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ABSTRACT 

The basic propert ies of the Hamiltonian representat ion of magnetic 

f i e l d s in canonical form are reviewed. The theory of canonical magnetic 

perturbation theory i s then developed and applied to the t ine evo lut ion of a 

magnetic f i e l d embedded in a toroidal plasma. F ina l ly , the extension of the 

energy principle to tearing nodes, ut i l iz ing the magnetic field line 

Hamiltonian, i s outlined. 
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I . IHTRODUCTION 

The Hamiltonian propert ies of magnetic f i e l d s f o m the bas i s for Much of 

toroidal plasma physics and have been u t i l i z e d , although I m p l i c i t l y , in 

treatments of the subjec t . ~ The r e l a t i o n between H n i l t o n i a n mechanics and 
6-8 magnetic f i e l d s has been discussed by several authors , but the subjec t has 

never been adequately developed to f o m a bas i s for t h e o r e t i c a l d i s cus s ions of 

toroidal plasmas or as a prac t i ca l computational t o o l . The bas i c Hamiltonian 

theory of magnetic f i e l d s i s developed in t h i s paper in a f o m which i s 

par t i cu lar ly useful for the study o f toro idal plasmas. 

A bas ic feature of the canonical Hamiltonian treatment of magnetic f i e l d s 

i s that a l l the topological propert ies of the magnetic f i e l d l i n e t r a j e c t o r i e s 

are i s o l a t e d in a s ingle scalar function, the Hamiltonian. The Hamiltonian 

e i ther has one degree of freedom with dependence on the canonical time or has 

two degrees of freedom without dependence on the canonical t ime. A one degree 

of freedom Hamiltonian w i l l be used in t h i s paper in which the magnetic f i e l d 

i s assumed to have a f i n i t e toroidal component. The genera l i za t ion to 

arbitrary g lobaly , divergence-free f i e l d s u t i l i z e s a two degree of freedom 

Haniltonian and involves some addit ional mathematical complex i ty . 9 

7 
Sect ion II reviews the bas ic propert ies of a canonical representat ion of 

magnetic f i e l d s . ?. general formulation of canonical perturbation theory of 

magnetic f i e l d s I s .developed in Sec. I I I . This formulation of magnetic 

perturbation theory i s used in Sec. IV to obtain equations for the time 

evo lut ion of magnetic f i e l d s embedded in a plasma. The basic r e s u l t s are that 

the Hamiltonian evolves due to r e s i s t i v i t y and would be conserved i f the 

r e s i s t i v i t y were zero. The transformation equations between the canonical 

coordinates of the Hamiltonian and the ordinary spa t ia l coordinates can change 

on an a r b i t r a r i l y rapid time s c a l e in order to maintain force balance . 
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F i n a l l y , a general izat ion of the energy pr inc ip le ' t o tearing modes 

u t i l i z i n g the Haailtonian formulation i s outl ined in Sec. V. Although not 

discussed in th i s paper, the Raniltonian formulation of the magnetic f i e l d ig 

a l so useful in the evaluation of par t i c l e d r i f t o r b i t s . 

I I . CMJOHICM, REPRESENTATION 

Any g loba l l y divergence-free f i e l d Btx> can be written in the s o - c a l l e d 

canonical form 

B = Vif. x V9 + 7* x Vx (1 > 

with <l> and X single-valued functions of pos i t ion and 9 and * proper angles [a 

proof i s outl ined below Eg. (8 )1 . By a proper angle, we mean that 6 and 9 + 

2it are the same physical pos i t ion x. The physical in terpretat ions of iWS,*, 

and X are i l l u s t r a t e in Fig. 1. The angles 9 and 4 are poloidal and toroidal 

ang le s . The toroidal magnetic f lux enclosed by a constant <l> surface i s 2m|>, 

and the poloidal flux outside a constant X surface i s 2njl. However, the 

constant <i> and constant X surfaces are genera l ly not i d e n t i c a l . 

To represent a f i e l d using the canonical form i t would appear that <p,9,$, 
+ 

and X must be known a3 functions o f p o s i t i o n x in order to evaluate the 

gradients . Actually, i t i s more useful to consider the pos i t i on as a function 

of <|i,9, and • , the so -ca l l ed canonical coordinates . This can be done as long 
+ -v + 

as the t r ip l e product (^ * V6) • 7$, which i s the toroidal component of the 
-»• + •» + 

f i e l d B « V$, i s f i n i t e . Here, B • V* w i l l be assumed f i n i t e , but the general 

case can be handled at the pr ice of somewhat more d i f f i c u l t mathematics. 

To describe a magnetic f i e l d B(x) f u l l y using the canonical coordinates , 

both the poloidal flux function X and the pos i t ion x must be given as 
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f u n c t i o n of * , 8 , $ . the functions x(i)>,6,$) are ca l l ed the transformation 

equations . They can always be made continuous and t h i s cont inu i ty w i l l be 

assumed. If the f i e l d i s described using ordinary c y l i n d r i c a l coordinates 

K, + ,Z, Fig. 2, then 

+ -
x ( x , M ) - R(4»,e,*) !»(•) + z<i|>,a.*)z (2) 

with dR/dt » 9. in other words, the transformation equations would c o n s i s t of 

R and Z as functions of <)J,9,C>. 

the function x ^ r ^ , * ) has an addi t ional in terpre ta t ion bes ides being the 

poloidal flux function. I t i s the magnetic f i e l d l i n e Haroiltonian. The 

magnetic f i e l d l i n e s , which are a l s o known as the in tegra l curves of the 

magnetic f i e l d , are the s o l u t i o n to the d i f f e r e n t i a l equation 

d x •* + 

~ = B(x) (3) 

with x j u s t a l abe l for the po ints along a f i e l d l i n e t ra jec tory . Consider 

the f i e ld l i n e s in 4>, <?, • coordinates . The change in <t> along a f i e l d l i n e i s 

given by dfji/dt - VcJ, • dx /dt . t h i s weans that along a f i e l d l i n e 

d* ! • ? * j@ B-?e 

The use of the canonical form for B, Eq, ( 1 ) , to evaluate B * Vt|>/B • V$ and 
+ -r -r T 
B • 76/H • V* demonstrates that 

d* ox d6 ox 
d? * " "55 d ? " "3$ ' £ 5 ) 
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which are Hamilton's equat ions . In Hamiltonian language, the po lo ida l angle 

6 i s the canonical coordinate, the toroidal flux function <|> i s the canonical 

momentum, and the toroidal angle t> i s the canonical time. Unfortunately, most 

Hamiltonian mechanics t e x t s ident i fy the canonical t ine with ordinary clock 

time. In the magnetic f i e l d problem, clock time t i s a parameter (see Sees . 

I l l and IV) and should not be confused with the canonical time 4, which i s the 

toroidal angle . 
•* + 

The importance of the canonical representat ion of a f i e l d S(x) der ives 

from the fact that a l l topological information on the f i e l d l i n e t r a j e c t o r i e s 

i s contained in the Hamiltonian X(4>, B,4K That i s , quest ions re la ted to the 

ex i s t ence of c losed magnetic surfaces , magnetic i s l a n d s , or s t o c h a s t i c regions 

can a l l be answered i f tbs function X{4",9,4') i s known. This fol lows from the 

cont inui ty of the transformation equations and the mathematical r e s u l t that 

continuous transformations do not a l t e r topological propert i e s . 

The representat ion of a magnetic f i e l d using canonical coordinates i s 

c l o s e l y re lated to the well-known magnetic coordinate ' and Clebsch 

representat ions . The magnetic coordinate representation i s i d e n t i c a l to the 

canonical representation except that x i s a function of i|> a lone . This 

representat ion e x i s t s only i f a l l the f i e l d l i n e t r a j e c t o r i e s l i e in 

surfaces . Then, the magnetic coordinates are the act ion - angle var iab le s of 

Hamiltonian mechanics. The Clebsch representat ion, 

B = V x h , (6) 
o o 

can be obtained from the canonical representation by l e t t i n g 4> = 4>($0r 8 r $) 

and 8 = G<4> , 8 , •) with 4> and 6 the i n i t i a l values of a f i e l d l i n e o o o o 

t r a j e c t o r - . Single-valued transformation equations usual ly do not e x i s t 
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between the Clebach coordinates 4>0, 9 Q, • and ordinary space i. Therefore, 

the Clebsh representation does not isolate topological information in a single 

scalar function as does the canonical representation. 

Given an arbitrary magnetic field B(x), the canonical representation can 

be established. Let x(p, 6, •) be any set of smooth transformation equations 

with 9 and * angles. Assume that p is zero at the axis of tho 9 angle. Then 
7 using the canonical form. Hi. (1), one can show that 

S = B'(|*|f) and !}.*.$*£) . (7> 
If these equations are integrated from <t> • 0 for a fixed 9 and $, the 

functions X(<K 9, <f) and x((|>, 9, <t) can be evaluated. By using a number of 9 

and $ values together with a fa s t Fourier transform, the functions X(<J>, 9, *) 

and x(<|>, 9, $) can be obtained in Fourier s e r i e s form. A code to carry out 

such ca l cu la t ions has been wri t ten by G. Kuo-Petravic. The proof of Eq. (7) 

fol lows from the canonical form for B, Eg. ( 1 ) , and the s o - c a l l e d dual 

r e l a t i o n s , Bi. ( 21 ) . 

The vector potent ia l has an important r o l e in the Hamiltonian 

representation of the magnetic f i e l d . The canonical form for the vector 

potent ia l i s 

A = (JjVe _ XV« + VG (8) 

with G the arbitrary gauge funct ion. That i s , the curl of A g ives the 

canonical form for B, Eg. ( 1 ) . The ex i s tence of the canonical form for the 

16 ** 

vector potent ia l fol lows from Foincare's theorem that a g l o ba l l y divergence-

free f i e l d has a s ingle-valued vector potent ia l A(x) . Let x( p, 9, $ ) , as 
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before , be any well-behaved transformation equations with p » o along the 

ax i s of the 9 angle. Then, any s ingle-valued vector A(x) can be written as 

A =. A Vp + Ag V6 + A.V» ( 9 ) 

with A_, Ag, and Â  s ingle-valued functions of p, 9, and b. Choose G(p, 9, $) 

so that 0G/3p = A. and G » 0 a t p » 0, then Bq. (9) takes the form of Eq. (8) 

with (p and X being s ingle-valued functions of p o s i t i o n . 

Canonical transformations maintain the form of Hamilton's Bq, (5) and the 

canonical form for the vector p o t e n t i a l , Bq. ( 8 ) , and the magnetic f i e l d , Bq. 

(1 ) . The most general canonical transformation, which i s known as an extended 

phase-space transformation, transforms <K 9, • , X in to ty, 9, $, x- Such a 

transformation can be spec i f i ed by the generating function SI 6, 4>, c|>, x> with 

as = 6s 
<i> = aa 9 » 69 

(10) 

3s - as 
* = " -0* • - - - -

9x 

. -*• + 

•me representation of the vector potent ia l A(x) using barred coordinates i s 

evaluated by a subst i tut ion in to Bq. ( 8 ) , 

s = j ? 5 - i J j + j 5, ( 1 1 ) 

with the gauge function G = G + S - ($9 - X$) - The generating function i s not 

s i n g l e valued (S a t 8 and 9 + 2rc are not e q u a l ] , but G i s . The generating 

function S natural ly depends on four variables while the gauge function G ha3 

a natural dependence on pos i t i on , which i s only three v a r i a b l e s . This i s 

discussed in Sec. I l l a f t e r Br,. (17) and in Ref. 9-



The canonical transformations, which w i l l be of primary i n t e r e s t , are the 

i n f i n i t e s i m a l canonical t r a n s f o r a t i o n s . They are defined by 

S = $8 - J* + 6 s ( * , 9. • , x) (12) 

with e an infinitesimal quantity l*ee Hj. (23)]- Other important 

transformations include 

S = x6 - M . (13) 

which reverses the roles of the poloidal and the toroidal vari- les, and 

s = *e - (x + N*) z . < 1 4> 

with M and N integers, «hich establishes a helical coordinate system with M6 -

N* = H0. In classical mechanics, it is customary to consider only ordinary 

canonical transformations, which do not alter the canonical time. These 

transformations are of the form 

s = so [5, e,<0 - x* • d5) 

I I I . CANONICAL PERTURBATION THEOR? 

The s p e c i f i c a t i o n of f i e l d l i n e topology by a s i n g l e scalar function X 

makes the canonical formulation par t i cu lar ly useful for the study of evolving 

magnetic f i e l d s . In t h i s s ec t ion , the mathematical propert ies of the 

canonical formulation are developed for a magnetic f i e l d which depends not 

only on pos i t i on JC but alao on an arbitrary parameter t, which w i l l be c a l l e d 
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time. In Sees . IV and V, these mathematical proper t i e s , which are summarized 

by Eq. (29) , are applied to plasma physics problems. 

There are three bas ic ways to describe a oagnet ic f i e l d which depends on 

a parameter t . F i r s t , the vector potent ia l can be spec i f i ed as a function of 

p o s i t i o n and time, A ( x , t ) . Second, the q u a n t i t i e s 4>, 9, $, and X can be given 

as functions of x and t . Third, the Hamiltonian and the transformation 

equations can be given as functions o f the canonical coordinates and time, 

XC 4VJ- 9, *, t) and x< <K 9, • , t ) . Since a magnetic f i e l d i s uniquely defined 

by any one of the three, mathematical r e l a t i o n s e x i s t which determine the 

other two descr ipt ions of the f i e l d i f any one i s g iven. The main subjec t of 

th i3 s e c t i o n i s the der ivat ion of these r e l a t i o n s . In addit ion to their other 

a p p l i c a t i o n s , these r e l a t i o n s def ine magnetic perturbation theory in canonical 

form. 

The ihree magnetic f i e l d descr ip t ions are re lated by the ir p a r t i a l 

der iva t ives with respect to time. Unfortunately, the notat ion for p a r t i a l 

d i f f e r e n t i a t i o n i s e i ther cumbersome or incomplete. For example, 3x /3 t can be 

interpreted as e i ther dx(x*,t)/at or ox(+, 9, *, t ) / o t . Since both 

in terpre ta t ions occur for f and for the gauge function G, a subscript it or c 

for canonical w i l l be used. For example, (ox /at ) means 3x< 4/, 8, *, t ) / 3 t . 

However, to s impli fy the notat ion, o s / o t means OA<x r t} /° t . Derivat ives of the 

canonical coordinates iK 9, $ with respect to time should be interpreted so 

that 8<|>/ot - o<Kx, t ) / 8 t . The t i a e der iva t ive of the transformation equations 

i s ox(<l>, 9, • , t ) / 3 t . 

To begin the der ivat ion of the r e l a t i o n s , assume A(x, t ) i s g iven and 

that we wish to fir-d <)», 9, i, and X as functions of x and t . This can be 

accomplished by time d i f f e r e n t i a t i n g the canonical form for A, Eq. ( s ) , to 

obtain 
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& - - S * * * S £ * - « * * • » * • * 

with the function 3 defined by 

"Hie function s i s the generating function for i n f i n i t e s i m a l canonical 

transformations [see the d i scuss ion of B;. (23) below] and can be s p e c i f i c ' 

a r b i t r a r i l y due to the freedom of the gauge funct ion, G. fcctualJy, s i s not 

j u s t an arbitrary function of *, 3 , $, and t as one would suppose, but rather 

an arbitrary function o f f i ve v a r i a b l e s , s(1>, 0, if, x, t ) . lb in terpre t the x 

dependence of s mathematically, a d i s t i n c t i o n trust be made between the 

independent variable X and the f i e l d l i n e Hatniltonian XIJ((l't e , • , t ) . Except 

when ca lcu lat ing der ivat ives of a, the variable X always ha3 the value %H. 

Derivatives with respect to X are to be interpreted as 3s/3x = 

os<4>, 8, *, X, t ) / a X evaluated a t X =• XH- The condi t ion 

on the x dependence i s required to mate s an i n f i n i t e s i m a l generating 

funct ion. The freedom of an extra condit ion on s a r i s e s from the use of four 

quant i t i e s 4>, 9, <l>, and x tc represent a vector potent ia l which, even in a 

spec i f ied gauge, has only three independent components. That i s , even with 

*(x , t ) a spec i f ied function, an arbitrary vector potent ia l can be writ ten in 

the canonical form, Bq, ( 8 ) . Viewing s as a function of <K 9, • , X, and t , 

with X evaluated at X = XH, one has 
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£ - « - ID *• • $ • & * • a - (fey %. <i« 

To obtain a<f>/Bt. 36/5t, and (ax/°t)x in terms of o*/8t, some theorems of 

pa r t i a l differentiat ion theory are required. There are simple re la t ions 

between derivatives of the canonical coordinates with respect to the position 

x, l ike W<x, t ) , and the derivatives of the position x with respect to the 

canonical coordinates. Letting 4* and 9 be any two canonical coordinates, 

pa r t i a l d i f ferent ia l theory implies the orthogonality re la t ions 

g ' f c - l a n d j j - t o - o . (2D) 

The orthogonality re la t ions can be used to obtain the so-called dual re la t ions 

| £ = j f o x " 7 * and fy.lfcjxjj (27) 

with the Jacobian J satisfying 

J 
3x . /-ax „ 9x 
o(i> ^ae a * Vcp • (V8 x V*) 

Even permutations of the <t>, 9, 4 coordinate labels also give valid equations. 

Using the orthogonality relat ions and Kj. (19) for OA/atr one finds that 

o* 5g 3a ; jfc j)9 9s fa j5x 
"St ' ~ "55 + at '. as at * a* " at a* 

\ (23 ) 

r &s i 8 s B R t dx _&• j>£ 
kat J+ ' Tf "St a* at * " ax 
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If 5A/at - 0, tltese are j u s t the equation! for In f in i t e s imal canonical 

transformations in the extended phase apace <p, 8, 4, X, which v a l i d a t e s the 

i d e n t i f i c a t i o n of s as an i n f i n i t e s i m a l generating function [see Bq. Ci2) l -

The equations r e l a t i n g o i / o t , o6 /o t , and o*/Bt with oX/ot can be used to 

determine a more inportant r e l a t i o n , the r e l a t i o n between ox/At and oA/at. If 

the t r i v i a l r e l a t i o n (ox/Bt) + • 0 i s expressed in <l>, 9, t coord inates , one 
x 

obtains the result that 

px aic a* ait ae a» a» . 
at = " a* 5t " M 'at " a* at * l z " 

Subst i tut ing 5<|>/5t, BB/Bt, and Bt /dt from &!• ( 2 3 ) , one obta ins the des ired 

r e l a t i o n 

ox f&s BA BX-I BX ,-6s BA . 3xi ox 3s ox , , , . 

ot = tw - 7t; "ss-1 w ^ - 7t; * ^J w + "Sjf "a"? * , 2 5 ) 

This i s a very important equation' If i n i t i a l transformation equat ions , 

x(<i>, Q, • , 0) are known, t h i s equation determines the transformation equations 

for a l l future time, in any f i e l d A(x, t ) , with an arbitrary choice of 

canonical coordinates . Hie freedom of canonical coordinates i s the freedom to 

choose the in f in i t e s ima l generating function s . The function 3 x / ° t can be 

p h y s i c a l l y interpreted as the v e l o c i t y of a (<h 9, •) po in t through ordinary 

space x . 

An even more important equation than the r e l a t i o n between Bx/Bt and 9A/3t 

i s the equation in (Bx/Bt ) , which determines the evolut ion of the 

Hamiltonian in canonical coordinates . Clearly x(4>, 9, 4>, t ) i s the 

fundamental function of the theory, s ince i t determines the f i e l d l i n e 

topology a t each point in- t i n e . To obtain the expression for {Bjf/Bt) c» 
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consider the cross product (3x/ot ) * B. rising Eg. (24) for 9x/dt and the 

dual r e l a t i o n s , B i - * ( 2 1 ) , one obtains 

£ f , - j(ff ?9 x ? t + | f $ • « ? • + $**** fo) • (26) 

The canonical form for B, S?- (D# then i n p l i e s 

The r e l a t i o n between (3x /3 t )+ and ( a x / S t ^ 

lBt J-»- = L at J c + a* at + ae at a* at • ! ' 
X 

and &i» (16) for 3A/ot imply 

Bt " - ( ! & * • + f t * B + * B . (29) 

This equation will prove to be one of the most useful in the paper. Its first 

application is the evaluation of Ox/3t)_ by dotting 0A/9t with B, 

CJ&) - r ^ r r (B • *. - H •-£J . cso) «8.-rti; <*•*-*•» • 
Canonical perturbation theory is based on Si. (30) for (ax/9t)c and Bq. 

(25) for 3x/3t. A related noncanonical perturbation procedure has been given 
Q 

by Cary and Li t t l eJohn. In perturbation theory, the vector potent ia l i s 

written a: A(x,t> m A0(ic> + t A , ( x ) . Let us assume that | A 1 | « | A Q | and 

consider only the f i r s t order theory. The perturbation procedure s t a r t s with 
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the equation for ( o x / o H . »?• ( 3 0 ! , which in f i r « t order can be written » 
'c 

* l - s V " - - * " - S o , * . ) 

with J a i t « 1 equal to XQ + X-, a n 3 B

0 " 7 * * 0 - Assuming the unpe 

f i e l d ia integrable , X0 can be taken to be a function of 4" alone and 

turbed 

" l - | | + * l | - a ( 3 2 » 

with < = dx /<3<J>, the ro ta t iona l transform, and a = * 1 / B • ' • . If x,» s r and 

a are Fourier decomposed, 

X, = I X exp(i{n<» - m9)l i run 

s = i I s exp[i<n4> - m9)] (33) 
rut -

a = I a exp[ i (n$ - m0)] , 
nm 

then the Fourier components are re lated by simple a lgebraic equations 

X + (n - *m)s « a . (34) 
nm nm nm 

In these equations, the Fourier components " w ^ J are assumed known as i s 

*{<i>}, but the Xnff l(4') and the 3n m(<M components are to be deteonined* ihere i s 

considerable freedom in the choice of the X and the s_ , the freedom of 
'™i nm 

canonical transformations. For example, the X can always be chosen so that 

the s are zero, but t h i s choice i s not convenient for studying topological 
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changes. I d e a l l y , one would l i k e to Make a l l the ^ zero ao that the f i e l d 

l i n e integrat ions would be t r i v i a l , d8/d* - *(<W and d<tyd* - 0. However, t h i s 

cannot be done i f for some value of <(i the rotat iona l transform i g a ra t iona l 

number, * =•= H/W, with a nonzero. Clearly , near * • U/M the Fourier 

component X™, must be chosen to be equal to <!._,. That i s , the perturbed 

Hamilton!an has the farm 

X = X (40 + a cos(N<fi - H9) . <35) 
O NM 

This Hamiltonian is well known from the Hamiltonian mechanics 
literature. ' The perturbation a changes the topology of the trajectories 
over a region in 4> space of width 4 1 a>IH /'*" ! 1 vith *' • d V d ^ evaluated at 
the rational surface * = N/M. Such changes in topology are called magnetic 
islands. 

The condition for a topological change can be expressed in a different 
way. On a rational surface, » « N/K, each field line closes on itself. The 
converse is also true. Every constant * surface which contains closed field 
lines is rational. The topology of a surface, which contains closed field 

r~* * 
lines, is conserved if and only if the loop integral ^R • dJE is identical on 

-*• 
each line of the surface with dA the differential distance along a field line. 

. Traditionally, magnetic perturbation theory was based on the resonances 
in B, * '4>/B * '• instead of resonances in a. To clarify the relationship 

+ + * + 

let A 1 • a^ 7i + a e V8 + a^ v*, then 

f~^" a e - l o * " * ae > • ( 3 6 > 
O 

•Hie resonant terms in the Fourier decomposition of <x, OL^ with * =s w/H, are 
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therefore simply re la ted to the resonant terms in the Fourier decomposition o f 

To return to f i r s t order perturbation theory, l e t us assume that the Xj§4 

have been chosen to equal the a near the rat ional surfaces * « N/ri. 

Equation (34) for the Fourier amplitudes X„n *&& a

n m

 c * n *« solved for the 

remaining Fourier components by l e t t i n g the x „ be zero and the Bjm = «„,,/< n -

«t»). This def ines a function a 0 { « M , t ) and the Hamiltonian x - XJJC+,9 ,* ) -

Equation (25) can now be used to obtain the perturbed transformation equations 
• » • + • + • + 

x » x + E with 5 the displacement, a standard notat ion of 

magnetohydrodynamics, 

+ .+ -+ .+ t , j O iio f ° 3 ? . ^x*\ 8 K fOS 0X1 &C , 0 3 Ox (37) 

In the equation for 5 , s i s to be viewed1 as a funct ion of *, &, <f,X with the 

d e r i v a t i v e s evaluated a t X • T(H(<k9,W- The r e l a t i o n between s and s o i s t h a t 

sQ(4>, 9. *) = s(4<r 9, *, X^ . As discussed e a r l i e r , the X dependence of s i s the 

freedom to choose the toroidal angle 4 (x , t ) a r b i t r a r i l y . 

As a c los ing note , consider the r e l a t i o n between the gauge function G and 

the generating function s . The f a c t that an arbitrary i n f i n i t e s i m a l canonical 

transformation def ines the gauge function G i s demonstrated by Eq. (17) which 

r e l a t e s s and (&G/ot) + . This equation can be wri t ten in a simpler form using 

Eq. (25) for the v e l o c i t y of the canonical coordinates ox /o t . This form i s 

c3Gi + ox 
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IV- TIME EVOLUTION 

The time evo lu t i on of a magnetic f i e l d i s c o n t r o l l e d by Fa raday ' s law 

^ - V x 1 , ( 3 9 ) at = - c 

and i f i t i s embedded in a. plasma, by Ohm's l a v 

+ v + •*• E + - * B = R - (40) c 

The v e l o c i t y of the plasma i s v , and R i s the e l e c t r i c f i e l d in the r e s t frame 
+ * . 

of the plasma. I t i s customary to approximate R by nj with n the plasma 

r e s i s t i v i t y •and j the c u r r e n t d e n s i t y . The major r e s u l t of t h i s s e c t i o n i s 

t h a t Fa raday ' s law and Ohm's law determine the time evo lu t i on of the f i e l d 

l i n e Hamiltonian X(<h 9, 9, t ) , bu t they do not c o n s t r a i n the time e v o l u t i o n 

of the t rans format ion equa t ions x{<\> 9 <>, t ) . The time evo lu t i on of the 

t ransformat ion equa t ions i s determined by force ba lance and w i l l be d i scussed 

in Sec. V. 

Faraday ' s" law can be w r i t t e n i n a iorm which i s more e a s i l y a p p l i e d . 

I t " " ° (E + "$») (41) 

with $ the s i n g l e - v a l u e d e l e c t r i c p o t e n t i a l . An immediate consequence i s t he 

evo lu t ion equa t ion for the p o l o i d a l f lux func t ion of magnetic f i e l d s which 

remain i n t e g r a h l e . Using B^. (29) for o a / o t and the f a c t t h a t the volume 

element d x - (1/B • v"<l>) d* d9 d*, one f inds 

&X('l',t) _ c 3_ 
at " \2%]2 'a* 

) / r+ + 3 i 
(T UE • B d x j (42) 
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with the volume integra l covering the region bounded by a constant 4> 

surface . This equation coupled with the canonical transformation to h e l i c a l 

coordinates , Btj. ( 1 4 ) , has been used to study the growth of magnetic 

i s l a n d s . 1 8 

The use o f BA/ot from the l a s t s e c t i o n , Bj . ( 2 9 ) , Faraday's law, Bg» 

(41 ) , and Ohm's law, Bj . £40) g i v e s the equation 

R - Mljf) *• + ̂ T - f|) " S - * (43) 
c ^oVc c l <>f c 

with * = * + s/c the electric potential in the frame of reference of the 

canonical coordinates. The parallel component 

t-a£lc - • ̂  ? (B • R - B • V *J (44) 

obviously has the sane propert ies as Bq. ( 3 0 ) . For example, i f B • R i s i e r o , 

or more genera l ly i f i t i s derivable from a s ing le -va lued p o t e n t i a l , then x 

need not evolve as a function of the canonical coordinates . This would mean, 

of course , that the f i e l d l i n e topology would be conserved* l!quation (43) has 

another consequence. Since only the r e l a t i v e v e l o c i t y , v - o x / 3 t , between the 

plasma and the canonical coordinates i s determined, Ohm's law and Faraday's 

law do not r e s t r i c t the time evolut ion o f the transformation equations 

x(4v 0, *, t ) . To determine the evolut ion of the transformation equations, 

one must add addit ional phys ics , namely force balance . 

V. ESERGS PRINCIPLE 

Plasma equilibrium and s t a b i l i t y can he studied by the well-known energy 

p r i n c i p l e . ' ' The energy of the plasma and the magnetic f i e ld i s 



19 

W = Jfc£ • > 3 x (45, 

with p the plasma pressure and Y =«, 5 / 3 , the adiabatic index. Ttie energy 

pr inc ip l e s ta te3 that e q u i l i b r i a are s ta t ionary points of properly constrained 

var ia t ions of the energy and i d e a l l y s t a b l e plasmas are minima of the 

energy. Here w> w i l l show that the idea l energy pr inc ip l e corresponds to 

f inding extrena o f the energy by varying the transforms l-Lon equations 
+ 

x(ty, 8, •) while holding the Hamiltonian X< <|i, 9, *> f ixed . The ordinary 

energy p r i n c i p l e can be extended to cover tearing modes, Furth's energy 

p r i n c i p l e , by considering var ia t ions in t i e Hamiltonian X. Tto evaluate 

var ia t ions in the energy, we w i l l ca l cu la te time d e r i v a t i v e s . In t h i s 

context , one should consider the time t an arbitrary parameter as i t was 

viewed in Sec. I I I . 

•flie most obvious cons tra in t required by the energy pr inc ip l e i s that no 

energy cross the surface which bounds the integrat ion volume. Although the 

surface terms need to be examined c a r e f u l l y in prac t i ca l c a l c u l a t i o n s , we w i l l 

ignore such terms for the sake of b r e v i t y . 

F i r s t , consider the time der iva t ive of the magnetic energy. Using an 
+ + •» 

in tegrat ion by part3 and Ampere's law, V x B = 4 i t j /c , one has 

d f B 2 .3 1 ' * . OA ,3 . . . . 

The use of Bq. (29) for &A/9t g ives the des ired r e s u l t 

f - t . / f ! d 3 x - - j | . (i x i V * - 1 / $ U • W * . (47, 



20 

The c a l c u l a t i o n of the change in the plasma energy requires somewhat more 

e f f o r t . Let the plasma pressure p be a function of the dens i ty n and the 

entropy per p a r t i c l e , then 

Qp(n.S) Tp . op(n.Si 
3n" n " * a s - ( T ~ 1 ? p * l W 

The change in the density, (on/ot)e, consists of two parts. The change in the 

number of particles in an element of canonical coordinate space, 

t8(nJ)/ot)] /J, is one part and the change in the Jacoblan 

is the other. Conseoniently, we use the expression 

&>o-i*V"*-£ • 
The time d e r i v a t i v e of the pressure in canon,cal coordinate space i s therefore 

(fc) f l--W*-£+CT-l)p(£)a 

with <aa/3t) defined by 

W o " Y ^ ' i S l 8 T J e + fe]c ' ( 5 2 ) 

The equation 

fe - ft * ** + ffe* <*> 
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can be used to determine (dp/ot)*. Hie change in the to ta l energy w i s then 
x 

|V - / I? • & - I * B)d3x + /[p(|f)c - ±(g) c I • W* . (54, 

Equation (54) for dW/dt is a much more general variation of the energy 

than that allowed by the usual ideal energy principle. The ideal energy 

principle is recovered if the second integral in Bq. (54) for dW/dt 

vanishes. That is, ideal HUD [magnetohydrodyuamlcs, is recovered if the 

Harailtonicn X, the entropy per particle S, and the number of particles, nJ, in 

a canonical volume element are all fixed functions of the canonical 

coordinates. In ideal MHD, equilibria correspond to extrema of the energy W 

under variation of the transformation equations. Although this result is 

expected, it does have an important implication. One can pick an arbitrary 

Hamiltonian X<4>, 8, 4), which may or may not be integrable, and an arbitrary 

pressure profile p(4l, 9, $), which may be unrelated to the field line 

trajectories, and find an equilibrium by varying the transformation 

equations. By using the constraints of ideal MHD, one can also obtain the 

standard differential equation for the displacement 5, which is used ir. 
+ 

stability calculations. The displacement 5, as mentioned earlier is to be 

interpreted as ( ox/8t) fit. 

The second integral in Bq. (54) for dW/dt also ha3 important 

implications. The terra involving (&X/3t) e is apparently more important than 

the term involving (ooyot) . The reason is that the current density j can be 

singular but the pressure cannot. When the energy is minimized with the ideal 

contraints to find stable equilibria, the current density j will contain delta 

functions on the rational surfaces * =» N/M except in cases of high symmetry. 

The presence of these delta functions implies that additional localized 
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resonant terns in the Hamiltonian would lower the energy. This i s j u s t a 

statement to"- the plasma equilibrium i s very s e n s i t i v e to the weakening of 

the idea l HHD constra int (3x/<Vt) 0 • 0 . The presumption i s that the plasma 

w i l l evolve rapidly to a lower energy configuration that w i l l contain magnetic 

i s l a n d s . 

A three-dimensional equilibrium so lver could be based OK the canonical 

coordinates as a genera l i za t ion of codes ( l i k e the Bauer, Betancourt, 

20 Garabadian code ] that use magnetic coordinates . The advantage of t h i s 

genera l i za t ion would be the addit ion of a c a p a b i l i t y to study the opening of 

magnetic i s l a n d s . Schematical ly, a canonical coordinate code could s t a r t with 

the pressure and the Haniiltonian aa given funct ions of • , p(4>), and x ( M . The 

energy would f i r s t be minimized preserving the idea l HHD c o n s t r a i n t s . On <l> 

surfaces , which are nearly ra t iona l and have a large current d e n s i t y , the 

Haniltonian X should then be modified by a small resonant Fourier term, which 

would reduce the energy and open a maqnetic i s l a n d . The energy should then be 

reminimized preserving the idea l HHD c o n s t r a i n t s . The i t e r a t i o n , between 

minimizing the energy by f i r s t varying the transformation equations x{ <)>, 9,*) 

using the idea l HHD cons tra in t s and then changing a small resonant term in X, 

should be continued unt i l a smooth current pro f i l e i s obtained. 

There i s a c lo se r e l a t i o n between the opening of i s l a n d s in three-

dimensional e q u i l i b r i a and tearing nodes ' in a tokaraak. Consider a large 

aspect r a t i o tokamak with c i rcu lar magnetic surfaces which have a rainor radius 

r and a major radius R, r/R « 1. Suppose that the boundary condi t ions on 

t h i s tokamak are perturbed by a magnetic f i e l d which has a radia l component 

b = 5 ( r , t ) cos(H* - M0) x r (55) 
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A surface current w i l l be induced a t the resonant ra t iona l surface ? ( r 0 ) • 

H/M, 

with [3B_/3r] the jam.? in the radial d e r i v a t i v e of 6 across the resonant 
• + • * 

rat ional surface. This equation for j • ?• i s e a s i l y derived from the 

equations for a surface current. The loca l i zed current i s induced by the 

change in the Hamiltonian X which i s produced by the resonant rad ia l f i e l d 

b • Using Bq. (36) , one can show that 

Equiiion (54) for dW/dt then implies that i f an is land opens in an equilibrium 

plasma then 

r ob Bb 
dW o V r r i r , _ „ , 

at = " "ii "i tar J at- ( 5 e l 

M 

with V the volume inside the resonant rational surface. If one assumes that , 3b 
4' ~ ~ [-g—] ! 5 9> 

i s a constant , which i s a good approximation for many tearing modes, 

dW . , V 3 ^ o ' ^ 
dt - " r o A ~ Si 1* ' ( 6 0 ) 

M 

which i s Furth's energy p r i n c i p l e . The energy H i s reduced by a tearing 
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mode if A' is positive and increased if A' is negative. Consequently, the 

sign of-A1 determines the stability of the plasma. 
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FIGURE CAPTIONS 

FIG. 1. Canonical Coordinates t "Hie po lo ida l magna t i c f lux outs ide a constant 

X surface i s 2*X. The toroidal magnetic f lux Inside a constant 4> 

surface i s 2w(i. tlowever, the constant <l> and the constant x surfaces 

need not be i d e n t i c a l . The polo idal angle i s 8 and the to ro i da l 

angle i s <f>. 

PIG. 2. Cyl indrical Coordinates: The use of c y l i n d r i c a l coordinates for 

describing a toroidal configuration i s i l l u s t r a t e d . 
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