

PPPL-2U94h

N PCPL

I-15386 \% PPPL-2084n DR-0798-6

HAGNETIC FIELD LINE HAMILITONEAN

By
A.H. Boozer

FEBRDARY 1985

PLASMA PHYSICS LABORATORY

patman

PRINCETON UNITRESTY
 PRINCETON, NEW ARGE

0

Allen f. Boozer
Plssma Fhysica Laboratory, Princeton University
P.D. Box 451
Princeton, NJ 08544

ARSTRACT

Abstract

The basic properties of the Bamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field inne Hamiltonian, is outlined.

I. INTRODUCTION

The familtonian properties of magnetic fields form the bsis for much of toroidal plasna physics and have been utilized, although implicitly, in treatments of the abject. ${ }^{1-5}$ the relation between frailtonian mechanics and magnetic fields has heen discuised by eeveral authora, ${ }^{\mathbf{6 - 8}}$ but the subject has never been adequately deqeloped to form a balf for theoretical discussions of toroidal plasmas or as a practical computational tool. The besic Hamiltonian theory of magnetic iields is developed in this paper in a form which is particularly useful for the study of toroidal plasmas.

A basic feature of the canonical familtonian treatment of magnetic fields is that all the topological properties of the maqnetic field line trajectories are isolated in a single scalar function, the Hamilteniath. The Hamiltonian either has one degree of freedom wh dependerice on the canonical time or has two degrees of freedom without dependence on the canonical time. A one degree of freedon hamiltonian will be used in this paper in which the magnetic fieid is assumed to have a finite toroidal component. The generalization to arbitrary globaly, divergence-free fields utilizes a two degree of freedom Hamiltonian and involves sone additional mathematical complexity. ${ }^{9}$
section II reviews the basic properties of a canonical representation ${ }^{7}$ of magnetic fields. 2. general formulation of canonical perturbation theory of magnctic fielde is developed in Sec. III. This tormulation of magnetic perturbation theory is used in Sec. IV to obtain equations for the time evolution of magnetic fields embedded in a plasma. The basic results are that the Hamiltonian evolves due to resistivity and would be conserved if the resistivity were zero. The transformation equations between the canonical coordinates of the Hawiltonian and the ordinary spatial coiordinates can change on an arbitrarily rapid time scale in order to maintain force balance.

Finaliy, a generalization of the energy principle ${ }^{10,11}$ to cearing modes ${ }^{12}$ utilizing the Hamiltonian formulation is outlined in Sec. V. Although not discussed in this paper, the familtonian formulation of the magnetic field is also useful in the evaluation of particle drift orbits. ${ }^{13}$

II. CANONICAL REPRESENTATIOR

Any globally divergence-free fleld $\overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{x}})$ can be written in the so-called canonical form ${ }^{7}$

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\vec{\nabla}_{\boldsymbol{\nabla}} \phi \times \vec{\nabla}_{\theta}+\vec{\nabla} \phi \times \vec{\nabla}_{\chi} \tag{1}
\end{equation*}
$$

with ψ and χ single-valued functions of position and θ and ϕ proper angles [a proof is outlined belok Ey. (8)l. By a proper angle, we mean that 8 and $\theta+$ 2π are the same physical position \vec{x}. The physical interpretations of ψ, θ, ϕ, and X are illistratiま in Fig. 1. The angles θ and ϕ are poloidal and toroidal angles. The totoidal magnetic flux enclosed by a constant ψ surface is $2 \pi \psi$, and the poloidal flux outside a constant X surface is $2 \pi x$. However, the constant ψ and constant χ surfaces are generally not identical.

To represent a field using the canonical form it would appear that $\boldsymbol{\psi}_{s} \boldsymbol{\theta}, \boldsymbol{\phi}$, and \dot{x} nust be known as functions of position \vec{x} in order to evaluate the gradients. hctually, it it more useful to consider the position as a function of $\$, \theta$, and ψ, the so-called canonical coordinates. This can be aone as long as the triple product $\left(\vec{\nabla}_{\psi} \times \vec{\nabla} \theta\right) \cdot \vec{\nabla}_{\boldsymbol{\nabla}}$, which is the toroidal component of the fiela $\vec{B} \cdot \vec{\nabla}_{\phi}, 1 s$ finite. Here, $\vec{B} \cdot \vec{\nabla}_{\phi}$ will be assumed finite, but the general case can be handled at the price of somewhat more difficult mathematics. 9

To describe a magnetic field $\vec{B}(\vec{x})$ fully using the canonical coordinates, both the poloidal flux function X and the position \vec{x} must be given as

Function of ϕ, θ, ϕ. The functions $x(\phi, \theta, \phi)$ are called the transfocsation equations. They can always be made continuous and this continuity wili be assumed. If the field is described using ordinary cylindrical coordinates R.申.2, Fig. 2, then

$$
\begin{equation*}
\vec{x}(x, \theta, \phi)=R(\phi, \theta, \phi) \vec{R}(\phi)+z(\phi, \theta, \phi) \hat{z} \tag{2}
\end{equation*}
$$

with $\mathrm{dP} / \mathrm{d} \phi=\hat{\phi}$. In other words, the transformation equations mould consist of R and z as functions of ψ, θ, ϕ.

The function $\chi(\psi, \theta, \phi)$ has an additional interpretation besides being the poloidal flux function. It is the magnetic field line Hamiltonian. The magnetic field lines, which are also known as the integral curves of the maqnetic field, are the solution ${ }^{5}$ to the differential equation

$$
\begin{equation*}
\frac{d \vec{x}}{d \tau}=\vec{B}(\vec{x}) \tag{3}
\end{equation*}
$$

with τ just a label for the points along a field line trajectory. Consider the field lines in $\$, \theta, \phi$ coordl ates. The change in ψ along a field line is given by $d \phi / d \tau=\vec{\nabla} \phi \cdot \overrightarrow{d x} / d \tau$. This means that along a field line

$$
\begin{equation*}
\frac{d}{d \phi}=\frac{\vec{B} \cdot \vec{\nabla} \phi}{B \cdot \vec{\nabla} \phi} \quad \frac{A \theta}{d \phi}=\frac{\vec{B} \cdot \vec{\nabla} \theta}{B-\nabla} \tag{4}
\end{equation*}
$$

The use of the canonical form for \vec{B}_{r} Eq. (1), to evaluate $\vec{B} \cdot \vec{\nabla} \psi / \vec{B}$. 南 ϕ and

$$
\begin{equation*}
\frac{d \phi}{d \phi}=-\frac{\partial x}{\partial \theta} \quad \frac{d \theta}{d \phi}=\frac{\partial x}{\partial \psi} \tag{5}
\end{equation*}
$$

which are Hamilton's equatons. In Hamiltonian language, the poioidal angle A is the canonical coordinate, the toroidal flux function ψ is the canonical momentum, and the toroidal angle is the canonical time. Unfortunately, most Hamiltonian mechanics texts identify the canonical time with ordinary clock time. In the magnetic field problea, clock time t is a parameter (see secs, III and IV) and should not be confuged with the canonical time ϕ, which is the toroidal angle.

The importance of the canonical representation of a field $\overrightarrow{\mathrm{B}}(\overrightarrow{\boldsymbol{x}} \boldsymbol{\mathrm { f }}$) derives from the fact that all topological information on the field line trajectories is contalned in the Hamiltonian $\chi(\psi, \theta, \phi)$. That is, questions related to the existence of closed magnetic surfaces, magnetic islands, or stochastic regions can all be answered if ths function $x(\phi, \theta, \phi)$ is known. This follows from the continulty of the transformation equations and the mathematical result that continuous transformations do not alter topological properties.

The representation of a magnetic field using canonical coordinates is closely related to the mell-known magnetic coordinate ${ }^{2,14,15}$ and clebsch representations. The magnetic coordinate representation is identical to the canonical representation except that X is a function of ψ alone. This representation exists only if all the fiela line trajectories lie in surfaces. Then, the magnetic coordinates are the action \rightarrow angle variables of Hamiltonian mechanics. The Clebsch representation,

$$
\begin{equation*}
\vec{B}=\vec{\nabla} \phi_{0} \times \vec{\nabla} \theta_{0} \tag{6}
\end{equation*}
$$

can be obtained from the canonical representation by letting $\psi=\phi\left(\phi_{0}, \theta_{0}, \phi\right)$ and $\theta=\theta\left(\psi_{0}, \theta_{0}, \phi\right)$ with ψ_{0} and θ_{0} the initial values of a field line trajector. Single-valued transformation equations usually do not exist
between the clebsch coordinates ψ_{0}, θ_{0}, and ordinary space \vec{x}. Therefore, the Clebsh representation does not isolate topological information in a slingle scalar function as does the canonical representation.

Given an arbitrary magnetic \mathcal{E} (eld $\overrightarrow{\mathbf{B}}(\vec{x})$, the canonical representation can be established. Let $\vec{x}(\rho, \theta, \phi)$ be any set of snooth transformajeion equations with θ and ϕ angles. Assune that ρ is zero at the axis of tho θ angle. Then using the canonical form, 设. (1), one can show that

$$
\begin{equation*}
\frac{\partial \phi}{\partial \rho}=\vec{B} \cdot\left(\frac{\partial \vec{x}}{\partial \rho} \times \frac{\partial \vec{x}}{\partial \theta}\right) \quad \text { and } \quad \frac{\partial x}{\partial \rho}=\vec{B} \cdot\left(\frac{\partial \vec{x}}{\partial \phi} \times \frac{\partial \vec{x}}{\partial \rho}\right) \tag{7}
\end{equation*}
$$

If these equations are integrated from $\psi=0$ for a fixed θ and ϕ, the functions $x(\phi, \theta, \phi)$ and $\underset{\sim}{x}(\phi, \theta, \phi)$ can be evaluated. By using a number of θ and ϕ values together with a fast Fowier transform, the functions $\chi(\phi, \theta, \phi)$ and $\vec{x}(\psi, \theta, \phi)$ can be obtained in Fourier series form, A code to carry out such calculations has been written by G. Kuc-Fetravic. The proof of Eq. (7) follows from the canonical form for B, Eq. (1), and the so-called dual relations, Eq. (21).

The vector potential has an important role in the Hamiltonian representation of the magnetic field. The canonical form for the vector potential is

$$
\begin{equation*}
\stackrel{+}{A}=\vec{V}^{\vec{V}} \theta-\vec{X}^{\vec{V}} \phi+\vec{\nabla}_{G} \tag{8}
\end{equation*}
$$

with G the arbitrary gauge function. That is, the curl of \vec{A} gives the canonical form for $\overrightarrow{\mathrm{B}}$, Eq. (1). The existence of the canonical form for the vector potential tollows ${ }^{16}$ from Foincare's theorem that a globally divergensefree field han a single-valued vector potential $\overrightarrow{\mathbf{A}}(\vec{x})$. Let $\overrightarrow{\mathrm{x}}(\rho, \theta, \phi)$, as
before, be any well-behaved transformation equations with $\rho * 0$ along the axis of the θ angle. Then, any single-valued vector $\vec{A}(\vec{X})$ can be written as

$$
\begin{equation*}
\vec{A}=A_{\rho} \vec{\nabla} \rho+A_{\theta} \vec{\nabla} \theta+A_{\phi} \vec{\nabla} \phi \tag{9}
\end{equation*}
$$

with A_{ρ}, A_{θ}, and A_{ϕ} single-valued functions of $\rho_{r} \theta_{r}$ and ϕ_{*} Choose $G(\rho, \theta$, ϕ) so that $\partial G / O \rho=A_{\rho}$ and $G=0$ at $\rho=0$, then Eq. (9) takes the form of Eq. (B) with ψ and χ being single-valued functions of position.

Canonical transformations maintain the form of Hamilton's Eq. (5) and the canonical form for the vector potentiai, Eq. (8), and the magnetic field, Eq. (1). The most general canonical transformation, which is known as an extended phase-space transformation, transforms $\phi_{f} \theta_{r} \phi_{r} x$ into $\bar{\phi}, \overline{\phi_{,}}, \bar{\phi}_{,} \bar{x}_{0}$ such a transformation can be specified by the generating function $s\left(\theta, \phi_{r} \overline{\psi_{r}} \bar{\gamma}\right)$ with

$$
\begin{array}{ll}
\psi=\frac{\partial s}{\partial \theta} & \bar{\theta}=\frac{\partial s}{\partial \bar{\psi}} \tag{10}\\
x=-\frac{3 s}{\partial \phi} & \bar{\phi}=-\frac{\partial s}{\partial \bar{x}}
\end{array}
$$

The representation of the vector potential $\vec{A}(\vec{x})$ using barred coordinates is evaluated by a substitution into Bq. (A),

$$
\begin{equation*}
\overrightarrow{\mathbf{A}}=\bar{\phi} \vec{\nabla} \bar{\theta}-\bar{\chi} \text { 古 } \bar{\phi}+\vec{\nabla} \overline{\mathrm{G}}, \tag{11}
\end{equation*}
$$

witin the gauge function $\bar{G}=G+S-(\bar{\theta}-\bar{X} \bar{\phi})$. The generating functian is not single valued (s at θ and $\theta+2 \pi$ are not equal), but \bar{G} is. The generating function S naturally depends on four variables while the gauge function \vec{G} has a naturai depenience on posicion, which is only three variables. This is discussed in Sec. III after E:. (17) and in Ref. 9:

The canonical transformations, which will be of primary interest, are the Infinitesimal camonical transformations. They are defined by

$$
\begin{equation*}
s=\bar{\phi} \theta-\bar{\chi} \phi+\varepsilon s(\bar{\phi}, \theta, \phi, \bar{\chi}) \tag{12}
\end{equation*}
$$

with ε an infinitesimal quantity [see Fq. (23)]. otiner important trang formations include

$$
\begin{equation*}
s=\bar{\chi} \theta-\bar{\alpha} \phi \tag{13}
\end{equation*}
$$

which reverses the roles of the poloidal and the toroidal vazi- les, and

$$
\begin{equation*}
s=\bar{\psi} \theta \omega(\bar{X}+N \bar{\psi}) \frac{\phi}{M}, \tag{14}
\end{equation*}
$$

with M and N integora, whith establishes a helical coordinate system with $M \theta$ $N \phi=M \bar{\theta}$. In classical mechanics, it is customary to consider only ordinary cansnical transformations, which do not alter the canonical time. These transformations are of the form

$$
\begin{equation*}
s=s_{0}(\bar{\phi}, \theta, \phi)-\bar{x} \phi . \tag{15}
\end{equation*}
$$

III. CANONICAL PERTURBATION THEORY

The specifleation of field line topology by a single scalar function χ makes the canonical formulation particularly useful for the stury of evolving magnetic fields. In this section, the mathematical properties of the canonscal formulation ore developed for a magnetic field which depends not only on position \vec{x} out also on an arbitrary parameter t, which will be called
time. In Secs. If and V, these mathematical properties, which are summarized by Eq. (29), are applied to plasma physics probiems.

There are three basic ways to describe a magnetic field which depends on a parameter t. First, the vector potential can be specified as a function of position and time, $\vec{A}(\vec{x}, t)$. Second, the quantities ϕ, θ, ϕ, and χ can be given as functions of \vec{x} and t_{n} Third, the Hamiltonian and the transformation equations can be given as functions of the canonical coordinates and time, $x(\phi, \theta, \phi, t)$ and $\vec{x}(\psi, \theta, \phi, t)$. Since a magnetic field is uniquely defined by any one of the three, mathematical relations exist which determine the other two descriptions of the field if any one is given. The main subject of this section is the derivation of these relations. In addition to their other applications, these relations define magnetic perturbation theory in sanonical form.

The thzee magnetic field descriptions are related by their partial derivativeg with respect to time. Infortunately, the notation for partial differentiation is either cumbersome or incomplete. For example, $\partial_{\chi} / \partial t$ can be interpreted as either $\partial \chi(\vec{x}, t) / \partial t$ or $\partial x(4, \theta, \phi, t) / \partial t$. Since both interpretations occur for γ and for the gauge function G, a subscript \vec{x} or c for canonical will be used. For example, ($\partial x / \partial t)_{c}$ means $\partial \chi(\phi, \theta, \phi, t] / \partial t$. However, to simplify the notation, $\partial \vec{A} / \partial t$ means $\vec{\partial}_{\boldsymbol{A}}(\vec{x}, t) / \partial t$. Derivatives of the canonical coordinates ϕ, θ, ϕ with respect to time should be interpreted so that $\partial \phi / \partial_{t}=\partial \phi(\vec{x}, t) / \partial t$. The time derivative of the transformation equations is $\overrightarrow{\partial x}(\phi, \theta, \phi, t) / \partial t$.

To begin the derivation of the relations, assume $\vec{A}(\vec{X}, t)$ is given and that we whish to fir-t ψ, θ, ϕ, and χ as functions of \vec{x} and t. This can be accomplished by time differentiating the canonical form for \vec{A}, (3q. (5), to obtain

$$
\begin{equation*}
\frac{\partial \vec{A}}{\partial t}=-\frac{\partial \theta}{\partial t} \vec{\nabla} \phi+\frac{\partial \phi}{\partial t} \vec{\nabla} \theta-\left(\frac{\partial x}{\partial t}\right)_{x} \vec{\gamma}_{\varphi}+\frac{\partial \phi}{\partial t} \vec{\nabla} x+\vec{\nabla}_{s} \tag{16}
\end{equation*}
$$

with the function s defined by

$$
\begin{equation*}
s \equiv\left(\frac{\partial G}{\partial t}\right)_{x}+\Phi \frac{\partial \theta}{\partial t}-x \frac{\partial \phi}{\partial t} . \tag{17}
\end{equation*}
$$

The function s is the generating function for infinitesimal canonical transformations [see the discusszin of Ey. i23) below] and can be specifie. arbitrarily due to the freedom of the gauge function, G. metuaily, s is not just an arbitrary function of ϕ, θ, ϕ, and t as one would suppose, but rather an arbitrary function of five variables, $s(\$, \theta, \phi, x, t)$. To interpret the χ depenäence of s mathematically, a distinction rust be made between the Endependent variable X and the field line Familtonian $X_{H}(\phi, \theta, \phi, t)$. Ercept when calculating derivatives of s, the variable x alway has the value X_{H}. Derivatives with respect to χ are to be interpreted as $0 s / \partial \chi=$ $\partial_{s}\langle\phi, \theta, \phi, \chi, E\rangle / \partial x$ evaluated it $X=x_{H}$. The condition

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=-\frac{\partial s}{\partial x} \tag{19}
\end{equation*}
$$

on the X dependence is required to make s ar infinitesimal generating function. The freedom of an extra condition on arises from the use of four quantities $\psi_{r} \theta, \phi$, and x te represent a vectior potential which, even in a specified gauge, has only three independent components. That is, even with $\phi(\vec{x}, t)$ a specified function, an arbitrary vector potential can be written in the canonical form, Eq. (8). Vigwing s as a Eunction of $\psi, \theta_{r} \phi, X$, and t, with X evaluated at $x=x_{H}$ one has

$$
\left.\frac{\partial \vec{A}}{\partial t}=\left(\frac{\partial s}{\partial \psi}-\frac{\partial \theta}{\partial t}\right) \ddot{\nabla}_{\phi}+i \frac{\partial s}{\partial \theta}+\frac{\partial \psi}{\partial t}\right) \nabla_{\theta}+\left[\frac{\partial s}{\partial \phi}-\left(\frac{\partial \chi}{\partial t}\right) \vec{x}\right] \vec{\nabla}_{\phi} .
$$

To obtain $\partial \phi / \partial t$. $\partial \theta / \partial t$, and $(\partial x, \partial t) \vec{x}$ in terms of $\partial \vec{A} / \partial t$, some theorems of partial differentiation theory are required. There are simple relations between derivatives of the canonical coordinates with respect to the position \vec{x}. like $\vec{\nabla} \phi(\vec{x}, t)$, and the derivatives of the position \vec{x} with respect to the canonical coordinates. Letting ψ and θ be any two canonical coordinates, partial differential theory implies the orthogonality relations

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial \psi} \cdot \vec{\nabla} \psi=1 \text { and } \frac{\partial \vec{x}}{\partial \phi} \cdot \vec{\nabla} \theta=0 . \tag{20}
\end{equation*}
$$

The orthogonality relations can be used to obtain the so-called dual rilations

$$
\begin{equation*}
\frac{\vec{\partial}}{\partial \phi}=J \vec{\nabla} \theta \times \vec{\nabla} \phi, \quad \text { and } \quad \vec{\nabla} \phi=\frac{1}{J} \frac{\partial \vec{x}}{\partial \hat{\theta}} \times \frac{\partial \vec{x}}{\partial \phi} \tag{27}
\end{equation*}
$$

with the Jacobian J satisfying

$$
\begin{equation*}
J=\frac{\overrightarrow{\partial_{x}}}{\partial \psi} \cdot\left(\frac{\partial \vec{x}}{\partial \theta} \times \frac{\partial \vec{x}}{\partial \phi}\right)=\frac{1}{\nabla \psi \cdot(\vec{\nabla} \theta \times \vec{\nabla} \phi)} \tag{22}
\end{equation*}
$$

Even permutations of the ψ, θ, coordinate labels also give valid equations. Using the orthogonality relations and Eq. (19) for $\partial \vec{A} / \partial t_{r}$, finds that

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial t}=-\frac{\partial s}{\partial t}+\frac{\partial \vec{A}}{\partial t} \cdot \frac{\partial \vec{x}}{\partial \theta} & \frac{\partial \theta}{\partial t}=\frac{\partial s}{\partial \phi}-\frac{\partial \vec{A}}{\partial t} \cdot \frac{\partial \vec{x}}{\partial \phi} \\
\left(\frac{\partial x}{\partial t}\right)_{\vec{x}}=\frac{\partial s}{\partial \phi}-\frac{\partial \vec{A}}{\partial t} \cdot \frac{\partial \vec{x}}{\partial \phi} & \frac{\partial \phi}{\partial t}=-\frac{\partial s}{\partial x} \tag{23}
\end{array}
$$

If $\partial \vec{A} / \partial t=0$, these are jutt the equations for infinitesimal canonical transformations in the axtended phase apace $\psi_{r} \theta, \phi_{,} X_{r}$ which validates the identification of s as an infinitesimal generating function [see Eq. (V2)]. The equations relating $\partial \psi / \partial t, \partial \theta / \partial t$, and $\partial \phi / \partial t$ witin $\partial \vec{N} \partial t$ can be used to determine a slore inportant relation, the relation betwen $d \vec{x} /$ at and $\partial \vec{A} / \partial t$. If the trivial relation $(\partial \vec{x} / \partial t)_{\vec{x}}=0$ is expressed in ϕ, θ, ϕ coordinates, one obtains the result that

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial t}=-\frac{\partial \vec{x}}{\partial \psi} \frac{\partial \psi}{\partial t}-\frac{\overrightarrow{\partial x}}{\partial \theta} \frac{\partial \theta}{\partial t}-\frac{\partial \vec{x}}{\partial \phi} \frac{\partial \phi}{\partial t} . \tag{24}
\end{equation*}
$$

Substituting $\partial \psi / \delta t, \partial \theta, \partial t$, and $3 \phi / d t$ from E. (23), one obtains the desired relation

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial t}=\left(\frac{\partial s}{\partial \theta}-\frac{\partial \vec{A}}{\partial t} \cdot \frac{\partial \vec{x}}{\partial \theta}\right) \frac{\partial \vec{x}}{\partial \phi}-\left(\frac{\partial s}{\partial \phi}-\frac{\partial \vec{A}}{\partial t} \cdot \frac{\partial \vec{x}}{\partial \phi}\right) \frac{\partial \vec{x}}{\partial \theta}+\frac{\partial s}{\partial \chi} \frac{\partial_{x}}{\partial \phi} . \tag{25}
\end{equation*}
$$

This is a very important equation. IE initial transformation equations, $\vec{x}(\phi, 6, \phi, 0)$ are known, this equation determines the transformation equations for all future time, in any field $\vec{A}(\vec{x}, t)$, with an arbitrary choice of canonical coordinates. The freedom of canonical coordinates is the freedom to choose the infinitesimal generating function s. The function ox/dt can be physicaliy interpreted as the velocity of a (ψ, θ, ϕ) point through ordinary epace $\overrightarrow{\mathrm{x}}$.

An even more important equation than the relation between $\partial \vec{x} / \partial t$ and $\partial \vec{A} / \partial t$ is the equation in (ox/dt ' c, which determines the evolution of the Hamiltonian in canonical coordinates. clearly $\chi(\psi, \theta, \phi, t)$ is the fundamental function of the theory, since it determines the field line topology at each point in tine. To obtain the expression for $(\partial x / \partial t) c^{\prime}$
 dual relations, Eq-•(21), one obtains

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial t}=-J\left(\frac{\partial \phi}{\partial t} \vec{\nabla} \theta \times \vec{t} \phi+\frac{\partial \theta}{\partial t} \vec{\nabla} \phi \times \vec{\nabla}_{\phi}+\frac{\partial \phi}{\partial t} \vec{\gamma}_{\phi} \times \overrightarrow{\nabla_{\theta}}\right) \tag{26}
\end{equation*}
$$

The canonical form for $\overrightarrow{\mathrm{B}}$, © (1), then implies

$$
\begin{equation*}
\frac{\partial \vec{x}}{\partial t} \times \vec{B}=-\left(\frac{\partial \theta}{\partial t}-\frac{\partial x}{\partial \psi} \frac{\partial \phi}{\partial t}\right) \vec{\nabla} \phi+\left(\frac{\partial \psi}{\partial t}+\frac{\partial x}{\partial \partial} \frac{\partial \phi}{\partial t}\right) \vec{\nabla} \theta-\left(\frac{\partial x}{\partial \psi} \frac{\partial \psi}{\partial t}+\frac{\partial x}{\partial \theta} \frac{\partial \theta}{\partial t}\right) \vec{\nabla} \phi . \tag{27}
\end{equation*}
$$

The relation between $(\partial x / \partial t) \times$ and $(\partial x / \partial t)$,

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{\underset{x}{ }}=\left(\frac{\partial \chi}{\partial t}\right)_{c}+\frac{\partial x}{\partial \psi} \frac{\partial \psi}{\partial t}+\frac{\partial x}{\partial \theta} \frac{\partial \theta}{\partial t}+\frac{\partial x}{\partial \phi} \frac{\partial \phi}{\partial t}, \tag{28}
\end{equation*}
$$

and Eq. (16) for $\overrightarrow{\partial_{\mathrm{A}} / \partial t \text { imply }}$

$$
\begin{equation*}
\frac{\partial \vec{A}}{\partial t}=-\left(\frac{\partial x}{\partial t}\right)_{c} \vec{\nabla}_{\phi}+\frac{\partial \vec{x}}{\partial t} \times \vec{B}+\vec{\nabla}_{s} \tag{29}
\end{equation*}
$$

This equation will prove to be one of the most useful in the paper. Its first application is the evaluation of $(\partial X / \partial t) c$ by dotting $\partial \vec{A} / \partial t$ with \vec{B},

$$
\begin{equation*}
\left(\frac{\partial x}{\partial t}\right)_{c}=\frac{T}{\vec{B} \cdot \vec{b}_{\phi}}\left(\vec{B} \cdot \vec{\nabla}_{s}-\vec{B} \cdot \frac{\partial_{A}^{\vec{A}}}{\partial t}\right) \tag{30}
\end{equation*}
$$

Canonical perturbation theory is based on Er. (30) for ($\partial x / \partial t)_{c}$ and Eq. (25) for $\hat{a}_{\mathrm{K}} / \mathrm{O}_{\mathrm{t}}$. A related noncanonical perturbation procedure has been given by Cary and Littlejohn. ${ }^{8}$ In perturbation theory, the vector potential is writter ai $\vec{A}(\vec{x}, t)=\vec{A}_{0}(\vec{x})+t \vec{A}_{1}(x)$. Let us asswme that $\left|\overrightarrow{A_{1}}\right| \ll\left|\vec{A}_{0}\right|$ and consider only the first order theory. The perturbation procedure starts with
the quation for ($\partial \chi j \partial t)_{c}$, Eq. (30), which in firet ozder can be written as

$$
\begin{equation*}
x_{1}=\frac{1}{\vec{B}_{0} \cdot \vec{\nabla}_{\phi}}\left(\vec{B}_{0} \cdot \overrightarrow{\vec{V}}_{0}-\vec{B}_{0} \cdot \vec{A}_{1}\right) \tag{31}
\end{equation*}
$$

with $x a t t=1$ equal to $x_{0}+x_{1}$ and $\vec{B}_{0}=\vec{\nabla} \times \vec{A}_{0}$. Assuming the unpe turbed field is integrable, χ_{0} can be taken to be a fanction of ψ alone and

$$
\begin{equation*}
x_{1}=\frac{\partial s}{\partial \phi}+v \frac{\partial s}{\partial \theta}-\alpha \tag{32}
\end{equation*}
$$

 α are Fourier decomposed,

$$
\begin{align*}
& x_{1}=\sum x_{n \mathrm{n}} \operatorname{expli(n\phi -m\theta)]} \\
& s=i \sum s_{n m} \exp [i(n \phi-m \theta)] \tag{33}\\
& \alpha=\sum \alpha_{\mathrm{nm}} \exp [i(n \phi-m \theta)]
\end{align*}
$$

then the Fourier components are related by simple algebraic equations

$$
\begin{equation*}
x_{n m}+(n-i m) E_{n m}=a_{n m} \tag{34}
\end{equation*}
$$

In these equations, the Fourier components $\alpha_{n m}(\phi)$ are assumed known as is $x\left(\phi!\right.$, but the $\chi_{n m}(\phi)$ and the $s_{n m}(\phi)$ conponents are to be detemined. shere is considerable freedon in the choice of the $\chi_{n m}$ and the $s_{n m}$, the freedom of canonical transformations. For example. the $\chi_{n m}$ can always be chosen so that the for are zero, but this choice is not convenient for studying topological
changes. Ideally, one muld like to sake all the $X_{\text {rim }}$ zero so that che field line integrations would be trivial, $d \theta / d \phi=x(\phi)$ and $d \phi / d \phi=0$. Howeyer, this cannot be done if for some value of ψ the rotational transform is a rational number, $*=N / M$, with $\alpha_{N M}$ nonzero, Clearly, near $*=N / M$ the Fourier component $X_{N y}$ must be chosen to be equal to $\alpha_{\text {wi }}$. That is, the perturbed Hamiltonian has the form

$$
\begin{equation*}
X=\chi_{0}(\phi)+a_{N M} \cos (N \phi-M \theta) \tag{35}
\end{equation*}
$$

This Hamiltonian is well known from the Hamiltonian mechanics literature. ${ }^{6,17}$ The perturbation $\alpha_{N M}$ changes the topology of the trajectories over a region in ψ space of width $4\left|\alpha_{N M} / *\right|^{1 / 2}$ with $x=$ di/d ψ evaluated at the rational surface $*=N / M$. Such changes in topology are called magnetic islands.

The condition for a topological change can be expressed in a different way. On a rational surface, $x \mathrm{~N} / \mathrm{M}$, each field line c?oses on itself. The converge is also true. Every constant $\$$ surface which contains closed field lines is ratlotal. The topology of a surface, which contains closed field lines, is conserved if and only if the loop inteqral $\oint \vec{A} \cdot d \vec{l}$ is inentical on each line of the surface with $\mathrm{d} \overrightarrow{\boldsymbol{l}}$ the differential distance along a field line.

Traditionally, magnetic perturbation theory was based on the resonances in $\vec{B}_{7} \cdot \vec{\nabla}_{\phi / B_{0}} \vec{\nabla}_{\phi} \vec{\nabla}_{\phi}$ instead of resonances in α. To clarify the relationship let $\vec{A}_{1}=a_{\phi} \stackrel{\vec{\nabla}}{\phi}+a_{\theta} \vec{\nabla} \theta+a_{\phi} \vec{\nabla}_{\phi}$, then

$$
\begin{equation*}
\frac{\vec{E}_{1} \cdot \vec{\nabla}_{\phi}}{\vec{B}_{0} \cdot \vec{\nabla}_{\phi}}=\frac{\partial a}{\partial \theta}-\left(\frac{\partial_{a} \theta}{\partial \phi}-\frac{\partial a_{\theta} \theta}{\partial \theta}\right) . \tag{36}
\end{equation*}
$$

The resonant terms in the Fourier decomposition of $\alpha, \alpha_{N M}$ with $r=N / M$, are
therefore simply related to the resonant tarms in the fourier decomposition of $\vec{B}_{1}-\nabla_{\phi} / \vec{B}_{0} \cdot \vec{\nabla}_{\phi}$.

To return to first order perturbation theory, let us assume that the X_{pm} have been chosen to equal the ${ }_{\mathrm{MH}}$ noar the rational surfaces $t=N / M$. Equation (34) for the Fourier amplitudes $x_{n m}$ and $s_{n m}$ can be solved for the remaining Fourier components by letting the $X_{n \rightarrow n}$ be zero and the $g_{n m}=\alpha_{n m} / n_{n}-$ 4a). This defines a function $s_{0}(\phi, \theta, \phi)$ and the Hamiltonian $X=X_{H}(\phi, \theta, \phi)$. Equation (25) can now be used to obtain the perturbed transformation equations $\vec{x}=\vec{x}_{0}+\vec{\xi}$ with $\vec{\xi}$ the displacement, a standard notation of magnetohyirodynamics,

$$
\begin{equation*}
\vec{\xi}(\phi, \theta, \dot{\phi})=\left(\frac{\partial \hat{s}}{\partial \hat{\theta}}-\overrightarrow{\mathbf{A}}_{1} \cdot \frac{\partial \vec{x}}{\partial \theta}\right) \frac{\partial \vec{x}}{\partial \phi}-\left(\frac{\partial s}{\partial \psi}-A_{1} \cdot \frac{\partial \vec{x}}{\partial \psi}\right) \frac{\partial \vec{x}}{\partial \theta}+\frac{\partial s}{\partial x} \frac{\partial \vec{x}}{\partial \phi} . \tag{37}
\end{equation*}
$$

In the equation for $\overrightarrow{\boldsymbol{\xi}}, \mathrm{s}$ is to be viewed as. a function of ψ, θ, ϕ, χ with the Aexivatives evaluated at $\chi=\chi_{H}(\phi, \theta, \phi)$. The relation between s and s_{0} is that $s_{0}(\psi, \theta, \phi)=s\left(\phi_{r} \theta, \phi, \chi_{H}\right)$. As discussed earlier, the χ dependence of s is the freedon to choose the toroidal angle $\phi(x, t)$ arbitrarily.

As a closing note, consider the relation between the gauge function G and the generating function 3 . The fact that an arbitrary infinitesimal canonical transformation defines the gauge function G is demonstrated by Eq. (17) which relates g and $\left(\partial_{G} / \partial t\right)_{\boldsymbol{*}}$. This equation can be written in a simpler form using Eq. (25) for the velocity of the canonicai coordinates $\overrightarrow{\partial x} / \partial t$. This form is

$$
\begin{equation*}
\left(\frac{\partial G}{\partial t}\right)_{c}=B+\vec{A} \cdot \frac{\partial \vec{x}}{\partial t} \tag{38}
\end{equation*}
$$

IV. TIME EVOLUTION

The time evolution of magnetic field is controlled by Faraday's law

$$
\frac{\partial \vec{B}}{\partial t}=-c \left\lvert\, \begin{gather*}
\vec{\nabla} \tag{39}
\end{gather*} \times \vec{E}\right.
$$

and if it is embedded in a plasma, by Ohm's law

$$
\begin{equation*}
\vec{E}+\frac{\overrightarrow{\mathbf{V}}}{\mathbf{C}} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{R}} \tag{40}
\end{equation*}
$$

The velocity of the plasma is \vec{v}, and \vec{R} is the electric field in the rest frame of the plasma. It is customary to approximate $R \vec{R}$ by $\vec{\eta} \vec{j}$ with η the plasma resistivity and \vec{j} the current density. The major result of this section is that Faraday's law and Ohm's la'd determine the time evolution of the field line Hamiltonian $\chi(\phi, \theta, \phi, t)$, but they do not constrain the time eyolution of the eransformation equations $\vec{x}(\psi \theta \phi, t)$. The time evolution of the transformation equations is determined by force balance and will be discussed in Sec. v.

Faraday's law can be written in a sorm which is more easily applied,

$$
\begin{equation*}
\frac{\partial \vec{A}}{\partial t}=-c(\vec{E}+\vec{\nabla} \Phi) \tag{41}
\end{equation*}
$$

With Φ the gingle-valued electric potential. An immediate consequence is the evolution equation for the pololdal flux function of magnetic fields which remain integrable. Using Fq. (29) for $\partial A / \partial t$ and the fact that the volume element $d^{3} x=\left(1 / \vec{B} \cdot \vec{\nabla}^{\prime} \phi\right) d \psi d \theta d \phi$, one finds

$$
\begin{equation*}
\frac{\partial x(\psi, t)}{\partial t}=-\frac{c}{(2 \pi)^{2}} \cdot \frac{\partial}{\partial \phi}\left(\int_{E}^{\vec{E}} \cdot \vec{B} d^{3} x\right) \tag{42}
\end{equation*}
$$

with the volute integral covering the region bounded by a conatant ψ surface. This equation coupled wh the canonical transformation to helical csordinates, Bq. (14), has been used to study the growth of magnetic islande. ${ }^{18}$

The use of $\overrightarrow{\partial H}_{\mathbf{H}}$ ot from the last section, Ey. (29), Faraday's law, Eq, (41), and Ohm's law. Eq. (40) giwes the equation

$$
\begin{equation*}
\vec{R}=\frac{1}{c}\left(\frac{\partial x}{\partial t}\right)_{c} \quad{ }^{\boldsymbol{F}} \phi+\frac{1}{c}\left(\vec{v}-\frac{\partial_{X}}{\partial t}\right) \times \vec{B}-\vec{\nabla}_{c} \tag{43}
\end{equation*}
$$

With $\Phi_{c}=\Phi+s / c$ the electric potential in the frame of reference of the canonical coordinates. The parallel component

$$
\begin{equation*}
\left(\frac{\partial \chi}{\partial t}\right)_{C}=\frac{c}{\vec{B} \cdot \vec{\nabla}_{\phi}}\left(\vec{B} \cdot \vec{R}-\vec{B} \cdot \vec{\nabla} \oplus_{c}\right) \tag{44}
\end{equation*}
$$

obviously has the same properties as Pq. (30). For example, if 㗐 - $\overrightarrow{\mathrm{R}}$ is dero, or more generally if it is derivabie from a single-valued potential, then χ need not evolve as a function of the canonical coordinates. This would mean r of course, that the field line topology would be conserved. Equation (43) has another consequence. Since only the relative velocity, $\vec{v}=\overrightarrow{W_{j}} / \partial t$, between the plasma and the canonical coordinates is determined, Ohn's law and Faraday's law do not restrict the time evolution of the trinsforation equations $\vec{*}(\phi, \theta, \phi, t)$. To determine the evolution of the transformation equations, one muat add additional physieg, namely force balance.

V. ENERGY PRINCIPLE

Plasma equilibrium and stability can be studied by the well-known energy principle. ${ }^{2,10,11}$ The energy of the plasma and the magnetic field is

$$
\begin{equation*}
W=\int\left(\frac{p}{\gamma-1}+\frac{B^{2}}{8 \pi}\right) d^{3} x \tag{45}
\end{equation*}
$$

with P the plasma pressure and $Y=5 / 3$, the adiabatic index. The energy principle states that equilibria are stationary points of properly constrained variations of the energy and ideally stable plasmas are minima of the energy. Here we will show that the ideal energy principle corresponds to finding extrema of the energy by varying the transformaison equations $+\underset{x}{*}(\phi, \theta, \phi)$ while holding the Hamiltonian $X(\phi, \theta, \phi)$ fixer. The ordinary energy principle can be extended to cover tearing modes, Furth's energy principle, ${ }^{19}$ by considering variations in tle Hamiltonian X. To evaluate variations in the energy, we will calculate time derivatives. In this context, one should consider the time t an arbitrary parameter as it was viewer in Sec. III.

The most ebvious constraint required by the energy principle is that no energy cross the surface which bounds the integration volume. Although the surface terms need to be examined carefully in practical calculations, we will iqnore such terms for the sake of brevity.

First, consider the time derivative of the magnetic energy. Dising an integration by parts and Ampere's law, $\vec{\nabla} \times \vec{B}=4 \pi \vec{j} / c$, one has

$$
\begin{equation*}
\frac{d}{d t} \int \frac{B^{2}}{\partial \pi} a^{3} x=\frac{1}{d} j+\frac{\partial A}{\partial t} a^{3} x \tag{46}
\end{equation*}
$$

The use of Eq . (29) for $\overrightarrow{\mathrm{OA}} / \mathrm{Bt}$ gives the desired result

$$
\begin{equation*}
\frac{d}{d t} \int \frac{B^{2}}{8 \pi} d^{3} x=-\int \frac{\partial \vec{x}}{\partial t} \cdot\left(\frac{\vec{j}}{\sigma} \times \vec{B}\right) d^{3} x-\frac{1}{c} \int\left(\frac{\partial x}{\partial t}\right)_{c} \vec{j}^{\vec{j}} \cdot \vec{\forall} \phi d^{3} x \tag{47}
\end{equation*}
$$

The calculation of the change in the plasma energy requires somewhat more effort. Let the plasma pressure p be a function of the density n and the entropy per particle, then

$$
\begin{equation*}
\frac{\partial p(n, s)}{\partial n}=\frac{\gamma p}{n} \quad \text { and } \quad \frac{\partial_{p}(n, s)}{\partial s}=(\gamma-1) p \tag{4B}
\end{equation*}
$$

The change in the density, $\left(O_{n} / \partial t\right) c$, consists of two parts. The change in the number of partieles in an element of canonical coordinate space, $[O(n J) / \partial t)]_{c} / J$, is one part and the change in the Jacobian

$$
\begin{equation*}
\left(\frac{\partial J}{\partial t}\right)_{c}=\vec{t} \cdot \frac{\partial \vec{x}}{\partial t} \tag{49}
\end{equation*}
$$

is the other. Consequently, we use the expression

$$
\begin{equation*}
\left(\frac{\partial_{n}}{\partial t}\right)_{c}=\frac{1}{J}\left(\frac{\partial_{n J}}{\partial t}\right)_{c}-n \vec{\nabla} \cdot \frac{\partial_{x}}{\partial t} \tag{50}
\end{equation*}
$$

The time derivative of the pressure in canon cal coordinate space is therefore

$$
\begin{equation*}
\left(\frac{\partial p}{\partial t}\right)_{c}=-\gamma p \vec{\eta} \cdot \frac{\partial_{x}}{\partial t}+(\gamma-1) p\left(\frac{\partial g}{\partial t}\right)_{c} \tag{51}
\end{equation*}
$$

with ($\left.\partial \sigma / \partial_{t}\right)_{c}$ defined by

$$
\begin{equation*}
\left(\frac{\partial \partial}{\partial t}\right)_{c}=-\frac{\gamma}{\gamma-1} \frac{1}{n J}\left(\frac{\partial n J}{\partial t}\right)_{c}+\left(\frac{\partial s}{\partial t}\right)_{c} \tag{52}
\end{equation*}
$$

The equation

$$
\begin{equation*}
\left(\frac{\partial p}{\partial t}\right)_{c}=\frac{\partial_{x}^{+}}{\partial t} \cdot \vec{\theta}_{p}+\left(\frac{\partial_{p}}{\partial t}\right)_{+} \tag{53}
\end{equation*}
$$

can be used to determine $\left(\partial_{p} / \partial_{t}\right)_{X}$. The change in the total energy w ig then

Equation (54) for dw/at is a much more'general variation of the energy than that allowed by the usual ideal energy principle. The ideal energy principle is recovered if the second integral in Eq. (54) for $d W / d t$ vanishes. That is, ideal HHD (magnetohydrodynamics) is recovered if the Haniltonian X, the entropy per particle $S_{\text {, }}$ and the number of partfcles, $n J$, in a canonical volume element are all fixed functions of the canonical coordinates. In ideal MHD, equilibria correspond to extrema of the energy w under variation of the transformation equations. Although this rasult is expected, it does have an important implication. One can pick an arbitrary Familtonian $X(\phi, \theta, \phi)$, which may or may not be integrable, and an arbitriary pressure profile p($\psi, \theta, \phi)$, which may be unrelated to the field line trajectories, and find an equilibrium by varying the transformation equations. By using the constraints of ideal MHD one can also obtain the standard differential equation for the displacement $\overrightarrow{\vec{F}}$, which is used ir stability calculations. The displacement $\vec{\xi}$, as mentioned earlier is to be intergreted as $\left(\overrightarrow{\partial x} / \partial_{t}\right) \delta t$.

The second integral in Eq. (54) for dW/dt also has important
 the term involving $(\partial \sigma / \partial t)_{c}$. The reason is that the curcent density \vec{j} can be gingular but the pressure cannot. When the energy is minimized with the ideal contraints to find stable equilfirria, the current density \dot{j} will contain delta functions on the rational surfaces $:=N / M$ except in cases of high symmetry. The presence of these delta functions implies that additional localized
resonant terms in the pheiltonian would lower the energy. This is jugt a statement thar the plasma equilibriun is very sengitive to the weakening of the ideal MHD constraint $(\partial x / \partial t)_{c}=0$. The presumption is that the plasma will evolve rapidly to a lower energy configuration that will contain magnetic islands.

A three-dimensional equilibrium solver could be based on the canonical coordinates as a generalization of codes (like the fauer, Betancourt, Garabadian code ${ }^{20}$, that use magnetic coordinates. The advantage of this generalization would be the addition of a capability to study the opening of magnetic islands. Schematically, a canonical coordinate code could start with the pressure and the Hamiltonian ag given functions of $\psi, p(\phi)$, and $\chi(\phi)$. The energy would first be minimized preserving the ideal MHD constraints. On ψ surfaces, which are nearly rational and have a large current dengity, the Hamiltonian X should then be modified by a small resonant Fourier term, which woula reduce the energy and open a maqnetic island. The energy should then be reminimized pregerving the ideal MHD constraints. Ithe iteration, between minimizing the energy by first varying the transformation equations $x(\phi, \theta, \phi)$ using the ideal MHD constraints and then changing a small resonant term in x, should be continued until a smooth current profile is ohtainer.

There is a cloge relation between the opening of isiands in threedimensional equilibria and tearing modes ${ }^{12,19}$ in a tokamak. Consider a large aspect ratio tokanak when circular magnetic surfaces which have a minor radius r and a major radius $R_{f} T / R \ll 1$. Suppose that the boundary conditions on this tokamak are perturbed by a magnetic Eield which has a radial component

$$
\begin{equation*}
b_{r}=\bar{D}_{r}(r, t) \cos (N \phi-M \theta) \tag{55}
\end{equation*}
$$

A surface current will be infuced at the resonant rational surface $x\left(x_{0}\right)=$ N/M,

$$
\begin{equation*}
\stackrel{+}{j}=\bar{\nabla}_{\phi}=\frac{c}{4 \pi} \frac{r_{0}}{R M}\left[\frac{\partial \bar{b}}{\partial r}\right] \delta\left(r-r_{0}\right) \sin (N \phi-M \theta) \tag{56}
\end{equation*}
$$

with $\left[\partial \vec{b}_{r} / \partial r\right]$ the jump in the radial derivative of \bar{b}_{r} across the resonant rational surface. This equation for $\vec{j} \cdot \vec{\nabla} \phi$ is easily derived from the equations for a surface current. The localized current is induced by the change in the Faniltonian X which is produced by the resonant radial field b_{r}. Using Eq. (36), one can show that

$$
\begin{equation*}
\left(\frac{\partial X}{\partial t}\right)_{c}=\frac{R r_{0}}{M} \frac{\partial \bar{b}_{\underline{t}}\left(x_{0}, t\right)}{\partial t} \sin (N \phi-M \theta) \tag{57}
\end{equation*}
$$

Equation (54) for dw/dt then implies that if an island opens in an equilibrium plasma then

$$
\begin{equation*}
\frac{d w}{d t}=-\frac{r_{0}}{4 \pi} \cdot \frac{v}{M}\left[\frac{\partial \bar{b}_{r}}{\partial r_{r}}\right] \cdot \frac{\partial \bar{b}_{r}}{\partial t} \tag{58}
\end{equation*}
$$

with V the volume inside the resonant rational surface. If one assumes that

$$
\begin{equation*}
\Delta^{\prime} \equiv \frac{1}{\vec{b}_{r}}\left[\frac{\partial \vec{b}_{x}}{\partial_{r}}\right] \tag{59}
\end{equation*}
$$

is a constant, which is a good approximation for many tearing motes,

$$
\begin{equation*}
\frac{d W}{d t}=-r_{0} \Delta^{\prime} \frac{v}{m^{2}} \frac{\partial}{\partial t} \frac{\bar{b}_{r}^{2}\left(r_{0}, t\right)}{8 \pi} \tag{60}
\end{equation*}
$$

which is Furth's energy principle. ${ }^{19}$ The energy w is reduced by a tearing
mode if Δ^{\prime} is positive and increased if Δ^{\prime} is negative. Consequently, the sign of $\cdot \Delta^{\prime}$ determines the stability of the plasma.

ACCNOALEDGMENT

This work was supported by U.S. Departant of Energy Contract No. DE-ACO2-76-CHO-3073.

REFERETCES

${ }^{1}$ L. Spitzer, Ji': U.S. Atomic Energy Commigaion Report No. NYO-995 (PM-S-3) (1951): Phys. Fludds 1, 253 (1958)*

2M. D. Krukal and R. M. Kulsrud, Phys. Fluids 1, 265 (1958).
${ }^{3}$ D. W. Kerst, J. Nucl. Energy Part C4, 253 (1964).
${ }^{4}$ M. N. Rosenbluth, R. Z. Sagdeev, J. B. Taylor, and G. M. Zarlavgki, Nucl. Fusion 6, 297 (1966).
$5_{\text {H. Grad, Phys. Fluids 10, }} 137$ (1967).
6. J. Whiteman, Rep. Prog. Phys. 40, 1033 (1977).
${ }^{7}$ A. H. Boozer, Phys. Fluids 26, 1288 (1983).
$8_{J . ~ R . ~ C a r y ~ a n d ~ R . ~ G . ~ L i t t l e j o h n, ~ A n n . ~ P h y s . ~(N Y) ~ 151 . ~}^{\text {(1983). }}$
h. $_{\text {A. }}$ 月. Boozer, Princeton Plasma Physics Laboratory Report PPPL-2154 (1984).
${ }^{10}$ von K. Hain, R. Lüst, and A, Schliitex, Z. Naturforsch. 12A, 833 (1957).
${ }^{11}$ I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, Proc. Roy. Soc. London, Ser. A244, 17 (1958).

12H. P. Furth, J. Killeen, and M. N. Rosenbluth, Fhys. Fluids 6, 459 (1963).
$13_{\text {A. }}$ H. Boozer, Fhys. Fluids 27, 2441 (1984).
14 S. Hamada, Prog. Theor. Phys. (Kyoto) 2, 145 (1959); Nuci. Fusion 2, 23 (1962).

15 J. M. Greene and J. L. Johnson, Phys. Fluids 5, 510 (1962).
$\mathbf{1 6}_{\mathrm{H}}$. Weitzner made the suggestion of this proof of the canonical form.
17F. Vivaldi, Rev. Mod. Phys. 56, 737 (1984).
$18_{\text {A. }}$ H. Boozer, Phys. Fluids 27, 2055 (1984).
19 H. P. Furth in Propagation and Instabilities in plasmas, edited by W. I. Futterman (Stanford University press, stanford, CA, 1963) p. 87.

20F. Bauer, O. Betancourt, and P. Garabedian, Magnetohydrodyamic Equilibrium and Stability of Stellarators (Springer, New York, 1984).

FIGURE CAPTIONS

FIG. T- Canonical Coordinates: The poloidal magnetic flux outside a constant χ surface is $2 \pi x$. The toroidal magnetic flux inside a constant d surface is $2 \pi \phi$. However, the constant ϕ and the constant X surfaces need not be identiaal. The poloidal angle is θ and the toroidal angle is ϕ.

FIG. 2. Cylindrical Coordinates: The use of cylindrical coordinates for describing a toroidal configuration is illustrated.
Fig. 1

Fig. 2

ExTMAN DISTREUTIDN IN MEOTHENTO IC-20

plaswa Res Lab, Ausita Nat'l Thiv, misirxld

Prof. I.R. Janes, Flindevh Dhiv., argirilith

Prof. P. Cap, Invt Theo Phys, Nugivis

Dr. D. Palunto, Dy XII Pustion Prog, ByIGIM

Dr. C.R. Tames, thiv of Alberta, CMirDA
Pref. J. Teichem, thiv of Hontreal, Gamas

Prof: S.R. Sreeriveman, Oniveraity of Calqury, CNBRA
Prof. mudor w. Johnston, INis-mergie, Curah Dr. Hannes Earnard, Ondv Brltish Columbix, Gasinh
Dr. M, P. Benchyigki, MEB Dochnologies, Inc. , DNDPA
Chall River, Much Isbo, CMpas
Zhengru Lid, SW Inat Fhysica, Cind
Tibeary, Tsing Hin Oniversity, CHIM Librarian, Instytube of Fhyaics, CHIDR

 The Libraxim, "ulthem Tabocatory, ERGNH: Prof. Schatanar, Cherruatoine do Nices, FRHFLE
J. Radet, CINHEP6, ERNCE

4M Dupas Libzary, Mi Dupas Library, FRHCE
Dr. Itan Mai, Mcadany Bibliograchle, Howg kows
Preprint tihrary, Cent Ras Inst Phys, hougary
Dr. S.K. Trehan, Panjoh, Univensty, IIDOA
Or. Indra Yohan tal Das, Emaras Hindu Univ, modi
Dr. InK. Chavda, South Orjarat Univ, INDIN
Dr. Rek. Chajlani, vikran Oniv. noin
Dr. Bo Dasgupta, Sahn Inat, IOIN
Dr. P. Kas, Physical Rowarth Lab, INDIA
Dr. Fhillitp Rowenalu, Imrani Inst Tech, ISRAEL Prof, s. opperman tel mulv thiveraty, ISRES Prof. Go Rostagni, पniv DI Pudove, THELY whbearian Int'l ctr Treo phya, INLY
 Bubliotea, del OR Ferkion, Tway

Aegearch Info Centax, Negope Iniveraity, JNPRN
Prod. Kyoji Nimiken, univ of firoshim, JRPN
Proc. Slgana Moch, Peric, rPPN
Eilbeary, Kyoto Univeraty, JHin

Prot. Satomerí Itch, Kyathu Univactity, JNFPN
 Tisch Info Divietion, KivRI, MOPUA

Proce. BrS, Lilef, University of maicatos, NEN ZESACAD Prof. J.A.C. Cabesi, Inst Suparior Tecn, PCRiluadit or. Octavian rettun, all CIZA thiversity, ROMNIA prof. MiA fillberc, thiversity of Matal, so africh Dr. Johan de pilliers, Plama Physics, Nicor, so AFRich Furion oive riferey, JEN, spang
 Dt. Lemart Stmifio, University of UMEA, Smeden Tibruily, Foyral Inet Rech, SNEDEN
Centre de Recharciesen, Eple polytech Fed, switasplan
Dr. W.T. Tolck, Tharkov Phys Tech Ins, US5:
Dr. D.D. Ryutov, Siberian Acad Sci, USSR
DE. GAA. Elisoev, kircitater Instioute, ISSf:
Dr. V.A. Glukhirh, Inst Electro-Efysical, USSR
Institurte Gern Prysics, USSR
Frof. T.J.M, Eofi, Dniv coliege N malea, MAres
OF. K. Schindiec, Puhr Chiversitat, M. Gerwivr
Anclear pea brab, Jalich Lta, W. GExphny Librarian, Mox-PIanck Institut, 由. GERMATY Bibliothek, Inst Plasmaforschung, W. GFerwiny prof. RuK. Janev, met flys, yugostaita

