 shows the unstable regions for the zero-current

M = 19 torsatron.

CONCLUSIONS

The Mercier criterion usually yields a more pessimistic stability beta limit.

However, the unstable Iow-n modes map out the radial boundaries of the Mercier

unstable region quite closely. There is good agreement between the 3-D low-n

calculations made using a 2-D equilibrium and the 3-D Mercier stability calculations

for the full 3-D equilibrium, even for £ = 2 torsatrons with fairly low aspect ratio.

Therefore, the similarity in stability with respect to low-n perturbations and Mercier

modes that was found for helically symmetric configurations by Gruber, Merkel,

and others still holds for the more general 1 — 1 configurations studied here. The

practical application of our calculations is that we can perform a stability analysis

for the ideal pressure-driven modes by studying either the low-n or the Mercier

modes.
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