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Abstract

The aim of this talk is to survey Rayleigh-Taylor in-

stability, describing the phenomenology that occurs at a

“Taylor unstable interface, and reviewing attempts to under-

stand tlwse ph~nornena quantitatively,



,

1, Introduction

The Rayleigh-Taylor instability is a fingering instability of an interface

between two fluids of different densities, which occurs when the light flllid is

pushing the heavy fluid.1’2 The aim of this talk is tc survey Ravleigh-Taylol’

instability, describing the phenomenology that occurs at a Taylor unstable

interface, and reviewing attempts to understand these phenomena quantitatively.

I will also emphasize some critical questions which require further ‘,tudy.

2, Simplest Explanation of the Occurrence of Rayleiqh-Taylor lnstabilu

This conference affords the

topics from speakcr~ with the

pl~asure of learning about,

most diverse backgrounds,

diversity, I hope the experts will forgive me if I begin

possible description of Rayleigh-Ttiylor instability,

a great variety of

In view of this

wi’~h the simplest.

Imagine the ceiling of a room plastered uniformly with water to a depth of

1 meter (Fig. 1). The laj.r of water’ will fall. However, it !5 not through

lack of support from the air that the watur will fall, lhe pressure of th~

atmosphere is equivalent to that of a column of water 10 meteri thick,, quite

sufficient to hold the wat~ih aqain~t the ceiling, But in one respect the atmus-

plwre fails as a supporting medium, 1- fails tu Cr,rllstraint.twair-water inter-

face to flatness, No matt.pr how car~fu:ly the water layer was,prepc]rcd to Imjin

with, it will deviate from planarity by ~umc sm~ll amuur~t.. lhos~ portions of

‘,he fluid which Iiv higher than the av~r;lge ~x~J1’riencemore presburv than is

neerkd for their support. llwy begin to ‘=iso, uu~hing a!,ide water as tlwy do

so, A n~lghbor!nq portion of tho fluid, whel’e ~he surldce hangs a llttlv low~r

than av~rage, w{II ruquirv mow than av~rag~~ prP~surrJ for it!, support, It
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begins to fal:. The air cannot supply the variat”OTISin pressure from place to

place necessarj to prevent the interface irregularities from growing, The

initial irregularities therefore increase in magnitude, exponentially with time

at the beginning. The water which is moving downward concentrates in spikes.

The air moves upward through the

to the floor,

The same layer of water

stable. Irregularities die out.

water in round topped columns. The water falls

ying on the floor would have been perfectly

Thus we can infer a simple criterio.1 for the

onset of Taylor instability at the interface between two fluids of different

densities: If the heavy fluid pushes the iight fluid, the interface is stable.

If the liqht fluid pushes the teavy fluid, the interface is unstable. A crite-

rion of comparable simplicity governs the onset of Kelvin-Helmholtz instability:

The interface between two fluids is unstable if there is a j= in the tangential——

component of the velocity across the interface. These two criteria are among— .—

the most basic principl~s in the subject of interface ~nstability.

J, Examples of Rayleigh-Taylor Instability——

Ttty

A,

i)

ii]

or instability occurs in diverse situiition~. As examl~’es, we mention:

Natural l)h~nomena;....,— ,...-.-....—-—

overturl of the outer portion of the collapsed cor~ of a massivf’ !3Li~l’;:J

lht’ forrnttion of hiqh Iulninohity twill-exlltiust,jots in rotating qa:,

1!. l[!CIIIIO....-

i) !.dsPr
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ii) Electromagnetic impl~sion of a metal liner,
6

and several others.

Let us take a quick lock at one of these examples. A highly schematic

picture of the inplnsion of a deuterium-tritium (DT) pellet is as follows (Fig.

2). A sphere of DT is surrounded by a glass or metal tamper. This tamper is

irradiated with intense laser light, which causes it to accelerate inward. The

outer surface of the tamper is the interface between a heavy fluid (metal) and a

light fluid (vaporized metal) and is unstable during the initial phase of the

implosion. As the pellet is compressed to perhaps 1,000 times its normal

density, its pressure increases until it is sufficient to slow the inward motion

of the tamper. This phase of the implosion is also Tay?or unstable; here it is

the DT which is pushing the tamper. Although this picture of the implosion of a

DT pelle~ is so oversimplified as to be almost ridiculous, it nevertheless sug-

gests quite clearly that Taylor instability is a factor to be dealt with in

evaluating pellet performance. 7

4. Phenomenolcgy of Rayleigh-Taylor lnstabil~

There is a compl~x phenomenoloqy associated with the evolution of a laylor

unstaOle interface. This , zludes th~ furmatiori of spikes, curtains and bubbles,

the development of Helmhc’ltz instability 011 the side of the spikes, competition

among bubbles l~adinq to their ~malgamaticn, formation o! droplets, entrainment

and turbulet)tmixing, and a possible chaotic limit with a friictalized interface,

It is helpful to or’gnnize a description of the growth of the instability

into a nll,nb~’rof’stages, This can be done as ful lous.8,9
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SE9Q” If the initial perturbations in the interface or velocity field

are extremely small, the early stages in the growth of the instability can be

analyzed using the linearized form ot the dynamical equations for the fluid.

The result is that small amplitude perturbations of wavelength A grow exponen-

tially with time. When the amplitude of the initial perturbation grows to a

size of order 0.1 A to 0.4 A, substantial deviations from the linear theory are

observed.

=’ During the second stage, while the amplitude of the perturbation

grows nonlinearly to a size of order A, the development is strongly influenced

by three-dimensional effects and the value of the density ratio, or Atwood

number A = (PH - pL)/(pH + pL)i where pH = density of heavy fluid, pL = density

of light fluid.

If A: 1, the light fluid moves into the heavy fluid in the form of round

topped bubbles with circular cross sections. Note that “two-dimensional” piane

bubbles are unstable to perturbations along the axis perpendicular to the plane

of the bubble, and a trough having

up into three-dimensional bubbles.

or curtains between the bubbles,

a pl-n~ bubble as a cross section will brea!i

The heavy fluid will form spikes and walls

so that a horizontal section would show a

honeycomb pattern. [f A ~ O, one will instead find a pattern more like two sets

of interpenetrntinq bubb”le%.

No’.e that these pictures are rather different from the simpler patterns of

bubbles and spikes that wu think of in two dimensions. 1 will neverthele~~

often refer to bubbles and <pikes for the sake of simplicity.

Stag~ 3. The next stage is characterized by the development of structure—

01)the spikes vd interactions among the bubbles, Illesephenomena CaIIurigini{t[’

from several sources. “lh~rc is a nonlin~ar interaction among initial perturba-

t.iuns of diffe~erlt frequency. Also Helmholtz i:lstal)ilityalonq t,h~side u! Lhv
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spike can cause it to mushroom, increasing the effect of drag forces on the

spike. This effect is more pronounced at low density ratios. There is some

experimental evidence for bubble amalgamation, a process in which large bubbles

absorb smaller ones, with the result that large bubbles grow larger and move

faster.

The presence of heterogeneities in various physical quantities can modify

the shape and speed of bubbles tind spikes to a

strength and length scale of the heterogeneity.

a’ In the final stage, we encounter

various mechanisms, the penetration of a bubble

finite thickness and other complicated behavior

turbulent or chaotic mixi,lg of the two fluids.

degree which depends on the

the breakup of the spike by

through a slab of fluid of

that leads to a regime of

5. ~ctors Influencing the Development of Rayleigh--Taylor Instabil~

Numerous factors

simple fluid, These

effects of converging

influence the development

include sur’race tension,

geometry, three-dimensional

of Taylor irlstability in a

viscosity, compressibility,

effects, the time dependence

of the driving acceleration, shocks, and a variety of forms of heterogeneity.

An assessment of some of these factors is given in the Table,

6. Other Factors Which may be Operative in Realistic Problems— —..-— —.——

In natural phenomena and t~chnological appli:atiuns where Taylor insta-

bility occurs, there are many other factors that can play an important role,

For example, material properties and the equation of st,at[~of the fluids may be

important. The fluids may conduct heaL or difluse 111,1:,:, The material mdy
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change phase or consist of several components. Radiation often couples to

hydrodynamiccs.

It is not easy for me to imagine dealing scientifically with the whole

range of factors that can influence Raylcigh-Taylor instability, so in this

tallc I will restrict myself to a few of the factors which effect the behavior

of simple fluids. It is a little bit humbling to recall that engineers have

and must deal with Taylor instability in its full complexity.

7, Analytic and Quasi-Analytic Modeling

The purpose of analytic modeling is to identify the effects which are

dominant during a given stage in the development of the instability.

A. Linear Analysis

There is a considerable body of literature which analyzes the intital

stage in the growth of small amplitude laylor instability, where the linearized

form of the equation, of fluid dynamics can be used.

(i) Plane ~eometry

As an example, consider two infinitely extended inviscid fluids which

meet at a plane interface (Fig, 3). For definiteness, we suppose the upper

fluid is heavier, pH > PL. ‘The tluid~ are subjected to a constant acceleration

in a direction normai to the ‘nterface, We write the total effective a~celera-

tions as G = (+ - ~) = (a + g)l =G2, with g > 0 and 2 a unit vector normal to

the interface, pointing into the heavy fluid, The gr,lvitational acceleration is

d’ -g~ and ~ = ai is a uniform external acceleration applied to the systen as a

whole. Thus, when G ~ O, the (’ffectivr accelerat.iun acts vertically upward, the

light fluid acce’lvrates thr Iv+iivyfluid, and the configuration is unstable

according to the criterion we discussed above,
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One works in a noninertial frame comoving with the unperturbed interface.

In this frame, the unperturbed fluids are at rest and the unperturbed interface

is defined by z = O. The pressure fields in the fluids vary with the vertical

coordinate z to ~alance the total acceleration and permit static equilibrium

(in the comoving frame).

This is the picture for t < 0. At t = 0, we perturb the configuration in

some way. We might suppose that the fluid is initially at rest but that the

interface is perturbed so as to have the form

Z5 = rl(t)coskx , [q(t)/h << 1] .

Thus the interface now consists of a set of crests and troughs

y-axis.

One may then show, using either a potential theory argument

equation or a simple energy analysis, that the amplitude of the

determined by the equation 10

ij(t) = az(k)n(t) ,

with

~fj+ - ~L\ / ~
a2(k) = G

\ )‘k-\ PH+PL, k3 “PH + PL,

Here u is the coefficient of interracial tension.

The solution to (2) for fluids initially at rest is

q(t) = rl(0)cosh at .

(1)

parallel to the

via Bernoulli’s

perturbation is

(2)

(3)

(4)
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Several simple but useful conclusions cdn be drawn from (3):

Ifu= O, G > 0 and PH > PL, m is real and the interface is unstable. The

growth rate for short wavelengths is unbounded, so on the basis of linear analy-

sis the Rayleigh-Taylor problem would appear to be ill-posed in the absence of

surface tension. However, we note that there is no rigorous theorem available

which says either t.nat the Rayleigh-Taylor problem is ill-posed in the absence

of ~urface +ension or that it is well-posed when surface tension is included.

For G < 0, a is imagil~aryand one has stable gravity waves.

Surface tension stabilizes perturbations shorter than a critical wavelength

Ac = [O/G(PH - PL]* . (5)

The shape of the dispersion curve makes it plain (Fig. 4) that there is a

fastest growing, or most unstable, wavelength }M. Thi~ is given by

(6)

The above analysis can be generalized in several ways. For example, in the

linear approximation we can superpose harmonic interface perturbations in the x

and y directions to give a three-dimension~l treatmenl of the instability.

Also, the linear treatment can be generalized to include other physical

effects such as compressibility, 11,12 13 14nonuniform accelerations, shocks ,

density gradients,
10,15

slab geometry, 16 and so forth. 4 tho~ough analysis of

the role of viscosity is available. 10,17,18

Finally, one can treat general initial cond

linearized equations satisfying general initia”

tions, 18,19 Solutions of the

condition~ can be expressed
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in terms of Fourier- Laplace transforms of the hydrodynamic variables, although

the results can get quite complicated.

(ii). Spherical geometry

Taylor instability at a spherical interface has been studied by

several authors.20-25 Results of generality comparable to those obtained in

plane geometry are not available, owing to the greater mathematical complexity

of the equations encountered in curved geometries. There is, moreover, a new

effect at work in curved geometries --a convergent geometry can itself be de-

stab

If R

lizing.

This can be seen readily in the case where the fluids are incompressible,25

t) is the radius of the unperturbed spherical interface, and if the pertur-

bations 6R are expanded in Legendre functions, 6R = z an(t)Pn(cos$), then the
n

amplitudes an(t) can be shown to satisfy

an(t) + (3R/R)an(t) - e2(n)(R/R)an(t) = O ,

with

n(n - 1)P2 - (n+ l)(n +2)PI
(y2(n) =:

np2 + (n + i)pl

(7)

(8)

Here p2 = the density outside the interface, pl = the density inside the inter-

face, and n = the mode number of the spherical harmonic describing the pertur-

bation.

For large R, (7)~goes over to the usual Rayleigh-Taylor result. However,

If P1 + P2, (7) takes ttleform
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an(t) + (3~/R)an(t) + (2~/R)an(t,)= O .

This equation can have unstable solutions, depending

Thus a spherical interface can be unstable even if

,.
in density across it, The relative importance of

(9)

on the behavior of R(t).

there is no discciltinuity

classical Rayleigh-Taylor

effects ard geometric or convergence effects depends strongly on compressibility

and the acceleration history of the interface. This dependence can best be

studielln::,,,.rically.

B. Nonlinear Mooelina— .—

Next I will briefly discus:) some attempts to model the nonlinear

growth 01 spikes and bubbles.

First, an exact closed form solution valid for a finite time T has been

derived by 0tt26 for the Taylor unst.able motion of a fluid layer idealized as

having infinitesimal thickness. An initial sinusoidal perturbation evolves

into

deve

hul)h’

a cycloid. After time “1 adjacr+nt segments of the fluld collide and tile

opment cannot be followed analytically,

There have been a number of attempts to model the growth of spikes and

es in more gleneral settings, These models

of drastic simplifyil~g assump~ions which it is

physics ~orrect.ly and permit the dynamics to be

tial equations,

The easiest model to describe is th,lt.of

are based on one or another set

l~oped uflpture the zuroth order

described by ordinary diffet*en-

Fermi ,27 who considered incom-

pressible fluids in the limlt of intinit.o density ratio. lle considered an

initial sinusoidal perturbation, which was then approximated by a polygon, i.e. ,

by a square wave profile (F~cJ.5), The interface is thus described by 3 param-

(’tcr~; the heigh’;s of the spike and bubble (d,b), and the width of the ~pike



13

(x). The condition of incompressibility provides one relation between these

parameters, Fermi next estimatus the kinetic energies associated with the hori-

zontal and vertical motions of the spike, and with the motion of the fluid above

the spike and bubble, as well as the pot~mtial en~r’;’j’of the fluid, in terms of

the parameters a and x. This yield~ a set of coupled nonlinear ordinary differ-

ential equations for a(t) and x(t). The r~:sultswere that the asymptotic speed

of the spike was roughly correct, hut the speed of the bubble ~Js not correct,

More recent attempts along these lines are due to Baker and Freeman 28 and

Crowley and Levermore,
29

Baker and Freeman28 derive (uncoupled) ODE’s for the

time evolution of spike and bubble peak amplitudes by devising functions which

interpolate regimes of small and large amplitude behavior. The model produces

resu;ts for the motion of the tips of spikes and bubbles which appear to be in

reasonable agreement with code and experimental determination of these quanti-

ties.

Crowley and Levermore29 nave devised an ODE fc~rthe time development of an

amplitude which is in some scnsa an enve”

tiations.

My appraisal of this kind of work is

ope of an ensemble of initial pertur-

3s follows:

If such models should turn out to be sufficiently accurate for their in-

tended application, they would enjoy the advantage of any goad model: 1hey

would express ~n relatively simple form the governing physics of the problem.

It is not possible to assess g priori the validity or the approximations

made in deriving the models, This means that they must he developed in close

conjunction with numerical codes and, where pussible, experiment, Thi~ is no

bad thing--indeed, one would hope that Iligh cmality codes I,lighthelp one to

develop more refine(iand better validated mode!s.
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A weak point of such models is that they do not seem to help with the most

difficult aspects of Rayleigh-Ta’ or instability: interactions of perturbations

of different frequency, the effects of statistically distributed heterogeneities,

breah-up of spikes and bubble amalgamation.

c. Rising Bubbles

lhere are a number of studies which analyze the motion of symmetrical

bubbles rising under gravity. The steady state motion of cylindrically sym-

metric bubbles rising in a tube of circular crr,ss section has been treated by

Davies and Taylor, 30 who give approximate expr~ssions for the speed Ot the tip

of the bubble and for the profile of the bubble near the tip. Layzer
31 has

given an approxititatesolut”~n to the nanlinear equations deter,nining this flow

which interpolates between th.’ initial small amplitude ~tion and the steady

state motion.

Birkhoff and CartPr32 and Garabi

pardlll~l walls, They formulate Ll~

integral equations, and their work

and

flay”

its

,dial?3 discuss pldne bubbles rising between

s pr~blem rlgrrously i’~terms of nonlinedr

includes an investigation of the existence

uniqueness of solutions to ttwse ~quationsm

Although bubbl~ rise

eiqh-T~ylor problem, it

own riqht., Moreover, the result,~ of Davies and l~ylrlr and Ut LiiIyfFIl~~vt’

in a gravitational fi~ld is not ident,icdl to thl>

is closely r(’’ated and is of courbe of interest in

Iwn incr)rporated into ~l<vtain phenornenoiogicdl models 01 tlIP Int.t’ staqe 0!

Taylor inst,at]ility,while thosp of 13irkholf and Carter have prov~ln usuful ill

validating Iiumttricalcudus which cumputr laylor Instability. Also, tho pap~rb

of Birkho~i and Carter and 01 (iar~bedian ~ru examl~le~ of a ratlwr sp~rse body UI

mathematically ri!lurouswork 01} problems clost’ly relat~d to laylor inst,ahility,
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8. Numerical Computation

In the simplest iGrmulation of Rayleigh-TaVlor instability, the governing

equations are the two-fluid, two-dimensional incompressible Euler equations. As

mentioned above, these equations appear to be ill-posed in that the growth rate

of short wavelength perturbations is unbounded. We have also pointed to many

factors which can influence the development of Taylor instability, These r~sult

in modifications to the simple form of the Euler equatioi]s, possibly so as to

render them well-posed. However, in many cases of physical intertst, the extra

physical factors occur multiplied by a small parameter. In others words, they

occur ~n small length scales, inaccessible to feasible calculations.

There are two nbstacl~s to correct calclllation in such circumstances. The

smtill parameter, small ienqth scale effects must somehow be includ~d hy nlathe-

mdticdl or computational modeling. At the same time, it is necessary to avoid

the incorrect simulation of physical effects by numerical artifacts. IIIp(ir-

ticular convergence under mesh refinement, while a necessary aspect of valida-

tion for such problems, is not sufficient. Validation requires quantitative

agreement with an independently correct calculation, analytic %oluLion or labo-

ratory experiment.

lhe computational st.rateqies ‘flhi-hhave been deblloped for this problem

full into two clas~es: special purpotc codes and general purpose cudv~, I11(’

special purpose codes are one5 nut rt!i+dilyadaptable to inrlude the vdrioty of

physictl tartors mentioned abuve, Ibis narrower hcupu permits analytic simpli-

fications which arc utilized to ii maximum deqiw’~’.

lwo nutahle examples uf su~h ~od[~~ l]iiv(~ 1~1 ~11 devvloped l.)~Mei~ihoff iil~d

~emac,,34,3!J 30and by l)akor, Meiron, and OrsI I lh~’ hl~l)ikoff-l~miicl)(:odr 1!,

ha~td on conformnl mdppinqs. Illttw ca:,v of ,itlintinito .hqlhityratio and two
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fluids in an infinite strip, a time dependent conforrrralmapping takes the region

occupied by the heavy fluid into an infinite half

the known Green’s function for Laplace’s equation ~

face velocity as a quadratur~. The code of Baker

strip. In this half strip,

s used to express the inter-

et a136 is based on boundary

integral techniques, in which the velocity potential is expressed as an integral

over a dipole sheet, distributed over the fluid interface, Coupled Fredholm

integral equations can then be derived which determine the strength of the di-

pole sheet, ana its time development,

The strong points of the spcci~? purpose codes are accuracy and speed,

“ihusthey can be used to validate general purpor codes, Of cuurse, these code?,

h~ve also been applied in their own right .::study several interesti.lq ques-

tinnsn For example, the code of Baker ~t al
36

has been used to study Taylor

instability of a thin fluid layer37 (fis. 6), and both codes have been used to

confirm results orl rising plane bubbles originally obt~ined by Birkhoif and

Cdrter,3?

Itlerehave be~n nurncrous calculations of Hayl~igh-laylnr ins,~~tillly usin!]

codes which solve the full (two-dimensional) [uler or Ni~vlcr-Stukes [lqu~tion’j.

Notable example% inciudc the work ot 1. Harlow and J, WPICI),J” Il.J. IIilly,
39,40

w, P. Crowlry, 29 J, H, Irewmn, M, J, flli](ls(~t~atd S, 1, lhom;)~),l,4’K, A. Moy(ir

and P. J.

Iim’

to carry

publishrd
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The codes have been used to st’Jdythe effect of f~ctors such as the Atwood

number, surface tension, viscosity, compressibility, ti)errnalconductivity and

others on the development of the instability. The case of single frequency

perturbations is the one commonly treated;

The results are ~ften compared to those of the linear theory. In general,

they lack sufficient validation in the nonlinear regime. This is a situation

which could be improved substantially if cross comparis~ns of general purpose

codes wi~remore common and more precise.

I now want to turn ~riefly to a code which 1 ha’~e been work,ng on with

Glimm, McBryan, ancl Menikoff.44 it is based on the m[!thcd of front tracking,

whose goal is to achicvp the accuracy of a special purpose calculation wititin

the context of a gener~l

introduce as a computat

(codime,ls f,mone) set of

juinifq vertices. lt@ f’

purpose method. The main idea of front tracking is to

onal degree of freedom an interface consisting of a

curves, composed for example of piecew~se linear Imnctsl

.ont is ;Jrop~qated usir)g the velocity or acceleration

nuity load!, to elliptic equation$ which ,Iru%ingulnr exactly on tlw llItPr-

Pittwr in tlwir co~fficmlents or ttwir ~ourcP term% or Imth,
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I would like to emphasize that in rrmst cases of practical interest, one

does not kr,owin detail the nature of the many disturbances perturbing the fluid

motion. In gnneral, st~tistically distributed heterogeneities on various length

scales will be present in the driving forces, the velocity fields and in other

physical quantities. In some cases, these heterogeneities can strongly influ-

ence the fluid motion, Thus, an adequate treatment of Rayleigh-laylor insta-

bility will require analysis not only of the growth of perturbations of fixed

wavelength, but of statistical perturbations az well.

The input to our code presently allows one to add a statistically dis-

tributed coinponent on one or several length scales to the x and y components of

the velocity or acceleration, tu th~ vorticity ~n the interior of the fluid, and

to ~j(llerphysical quantities,
44

This is done by using a random number getter””

~tor to define a randumly distributed variable on a lattice of points in the

(x,y)-plane, lhe computed functions are modifi~d at each tim~ step by the addi-

tion of iirandom function,

lher~ are many points which n~~d to be studied in connection with statis-

tical perturhationb, First, there are now two compel.inq effects at. work:

h~terogeneity and nonlineiir !Irowt.hof fixed perturhalions. Introduction oi

huterogpneity dirf”ctly aff’uts thu I)hyf,icf,,Tlw driving force!,associat(~d with

Ileteroucnelty may SPL a Illt}qthscill(l01 their own Ior ttw formation of I]uld)lrs

and spikes, lheso will compoto with ,andmodify tl~(’dcvvlopm~nt of dett’rminis-

tic,~lly bp~cifi~d l}t~l’t~lri)nti(}ll:,,which drf’ (:IwIIIN!IuII Int(, their own Ionqth

scale% by t.hcnonlin(~flrdynahllchl

lhes~ points oro lllu~trtlt,[~flill11~~:,,7-12, I Iqurp / 51M)W5 tl)[! {/1’,lWt.11 () f il
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interior of the fluids. In particular, two spikes are present now where there

was

the

one before.

nature of the

In Fig. 11,

The velocity fields are displayed i~~Figs. 9 and 10, to show

vorticity which has been added.

we show the evolution of a larger amplitude, fixed wavelength

perturbation at an interface between fluids having a 4:1 density ratio. Figure

12 shows the effect of adding a strong statistical heterogeneity to the vor-

ticity in this problem, which is to modify the speed and shape of both bubbl~

and spike.

To obtain useful results, one will have to identify aspects of the non-

linear growth which tend to be independent of the details of how the instability

is excited. In other words, we need to seek functional of thf’solution which

are statistically stable. These will be the quantities on }~l~iiilIt, ;“,appro-

priate to base design considerations. It is my hope that our work can be

ned t~ the very interesting results recently

statistical perturbations ot an inLerface to

the near future,

46
obtained ,JyYoungs illthe case

learn more about thuse questions

9, rh~ Lat~ Stage of Rayleigh-Taylor Instability. ..-—— .-.—

1 next wont to discuss some issues relatit~g to the very lat,~ stag[’ of

Raylu{gh-!aylor if~~tability,during which process~s such as bubble amalyam~tiol~,

spike hretik-up, owl turl~ulentmixlnq occur.

Am Bubble Alll~l~rn~tly~......... .—.-..

A very prlmitivo slat!stical model for tlw process of bublrlo ami~lqamir-

tion wa~ propohed qulle sorertime tIfp3by Wheplrr and my%~llm 4?



We suppose that

the Taylor unstable

fluid rising th-ough

bubbl~ is assumed to

given by the Davies-”~aylor formula
30

20

after an initial period of linear growth, one may consider

interface to consist of a collection of bubbles of light

a slab cf heavy fluid. The cross-cectional area of the ith

be circular, of radius Ri, so that it rises with a velocity

(10)

We also suppose that the sizes of the bubh”es are not all the same, but are

statistically ciistrib~ted about an average size Rav. As a result, the bubb”les

will move ~t different rates and, in particular, a large bubble will move ahea”

of a smaller neighbnr, The experimental evidence suggests that two such l~eigh-

Lwring bubbles

Our first

bllbblemerqct,

Rule 41,—.

will merqe, forming a single larger bubble..

step was to write dowrla simpl[~hut crude set of rules guverninq

R- (11)

(1?)
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This rule provides a way to

Rule #3. Conservation—.

~R2 ~
mm

= nR~z+ + nRfz-

This rule provides a way to

calcula~e the radius C( the merged bubble.

of volume;

calculate tne height of the merged bubble.

(13)

Thus as initial condition~ one gives a statistically distributed set of

values Ri and zi for the collection of bu~bles, and the connectivity of the

bubble diagram. One can then follow the process of bubble amalgamation, genera-

tion by generation.

Analysis of the model has ~ed to two main results:

(i) Since smaller bubbles get col~tinually absorbed into larger ones, and

the opposite process of breakup of large bubbles into small orws seems not to

occur, th~ average size of the bubbles, and hence the average veloclty of bubble

rise, increases with time.

Numerically, we founci

v = klgt. , kl+O& ,
av

(14)

where y is the bulk acceleration ’11 the slab of fluid. This Iem.lst.oa sin;ple

prediction. Ihe slab will lrav~l a distance x = SIgtz il}time 1. In this time,

the bubblo will advance a distance h = %(klq)tz into the siab, lhe bubble breaks

through a slab of thickness H when 6 = H. He:lcethe slab can only travel a dis-

tance L = (kA)}{ before breakup, i.e,, a slab c~n only be pushed a distance 2~1-
Jg

100 times its thickness,

(ii) A second prediction) Is that a bubble at}om:llollslylarger than average

will eventually grow to the poinL where a singlv large bubble will dominate tllu
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flow, provided the slab is thick enough for the merger process to go to comple-

tion before breakthrough. It does not seem to me that available computational

and experimental information suffice to distinguish betwpen the following possi-

bilities:

(a) One bubble always q~ickly runs away;

(b) Oepending on the degree of anomaly in the original distribution of

sizes, e:’ ~ one bubble runs away, or a standard, stable statistical distri-—

but+cn is attained, with a corresponding standard law of growth;

(c) Ii standard distribution of size and rate of rise is almost always

reached.

Nor does available information suffice to validate the riilcs of bubble

merger which we have adopted.

B. Break-up of Spikes———

At this time, little can De said with confidence about the details of

the processes whereby Rayleigh-Taylr)r spikes break up--into droplets rJr other-

wise, Ifl particular, droplet formation is & three-dimensional effect which

occurs on a small length scale, and as such is likely to fall uutside the scope

of numerical computation for some time, Available

bility are i,ladequate as a guide for modeling these

An objective in modeling spike break-up would

formulae, v~lid in specified parameter ranges, for

and velucitic~. This information could then provide

entrainment, triinsport, and mixing,

experiments on Taylor insta-

effects.

be to derive semi-empirical

the spectra of droplet. sizes

Ill

falling

some of

tion of

thinking about these questions, it may be he

the input for models of

pful LO regard the heavy

:+ikp as being somewh~t analogous to a liquid jet, with Lhe hope that

the ideas th~t have been developed to analyze the stability and atomiza-

jets can be adapted to spikes,
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There are a variety of mecnanisrns leading to jet disintegration.48’49 One

of the first studies was by Rayleigh,
50

who showed that an idealized cylindrical

jet is unstable to varicose perturbations if L > nD (L= length of the jet, D =

jet diameter). This analysis ceases to apply if the jet is too thick or moves

too fast, or if surface tension is negligible.

Kevin-Helnlholtz i~stability on the side of a jet is a freq~ent cause of

jet break-up, In this case, the nonlinear phase of Kelvin-Helmholtz instability

results in the formation of a turbulent mixing zone, which spreads into the jet.

The size and shape of the mixing zone depends on the shape of the nozzle, the

presence of turbulence and other factors.

The formation of a mixing zone in the case of plane two-dimensional Taylor

instability has recently been studied by Youngs.46,51 A ‘/cryinteresting, very

important step has been taken towards understanding the mixing zone apprcach to

spike break-up. I am glad Youngs was able to describe hiz work at this con-

ference,52 because I do not have time to do it Justice in this talk.

Numerous patterns of drop sizes and velocities are ob,<~ved to occur in

the atomization regime of jet disintegration. 48,53,54 Factors affecting the

character of these patterns inciude surface tension, viscosity and the nature UI

“aerodynamic” forces that may be present. The variability of the observed

patterns also bespeaks the fi-equent presence of statistical h~terogeneities.

Hence in the engineering literature one finds several different drop size dis-

tributions used to correlate data, For example, one distribution for the proba-

bility p(d) for a drop to have a diameter between d and d + tid is the Nukiyama-

Tanasawa 1aw54

(1!))
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where A, b, m, and n are parameters. This law is interesting in that its gen-

eral form can be derived from statistical considerations together

[but not necessarily correct!)

10. The Need For Experiments

I believe that to carry

assumptions about droplet formation.

out

with simple

normative experiments on the late stage of

Rayleigh-Taylor instability is as difficult a challenge for the experimenter as

the calculation of this phase of the instability is for the theoretician.

The ciassic experiments on Rayleigh-Taylor instability are those of Lewis8

and Allred and Blount. 55 Additional experiments nave ueen carried out by !luff,

Harlow and Hirt,56 Emmons, Chang and Watson, 57 Ratafia,58 COIE 59
.nd Tankin,

Popil and Curzon,60 Read and Youngs, 51
61,62

and J. F. Barnes et al.

The available experiments are adequate to confirm semi-quantitatively, or

perhaps even qu,intitatively, several predictions of the linear analysis for the

initial growth of the irlstability. The experiments also provide pictures of the

development of bubbles and spikes and the work of liatafia
58

shows Kelvin-

Helmlloltz roll-up on the spike. Furthermore, W work of Lewis,8 Allred and

Blount58 and Read and Younqs
5: prokides some information on bubble amalgamation.

There is a clear nred for more and better experiments. First, available

experiments ~re still illadoquate for modeling the very late stage of Tayloi-

instability, although the recent experiment~ o“iRead and Youngs
rjl

provide inter-

esting new information on the mixing zonr questicn. Second. experiments are

needed to benchmai’k codes which compute Rayleig!,-Tdylor instability in circum-

stances where accurate special purpose codes do not exist for comparison.

To be of must use, the experime:lts should be designed with two criteria ill

mind:
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They should be analyzab”

of the unstable interface.

e to produce quantitative data on the time history

The quantitative data may well refer to appropri-

ately chosen statistic~l quantities rather than to the detailed properties of a

specific interface.

The experiments should

state of the fluids can be

dynamics with uncertainties

about both. .

be performed in an environment where the equation of

regarded as known. Compounding an analysis of fluid

about material properties will result in confusion

11. Summary--Critical Issues

1 will close by summarizing what I consider to be some critical issues

concerning Rayleigh-Taylor instability,

First, it is very important to carry out three-dimensions

Taylor instability. 63 There are several reasons for this: (a)

calculat’lens of

Several features

of Rayleigh-Taylor instability are intrinsically three-dimensional, e.g., bubble

merger, processes leading to the break-up ot spikes, and turbulent mix~ng; (b)

Experiments are likely to pertain to three-dimensional flows; (c) There may be

some surpl’ises.

Second, it is import~nt to assess the role of statistically distributed

heterogeneities on the growth of the instability, Such heteroqeneties will

frequ~ntly be pre~ent in practical situations, and illsome cases can modify the

flow substantially,

As a Iinal remark, I think it is interesting t.o ask whether geometric

structure having fractal properties can be helpful in understanding a possible

chaotic limit of Taylor instability.64
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The backgrcwnd for this idea is roughly as follows. It has been sug-

gested65 that in ful-iy developed three-dimensional tllrbulence, in the limit a!,

the Reynolds number approaches infinity, geometric structures are formea having

the properties of fractal sets. The formation of objects

length scales is believed to be the result of repeated

Helmholtz instability. The new idea is that the eddies

not be space-filling. One consequence of this picture

on smaller and

generations of

formed in this

smaller

Kelvin-

way may

is so-called intermit-

tancy in turbulence; another is corrections to the selt-similar behavior de-

scribed by Kolmogorov’s Law,

We believe that a Taylor unstable interface is also subject to Kelvin-

Helmholtz instability, Particularly in the case where surface tension is negli-

gible, could successive generations of Kelvin-Helmholtz instability, prisri!.~y

initiated by small scale heterogen~ities, lead to a fractalized int~r!,ic~

evolving in a self-!jimilar manner? What would be some observable consequencc~

of this behavior?

12.

The author would like to thank J. Glimm, D, Helm, O, McBryan, R. Menikofl,

R. Mjol~ness, and H, Rose for helpful advice on the preparation of this article.



References

27

1.

2.

3.

4,

5.

6.

7,

c,

9.

Lord Rayleigh, Scientific Papers tCambridge University Press, Cambridge,

England, 1900), Vol. II, p. 200.

G. I. Taylor, Proc. R. Sot. London Ser, AZO1, 192 (1950).

L. Smarr, J. R. Wilson, R. T. 6arton and R. L. Bowers, Ap. J. 246, 515

(1981).

h!,L, Norman, L, Smarr, J. R. Wilson and M, D, Smith, Ap. J. 247. 52 (1981),

Taylor instability of iaser driven fusion targets has been the subj~ct of

numerous papers. Some examples are: J. D. Lindl and W. C. Mead, F’hys.Rev.

Lett. ~, 1273 (1975); R. L. McCrory, L. Montierth, R. L. Morse and C. P.

Verdon, Phys. Rev. Lett. 46, 336 (1981); R. G. Evans, A. J. Bennett and

G. J. Pert, Phys. Rev, Lett. 49, 1639 (1982); M, H. Emery, J, H, Gardner-.

and J. P. Boris, Phys. Rmv. Lett, ~, 677 (1982),

R. A. Gerwin and R, C, Malorle, Nucl. Fusion ~, 155 (1979).

A more realistic description of the interaction of las~r light ‘}~iththe

surface of a fusion target is given in D, W, Forslunti, “The lmportanc~ of

Surface Physics in Laser-Plasma Interactions,” These Proceedings.

D. J. Lewis, Proc. R. So’ London Ser. A 202, 81 (1950).

G. Birkholf, “Taylor 1,, lit-yand Laminar flixing,” Los Alamos National

Laboratory report

(1956).

10, S. Chandrasekhar,

sity

11. M. M

12. M, 5

13. 6, H

LA-1862 (lq5b); Appendices A-H issued as report LA-1927

Hydrodynamic and Hydrornagnetic StabiiltY {Oxford Univer-- —. —.

Press, Oxford, 1961), Chap. %.

tchner and R. K, M, Landshoff, Phys, Fluid:.~, 862 (1964),
-—~

Pl~sset and D-Y, Hsleh~Flulds ~, 1099 (1964).

Wolf, Z. Physlk 2?7, 291 (1969).—-



28

].1, R. D. Richtmyer, Comm. Pure and Appl. Math. 1.3,297 (1960).

Laboratory report UCRL-4459

J.5. R, LeLevier, G, J, Lasher and F, Bjorklund, “Effect of a Density Gradient

on Taylor Instability,” Lawrence Livermore

(1955).

16. J. N. Hunt, Appl. Sci, Res. Au, 45 (1961).

17. R. M=~,ikoff, R. C. Mjolsness, D. H. Sharp and C. Z~mach, pllys.Fluid~ ~,

2000(1977).

18. R, Menikoff, R. C, Mjolsness, D, H. Sharp, C. Zemach and B. J, Doyle, Phys.

Fluids 21, 1674 (1978).

19. R. A. Axford, “Initial Value Problems of the Rayleigh-Taylor Instability

Type,” Los Alamos National Laboratory report LA-5378 (1974).

20. G, 1. Bell, I’Taylor Instability oil cylinders and Spheres in the Small

Amplitude Approximation,” Los Alamos National Laboratory report LA-1321

(195i)

21. G, Birkhoft, Quart, Appl, Math, ~, 306 (1954).

22. M, S. Ples~et, J, Appl. Phys. ~, 96 (1954).

?3, M, S, Plesse?.and T P. Mitchell, Quart. Appl. Math. 13, 419 (1956).—

24, G, Birkhoff, (,juart,Appl. Math. ~, 451 (1956).

25. H, N, fisher, “instabilities in Converqin!l Compressible System~,” Unpuh”

lished, Los Alamns (1992).

?G E, Ott, Phys. Rev. Lotit.~~, 1429 (19)2).

?). L, F“rmi, ““laylur instability of af~ ln(oml}rl’s~it)le}Iuid,” L)ocum~nt AICIJ-

?979, Part 1 (1931)1 Al$o puhlislwd ........... .. .. ... ............. . ...ill llw Coll~cted I@.wrs of El}rico

F~rmi , L, Seqrd, lditor-in-Chief (Univ~rCity or Chicago Prcs~, C$icafi(~,..—.

196!I), vol. ?, p! 816. Ilw casu of linit~ d~nfilty ratio wah tr(~ated hy

1, Icrmi dnd ,1, von Nuumtinn, “Iaylnr lnttdhility at the Boundary 01 Iwo

lf~coplpt’c~>llll(~liqui(i~,” I.)ucumont.Pl[lU-?9’/9,Part 2 (19!J3)h Illibarticlt~

l:,tilsopublished in l~rmi’~ coll~cl[’d piywr+. Vol. 2, p. 871.



29

78.

29.

3n,

31.

32,

33.

34.

35.

36.

37.

36,

39,

4(I,

41,

42.

43,

44,

4!),

L. Baker and J. R. Freeman, “Heuristic Model of the Nonlinear Rayleigh-

Taylor Instability,” Sandia National Laboratories report Sand80-0700J

(1980).

W. P. Crowley, “An Empirical Theory for Large Amplitude Rayleigh-Taylor

instability,” Lawrence Livermore Laboratory report UCRL-72650 (1970); D.

Levermore (private communication, 1983).

R. M. Davies and G, 1. Taylor, Proc. R. Sot. London Ser. A 200, 375 (19S0).

D. Layzer, Ap. J. 122, 1 (1955).

G. Birkhoff and D. Carter, J. Math. Mech. ~, 769 (1957).

P. R. Garabedian, Proc, R, Sot. Iondon Ser. A 241, 423 (1957)

R. Menikoff and C, Zemach, J. Comp. Phys. 36, 366 (1980),—

R. Menikoff and C. Zemach, “Rayleigh-Taylor Instability and the Use of

Conformal Maps for Ideal Fluid Flow,” J. Comp. Phy~. (Illpr~ss, 1983).

G. R, Baker, D, 1, Meiron and S. A, Orszag, Phys. Fluids ~, 1485 \19130).

c. ?, Verdon, R. L, McCrory, t?. L. Morse, G. R. Baker, D, 1. Meiron and

S. A, Orszag, Phys. Fluids 7!, 1653 (1982),

F, H, Harluw and J, E, Welch, Phys, Fluids ~, 842 (1966).

B. J, %ly, Phys. Fluids ~~, 297 (1967),

B. J, Daly, Phys, Fluid% ~, 1340 (1969).

J, R, }reernan,M. J, Clauser and S. L. Thomp;on, Nucl. Fusion l_/,2?3 (1977),

K. A, Meyer and P. J, Blewett, “Some P~’eliminary Numerical Studirs of

Taylor Instability which Include Eff~cts r,fMaterial Strel~gth,” Los Alamos

National laboratory report LA-4754-MS (1971),

K, A, Meyer and P. J. Blewett, Phjs. ~lulds ~, 753 (1972).

J, Gllmm, 0, f4ctlry~n,R. Menikoff and D. N. Sharp, “front Tracking Almlied

to Rayleigh-Taylor Instability,” (in preparation, 1983),

0. Mcflryan, “ComputinH Discontinuous Flows,” Ihese Proceedings.



30

46, P. L. Youngs (private communication, 1983).

47, D, H. Sharp and J. A. Wheeler, “Late Stage of Rayleigh-Taylor Instability,

Institute for Defense Analyses, Unpublished report (1961).

48. G. Birkhoff and E, H. Zarantonello, Jets, Wakes and Cavities (Academ

Press, New York, 1957), Chap, XV.

49. S, Chandrasekhar, Ref. 10, Chap, XII.

II

L

50.

51.

52.

53.

548

55.

56.

51

lJ~

59.

60.

61,

62.

Lord Rayleigh, Scientific Papers (Cambridqe University Press, Cambridge,

tngland, 1899), Vol. I, p. 361,

K. 1, Read and D. L. Youngs, “Experimental Investigation of Turbulent

Mixing by Rayleigh-laylor Instability,” AWRE report No, 011/83, (1983),

D. L. Youngs, “Turbulent Mixing by Rayleigh-Taylor Instability,” These

Proceedings,

R. D, Reitz and F. V, Bracco, Phys, Fluids 25, 1730 (1982),.—

G, B, Wallis, One-Dimensional Two-Phase Flow (i4cGraw-Hill, New York, 1969),—— —.— .

Chap. 12,

J, C, Allred and G, H. Btount, “Experimental Studies of Ta;’lor Instability,”

Los Alamos National laboratory report, LA-1600 (19!~3),

R. E, ‘uff, F, H, Harlowand C, W, Hirt, Phys. Fluids~, 417 (1962).

Ii.W, Er,lmons,C, 1, Chang, etId B, t. Wtitson, J, tluid Mech. ~, 1/7 (l!l(io),

M. I!atafia, Phys, rluids 16, 1207 (1973),-.

R, [, Cole and R, S. Tankin, Phys. Fluids ~6, 1810 (1973),

R, Pupil and F. L, Curton, Rev. Sci. Instr. ~0, 1291 (19/~).

J. F. Barnes, P, J. 131uwett, R. G. McQucoI~, K, A, Meyer and 1), Vel~i~hl~,

J. Apl)l, Phys. ~, 72/ (1974),

*1. F. 13arnes, D, H, Janney, Il. K, London, K. A. MeyPr and l.).H, Shi!rp, J,

Appl , phys. q, 467H (1980).



31

63. Preliminary work on the calculation of three-dimensional Taylor instability

is reported in S, A. Orszag, “Generalized Vortex Methods in 3-Dimensional

Rayleigh” Taylor Instability,” These Proceedings.

64. This suggestion was formulated in conversations with J. Glimm and H, A.

Rose,

65. B. Mandelbrot, J. Fluid Mech. ~, 331 (1974).



Table. Some Factors Influencing The Development of Rayleiqh-Tay16r Instability

Factor Relative size of effect

i (dimensionless parameter)

I

D~nsity ratic I

I
p#p~‘rA=(fj+-p~)/(pH+p~)

I] I

I

,

I

!Surface tension I Uet)ernumber= 2U/(pH - pL)gAz

I I

‘Viscosity I z = vt/.k2

lG=g,kc,= (phase velocity of gravity waves)z~Compressibility
I (sound speed)z

!--
I

~Heterogeneity ~ lL/3 , iv/v . . .
I

Effect on growth of Instability

A key factor governing the growth rate of
Rayleigh-Taylor or Kelvin-Helmholtz insta-
bility for small qlitude perturbations of
wavelength A.

In lin[
than a
Establ~
probab”

ar theory, stabilizes wavelen ths shorter
critical wavelerqth A = *.
shes a most unstable wavelengt , he ce
y makes problem well posed mathematically:

Reduces growth rate; regularizes fluid flow.

Reduces growth rate of long wavelength perturba-
tions; decreases active volume of fluid.

Can excite secondary, tertiary, . . . instabil-
ities of various wavelengths.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6,

Figure 7,

Figur~ 8,

(A) The pressure of the air is quite sufficient to support a per-

fectly uniform layer of water 1 meter thick against the ceiling.

(B) But the air pressure can not constrain the air-water interface

to flatness. Ripples or irregu?ari+.ies will inevitably be present.

at the interface. (C) The irregularities grow, forming “bubbles”

and “spikes.” The water falls to the floor.

Schematic diagram of the implosion of D’(pellet.

Two incompre~sible flu-

meet at an interface.

For times t~ O, the

case 2s = rl(t)coskx is

ds cf infinite depth, having densities pH.PLJ

For t < 0, the interface is the plane z = O.

interface has a perturbed shape. The simple

illustrated in the figure.

Schemdtic plot of a2 vs k, Eq. (3).

Fluid configuration

Plot of interfaces

of an ideal fluid.

analyzed in Fermi’s model.

for Rayleigh-laylor instability of layered flow

Th@ Atwood numb-r is unity. Left: Case of a

semi-infinite fluid. Right: A finite fluid layer. Figure is adapted

from Verdon et al, Ref. 37,

Nonlinear growth of a fixed wavelength, small amplitude perturbation.

111 this run the density ratio was )~H/OL~ 500, the initial aml]litude

(in units of wave number x amplitude) was 0,1, and the grid size was

4U X 48,

Growth of a fixed wavelength, small amplitude perturbation in th~

presence of strong statistici~l betel’ogeneity ;,I the vorticity ill

tho interior of the fluid, Other paramt?t~rs are as in Fiq, 7.



Figure 9.

Figure 10.

F

F

gure 11.

gure 12.
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This figure shows the velocity field associated with the interface

motion displayed in Fig. 7.

This figure shows the velocity field associated with the interface

motion displayed in Fig. 8.

Nonlinear growth of a fixed wavelsngtll perturbation. In this run

the density ratio was pH/pL = 4, the initial amplitude (in units of

wave number x amplitude) was 0.5, and the grid size was 20 x 20.

Growth of a fixed wavelength perturbation in the presence of strong

statistical heterogeneity in the vorticity in the interior of the

fluid, Other physical parameters are as in Fig. 11, except that the

grid size here was 40 x 40,
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