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Abstract

The aim of this talk is to survey Rayleigh-Taylor in-
stability, describing the phenomenology that occurs at a
Taylor unstable interface, and reviewing altempts to under-

stand thase phenomena quantitatively.



1. Introduction

The Rayleigh-Taylor instability is a fingering instability of an interface
between two fluids of different densities, which occurs when the light fluvid is
pushing the heavy f]uid.l'2 The aim of this talk is tc survey Rayleigh-Taylo"
instability, describing the phenomenology that occurs at a Taylor unstatle
interface, and reviewing attempts to understand these phenomena quantitatively.

I will also emphasize some critical questions which require further «tudy.

2. Simplest Explanation of the Occurrence of Rayleigh-Taylor Instability

This conference affords the pleasure of learning about a great variety of
topics from speakers with the most diverse backgrounds. In view of this
diversity, | hope the experts will forgive me if [ begin with the simplest
possible description of Rayleigh-Taylor instability.

Imagine the ceiling of a room plastered uniformly with vater to a depth of
1 meter (Fig. 1). The 1la'.r of water will fali. HKowever, it is not through
lack of support from Lhe air that the water will tall., The pressure of the
atmosphere is equivalent to that of a column of water )]0 meters thick, quite
sufficient to hold the water against the ceiling. But in one respect the atmos-
phere fails as a supporting medium. . fails to constrain the air-water inter-
tace to tlatness. No matter how carefuily the water layer was prepared Lo beyin
with, 1L will deviate from planarity by some small amount. Those portions of
‘he fluid which Fie higher than the average experience more pressure than is
needed for their support. They hegin to “ise, nushing aside water as they do
so. A neighboring portion of the fluid, where the surface hangs a little lower

than average, will require more than averag: pressure for its support. It



begins to fa:!. The air cannot supply the variations in pressure from place to
place necessar/ to prevent the interface irregularities from growing. The
ipitial irregularities therefore increase in magnitude, exponentially with time
at the beginning. The water which is moving downward concentrates in spikes.
The air moves upward through the water in round topped columns. The water falls
to the floor.

The same layer of water lying on the floor would have been perfectly
stable. Irregularities die out. Thus we can infer a simple criterioa for the
onset of Taylor instability at the interface between two fluids of different

densities: 1f the heavy fluid pushes the iight fluid, the interface is stable.

If the light fluid pushes the haavy fluid, the interface is unstable. A crite-

rion of comparable simplicity governs the onset of Kelvin-Helmholtz instability:

The interface between two fluids is unstable if there is a jump in the tangential

component of the velocity acrnss the interface. These two criteria are among

the most basic principles in the subject of interface instability.

3. Examples of Rayleigh-Taylor Instability

Taylor instability occurs in diverse situalions. As examples, we mention:

A. Natural Phenomena.
i)  Overtur: of the ovuter portion of the collapsed core of a massive star;J
i1) The formetion of high luminosity twin-exhaust jets in rotating gas

clouds in an erternal gravitational potential.4

B, Technolugical Applications:

|8
i} lLaser implosion ¢f deuterium-tritium fusion taryels;



ii) Electromagnetic implosion of a metal 1‘iner,6

and several others.

Let us take a quick lock at one of these examples. A highly schematic
picture of the implosion of a deuterium-tritium (DT) pellet is as follows (Fig.
2). A sphere of DT is surrounded by a glass or metal tamper. This tamper is
irradiated with intense laser light, which causes it to accelerate inward. The
outer surface of the tamper is the interface between a heavy fluid (metal) and a
light fluid (vaporized metal) and is unstable during the initial phase of the
implosion. As the pellet is compressed to perhaps 1,000 times its normal
density, its pressure increases until it is sufficient to slow the inward motion
of the tamper. This phase of the implosion is also Taylor unstable; here it is
the DT which is pushing the tamper. Although this picture of the implosion of a
DT pellev is so oversimplified as to be almost ridiculous, it nevertheless sug-
gests quite clearly that Taylor instability is a factor to be dealt with in

evaluating pellet performance.7

4. Phenomenolcgy of Rayleigh-Taylor Instability

There is a complex phenomenology associated with the evolution of a laylor
unstable interface. This . <ludes the furmation of spikes, curtains and bubbles
the development of Helmheltz instability on the side of the spikes, competiticrn
amonqg bubbles leading to their amalgamaticn, formation o' droplets, entrainment
and turbulent mixing, and a possible chaotic limit with a fractalized interface.

It is helpful to organize a description of the growth of the instability

into a number of stages. This can be done as fu]lows.e'g



Stage 1. If the initial perturbations in the interface or velocity field
are extremely small, the early stages in the growth of the instability can be
analyzed using the linearized form ot the dynamical equations for the fluid.
The result is that small amplitude perturbations of wavelength A grow exponen-
tially with time. When the amplitude of the initial perturbation grows to a
size of order 0.1 A to 0.4 A, substantial deviations from the linear theory are
observed.

Stage 2. During the second stage, while the amplitude of the perturbation
grows nonlinearly to a size of order A, the development is strongly influenced
by three-dimensional effects and the value of the density ratio, or Atwood
number A = (pH - pL)/(pH + pL), where Py = density of heavy fluid, P = density
of 1ight fluid.

If A <1, the light fluid moves into the heavy fluid in the form of round
topped bubbles with circular cross sections. Note that "two-dimensional' piane
bubbles are unstable to perturbations along the axis perpendicular to the plane
of the bubble, and a trough having a pl-ne bubble as a cross section will break
up into three-dimensional bubbles. The heavy fluid will form spikes anrd walls
or curtains between the bubbles, so that a horizontal section would show a
honeycom!; pattern. [f A > 0, one will instead find a pattern more like two sets
of interpenetrating bubbles.

Nolte that these pictures are rather different from the simpler patterns of
bubbles and spikes that we think of in two dimensions. 1 will nevertheless
often refer to bubbles and spikes for the sake of simplicitly.

Stage 3. The nexi stage is characterized by the developwent of structure
on the spikes 'nd interactions amony Lhe bubbles. Tlhese phenomena can originate
from several sources. There is a nonlinear interaction among initial perturba-

tions of difterent frequency. Also Helmholtz instability along the side ol Lhe



spike can cause it to mushroom, increasing the effect of drag forces on the
spike. This effect is more pronounced at low density ratios. There is some
experimental evidence for bubble amalgamation, a process in which large bubbles
absorb smaller ones, with the result that large bubbles grow larger and move
faster.

The presence of heterogeneities in various physical quantitites can modify
the shape and speed of bubbles und spikes to a degree which depends on the
strength and length scale of the heterogeneity.

Stage 4. In the final stage, we encounter the breakup of the spike by
various mechanisms, the penetration of a bubble through a slab of fluid of
finite thickness and other complicated behavior that leads to a regime of

turbulent or chaotic mixing of the two fluids.

5. Factors Influencing the Development of Rayleigh-Taylor Instability

Numerous factors influence the development of Taylor instability in a
simple fluid. These include surrace tension, viscosity, compressibility,
effects of converging geometry, three-dimensional effects, the time dependence
of the driving acceleration, shocks, and a variety of forms of heterogeneity.

An assessment of some of these factors is given in the Table.

6. Other Factors Which may be Operative in Realistic Problems

In natural phenomena and technological applicatiuns where Taylor insta-
bility occurs, there are many other factors that can play an importani role.
For example, material properlies and the equation of state of the fluids may be

important. The fluids may conduct heal or diffuse mas:. The material may



change phase or consist of several components. Radiation often couples to
hydrodynamics.

It is not easy for me to imagine dealing scientifically with the whole
range of factors that can influence Raylcigh-Taylor instability, so in this
talk 1 wiil restrict myself to a few of the factors which effect the behavior
of simple Ffluids. It is a little bit humbling to recall that engineers have

and must deal with Taylor instability in its full complexity.

7. Analytic and Quasi-Analytic Modeling

The purpose of analyvtic modeling is to identify the effects which are

dominant during a given stage in the development of the instability.

A. Linear Apnalysis

There is a considerable body of literature which analyzes the intital
stage in the growth of small amplitude Taylor instability, where the linearized
form of the equation, of fluid dynamics can be used.

(i) Plane geometry

As an example, consider two infinitely extended inviscid fluids which
meet at a plane interface (Fig. 3). For definiteness, we suppose the upper
fluid is heavier, Py > PL: The fluids ere subjected to a constant acceleration
in a direction norma: to the ‘nterface. We write the total effective accelera-
tions as G = (a - é) = (a * g)t = Gz, with g> 0 and Z a unit vector normal to
the interface, pointing into the heavy fluid. The yravitational acceleration is
6 =z -g2 and a = a2 is a uniform external acceleration applied to the systen as a
whole. Thus, when G > 0, the effective acceleralion acts vertically upward, the
light fluid accelerates the heavy fluid, and the configuration is unstable

according to the criterion we discussed above.



One works in a noninertial frame comoving with the unperturbed interface.
In this frame, the unperturbed fluids are at rest and the unperturbed interface
is defined by z = 0. The pressure fields in the fluids vary with the vertical
coordinate z to Jalance the total acceleration and permit static equilibrium
(in the comoving frame).

This is the picture for t < 0. At t = 0, we perturb the configuration in
some way. We might suppose that the fluid is initially at rest but that the

interface is perturbed so as to have the form

Zs = n(t)coskx , [n(t)/x << 1] . (1)

Thus the interface now consists of a set of crests and troughs parallel to the
y-axis.

One may then show, using either a potential theory argument via Bernoulli's
equation or a simple energy analysis, that the amplitude of the perturbation is

determined by the equation10

A(t) = o2(k)n(t) (2)
with
Py T PLN /g
2 = —— - e 3
SR v A v "L>k ' <

Here o is the coefficient of interfacial tension.

The solution to (2) for fluids initially at rest is

n(t) = n(0)cosh at . (4)
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Several simple but useful conclusions can be drawn from (3):

If =0, G> 0 and Py > PLs is real and the interface is unstable. The
growth rate for short wavelengths is unbounded, so on the basis of linear analy-
sis the Rayleigh-Taylor problem would appear to be ill-posed in the absence of
surface tension. However, we note that there is no rigorous theorem available
which says either tnat the Rayleigh-Taylor problem is ill-posed in the absence
of curface *ension or that it is well-posed when surface tension is included.
For G < 0, a is imaginary and one has stable gravity waves.

Surface tension stabilizes perturbations shorter than a critical wavelength
%
hC = [O/G(pH - pL] . (5)

The shape of the dispersion curve makes it plain (Fig. 4) that there is a

fastest growing, or most unstable, wavelength }M' This is given by

Ay = NK] koo (6)

The above analysis can be generalized in several ways. For example, in the
Tinear approximation we can superpose harmonic interface perturbations in the x
anad y directions to give a three-dimensional treatmenL of the instability.

Also, the Tlinear treatment can be generalized to include other physical

effects such as compressibﬂity,ll'l2 13 14

10,15

nonuniform accelerations, shocks,

density gradients, 16

slab geometry, and so forth. A thoiough analysis of

the role of viscosity is available.10+17,18

18,19

Finally, one can treat general initial conditions. Solutions of the

linearlized equations satisfying general initial conditions can be expressed
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in terms of Fourier-Laplace transforms of the hydrcdynamic variables, although

the results can get quite complicated.

(ii). Spherical geometry

Taylor instability at a spherical interface has been studied by

several authors.2072°

Results of generality cumparable to those obtained in
plane geometry are not available, owirg to the greater mathematical complexity
of the equations encountered in curved geometries. There is, moreover, a new
effect at work in curved geometries--a convergent geometry can itself be de-
stabilizing.

This can be seen readily in the case where the fluids are incompressib]e.25
If R(t) is the radius of the unperturbed spherical interface, and if the pertur-
bations 6R are expanded in Legendre functions, 6R = 2 an(t)Pn(cos¢), then the

n
amplitudes an(t) can be shown to satisfy

§,(1) + (3R/R)a (1) - e2(n)(R/R)a (1) = 0 (7)
with

n(n - l)p2 = (n+1)(n + 2)p1

2 =
a2(n) Py . l)pl ) (8)

Here Py = the density outside the interface, Py = the density inside the inter-
face, and n = the mode number of the sphericai harmonic describing the pertur-
bation.

For large R, (7) rgoes over to the usual Rayleigh-Taylor result. However,

if Py * Py (7) Lakes the form
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§.(t) + (3R/R)a_(t) + (2R/R)a (1) = 0 . (9)

This equation can have unstable solutions, depending on the behavior of R(t).
Thus a spherical interface can be unstable even if there is no discrciitinuity
in density across it, The relative importance of classical Rayleigh-Taylor
effects ard geometric or convergence affects depends strongly on compressibility
and the acceleration history of the interface. This dependence can best be

studied nun .rically.

B. Nonlinear Modeling

Next I will briefly discuss some attempts to model the nonlinear
growth of spikes and bubbles.
First, an exact closed form solution valid for a finite time T has been

derived by 0\';1.26

for the Taylor unstable motion of a fluid layer idealized as
having infinitesimal thickness. An initial sinusoidal perturbation evolves
into a cycloid. After time T adjacent segments of the fluid collide and the
development cannot be followed analytically.

There have been a number of attempis to model the growth of spikes and
bubbles in more general settings. These models are based on one or another set
of drastic simplifying assumpiions which it is hoped cupture the zeroth order

physics vorrectly and permit the dynamics to be described by ordinary differen-

tial equations.

21 who considered incom-

The easiest model to describe is that of Fermi,
pressible fluids in the limit of infinite density ratio. He considered an
inivial sinusoidal perturbation, which was then approximated by a pulygon, i.e.,
by a square wave profile (Fig. 5). The interface is thus described by 3 param-

eters; the heights of the spike and bubble (a,b), and the width of the spike
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(x). The condition of incompressibility provides one relation between these
parameters. Fermi next estimatus the kinetic energies 3associated with the hori-
zontal and vertical motions of the spike, and with the motion of the fluid above
the spike and bubblc, as well as the pntential enery of the fluid, in terms of
the parameters a and x. This yields a set of coupied nonlinear ordinary differ-
ential equations for a(i) and x(t). The rcsults were that the asymptotic speed
of the spike was roughly correct, but the speed of the bubble wus not correct.

28

More recent attempts along these lines are due to Baker and freeman™ and

29 28
Crowley and Levermore. Baker and Freeman

derive (uncoupled) ODE's for the
time evolution of spike and bubble peak amplitudes by devising functions which
interpolate regimes of small and large amplitude behavior. The model produces
resuits for the motion of the tips of cpikes and bubbies which appear to be in
reaasonable agreement with code and experimental determiration of these quanti-
tites.

Crowley and Levermore29 nave devised an ODE for the time development of an
amplitude which is in some sens2 an envelope of an ensemble of initial pertur-
tations.

My appraisal of this kind of work is as follows:

If such mode's should turn out to be sufficiently accurate for their in-
tended application, they would enjoy the advantage of any good model: Theyv
would express in relatively simple form the governing physics of the problem.

It is not possible to assess a priori the validity of the appruximations
made in deriving the models. This means that ithey must he developed in close
conjunction with numerical codes and, where pussible, oxperiment. This is no
bad thing--indeed, one would hope that high auality codes might help one to

develop more refined and hetter validated mode!s.
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A weak point of such models is that they do not seem to help with the most
difficult aspects of Rayleigh-Ta' or instability: interactions of perturbations
of different frequency, the effects of statistically distributed heterogeneities,

break-up of spikes and bubble amalgamation.

C. Rising Bubbles

There are a number of studies which analyze the motion of symmetrical
bubbles rising under gravity. The steady state motion of cylindrically sym-
metric bubbles rising in a tube of circular crnss section has been treated by

Davies and Taylor.30

who give approximate expressions for the speed ot the tip
of the bubble and for the profile of the bubble near the tip. Layzer31 has
given an approximate solut 'on to the nonlinear equations determining this flow
which interpolates between the initial small amplitude otion and the steady
state motion.

Birkhoff and Carter3?

and Garabedian33 discuss pldane bubbles rising between
pardallel walls. They formulate this problem rigcrously in terms of nonlinear
integral equations, and their work includes an investigation of the existence
and uniqueness of solutions to these equations.

Although bubble rise in a gravitational field is not identical to the
Rayleigh-Taylor problem, it is closely re'‘ated and is of course of interest in
its own right. Moreover, the resullc of Davies and Taylor and of Layler hdve
been incorporated into cortain phenomenciogical models of the late stage of
Taylor instability, while thuse of Birkhoff and Carter have proven useful in
validating numerical codes which compute Taylor instability. Also, the papers

of Birkhot! and Carler and of Garabedian are examples of a rather sparse body uf

mathematically rigorous work on provblems closely related to Taylor instability.
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8. Numerical Computation

In the simplest rcrmulation of Rayleigh-Taylor instability, the governing
equations are the two-fluid, two-dimensional incompressible Euler equations. As
mentioned above, these equations appear to be ill-posed in that the growth rate
of short wavelength perturbations is unbounded. We have also pointed to many
factors which can influence the development of Taylor instability. These result
in modifications to the simple form of the Euler equations, possibly so as to
render them well-posed. However, in many cases of physical interest, the extra
physical factors occur multiplied by a small parameter. In others words, they
occur on small length scales, inaccessible to feasible calculations.

There are two nbstacles to correct calculation in such circumstances. The
small parameter, small iength scale effects must somehow be includcd hy mathe-
matical or computational modeling. At the same time, it is necessary to avoid
the incorrect simulation of physical effects by numerical artifacts. In p.ir-
ticular convergence under mesh refinement, while a necessary aspect of valida-
tion for such problems, is not sufficient. Validation requires quantitative
agreement with an independently correct calculation, analytic solulion or labo-
ratory experiment.

The computational strateyies ''hich have been developed for this problem
fall into two classes: special purpose codes and general purpose codes. Ihe
special purpose codes are ones not readily adaptable to include the variely of
physical fartors mentioned abuve. This narrower scope permits analylic simpli-
tications which are utilized to a maximum deqree.

Two notable examples of such codes have bron developed by Menihoft and

34 ,3h 36

lemach and by Baker, Meiron, and QOrsz. The Menikoff-Zemach code s

based on conformal mappings. In Lthe case of an intinite density ratio and two
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fluids in an infinite strip, a time dependent conformal mapping takes the region
occupied by the heavy fluid into an infinite half strip. In this half strip,
the known Green's function for Laplace's equation is used to erpress the inter-

face velocity as a quadrature. The code of Baker et a136

is based on boundary
integral techniques, in which the velocity potential is expressed as an integral
over a dipole sheet distributed over the fluid interface. Coupled Fredholm
integral equations can then be derived which determine the strength of the di-
pole sheet, ana its time development.

The strony points of the specit! purpose codes are accuracy and speed.
Thus they can be used to validate general purpo-  codes. Of cuurse, these codes
hive 1also been applied in their own right .. study several interesting ques-

36

tions. For example, the code of Baker et al”" has been used to study Taylor

instability of a thin fluid Iayer37 (Fig. 6), and both codes have been used to

confirm resulis on rising plane bubbles originally obtained by Birkhotf and

Cdrter.32

There have been numerous calculations of Rayleigh-Taylor ins. hilily using

codes which solve the full (two-dimensional) tuler or Navier-Stokes equations.

Notable examples inciude the work of . Harlow and J. Welch,"8 39,40

29

B. J. Daly,

W. P. Crowley,”  J. R. freeman, M, J. Clauser and 5. |, lhompayn.dl K. A. Meyer

and P, J. BIewptL42'43

as well as the work cited in Kefs., (h) and (3/7).
lime does not permit a systemalic review of this work, nor would it be easy
Lo carry oul such a review, even if time were not a constraint, because the
published work often lacks the detail necessary te evaluate just what is done,
I wili instead merely summarize a fow of my general impressjons:

The codec run up to an aspect rvatio of - 1 or 2, where Lhey break down for

reasons that are often not thoroughly understood,
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The codes have been used to study the effect of fiactors such as the Atwood
numter, surface tension, viscosity, compressibility, tihermal conductivity and
others on the development of the instability. The case of single frequency
perturbations is the one commonly treated,

The results are uften compared to those of the linear theory. In general,
they lack sufficient validation in the nonlinear regime. This is a situation
which could be improved suhstantially if cross comparisons of general purpose
codes ware more common and :nore precise.

I now want to turn oriefly tvo a code which 1 have been work.ng on with

Glimm, McBryan, ana Menikoff.44

It is based on the methcd of front tracking,
whose goal is to achieve the accuracy of a special purpose calculation within
the context of a gener¢l purpose method. The main idea of front tracking is to
introduce as a computational degree of freedom an interface consisting of a
(codimens on one) set of curves, composed for example of piecewise linear bonds
juining vertices. The front is propcgated using the velocity or acceleration
fields of the fluid in the case of a fluid interface discontinuity. Thus, in
the Rayleigh-Taylor problen front tracking is a mixed buler-Lagrange approach,
with the front being a Lagrangian degree of freedom and all other grid points
being Lulerian, In the incompressible case, it iy necessary to solve elliptic
PBE's at each time sten for the pressure and stream function, The density dis-
continuity leads to elliptic equations which are singular exactly on the inter-
face, either in their coefticlents or their source terms or both.

I will not go into the computational strategles we employ to deal with
Lhese problems, or into the structure of the code and related computer scivnce
questions, or into a discussion of our current results since these points will

1
be covered in McBryan's t.alk.4J
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I would like to emphasize that in mnst cases of practical interest, one
does not krow in detail the nature of the many disturbances perturbing the fluid
motion. In general, statistically distributed heterogeneities on various length
scales will be present in the driving forces, the velocity fields and in other
physical quantities. In some cases, these heterogeneities can strongly influ-
ence the fluid motion. Thus, an adequate treatment of Rayleigh-Taylor insta-
bility will require analysis not only of the growth of perturbations of fixed
wavelength, but of statistical perturbations ac well.

The input to our code presently allows one to add a statistically dis-
tributed component on une or several length scales to the x and y components of
the velocity or acceleration, tu the vorticity in the interior of the fluid, and
to uther physical quantities.44 This is done by using a random number gener-
ator to define a randumly distributed variable on a lattice of points in the
(x,y)-plane. The computed functions ere modified at each time step by the addi-
tion of a random function.

There are many points which need to be studied in connection with statis-
tical perturbations., First, there are now two compeling eftects at work:
heterogeneity and nonlinear growth of fixed perturbations. Introduction of
heterogeneitly directly affects the physics. The driving forces associated with
heterogeneity may set a lenglh scale of their own for the tormation of bubbles
and spikes. These will compete with and modify the development of determinis-
Ltically specified perturbations  which are channeled inte their own length
scales by the nonlinear dynamics,

These points are fllustrated in Figs. 7-12. Figure / shows the growth of a
small amplitude, fixed wavelength perturbation at an air-water {nterface (den-
sity rato ~ 500:1). In Fig. H, we show how the resulls in Fig. 7 are modi-

find when a strong statistical heterogeneity is added to the vorticity in the
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interior of the fluids. In particular, two spikes are present now where there
was one before. The velocity fields are displayed in Figs. 9 and 10, to show
the nature of the vorticity which has been added.

In Fig. 11, we show the evolution of a larger amplitude, fixed wavelength
perturbation at an interface between fluids having a 4:1 density ratio. Figure
12 shows the effect of adding a strong statistical heterogeneity to the vor-
ticity in this problem, which is to modify the speed and shape of both bubble
and spike.

To obtain useful results, one will have to identify aspects of the non-
linear growth which tend to be independent of the details of how the instability
is excited. In other words, we need to seek functionals of th» solution which
are statistically stable. These will be the quantities on whicit it 4 appro-
priate to base design considerations. It is my hope that our work can be
joined to the very ‘nteresting results recently obtained .y Youngs46 in the case
of statistical perturbations ot an interface to lzarn more about these questions

in the near future.

9. The Late Stage of Rayleigh-Taylor Instability

I next wanl Lo discuss some issues relating to the very late stage of
Rayleigh-taylor instability, during which processes such as bubble amalgamation,

spike break-up, and turbulent mixing occur,

A.  Bubble Amalgamation

A very primitive statistical model for the process of bubble amalgama-

Lion was proposed quite some time ago by Wheeler and mysolt.al
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We suppose that after an initial period of linear growth, one may consider
the Taylor unstable interface to consist of a collection of bubbles of light
fluid rising th-ough a slab cf heavy fluid. The cross-<eclional area of the jth
bubble is assumed to be circular, of radius Ri' so that it rises with a velocity

given by the Davies-Taylor formu1a30

vi = WORy . (10)

We also suppose that the sizes of the bubbles are not all the same, but are
statistically distributed about an average size Rav' As a result, the bubbles
will move 4t different rates and, in particula-, a large bubble will move ahea’
of a smaller neighbnr. The experimental evidence suggests that two such neigh-
boring bubbles will merge, forming a single larger bubble.

Our first step was to write down a simple but crude set of rules governing
bubble mergcr. These were:

Rule #1. 1Iwo contiguous bubbles merge when;
2, -2 >R (1)

Here 14(_) = (volume of bubble)/(crouss sectinnal area of bubble) = effective
height of large (small) bubble, R_ - radius of smaller bubble.  This rule ex-
presses the idea that the lead of the larger bubble over the smaller bubble
necessary for merger will ancrease as the fraction R_/R, increases.

Rule #2.  Conservation of cross-sectional area;

HR; - nR? 4+ nR? (12)
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This rule provides a way to calculace the radius c7 the merged bubble.
Rule #3. Conservation of volume;

nR;z = nR2z, + nR2z_ . (13)

m
This rule provides a way to calculate the height of the merged bubble.

Thus as initial conditions one gives a statistically distributed set of
values Ri and z, for the collection of bubbles, and the connectivity of the
bubble diagram. One can then follow the process of bubble amalgamation, genera-
tion by generation.

Analysis of the model has 'ed to twn main results:

(i) Since smaller bubhles get continually absorbed into larger ones, and
the opposite process of break-up of large bubbles into small ones seems not to
occur, the average size of the bubbles, and hence the average velocity of bubble

rise, increases with time.

Numerically, we found

_ 1
Vav © klgt , k1 ~ 70 to w (14>

where y is the bulk acceleration »i the slab of fluid. This leads Lo a sinple
prediction. The slab will Lravel a distance x = %gt2 in time L. In this time,

the bubble will advance a distance &

"

lﬁ(qu)t2 into the siab. The bubble breaks

through a slab of thickness H when 6 = H. Hence the slab can only travel a dis-
tance L = (E?E)H before breakup, i.e., a slab cun only be pushed a distance 20-
100 times its thickness.

(ii) A second prediction is that a bubble anomalously larger than average

will eventually grow to the point where a single large bubble will dominate the
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flow, provided the slab is thick enough for the merger process to go to comple-
tion before breakthrough. It does not seem to me that available computational
and experimental information suffice to distinguish between the following possi-
bilities:

(a) One bubble always quickly runs away;

(b) Depending on the degree of anomaly in the original distributiun of
sizes, e'' - one bubble runs away, or a standard, stable statistical distri-
buticn . is attained, with a correspocnding standard law of growth;

(¢) n standard distribution of size and rate of rise is almost always
reached.

Nor does availabtle information suffice to validate the rules of bubble

merger which we have adopted.

B. Break-up of Spikes

At this time, little can pbe said with confidence about the details of
the processes whereby Rayleigh-Taylnr spikes break up--into -droplets or other-
wise. In particular, droplet formation is ¢ three-dimensional effecl which
occurs on a small length scale, and as such is likely to fall vutside the scope
of numerical computation for some time. Available experiments on Taylor insta-
bility are inadequate as a guide for modeling these effects.

An objective in modeling spike break-up would be to Jderive semi-empirical
formulae, valid in specified parameter ranges, for the spectra of droplet sizes
and velocitics. This information could then provide the input for models of
entrainment, transport, and mixing.

In thinking about these questions, it may be helpful lo regard the heavy
falling ¢pike as being somewhat analogous to a liquid jet, with ihe hope that
some of the ideas that have been developed to analyze the stability and atomiza-

tion of jets can be adapted to spikes.
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There are a variety of mecnanisms leading to jet disintegation.48’49

One
of the first studies was by Ray]eigh,50 who showed that an idealized cylindrical
jet is unstable to varicose perturbations if L > nD (L = length of the jet, D =
jet diameter). This analysis ceases to apply if the jet is too thick or moves
too fast, or if surface tension is negligible.

Kevin-Helniholtz inrstability on the side of a jet is a frequent cause of
jet break-up. In this case, the nonlinear phase of Kelvin-Helmholtz instability
results in the formation of a turbulent mixing zone, which spreads into the jet.
The size and shape of the mixing zone depends on the shape of the nozzle, the
presence of turbulence and other factors.

The formation of a mixing zone in the case of plane two-dimensional Taylor

46,51

instability has recently heen studied by Youngs. A very interesting, very

important step has been taken towards understanding the mixing zone apprcach to
spike break-up. 1 am glad Youngs was ahle to describe his work at this con-

52

ference, because I do not have time to do it justice in this talk.

Numerous patterns of drop sizes and velocities are ob.eved to occur in

the atomization regime of jet disintegration.48'53'54

Factors affecting the
character of these patterns inciude surface tension, viscosity and the nature of
"aerodynamic" furces that may be present. The variabiiity of the observed
patterns also bespeaks the firequent presence of statistical heterogeneities.
Hence in the engineering literature one finds several different drop size dis-
tributions used to correlate data. For example, one distribution for the proba-
bility p(d) for a drop to have a diameter between d and d + &d is the Nukiyama-

Tanasawa Iaw54

o
p(d) = Ad™e ad . (1b)
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where A, b, m, and n are paramneters. This law is interesting in that its gen-
eral form can be derived from statistical considerations together with simple

{but not necessarily correct!) assumptions about droplet formation.

10. The Need For Experiments

I believe that to carry out informative experiments on the late stage of
Rayleigh-Taylor instability is as difficult a challenge for the experimenter as
the calculation of this phase of the instability is for the theoretician.

The ciassic experiments on Rayleigh-Taylor instability are those of Lewis8

and Allred and Blount.>°

56

Additional experiments nave veen carried out by Duff,

Emmons, Chang and Wa‘..son,57 Ratafia,58 Cnle .nd Tankin,59

51 61,62

Harlow and Hirt,

60

Popil and Curzon, and J. F. Barnes et al.

Read and Youngs,

The available experiments are adequate to confirm semi-quantitatively, or
perhaps even quantitatively, several predictions of the linear analysis for the
initial growth of the instability. The expcriments also provide pictures of the

58

development of bubbles and spikes and the work of Ratafia shows Kelvin-

Helmholtz roll-up on the spike. Furthermore, ihe work of Lewis.8 Allred and

28 and Read and YoungsSL provides some information on bubble amalgamation.

Blount
There is a clear nced for more and better experiments. First, available
experiments are still inadequate for modeling the very late stayge of Taylor
instability, although the recent experiments oi Read and Youngs51 provide inter-
esting new information on the mixing zone questicn. Second. experiments are
needed to benchmark codes which compute Rayleigi.-Taylor instability in circum-
stances where accurate special purpose codes do not exist for comparison.

To be of most use, the experiments should be designed with two criteria in

mind:
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They should be analyzable to produce quantitative data on the time history
of the unstable interface. The quantitative data may well refer to appropri-
ately chosen statistical quantities rather than to the detailed properties of a
specific interface.

The experiments should be performed in an environment where the equation of
state of the fluids can be regarded as known. Compounding an analysis of fluid

dynamics with uncertainties about material properties will result in confusion

about both.

11. Summary--Critical Issues

I will close by summarizing what I consider to be some criticai issues
concerning Rayleigh-Taylor instability.
First, it is very important to carry out three-dimensionai calculaticns of

Taylor instabi]ity.63

There are several reasons for this: (a) Several features
of Rayleigh-Taylor instability are intrinsically three-dimensional, e.g., bubble
merger, processes leading Lo the break-up ot spikes, and turbulent mixing; (b)
Experiments are likely to pertain to three-dimensional flows;, (c) There may be
some surprises.

Second, it is important to assess the role of statistically distributed
heterogcneities on the growth of the instability. Such heterogeneties will
frequently be present in practical situations, and in some cases can modify the
flow substantially.

As a final remark, I think it is interesting to ask whether geomeiric
structures having fractal properties can be helpful in understanding a possible

chaotic limit of Taylor instahi]ity.s4
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The background for this idea is roughly as follows. It has been sug-

gested65

that in fully developed three-dimensional turbulence, in the limit a:
the Reynolds number approaches infinity, geometric structures are formed having
the properties of fractal sets. The formation of objects on smaller and smaller
length scales is belicved to be the result of repeated generations of Kelvin-
Helmholtz instability. The new idea is that the eddies formed in this way may
not be space-filling. One consequence of this picture is so-called intermit-
tancy in turbulence; another is corrections to the selt-similar behavior de-
scribed by Kolmogorov's Law.

wWe believe that a Taylor unstable interface is also subject to Kelvin-
Helmholtz instability. Particularly in the case where surface tension is neg.i-
gible, could successive generations of Kelvin-Helmholtz instability, pascity

initiated by small scale heterogencities, lead to a fractalized irtertace

evolving in a self-similar manner? What would be some observable consequence:

of this bchavior?

12. Acknowledgments

The author would like to thank J. Glimm, D. Holm, 0. McBryan, R. Menikof1,

R. Mjolsness, and H. Rose for helpful advice on the preparation of this article.



27

References

1.

10.

11.
12.
13.

Lord Rayleigh, Scientific Papers (cambridge University Press, Cambridge,

Engiand, 1900), Vol. II, p. 200.

G. I. Taylor, Proc. R. Soc. London Ser. A 201, 192 (1950).

L. Smarr, J. R. Wilson, R. T. Barton and R. L. Bowers, Ap. J. 246, 515
(1981).

M. L. Norman, L. Smarr, J. R. Wilson and M. D. Smith, Ap. J. 247, 52 (1981).
Taylor instability of iaser driven fusion targets has been the subject of
numerous papers. Some examples are: J. D. Lindl and W. C. Mead, Phys. Rev.

Lett. 34, 1273 (1975); R. L. McCrory, L. Montierth, R. L. Morse and C. P.

Verdon, Phys. Rev. Lett. 46, 336 (1981); R. G. Evans, A. J. Bennctt and
G. J. Pert, Phys. Rev. Lett. 49, 1639 (1982); M. H. Emery, J. H. Gardner
and J. P. Boris, Phys. Rev. Lett. 48, 677 (1982).

R. A. Gerwin and R. C. Malone, Nucl. Fusion 19, 155 (1979).

A more realistic description of the interaction of laser light with the
surface of a fusion target is given in D. W. Forslund, "The Importanc. of
Surface Physics in Laser-Plasma Interactions,” These Pruceedings.

D. J. Lewis, Proc. R. Sor London Ser. A 202, 81 (1950).

G. Birkhoif, "Taylor I. lity and Laminar Mixing," Los Alamos National

Laboratory report LA-1862 (195b); Appendices A-H issued as report LA-1927
(1956).

5. Chandrasekhar, Hydrodynamic and Hydromagnetic Stabiiity {Oxford Univer-

sity Press, Oxford, 1961), Chap. X.
M. Mitchner and R. K. M. Landshoff, Phys. Fluid. 7, 862 (1964).

—
M. S. Plesset and D-Y. Hsieh, Phyw—~Fluids 7, 1099 (1964).
G. H. Wolif, Z. Physlk 227, 291 (1969).



11,
15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25,

20,
21

28

R. D. Richtmyer, Comm. Pure and Appl. Math. 13, 297 (1960).

R. LeLevier, G. J. Lasher and F. Bjorklund, "Effect of a Density Gradient
on Taylor Instability,"” Lawrence Livermore Laboratory report UCRL-4459
(1955).

J. N. Hunt, Appl. Sci. Res. A 10, 45 (1961).

R. Muiikoff, R. C. Mjolsness, D. H. Sharp and C. Zemach, Phys. Fluids 20,
2000 (1977).

R. Menikoff, R. C. Mjolsness, D. H. Sharp, C. Zemach and B. J. Doyle, Phys.
Fluids 21, 1674 (1978).

R. A. Axford, "Initial Value Problems of the Rayleigh-Taylor Instability
Type,”" Los Alamos National Laboratory report LA-5378 (1974).

G. 1. Bell, "Taylor Instability on Cylinders and Spheres in the Small
Amplitude Approximation," Los Alamos National Laburatory report LA-1321
(195i)

G. Birkhoft, Quart. Appl. Math. 12, 306 (1954).

M. S. Plesset, J. Appl. Phys. 25, 96 (1954).

M. S. Plesset and T P. Mitchell, Quart. Appl. Math. 13, 419 (1956).

G. Birkhoff, Quart. Appl. Math. 13, 451 (1956).

H. N. Pisher, "lInstabilities in Converging Compressible Systems," Unpub
lished, Los Alamns (199%2).

E. Ott, Phys. Rev. Lett. 29, 1429 (19/2).

E. Formi, "laylor Instabitity of an Incompressible tiuid," Document AECU-
2979, Part 1 (19%)). Also published in The Collected Papers oi Enrico
Fermi, L. 3Segré, tditor-in-Chief (University of Chicago Press, Chicaqgo,
1965), Vol. 2, p. 816, The case of finite density ratio was treated by
L. Fermi and J. von Neumann, "laylor Instability at the Boundary o! Iwo
Incompressible Liguids," Document A CU-2979, Part 2 (19%3). This article

iy also published in lermi's collected papers, Vol, 2, p. 821



28,

29.

3n,
31.
32
33.
34.
35.

36.
37.

36.
39.
40.
41,
42.

41,
44,

4},

29

L. Baker and J. R. Freeman, "Heuristic Model of the Nonlinear Rayleigh-
Taylor Instability," Sandia National Laboratories report Sand80-0700J
(1980).

W. P. Crowley, "An Empirical Theory for Large Amplitude Rayleigh-Taylor
instability," Lawrence Livermore Laboratory report UCRL-72650 (1970); D.
Levermore (private communication, 1983).

R. M. Davies and G. I. Taylor, Proc. R. Soc. London Ser. A 200, 375 (1950).
D. Layzer, Ap. J. 122, 1 (1955).

G. Birkhoff and D. Carter, J. Math. Mech. 6, 769 (1957)

P. R. Garabedian, Proc. R. Soc. fondon Ser. A 241, 423 (1957).

R. Menikoff and C. Zemach, J. Comp. Phys. 36, 366 (1980).

R. Menikoff and C. Zemach, "Rayleigh-Taylor Instability and the Use of
Conformal Maps for Ideal Fluid Flow," J. Comp. Phys. (In press, 1983).
G. R. Baker, D. l. Meiron and S. A. Orszag, Phys. Fluids £3, 1485 (1980).
C. ?. Verdon, R. L. McCrory, R. L. Morse, G. R. Baker, D. ]. Meiron and
S. A. Orszag, Phys. Fluids 75, 1653 (1982).

F. H. Harlow and J. E. Welch, Phys. Fluids 9, 842 (1966).

B. J. Daly, Phys. Fluids 10, 297 (1967).

B. J. Daly, Phys. Fluids 12, 1340 (1969).

J. R. Freeman, M. J. Clauser and S. L. Thompion, Nucl. Fusion 17, 223 (1977).
K. A. Meyer and P. J. Blewett, "Some Preliminary Numerical Studies of
Taylor Instability which Include Effects «f Material Strength," Los Alamos
National Laboratory report LA-4754-MS$ (1971).

K. A. Meyer and P. J. Blewett, Phys. Fluids 15, 753 (1972).

J. Glimm, 0. McBryan, R. Menikoff and D. H. Sharp, "tront Tracking Apvlied
to Rayleigh-Taylor Instability," (in preparation, 1983).

0. McBryan, "Computing Discontinuous Flows," These Proceedings.



46.
47.

48.

49.
50.

51.

52.

53.
5,

55.

56.

57

59.
60.
61.

62.

30

D. L. Youngs (private communication, 1983).
D. H. Sharp and J. A. Wheeler, "Late Stage of Rayleigh-Taylor Instability,"
Institute for Defense Analyses, Unpublished report (1961).

G. Birkhoff and E. H. Zarantonello, Jets, Wakes and Cavities (Academic

Press, New York, 1957), Chap. XV.
S. Chandrasekhar, Ref. 10, Chap. XII.

Lord Rayleigh, Scientific Papers (Cambridge University Press, Cambridge,

tngland, 1899), Vol. I, p. 361.

K. 1. Read and D. L. Youngs, "Exrerimental Investigation of Turbulent
Mixing by Rayleigh-Taylor Instability," AWRE report No. 011/83, (1983).
D. L. Youngs, "Turbulent Mixing by Rayleigh-Taylor Instability," These
Proceedings.

R. D. Reitz and F. V. Bracco, Phys. Fluids 25, 1730 (1982).

G. B. Wallis, One-Dimensional Two-Phase Flow (icGraw-Hill, New York, 1969),

Chap. 12.

J. C. Allred and G. H. Blount, "Experimental Studies of Taylor Instability,"
Los Alamos National |aboratory report LA-1600 (1953),

R. E. Muff, F. H. Harlow and C. W. Hirt, Phys. Fluids 5, 417 (1962).

H. W. Emnmons, C. 1. Chang, and B. C. Watson, J. tluid Mech. 7, 177 (1960).

=

. Ratafia, Phys. Fluids 16, 1207 (1973).

R. L. Cole and R. S. Tankin, Phys. Fluids 16, 1810 (1973).

R. Popil and F. L. Curzon, Rev. Sci. Instr. Y0, 1291 (19/°).

J. F. Barnes, P, J. Blewett, R. G. McQueen, K. A. Meyer and 0. Venable,
J. Appl. Phys. 4%, 727 (1974).

J. F. Barnes, D. H. Janney, R. K. London, K. A. Meyer and D. H. Sharp, J.
Appl. Phys. b1, 4678 (1980).



63.

64.

65.

31

Preliminary work on the calculation of three-dimensicnal Taylor instability
is reported in S. A. Orszag, "Generalized Vortex Methods in 3-Dimensional
Rayleigh- Taylor Instability," These Proceedings.

This suggestion was formulated in cnnversations with J. Glimm and H. A.
Rose.

B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).



Table. Some Factors

Influencing Tke Development of Rayleigh-Tavler Instability

Factor

Relative size of effect
(dimensionless parameter)

Effect on growth of Instzbility

|
L
]
lDensity ratic
|
E
i
L

py/p  or A = (p, - p ) (py + p)

A key factor governing the growth rate of
Rayleigh-Taylor or Kelvin-Helmholtz insta-
bility for small amplitude perturbations of
wavelength A.

ESurface tension

i
|
L
!

Weber number = 20/(p, - P IgA?

In linear theory, stecbilizes wavelengths shorter
than a critical wavelength A = Jo/q{p, - p, ).
Establishes a most unstable wavelengtn, hehce
probably mzkes problem well posed mathematically®

;Viscosity R = vt/A2 Reduces growth rate; regularizes fluid flow.

ic PR _ 2 - (phase velocity of gravity waves)?2

! ompressibility G = g/ke? = (sound speed)? Reduces growth rate of long wavelength perturba-
! tions; decreases active volume of fluid.
iHeterogenefty AL/A |, Av/v . Can excite secondary, tertiary, . . . instabil-

ities of various wavelengths.

4%
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.
Figure 6.

Figure 7.

Figure 8.

(A) The pressure of the air is quite sufficient to support a per-
fectly uniform layer of water 1 meter thick against the ceiling.
(B) But the air pressure can not constrain the air-water interface
to flatness. Ripples or irregularities will inevitably be present
at the interface. (C) The irregularities grow, forming "bubbles"
and "spikes." The water falls to the floor.

Schematic diagram of the implosion of DT pellet.

Two incompressible fluids cf infinite depth, having densities PP >
meet at an interface. For t < 0, the interface is the plane z = 0.
For times t > 0, the interface has a perturbed shape. The simple
case Zs = n(t)coskx is illustrated in the figure.

Schematic plot of o2 vs k, Eq. (3).

Fluid configuration analyzed in Fermi's model.

Piot of interfaces for Rayleigh-Taylor instability of layered flow
of an ideal fluid. The Atwood number is unity. Left: Case of a
semi-infinite fluid. Right: A finite fluid layer. Figure is adapted
from Verdon et al, Ref. 37,

Nonlinear growth of a fixed wavelenyth, small amplitude perturbation.
In this run the density ratio was ,)H/pL <= 500, the initial amplitude
(in units of wave number x amplitude) was 0.1, and the grid size was
48 x 48,

Growth of a fixed wavelength, small amplitude perturbation in the
presence of strong statisticol heterogeneity ia the vorticity in

the interior of the fluid. Other parameters are as in Fig. 7.



Figure 9.

Figure 10.

Figure 11.

Figure 12.

This figure shows the velocity field associated with the interface
motion displayed in Fig. 7.

This figure shows the velocity field associated with the interface
motion displayed in Fig. 8.

Nonlinear growth of a fixed wavelenati perturbation. In this run
the density ratio was pH/pL = 4, the initial amplitude (in units of
wave number x amplitude) was 0.5, and the grid size was 20 x 20.
Growth of a fixed wavelength perturbation in the presence of strong
statistical heterogeneity in the vorticity in the interior of the

fluid. Other physical parameters are as in Fig. 11, except that the

grid size here was 40 x 40.
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