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ABSTRACT

The basic properties of the Hamiltonian representation of magnetic

fields in canonical form are reviewed. The theory of canonical magnetic

perturbation theory is then developed and applied to the time evolution of a

magnetic field embedded in a toroidal plasma. Finally, the extension of the

energy principle to tearing modes, utilizing the magnetic field 1line

Hamiltonian, is outlined.
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I. INTRODUCTIOM

The Hamiltonian propertles of magnetic fields form the basis for much of
toroidal plasmna physics'and have been utilized, although implicitly, in
treatnents of the lubjact."s The relation between Aamiltonian mechanics and
magnetic fields has heen discuised by several aut'horl,s'a but the asubject has
never been adequately developsd to form & basis for theorstical discussions of
toroidal plasmas or as a practical computational tool. The basic Hamiltonian
theory of magnetic ¢fields is developed in this paper in a form which is
particularly useful for *the study of toroidal plaswas.

A basic feature of the canonical Hamiltonian treatment of magneétic fields
ig that all the topological properties of the magnetic field line trajectories
are jsolated in a single scalar function, the Hamiltonian. The Hamilionian
either has one degree of freedom with deperdence on the canonical time or has
two degreea of freedom withsut dependence on the canonical time. A one degree
of freedom Hamiltonian will be used in this paper in which the magnetic ficid
is assumed to have a finite toroidal component. The generalization to
arbitrary globaly, divergence-free fields utilizes a two deqree of freedom
Hamiltonian and involves sone additional mathematical complexity.g

Section II reviews the basic properties of a canonical reptesentation7 of
maqnetic fields., 2 general formulation of canonical perturbation theory of
magnetic filelds is developed in Sec. III. This formulation of magnetic
perturbation th,ory is used in Sec. IV to obtain equations for the time
evolution of magnetic fields embedded jin a plasma. The basic results are that
the Hamiltonian evolves due to resistivity and would be congerved if the
resistivity were zero. The transformation equations between the canonical
coordinates of the Hamiltonian and the ordinary spatial cdordinates can change

on an arbitrarily rapid time scale in oarder to maintain force balance.
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Finally, a generalization of the energy principle to tearing modes

utilizing the Hamiltonian formulation is outlined in Sec. V. Although not
discussed in this paper, the Ramiltonian formulation of the magnetic field is

also useful in the evaluation of particle drift orhits.'?

II. CANONICAL REPRESENTATION
Any globally divergence-free fleld 3(;) can be written in ¢he so-called

canonical foru:7

PO > - > ’
B =Vd x V0 + V§ x Vy ()

with ¢ and ¥ single-valued functions of pasition and @ and $ proper angles [a
proof is outlined helow Bx. (8)]. By a proper angle, we mean that 9 and 9 +
21 are the same physical position ;. The physical interpretations of ¢,8,9,
and X are illustrat:d in Flg. 1. The angles & and ¢ are poloidal and toroidal
angles. The toroldal magnetic flux e_ncloaed by a constant § surface is 2w,
and the paloidal flux outsgide a cons;:ant X surface is 2mx. However, the
constant ¢ and constant ¥ surfaces are generally not identical.

To represent a field using the canonical form it would appear that ¢,6,¢,
and I must be known as functions of position ; in order to evaluate the
agradients. MActually, it is more useful to consider the position as a function
of ¢,0, and &, the so-called canonical coordinates. This can be done as long
as the triple product (-‘;4: x ;B) . -;0, vwhich is the toroidal component of the

> + > b4
field B * V¢, ig finite. Here, B * 74 will be assumed finite, but the general

cage can be handled at the price of somewhat more difficult mathematies.?
. > >

-
To deacribe a magnetic field B(x) fully using the canonical coordinates,

+
both the poloidal flux function X and the position x must be given as



+
function: of ¢,8,¢. The functionas x($,6,4) are called the tranaforamation
equations. They can always be made continucus and this centinuity will be
assymed. If the field is described using ordinary cylindrical coordinates

R, $,2, Pig. 2, then
X(x.9,8) = R(4,0,8) R($) + 2(4,8,0)z (2)

with dl;/:n - ; In other words, the transformation equations would consist of
R and Z as functions of ¢,6,4.

The function %(¢,9,¢) has an additional interpretation besides being the
poloidal flux function. It is the magnetic field line Hamiltonian. The
magnetic field lines, which are also known as the integral curves of the

maqgnetic field, are the so].ution5 to the differential equation

T
gx (3)

with T just a label for the points along a field line trajectcry. Consider

the field lines in ¢,6,$ coordi.,ates. The change in ¢ along a field line is
> >
given by d¢/dT = V¢ * dx/dT. 7This means that along a field line

a¢ _ 2 a8 _ B-Te (a)
@t " 3 ¢ " BVR

The use of the canonical form for § BEq. (1), to evaluate B vlb/ﬁ . 3@ and

. r + o+
B * 98/p * Vé demonstrates that

d¢ oy as  dy
as = " Tl . (s)



a——

which are Hamilton's equations. In Hamiltonian language, the poloidal angle
8 i3 the canonical coordinate, the toroidal flux function ¢ is the canonical
momentum, and the toroidal angle ¢ is the canonical time. Unfortunately, most
Hamiltonian mechanics texts identify the canonical time with ordinary clock
time. JIn the magnetic field problem, clock time t is a parameter (see Secs.
III and IV) and should not be confused with the canonical time ¢, which is the
toroldal angle.
> >

The importance of the canonical representation of a field B{x) derives
from the fact that all topological informatlon on the field line trajectories
is contained in the Hamiltonian ¥(¢,6,¢). That is, questions related to the
existence of closed magnetic surfaces, magnetic islands, or stochastic regions
can all) be answered if the function %{¢,9,4) is known. This follows from the
continuity of the transformaiion equations and the mathematical result that
continuous transformations do not altsy topological properties.

The representation of a magnetic field using canonical cocrdinates is

2,14.15 and Clebsch

closely related to the well-known magnetic coordinate
representations. The magnetic caordinate representation is identical to the
canonical repregentation except that X 1s a function of ¢ alone. This
representation exists only if all the field 1line trajectories lie in

gurfaceg, Then, the magnetic cpordinates are the action - angle variables of

Hamiltonian mechanics. The Clebsch representation,
> >
=ty x¥o_ ' (6
o
can be obtained from the canonical representation by letting & = &(¢,- 90. $)

and 0 = 9(¢°. BD, ¢) with &  and 90 the initial values of a field line

trajector . Single-valued transformation equations usually do not exist
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betwsen the Clebsch coordinates #,, 9 . ¢ and ordinary space %. Therefore,
the Clebsh representation does rot isclate topological information in a single
scalar function as does the canoiiical representation.

Given an arbitrary magnetic field ;(;). the canonical representation can
be mstablished. et ;(p, €, 4) be any set of smooth transforma’zion equations
with 8 and ¢ angles. Assune that 9 is zero at the axis of thu © angle. Then

using the canonical form, . (1), one can show7 that

o > o] [ 3 *> dx the
X - X
-p—B . (5p x-ag] and gx‘prB (Ttx'dp . (7}

iIf these equations are integrated from ¢ = 0 for a fixed @ and ¢, the

functions X(¢, 8, 4) and x(¢, 8, 9) can be evaluated. By using a number of 8
and ¢ values together with a fast Fourier transform, the functions x(¢, 8, )
and ;((Ia, B, ¢) can be cbtained in Fourier series form. A code to carry out
such calculations has been written by G. Xuo-Petravic. The proof of Eq. (7)
follows from the canonical form for E, By. (1), and the so-called dual
relations, H. (21).

The v_lector potential has an important role in the Hamiltonian

representation of the magnetic field. The canonical form for the veactor

‘potern:ial is
E P> » -
A =dV0 - ¥Vé + Vg (8)

with G the arbitrary gauge function. That is, the curl of e gives the
cancnical form for g, Bg. {1). The existence of the canonical form for the
vector potential follows16 from Poincare's theorem that a globally divergence-

free field has a single-valued vector potential AX). et x( p, 9. ¢, as




before, he any well-behaved transformation eguations with p = 0 aleong the

axis of the € angle. Then, any single-valued vector K(;) can he written as

-> ‘v’ - -+

B=ApP+AeVG+A°V¢ (9
with A, Ag, and A, single-valued functions of p. & and ¢. Choose G(p, 8, ¢}
so that 3G/0p = By and G =0 at p = 0, then Eq. {9) takes the form of Eg. (B)
with ¢ and X being single-valued functions of position.

Canonical transformations maintain the form of Hamilton's Eq, (5) and the
canonical form for the vector potentiai, By. (8), and the magretic field, BEq.

The mest general canonical transformation, which is known as an extended

{(1).

phase-space transformation, transforms ¢, &, ¢, ¥ into ¢, 6, ¢, x. Such a

transformation can be specified by the generating function S(6, ¢, ¢, ¥) with

d’=§g‘ asls'
o
(10}
3s - as
X = - % $x - = .
k2] a3

»> >
The rapresentation of the vector potential A(x) using barred coordinates is

evaluated by a substitution into Bg. {(8),

(11}

with the gauge function G = ¢ + S - (8 - XP). The generating function is not

single valued (S at ® and © + 2% are not equal), but & is. The generating
function § naturally depends on four variables while the gauge function G has

which i3 only three variables. This is

a natural dependence on position,

discussed in Sec. III after B.. (17) and in Ref. 9
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The canonical ﬁransfornations, which will be of primary interes’, are the

infinitesimal canonical transformations. They are definad by

s=3 -3 +6e3s(3 8, 4 %) (12)

with € an infinitesimal quantity [see m. (23)]. Other important

transformations include

5:;9--%, [13)

which reverses the rples of the poloidal and the toroidal varzi- les, and

s =00 - (X +NO) (14)

Zle

with M and N integera, which establishes a helical coordinate system with MO -
N = Ma. In classical mechanica, it 18 customary to consider only ordinary
cancnical transformations, which do mot alter the cancnical time. These
transformations are of the form

s=5, (T, 0,8) - %b . (15)

III. CANONICAL PERTURBATION THEORY
The apecification of field 1line topology by a sgingle scalar function %
makes the canonical formulation particularly useful for the study of evolving
magnetic fields. In this section, the mathematical properties of the
canonical formulation are developed for a magnetic field which depends not

only on position ; hut alec on an arbltrary parameter t, which will be called



time. In Secs. IV and V, these mathematical properties, which are summarized
by Eq. (29), are applied to plasma phyaics probiems.

There are three hasic ways to describe a magnetic field which depends on
a parameter t. First, the vector potential can be specified as a function of
position and time, Ax.t). Second, the gquantities ¢, 8, ¢, and ¥ can be given
as functions of X and t. Third, the Hamiltonian and the traansformation
equations can be given as functions of the canonical coordinates and time,
*(d, B, &, £} and e, B, ¢, t). Since a magnetic field ic uniguely defined
by any one of the three, mathematical relations exist which determine the
other two descriptions of the field 1f any cne is given. The main subject of
this section is the derivation of these relations. 1In addition to their other
applications, these relations define magnetic perturbation theory in canonical
form. '

The hiree magnetic field descriptions are related by their partial
derivatives with respect to time. Infortunately, the notation for partial
differentiation is either cumbersome or incomplete. For example, 3%/0t can be
interpreted as either Oy(X,t)/0t ;:r (4, 9, 9, t)/3c. Since both
interpretations occur for ¥ and for the gauge function G, a subscript ; or ¢
for canonical will be used. For example, (3¥/3t)_ means dx(¢, &, @, ) 3.
However, to simplify the notation, 5:/31: neans dA(x,t)/dt. Derivatives of the
canonical coordinates ¢, &, ¢ with respect to time should be interpreted so
that 3¢/0t = adv(;, t)/3t. The time derivative of the transformation equations
is d8x(d, 8, &, t)/0c.

To begin the derivation of the relations, assume K(;, t) is given and
that we wish to fird &, O, &, and X as functions of ¥ and t. This can be
accomplished by time differentiating the canonical form for K, Eq. (5}, o

obtain

[T
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g%a--g—z 6¢+§%\Fe- f%’é); V¢+-g—:—$x+'&s 1186)

with the functicn 3 defined by

C (%), o 20 2 |
s = ()i *om - X3 - un

The function s is the generating function for infinitesimal cancnical
transformations [see the discussz-n of Bg. 123) below]l aand can be specifie-
arbitrarily due to the freedom of the gauge function, G. Actually, s is not
just an arhitrary function of ¢, 9, ¢, and t as one would suppose, but rather
an arbitrary function of five variables, s{¢, 6, ¢, X, t}. To interpret the X
dependence of s mathematically, a distinction rust be made between the
independent variable X and the field line Hamiltonian ¥y(¢, 8, ¢, t). Except
when calculating derivatives of s, the variable % aiways has the value xH,
Derivatives with Trespect to X are to be interpreted as 3s/3X =

3s{d, B, &, %, t)/Ox evaluated at ¥ = Xy The condition

SE= "By {18}

on the ¥ dependence is required to make s an infinitesimal generating
function. The freedom of an extra condition on s arises from the use of four
quantities ¢, ©, ¢, and ¥ tc repregsent a vector potential which, even in a
specified gauge, has only three independent components. That is, even with
¢(;, t) a specifled function, an arhitrary vector potential can be written in
the canonical form, Bq. (8)., Viawing s as a function of ¢, &, ¢, X, amd ¢,

with ¥ evaluated at X = Xys one has



B 2 2%y, 28, Y0, (23 (@) % . (19)
- +

To obtain 04/23t. 236/8t, and (a'x,'6|r.)x in terms of OA/3t, some theorems of

partial differentiation theory are requirad. There are s3imple relations

between derivatives of the canonical coordinates with respect to the position

;. like 3@(;, ), and the derivatives of the position ; with respect to the

canonical coordinates. Letting ¢ and € be any two canonical coordinates,

partial differential theory implies the orthogonality relations
%%:%:1@&8%-39.0. (20)

T!-‘:e orthogonality relations can be used to obtaln the so-called dual rrlations
ax

B(l! J’$e x%@ and 'adls—as x-afo {21)

with the Jacobian J gatisfying

Bk . (0% . DX
7= ﬁ (_,E _a%} - *__1__'____“_ - . {22)

v « (Vo x ¥9)

Even permutations of the ¢, 8, ¢ coordinate labels also give valid eguations.

Using the orthogonality relations and Eq. (19) for aK/at, one finds that

% _ 3 ;i 28 9 _ 2R, B
Pe T WY B ‘_ae Bt ™ dp - Br B¢
. ‘-,'. . {23)
gy . 9s 3  3x o 3s
Bt "3 B - ™ .

]
-t

A T
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If Bi/Bt = 0, these are jurt the equations for infinitasimal canonical
transformations in the extended phase space ¢, 6, 9, ¥, which validates the
identification of 8 as an infinitesimal generating function [see Bg. (i2)].
The eguations relating ada/Ot,'bS/bt., and J4/3t with O*A/Bt can he used to
determine a more important relation, the relation betsman B;/at and ai/at. If
the trivial relation (&/Bt); = 0 is expressad in ¢, O, ¢ coordinates, one

obtaing the reault that

Bx _ _dx db _Dx 20 _ Bx 3 (24)

Substituting 2¢/dt, 8B70t, and Bb/dt from By. (23), one obtains the desired
relation

3%  (2s ai,b,‘l)a; B3 ai_,ai')ai 3s &
ot = 36 ~ 3¢ *28) 30 - By - 3c "N 30+ B b

. {25)
This is a very important equation. If initial transformation equations,
;('&. 8, ¢, 0) are known, thic equation determines the transformation equations
for all Future time, in any field A(x, t), with an arbitrary choice of
canonical coordinates, The freedom of cancnical coordinates is the freedom to
choose the infinitesimal generating function s. The function 3;/2!1: can be
physicaliy intarpreted as the velocity of a (¢, €, ¢) point througk ordinary
gpace *.

An even more important equation than the relation between 6;/6t and ai/bt

igs the equation in (3x/3t ) which determines the evolution of the

cl
Hamiltonian in canonical coordinates. Clearly x(¢, €, ¢, t) is the
fundamental function of tha theory, sinca it determines the field line

topology at each point im time. To obtain the expression for (2y/dt}.,

e gt A L
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- » 3
consider the cross product (3x/0t) ¥ B. Using Bg. (24} for dx/d and the

dual relations, B3.°(21j, one obtains
-+
B o - (B2 B0 x Vo 4 32 %o x Vo + 32 Ty x o) . (26)

ES
The canonical form for B, B3y. (1), then implies

%%x 8- - -5?5%3)$¢+ %Eﬁ)ﬁe-fa BRI . oon

The relation between (aX/be)-» and (ax/at)

ony _ (3ay , 2 B8 2xd
ﬁt]; = (3g)e * 203 * 36 B * D6 Be (28)

and Eg. (16) for aK/at imply
> >
%:2 x - (-g%)c 3¢+%¥£Xg+ [ (29)

This equation will prove to be one of the most useful in the paper. 1Its first
application is the evaluation of [Bﬂat)c by dotting agfbt wi.th E,

+»

3

(B'Fs—l;‘—a—t' . {30)

(bt)c +

Canonical perturbation theory is based on By. (30) for (dx/dt), and .
{25) for 3;/51;. A related noncancmical' perturbation procedure has been given
by Cary and Littlejohn.8 In perturbation theory, the vector potential is
written a:c K(;,t) - zo(;:) + t 31(::). Let us assume that |;1| << ];ol ana

consider only the firat order theory. The perturbation procedure starts with
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the equation for (ax/'ac)c, BEg. (30), which in first ozder can be written as

1 » 3 > +
¥, = e—— (B *« Vs -8B -2 ) {31)
1 ;o'vb o -] 1

- > +>
with X as t = 1 equal to X, + X, and B, = v x A- Assuming the unpe "turbed

field is integrable, X can be taken to be a fanction of ¢ alone and

- Qs Os
X, =3¢+ t33- ¢ (32)

with 2 = dxo/ddv. the rotational transform, and @ = ;1/;0 . -V’Q, If X, S, and
@ are Fourier decomposed,
)(1 = 7 LI expli(né - md))
s=1i} s, expli(né - =0)] ) (33)
=y @ expli(nd - m8)] '

then the Fourler components are related by simple algebraic equations
X _+.(n- !n)!nl- L. - (34)

In these equations, the Fourier components flnm(tb) are agssumed known ag is
(4}, but the ¥ (¢} and the s {0} cowmponents are to be determined. .here is
considerable freedom in the cholice of the *nm and the S nt the freedom of
canonical tranaformations. For example, the X;m can always be chosen S0 that

the s, Ore Zero, but this choice is not convenient for studying topological

S
==
1

4
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changes. 1deally, one would like to make all the Ay Z8¥O SO that the Ffield
line integrations would be trivial, 46/d4¢ = (¢) and d¢/dd = 0. However, this
cannct b-e done if for some value of ¢ the rotational transform ia a rational
number, * = N/M, with &g NONZero. Clearly, near 2 = N/M the Fourier
component X, must be chosen to be equal to dm. That 1ls, the perturbed

Hamiltonian has the form
= - M0 .
X xo(d»J + @, cosiNg - M ) (35)

This Hamiltonian is  well known from the Hamiltoniaq mwechanics
1:i.ter:at:u1:e.6'17 The perturbation 4y changes the topology of the trajectories
over a reglon in ¢ space of width 4deH/¥‘|1/2 with 2' = dv/4¢ ev.aluated at
the rational surface * = N/M. Such changes in topology are called magnetic
islands.

The condition for a topological change can be expressed in a different
way. On a rational suorface, * = N/M, each field line closes on itself. The
converge is also true. Every constant ¢ surface which contains clased field
lines is rational. The topology of a surface, which contains closed field
lines, is congerved if and only if the loop integral J; . di is identical on
each line of the surface with dI the differential distance along a field line,

. Traditionally, magnetic perturbation theory was baged on thne resonances
+ <>

> >
in B, * v¢/B° * V¢ inatead of resonances in &. To clarify the relationship

> L d > -+
let A, = a, Vo + ag V6 + a, V¢, then

,
f_‘ff’_,és_(ffﬂ_,iﬂ) (36)
A 26 - 3% X

The resonant terms in the Fourier decomposition of «, L. with * = N/M, are



|
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therefore simply relatad to the resonant tarms in the Pourier decomposition of
L Y R [

To return to first order peréurbatton theory, let us assume that the Xam
have been chosan to equal the G noar the rational surfaces * = N/M.
Bquation (34) for the FPourier amplitudes X, and & can be solved for the
remaining Fourier components by letting the Xom be zero and the 9m = an-/(n -
wm). This defines a function a (¥,6,4) and the Hamiltonian X = xﬂw,e,cp).
BEquation (25) can now be ugsed to obtain the perturbed transformaticn equations

ES > -+ >
x = x, + E with & the displacement, a standard notation of

a
magne tohydroedynamics,
> > > +
by w (P27 JOxyBR (B3, BBk, s
E(d:.G,tP) = (ae - A ae] ad = [aq, - A1 ad:) 20 T x % ° (37

In the equation for E, s 1s to be viewed as a function of ¢,8,¢,x with the
derivatives evaluated at X = XB(¢.9.¢)- The relation between s and s is that
SO(CIJ, 8, ¢) = s(¢,0,0, Xy)- As discussed earlier, the X dependence of s is the
freedom to choose the toroidal angle ¢(:.t) arbitrarily.

Az a closing note, consider the relation between the gauge function G and
the generating function s. The fact that an arbitrary infinitesimal canonical
trangsformation defines the gaunge function G i3 demonstrated by Bg. (17) which
relates g and (3G/3t),. This equation can be written in a simpler form using

x >
Bq. {25) for the velocity of the canonica. coordinates dx/dt. This form is

->
36 r, '
Gee=9+a g (38)

o senk
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IV. TIME EVOLUTION

The time evolution of a magnetic field is controlled by Faraday's law

a’ >

me_eVxE, (39)
and if it is embedded in a plasma, by Ohm‘'s law

>
xB =R (40)

My
+

ald+

The veloclty of the plasma is 3, and § is the electric field in the rest frame
of the plasma. It is customary to approximate R-’ by 115) with N the plasma
regigtivity and ;T the current density. The major result of this gection is
that PFaraday's law and Ohm's law determine the time evolution of the field
line Hamiltonian %(¢, 8, ¢, t), but they do not constrain the time_ eyvolution
of the transformation equations ;(4: 8o, t). The time evolution of the
transformation equations is determined by force balance and will be discussed
in Sec. V.

Faraday's" law can be written in a form which is more easlly applied,
ey >
B = cE + ) (41)

with & the single-valued electric potential., An immediate consequence is the
evelution equation for the poloidal flux functlion of magnetic fields which

remain integrable. Using By. (29) for dAs3t and the fact that the volume

element d3x = (1/3 . Vcb) dd 40 d¢, one finds

ox (¢, t) c 5] (I+ +> 3
— e - w7 (JE = B a'x) {42)
ot (2")2 8¢
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with the volume inteqgral covering the reglon wounded by a constant ¢
surface. This equation coupled with the cancnical transformation toc helical
coordinates, By. (14), has heen used to study the growth of magnetic

istande.®

The use of B:/bt from the las: section, Eg. (29), Faraday's law, Bg.

(41), and Ohm's law, Bg. (40) gives the eguation
> _1 3y @ 12 Bx 2 _ 3
R==(50), o+ (v -33) =B - V8 (43

with ¢c = @ + g/c the electric potential in the frame of reference of the

canonical coordinates. The parallel component

By c > > + >
(%) ==—— (B-R-B*7V2) {44)
3t'c 2. Fe c

obvioualy has the same properties as B3y. {(30). For exanmple, 1if 3. ﬁ is zero,
or more generally if it ls derivable from a single-valued potential, then X

need not evolve as a function of the canonical coordinates. This would mean,

L - N

of course, that the field line topology would be conserved, Equation (43) has
another conseduence. Since only the relative velocity, v - a;/at, between the
plasma and the canonical coordinates is determined, Ohm's law aird Faraday's .
law do not restrict the time evolution of the trunaformation equations
%9, B, &, t). To determine the evoluti:on of the transformation equations,

one muat add additional physics, namely force balance,

e e o b R e Y A B

V. ENERGY PRINCIPLE

Plasma equilibrium and stability can he studied by the well-known energy

2,170,111

Frinciple. Tha enerqgy of the plasma and the magnetic field is
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8%, .3
W= f{—f;+ﬁ)dx (45)

with p the plasma pressure and Y = 5/3, the adiabatic index. The energy
principle states that eguilibria are stationary points of properly congtrained
variations of the energy and ideally stable plasmas are minima of the
energy. Here w2 will show that the ideal energy principle corresponds to
finding extrema of the energy by varyingb the transforma.ion equations
;Nh 8, ¢ while holding the Hamiltonian x(¢, €, $) fixed. The ordinary
energy principle can be extended to cover tearing modes, Furth's energy
pn:inci.ple,19 hy consldering variations in tle Hamiltonian X. To evaluate
variatlons in the energy, we will calculate time derivatives, In this
contex.t, one should consider the time t an arbiltrary parameter as it was
viewed in Sec. III.

The most chvious constraint required by the energy principle is that no
energy cross the surface which bounds the integration wvolume. Although the
surface terms need to be examined carefully in practical calculations, we will
iqnore such terms for the sake of brevity.

First, consider the time derivative of the magnetic energy. Using an

b +> >
integration by parts and Ampere's law, V X B = 47%j/¢, one has

1 7
at Jgmdx =)

-
The use of Bq. (29) for OA/3t glves the desired result

(47)

b3
.

2 -+ -
[+)
R LR L R Rl e R WHCORE R T,

2 +
)
4 IB 3 -j’ 24 (46)
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The calculation of the change in the plasma energy requirss somawhat more

effort. Let the plasma pressure p be a function of the density n and the

entropy per particle, then

. op{n,
32;:_5’_,“18 and —g‘-g?sl-n-np . oo (48)

The change in the density, (3n/dt)c, consists of two parts. fThe change in the

number of partieles in an element of canonical coordinate space,

[3(nJ)/3t)]1 /T, is one part and the change in the Jacobian

(23) . % - 4 (49)
Jtle ot
is the other. Consequently, we use the expression
-
n 1 . x
\at) = (at c ¥t - {50)

The time derivative of the pressure in canon-cal coordinate space ls therefore

"
=omb e By -0 (3D (51)

[+
with (aa/ar.)c defined by

3a h ana 0s
Bt T Y1 n.:r (ac c + (3¢) (s2)

The egquation

2
D) (53)

% 3
.,'3;“31=+('5§);
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can be used to detarmine {3p/dt)y. The change in the total energy W ia then
x
> +
aw [0 i v 3 do 1¢d + 3
a't'=f‘5£'(ap-%“aldx+f[p(5§c-;5{)c3 - Tola’x . (54)

Equation (54) for dW/dt is a much more general variation of the enerqgy
than that allowed by the usual ideal energy principle. The ideal energy
principle 1is recovered if the sgecond integral in Bg. {54) for dw/dt
vanishes. T™at is, ideal HMHD (magnetohydrodyiamics) is recovered if the
Hamiltonian X, the n;ntropy per particle S, and the number of particles, nJ, in
a cancnical wvolume element are all fixed functions c¢f the canonical
coordinates. In ideal MHD, equilibria correspond to extrema of the energy W
under variation of the transformation egquations. Although this r:sult is
expected, it does have an important implication. One can pick an arbitrary
Hamiltonian X(¢, 8, ¢), which may or may not. be integrable, and an arbitrary
pressure profile p(d, B, ¢), which may be unrelated to the field line
trajectories, and find an equilibrium by varying the transformation
eguations. By using the constraints of ideal MHAD, one can also obtain the
standard differential equation for the digplacement E, which ia wused in
stability calculations. The displacement E, as nmentioned earlier is to he
interpreted ag (b;/atJ &¢t.

The second integral in Bg. (54) for dwW/dt alsoc has important
implications. The term involving (M/at)c is apparently more important than
the term involving [Bd/bt)c. The reason is that the current density ; can he
singular but the pressure c¢annot. When the energy is minimized with the ideal
contraints to find stable equili%ria, the current density ; will contain delta

functiong on the rational surfaces ¥ = N/M except in cases of high symmetry.

The presence of thegse delta functions implies that additional 1localized
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resonant terms in the Bamilfonian would lower the energy. This is just a
statement tha~ the plasma equilibrium is very sensitive to the weakening of
the ideal MHD constraint (3x/dt), = 0. The presumption is that the plasma

will evolve rapidly to a lower energy configuration that will contain magnetic
iglands.

A three-dimensional equilibrium msolver could be based on the canonical
coordinates as a generalization of codes (like the Bauer, Betanvourt,
Garabadian codezoj that use magnetic c¢oordinates. The advantage of this
generalization would be the addition of a capability to study the opening of
magnetic islands. Schematically, a canonical coordinate code could start with
the preggure amd the Hamiltonian as given functions of ¢, p(¢), and x(¢), The
energy would first be minimized preserving the ideal MHD constraints. On ¢
surfacea, which are nearly rational and have a large current density, the
Hamiltonian ¥ should then be modified by a small resonant Fourier term, which
would reduce the energy and open a magnetic island. The energy should then be
reminimized preserving the ideal MHD constraints. The jiteration, between
minimizing the energy by first varying the transformation equations :( $,0,4)
using the ideal MHD constraints and then changing a small rescnant be%rm in ¥,
should be continued until a smooth current profile is obtained.

There is a close relation between the opening of isiands in three-
dimensional equilibria and tearing l'u:xlesl1 2,19 in a tokamak. Consider a large
aspect ratio tokamak with circular magnetic surfaces which have a minor radius

r and a major radius R, r/R << 1. Suppose that the boundary conditions on

this tokamak are perturbed by a magnetic field which has a radial component

b =B (r,t) cos(ué - M) . ’ (55)

“ .."Aad-d*u'
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A surface current will be induced at the resonant rational surface -r[ro) =

N/M,

r

> o
RM

3b
N - & i - -
j s an [ar ] 8{r ro) sin(Nd - ME) . {56)
with [aEr/Or] the jums in the radial derivative of Er across the resonant
> >
rational surface. This equation for j * V¢ is easily derived from the
equations for a surface current. The localized current is induced by the

change in the Hamiltonian X wnich is produced by the resonant radial field

b,. Using Bg. {(36), one can show that

rr_ % {r_,t)

a
(EE)C =2 -—5% sin(Né -~ MB) . (57)

Bquation (54) for AW/dt then implies that if an island opens in an equilibrium

plasea then

AW T,y % _ %b

T T i
Frl i =] (s8)

with V the volume inside the resonant rational surface. If one assumes that

asr .
[B'E_] (59}

e
m
o1 ]-‘

is a constant, which is a goed approximation for many tearing modes,

-2
b (r t]

aw A VB kot

aE = "5 20t ar ’ (60)

which is FPurth's enerqgy pl:'inciple.19 The <nergy W 1ls reduced by a tearing

I ettt

L T
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mode if A' ig positive and increased if A' is negative. Consequently, the

sign of-A' datermines the stability of the plasma.
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FIGURE CAPTIONS

FIG. 1. Canonical Coordinatas: The poloidal magnatic flux outside a constant

% surface is 2%X. The toroidal magnetic flux inside a constant ¢
gurface is 2%¢, Howaver, the constant ¢ and the constant X surfaces
need not be identical, Te poloidal angle is 8 and the toroidal

angle is ¢. ' .

FIG. 2. Cylindrical Coordinates: The use of cylindrical coordinates for

describing a toroidal configuration is illustrated.
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