Microwave-Assisted Chemical Process for Treatment of Hazardous Waste

Annual Report

by R. Varma, S. P. Nandi, and D. C. Cleaveland
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche Copy: A01
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

MICROWAVE-ASSISTED CHEMICAL PROCESS
FOR TREATMENT OF HAZARDOUS WASTE

Project Number 23310

Annual Report

October 1987

R. Varma, S. P. Nandi, and D. C. Cleaveland,
Chemical Technology Division

Sponsored by
U.S. DOE Hazardous Waste Remedial Actions Program

Through the
Support Contractor Office
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

Operated by
Martin Marietta Energy Systems, Inc.

For the
U.S. Department of Energy

Under Contract No. DE-AC05-840R21400

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or grantees thereby, nor any of their agents, assigns, licensees, or licensees of any kind, expresses or implies a warranty, liability, or any other representation, of any kind, in connection with the results or recommendation herein, or any of the opinions or data contained herein. Any person using this document, or parts thereof, does so at their own risk. Reference herein to any specific commercial product, process, or service does not constitute or imply its endorsement by the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
THIS PAGE WAS INTENTIONALLY LEFT BLANK
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Background</td>
<td>1</td>
</tr>
<tr>
<td>B. Selection of Waste Stream</td>
<td>2</td>
</tr>
<tr>
<td>II. EXPERIMENTAL</td>
<td>4</td>
</tr>
<tr>
<td>III. RESULTS AND DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>A. Adsorption of TCE on Active Carbon</td>
<td>6</td>
</tr>
<tr>
<td>B. Oxidative Degradation of TCE over Active Carbon</td>
<td>7</td>
</tr>
<tr>
<td>C. Temperature of Carbon Beds during Microwave Heating</td>
<td>11</td>
</tr>
<tr>
<td>D. Regeneration of Carbon</td>
<td>14</td>
</tr>
<tr>
<td>IV. DESIGN OF 6-kW MICROWAVE REACTOR</td>
<td>17</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>17</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>18</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Setup of Apparatus for Vapor-Phase Oxidation of Organics Using Microwave Energy</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Adsorption of Trichloroethylene by Active Carbons at 22°C</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Temperature of TCE Adsorbed on Fresh Carbon after Reaction with Dry and Moist Air at 100 mL/min for 5 min</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>Effect of Chlorine Content of Carbon on the Decomposition of TCE</td>
<td>15</td>
</tr>
<tr>
<td>5.</td>
<td>Microwave Heating Assembly</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Characteristics of Hazardous and Mixed Wastes Generated at DOE Sites</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Characteristics of Active Carbons Used in Experiments</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Analysis of Ash from Calgon Carbons</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Oxidation of Trichloroethylene in Moist Air Stream over Carbon with Cu and Cr Catalysts</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Oxidation of Trichloroethylene Preadsorbed on Carbon with Cu and Cr Catalyst</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>Oxidation of Trichloroethylene Preadsorbed on Carbon without Catalyst</td>
<td>10</td>
</tr>
<tr>
<td>7.</td>
<td>Oxidation of Trichloroethylene Preadsorbed on Carbon with Cu and Cr Catalyst</td>
<td>11</td>
</tr>
<tr>
<td>8.</td>
<td>Chlorine Mass Balance Between Reactant and Products of Reaction from Trichloroethylene Oxidation Experiments Conducted with Microwave Heating</td>
<td>12</td>
</tr>
<tr>
<td>9.</td>
<td>TCE Desorption/Detoxification Characteristics of Active Carbon Beds</td>
<td>14</td>
</tr>
<tr>
<td>10.</td>
<td>Moist Air Oxidation of TCE Adsorbed on Used Carbon under Microwave Heating at 20% Power Level for 60 Minutes with Moist Air Flow</td>
<td>16</td>
</tr>
</tbody>
</table>
MICROWAVE-ASSISTED CHEMICAL PROCESS FOR TREATMENT OF HAZARDOUS WASTE

by

R. Varma, S. P. Nandi, and D. C. Cleaveland,

ABSTRACT

Microwave energy provides rapid in situ uniform heating and can be used to initiate chemical processes at moderate temperatures. The purpose of our work was to investigate the technical feasibility of microwave-assisted chemical processes for detoxification of liquid hazardous waste. Trichloroethylene, a major constituent of waste streams, was selected for this detoxification study. Experiments were performed (1) to investigate the oxidative degradation of trichloroethylene over active carbons (with and without catalysts) in air streams with microwave in situ heating and (2) to examine the feasibility of regenerating the used carbons. This study established that trichloroethylene in a vapor stream can be adsorbed on active carbon beds (loaded with Cu and Cr catalysts) at room temperature. When the bed is heated by microwave radiation to moderate temperatures (<400°C) while a moist air stream is passed through it, the trichloroethylene is readily converted into less-noxious products such as HCl, CO, CO₂ and C₂H₂Cl₂. Conversion higher than 80% was observed. Furthermore, the used carbon bed can be conveniently regenerated by microwave heating while a moist-N₂ or moist-air stream is passed through the bed. The research serves as the groundwork for successful demonstration of a new technology for detoxifying hazardous organic wastes such as trichloroethylene, tetrachloroethylene, trichloroethane, and polychlorobiphenyls.

I. INTRODUCTION

A. Background

The major advantages that microwave heating has over thermal heating are: (1) it provides uniform in situ rapid heating, (2) the container vessel can remain at room temperature while the material in it is heated, and (3) chemical processes can usually be conducted at low temperatures.

Materials can be heated with microwave energy by placing them in a large cavity of an appropriate configuration, usually cubic or cylindrical. The use of large cavities permits the generation of a large number of resonant modes for any
particular exciting frequency (e.g., 2.45 GHz, or \(\lambda = 12.236 \text{ cm} \)) under all loading conditions. This, in turn, allows efficient and uniform in situ heating of material bodies by microwaves, in sharp contrast to thermal heating.

The dielectric-loss parameter, \(\epsilon'' \), determines the microwave power density utilized in heating material bodies. Therefore, the dielectric-loss parameter and the specific heat of the material being irradiated solely determine the rate of temperature rise of the body being heated. The microwave heating is both material specific and frequency dependent. The principle of selective microwave heating is best seen by examining the general expressions for time rate of temperature rise \((dT/dt)\) and the power dissipation \((P)\) in a dielectric material:

\[
\frac{dT}{dt} = 0.239 \times 10^{-6} \frac{P}{c\rho} \quad (\text{°C/s})
\]

\[
P = 55.63 \times 10^{-12} \nu E^2 \epsilon'' \quad (\text{W/m}^3)
\]

where \(c \) represents the specific heat of the dielectric material, \(\rho \) is its specific gravity, \(\nu \) is the microwave frequency, and \(E \) is the electric field intensity \((\text{V/cm})\). Since the heat energy can be absorbed in situ by reactants, the chemical reactions can usually be conducted at lower overall temperatures than they can with thermal heating processes. A variety of organic molecules and inorganic solids can be selectively energized and reacted using microwave energy.

B. Selection of Waste Stream

The hazardous defense waste (liquids or solids) presently in storage or being generated at various sites in the country can be broadly classified into two categories, each of which was the subject of a literature search: (1) organics (trichloroethylene, trichloroethane, tetrachloroethylene, polychlorobiphenyls, chlorobenzene, methylethyl ketone, etc.) and (2) heavy metals (Hg, Cd, Cr, Pb, Ra, Ba, Ni, etc.). The literature search was targeted at methods of treatment; particular attention was paid to the use of microwave radiation in the treatment of hazardous waste. Data were also obtained on the microwave equipment used in the food-processing industry. This information yielded the names of possible suppliers of microwave processing equipment.

A summary of the “Hazardous Waste Data Base” maintained by the Oak Ridge National Laboratory, Hazardous Defense Waste Program (ORNL-HDWP), was received and screened to select streams that could be suitable for microwave processing. From this screening, a preliminary selection of 12 streams was made. This selection was made from streams that are being generated; consequently, detailed characteristics of the streams are readily obtainable. Consideration also was given to the quantity of the stream being generated and the chemicals it
contained. The available data on these streams are given in Table 1, which is taken from the ORNL-HDWP data base. The ORNL-HDWP Office and the DOE Chicago Operations Office were contacted to obtain detailed analytical data on these streams.

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Office</th>
<th>Volume</th>
<th>Form</th>
<th>EPA No.</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>816</td>
<td>Savannah</td>
<td>Undetermined</td>
<td>Liq.</td>
<td>F001</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>824</td>
<td>"</td>
<td>9.6×10^6 L</td>
<td>Liq.</td>
<td>D002</td>
<td>Acids, metals, nitrates, sulfates, uranium</td>
</tr>
<tr>
<td>831</td>
<td>"</td>
<td>Undetermined</td>
<td>Solid/Liq.</td>
<td>Undetermined</td>
<td>Oil, PCB</td>
</tr>
<tr>
<td>723</td>
<td>San Francisco</td>
<td>76,000 gal</td>
<td>Liq.</td>
<td>D007</td>
<td>Cr, Ni, Zn</td>
</tr>
<tr>
<td>1658</td>
<td>"</td>
<td>$64,100$ L</td>
<td>Liq.</td>
<td>F001</td>
<td>Acetone, methyl ethyl ketone, oil, isopropyl alcohol, solvents, uranium-238</td>
</tr>
<tr>
<td>1125</td>
<td>Richland</td>
<td>4.6×10^6 L</td>
<td>Liq.</td>
<td>D002</td>
<td>Acetone, metals, HNC, H$_2$SO$_4$, NaOH, strontium-90, 9trium-90</td>
</tr>
<tr>
<td>1893</td>
<td>Oak Ridge</td>
<td>9000 L</td>
<td>Liq.</td>
<td>D001</td>
<td>Organics</td>
</tr>
<tr>
<td>1412</td>
<td>"</td>
<td>14,762 L</td>
<td>Liq.</td>
<td>D002</td>
<td>Organics</td>
</tr>
<tr>
<td>1604</td>
<td>"</td>
<td>6454 L</td>
<td>Liq.</td>
<td>F001</td>
<td>Solvents</td>
</tr>
<tr>
<td>1495</td>
<td>"</td>
<td>651,020 L</td>
<td>Liq.</td>
<td>Undetermined</td>
<td>Coolant</td>
</tr>
<tr>
<td>146</td>
<td>Albuquerque</td>
<td>2500 L</td>
<td>Liq.</td>
<td>D002</td>
<td>Black oxide, chrome acid, Cu(CN)$_2$, Ni, NiCl$_2$, NiSO$_4$</td>
</tr>
<tr>
<td>99</td>
<td>"</td>
<td>78,000 L</td>
<td>Liq.</td>
<td>F001</td>
<td>Solvents</td>
</tr>
<tr>
<td>821</td>
<td>Savannah</td>
<td>Undefined</td>
<td>Liq./Solid</td>
<td></td>
<td>Oil, PCB</td>
</tr>
<tr>
<td>726</td>
<td>San Francisco</td>
<td>28.3 tons</td>
<td>Solid</td>
<td></td>
<td>PCB</td>
</tr>
</tbody>
</table>

*A petroleum distillate used mostly for dry cleaning.

Four of the streams in Table 1 were considered for the development of detailed experimental detoxification schemes. The streams are Nos. 816, 723, 1658, and 146. Two of the streams (816 and 1658) primarily contain organics; the other two (723 and 146) primarily contain inorganics as hazardous constituents.

Of the different organic waste streams in the ORNL-HDWP data base, many contain chlorinated hydrocarbons: for example, the so-called "degreasing solvent" [a mixture of trichloroethylene (TCE) and trichloroethane]. Since TCE is a major organic constituent in many of the streams, it was selected for this detoxification study.
II. EXPERIMENTAL

For this study, we set up and tested a 600-W laboratory microwave reactor and then conducted experiments on oxidative degradation of a major hazardous organic waste contaminant, namely TCE. The objective of the experiments was to demonstrate the technical feasibility of the microwave process for detoxification of TCE in air streams. This demonstration could then constitute the basis for a future demonstration of the technology.

A microwave oven (CEM Model MDS-81 oven with 600-W output) was modified to energize a flowthrough reactor. The detoxification method chosen was to oxidize the TCE adsorbed on activated carbon by air in the presence of catalysts with microwave (2.45-GHz frequency) \textit{in situ} heating. The experimental setup is shown in Fig. 1.

![Setup of Apparatus for Vapor-Phase Oxidation of Organics Using Microwave Energy](image)

Fig. 1. Setup of Apparatus for Vapor-Phase Oxidation of Organics Using Microwave Energy

A known weight of active carbon (6 to 10 g) was placed in the sample tube, which was placed within the microwave oven. The sample tube was made of quartz and had a 12-mm ID, with standard joints at both ends. A quartz tube was used because of its transparency to microwave radiation and its high softening temperature. The tube was detachable and could be weighed when needed. The active carbon was initially dried in a nitrogen stream; at a 50% power setting, the sample drying was complete in 30 min. The dry weight of the carbon was noted. Trichloroethylene was placed in one of the bubblers (the third bubbler was packed with glass wool and worked as a demister), and nitrogen gas carried the vapors onto the active carbon. During the adsorption
step, the oven was not energized, and adsorption took place at ambient temperature (21-22°C). After the adsorption step, the sample tube was weighed, the weight of TCE adsorbed was noted, and the tube was placed back in the cavity. The flow of air was then started through the carbon bed; the oven was energized at the same time.

Active carbon beds with and without catalyst loading were used in the detoxification experiments. The active carbons were obtained from the Calgon Corp. The characteristics of these carbons are described in Table 2. Table 3 gives the results of ash analysis for the Calgon carbons.

Table 2. Characteristics of Active Carbons Used in Experiments

<table>
<thead>
<tr>
<th>Name</th>
<th>Mesh</th>
<th>Source</th>
<th>BET Surface Area, m²/g (dry)</th>
<th>Composition, wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Carbon</td>
<td>12 x 30</td>
<td>Coal</td>
<td>1050</td>
<td>Ash 8.6 Cr₂O₃ 0.1 CuO 0.3 C 90.3 H 0.65 N 0.67</td>
</tr>
<tr>
<td>FCA Calgon</td>
<td>12 x 30</td>
<td>Base carbon + catalyst</td>
<td>950</td>
<td>Ash 20.1 Cr₂O₃ 3.8 CuO 9.7 C 78.4 H 0.83 N 0.67</td>
</tr>
<tr>
<td>PCB Calgon</td>
<td>12 x 30</td>
<td>Coconut shell</td>
<td>1100</td>
<td>Ash 3.2 Cr₂O₃ - CuO - C - H - N -</td>
</tr>
</tbody>
</table>

*a*The sample was not analyzed in detail; it contains principally carbon and small amounts of hydrogen, nitrogen, and oxygen.

Table 3. Analysis of Ash from Calgon Carbons

<table>
<thead>
<tr>
<th>Base Carbon, wt %</th>
<th>FCA, wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ 31.2</td>
<td>10.2</td>
</tr>
<tr>
<td>CaO 3.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Cr₂O₃ 0.1</td>
<td>19.0</td>
</tr>
<tr>
<td>CuO 0.3</td>
<td>48.7</td>
</tr>
<tr>
<td>Fe₂O₃ 10.6</td>
<td>3.5</td>
</tr>
<tr>
<td>MgO 1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Na₂O 1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>SrO 0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>TiO₂ 2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>BaO 0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>SiO₂ 45.2</td>
<td>15.1</td>
</tr>
</tbody>
</table>
As will be discussed later, the major products of reaction from microwave heating of active carbon (with and without catalyst) with preadsorbed TCE in air streams were identified by mass spectral analyses to be HCl, CO2, CO, C2H2Cl2, etc. The evolved-gas analysis system consisted of an ice trap (to remove any high boiling product), a gas sampling loop, and one bubbler containing 1N NaOH solution. Periodic gas samples for mass spectroscopic analysis were taken by adjusting the two four-way stopcocks without disturbing the flow of evolved gas. Hydrochloric acid produced in an experimental run from degradation of TCE was absorbed in the NaOH bubbler. The dissolved chloride solution was then precipitated and separated as AgCl and analyzed quantitatively. This step provided an independent integration of the total HCl produced during an experimental run.

Some effects of microwave radiation (frequency of 2.45 GHz) on active carbons not heretofore described were observed. When the carbon was irradiated by microwaves in various experimental runs, small sparks appeared throughout the bed. The intensity of the sparks decreased with time, but isolated sparks were still observed after heating for about 60 min. It was initially thought that the isolated sparks were caused by conducting minerals present in the carbon. Following acid washing of the coconut-shell carbon, a material with very low mineral content was obtained, but the sparking remained unaltered. It is now believed that small semi-crystalline regions exist in commercial active carbons and that these regions are centers for strong absorption of microwave radiation. It was one of our objectives to find means of eliminating or reducing sparking during microwave heating of the carbon bed to assure safe operations.

III. RESULTS AND DISCUSSION

A. Adsorption of TCE on Active Carbon

We determined the adsorption characteristics of TCE vapor on active carbon before engaging in experiments on microwave-assisted detoxification of TCE preadsorbed on carbon in air streams.

Trichloroethylene can be adsorbed on active carbons from the vapor phase, and the extent of this adsorption depends on the nature of the carbon (surface area and composition), the flow rate of the TCE stream, and the temperature of the bed. The adsorbed TCE can be desorbed by a gas stream (e.g., N2 or N2 + moisture) while the bed is simultaneously heated in situ by microwave radiation. Since the sorption/desorption characteristics of the carbon bed have potential application in the detoxification of TCE in an air stream originating either from TCE in a liquid state or in contaminated soil, we decided to experimentally investigate both the sorption and desorption of TCE. (The desorption of TCE and its concomitant detoxification are discussed in Sec. III. B.)
The sorption characteristics of TCE on two types of carbon beds (the Calgon FCA and PCB carbons, see Table 2) were investigated. The first type of carbon (Calgon FCA) contained Cu and Cr catalysts; the second carbon (Calgon PCB) used a standard coconut-shell charcoal with a similar surface area but contained no catalysts. Streams of nitrogen were saturated with TCE by bubbling the gas through liquid TCE at 22°C (vapor pressure of TCE, 7.7 kPa at 22°C). This stream was then passed through a column of glass wool to remove any mist before it was passed through the respective carbon beds for TCE loading. The flow was stopped periodically, and the column was weighed to determine the quantity of TCE that was adsorbed.

The weights gained by the respective carbon beds as a function of time are shown in Fig. 2. The catalyst-containing carbon was shown to have a slightly higher capacity for TCE adsorption than did the coconut-shell carbon. The linearity of the sorption isotherm indicates that the bed did not attain equilibrium in the time allowed for these measurements.

![Graph showing adsorption of Trichloroethylene by active carbons at 22°C](image)

Fig. 2.

Adsorption of Trichloroethylene by Active Carbons at 22°C

B. Oxidative Degradation of TCE over Active Carbon

We performed experiments on oxidative degradation of TCE passed through an active carbon under microwave heating, with dry and moist air flowing over the carbon bed. The setup shown in Fig. 1 was again used.

In Run 107, TCE vapor mixed with moist air was passed through a bed of carbon containing a catalyst while the bed was irradiated with microwave radiation. The exit gas analysis for the run is shown in Table 4. The results
indicate no decomposition of TCE. It was evident from this observation that no evolution of HCl took place. We concluded that TCE does not undergo decomposition or oxidation if it is not preadsorbed on active carbon.

Table 4. Oxidation of Trichloroethylene (Run 107) in Moist Air Stream over Carbon with Cu and Cr Catalysts (Calgon Carbon FCA)

Oxidant: Moist Air, Flow Rate of 100 mL/min Power Setting: 20% (Max = 600 W, 2.45-GHz Frequency)

<table>
<thead>
<tr>
<th>Components</th>
<th>5 min</th>
<th>15 min</th>
<th>30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>1.0 ± 0.3</td>
<td>2.5 ± 0.5</td>
<td>3.4 ± 0.7</td>
</tr>
<tr>
<td>N₂</td>
<td>78.2 ± 1.6</td>
<td>78.1 ± 1.5</td>
<td>69.8 ± 1.4</td>
</tr>
<tr>
<td>CO</td>
<td>4.2 ± 0.4</td>
<td>4.6 ± 0.5</td>
<td>5.6 ± 0.6</td>
</tr>
<tr>
<td>O₂</td>
<td>0.03 ± 0.01</td>
<td>0.03 ± 0.01</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>HCl</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Ar</td>
<td>0.58 ± 0.02</td>
<td>0.67 ± 0.02</td>
<td>0.83 ± 0.03</td>
</tr>
<tr>
<td>CO₂</td>
<td>15.7 ± 0.5</td>
<td>16.7 ± 0.5</td>
<td>20.0 ± 0.6</td>
</tr>
<tr>
<td>C₂H₅Cl₂</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>C₂HCl₃</td>
<td>0.06 ± 0.03</td>
<td>0.3 ± 0.1</td>
<td>0.08 ± 0.04</td>
</tr>
<tr>
<td>(CH₃)₂CO</td>
<td>0.2 ± 0.1</td>
<td>0.2 ± 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Other</td>
<td>ND*</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*In this table and Tables 5 and 7, ND = not determined.

The remaining runs (Nos. 101, 102, 105, 106, 114, 119, 127) were done with TCE preadsorbed on active carbon at room temperature (22°C). In these runs, liquid TCE was placed in one of the bubblers, and N₂ gas was bubbled through it at a flow rate of 100 mL/min; it was then passed for 30 min through the active carbon bed (~6-8 g of carbon packed loosely), which was contained in a quartz tube. After the adsorption step, the sample tube was weighed, and it was assumed that the increase in weight equaled the weight of TCE adsorbed. A flow of dry or moist air (i.e., air saturated with moisture by bubbling house air through a water bubbler at 25°C) was then started. Dry air was used for Runs 101 and 106, and moist air for Runs 102, 105, 114, 119, and 127. The bed was heated by microwave radiation in all cases at the 20% power level. The total reaction time was 60 min. The carbon bed was weighed again after reaction, and the used carbon was analyzed for chlorine. Gas samples were collected from the product gas stream during each run, to be analyzed by mass spectroscopy. A graphical integration of the HCl gas profile vs. time gave an estimate of total HCl formed in any particular reaction. The chloride formed in the NaOH absorber in each run was determined as AgCl to provide yet another estimate of total HCl produced.
Tables 5-7 give the results of mass spectral analyses for typical exit gases. Besides the observed formation of HCl, other chlorine-containing species such as C₂H₂Cl₃, and C₂HCl₃ were observed in the product gas stream. In a few experiments (e.g., Run 102), CH₃Cl was also detected. The other major products formed from oxidative degradation of TCE were CO₂ and CO.

Table 5. Oxidation of Trichloroethylene (Run 102) Preadsorbed on Carbon with Cu and Cr Catalyst (Calgon Carbon FCA)

<table>
<thead>
<tr>
<th>Components</th>
<th>4 min</th>
<th>10 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>0.12 ± 0.06</td>
<td>0.06 ± 0.03</td>
<td>0.10 ± 0.05</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>N₂</td>
<td>38.9 ± 1.4</td>
<td>70.6 ± 1.8</td>
<td>76.2 ± 1.5</td>
<td>77.1 ± 1.5</td>
</tr>
<tr>
<td>CO</td>
<td>6.2 ± 0.6</td>
<td>0.7 ± 0.2</td>
<td>0.5 ± 0.5</td>
<td>0.5 ± 0.5</td>
</tr>
<tr>
<td>O₂</td>
<td>0.05 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.01</td>
<td>< 0.02</td>
</tr>
<tr>
<td>HCl</td>
<td>36.4 ± 3.6</td>
<td>7.1 ± 0.7</td>
<td>2.7 ± 0.3</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Ar</td>
<td>0.45 ± 0.02</td>
<td>0.8 ± 0.1</td>
<td>0.9 ± 0.1</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>CO₂</td>
<td>15.1 ± 0.8</td>
<td>19.8 ± 1.0</td>
<td>19.3 ± 1.0</td>
<td>20.8 ± 1.2</td>
</tr>
<tr>
<td>C₂H₂Cl₂</td>
<td>1.1 ± 0.2</td>
<td>0.25 ± 0.02</td>
<td>0.08 ± 0.02</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>C₂HCl₃</td>
<td>0.4 ± 0.1</td>
<td>0.4 ± 0.1</td>
<td>0.07 ± 0.02</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td>NOₓ a</td>
<td>0.6 ± 0.2</td>
<td>0.06 ± 0.03</td>
<td>0.03 ± 0.02</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>C₂H₂ c</td>
<td>0.2 ± 0.1</td>
<td>0.04 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>ND</td>
</tr>
<tr>
<td>(CH₃)₂CO b</td>
<td>0.5 ± 0.2</td>
<td>0.2 ± 0.1</td>
<td>0.11 ± 0.05</td>
<td>0.3 ± 0.1</td>
</tr>
</tbody>
</table>

a M/e 30 peak could be NOCl.
b The hydrocarbon traces reported in the previous samples include (CH₃)₂CO.
c Small peaks at M/e 73 and M/e 93 for spectra obtained at 4, 10, and 30 min suggest traces of chlorodimethyl silane or chlorotrimethyl silane (mass spectroscopy artifacts).

The data obtained from all detoxification runs were analyzed in terms of (1) initial TCE loading in the carbon bed, (2) calculated chlorine loading in the carbon bed, (3) percent of original chlorine loading in the bed that is retained after reaction (from chlorine analysis of the carbon bed), and (4) percent of original chlorine in gas phase as HCl, C₂H₂Cl₂, and C₂HCl₃. The latter was determined from mass spectroscopic analysis and HCl analysis of the AgCl recovered. The results for this analysis are given in Table 8.

Chlorine material balances for all seven runs are on the low side. Why the material balance is not better is not completely understood. However, this result can be partially explained: the absorption of HCl from gas phase in NaOH may not be complete, at least during the initial test period when the liquid volume...
Table 6. Oxidation of Trichloroethylene (Run 105) Preadsorbed on Carbon without Catalyst (Calgon Carbon PCB)

Oxidant: Moist Air with Flow Rate of 100 mL/min
Power Setting: 20% (Max = 600 W, 2.45-GHz Frequency)

<table>
<thead>
<tr>
<th>Components</th>
<th>Amount, vol %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 min</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.18 ± 0.05</td>
</tr>
<tr>
<td>N₂</td>
<td>96.4 ± 1.0</td>
</tr>
<tr>
<td>CO</td>
<td>trace</td>
</tr>
<tr>
<td>O₂</td>
<td>3.2</td>
</tr>
<tr>
<td>HCl</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Ar</td>
<td>0.16 ± 0.01</td>
</tr>
<tr>
<td>CO₂</td>
<td>< 0.02</td>
</tr>
<tr>
<td>C₂H₂Cl₂</td>
<td>< 0.01</td>
</tr>
<tr>
<td>C₂HCl₃</td>
<td>< 0.01</td>
</tr>
<tr>
<td>M/e = 30</td>
<td>trace</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>trace</td>
</tr>
<tr>
<td>M/e = 73</td>
<td>trace</td>
</tr>
<tr>
<td>M/e = 93</td>
<td>trace</td>
</tr>
<tr>
<td>(CH₅)₂CO</td>
<td>trace</td>
</tr>
</tbody>
</table>

expansion is quite large, and some chlorine may be accounted for as chlorides of Cr and Cu, which were found to be deposited on the glass surface beyond the carbon bed.

The fraction of TCE converted during oxidative degradation in air streams was estimated in the following manner. Since the original TCE is converted into HCl gas and is also absorbed in carbon by reaction, the measure of the TCE converted is derived from the sum of the original chlorine loadings retained in the carbon and those in the gas phase (these appear as HCl and C₂H₂Cl₂ in Table 8). The total conversion of TCE into degradation products, on this basis, turns out to be greater than 80% in all cases. The oxidative degradation of TCE observed was highest with FCA carbon (i.e., catalyst-loaded active carbon) and with moist air.

The detoxification (breaking down to harmless products) of TCE preadsorbed on active carbon in a moist air stream under microwave heating can probably be described by

\[\text{C}_2\text{HCl}_3 + \text{O}_2 + \text{H}_2\text{O} \rightarrow 3\text{HCl} + \text{CO} + \text{CO}_2 \]

This reaction is complex because it involves, in part, catalysis, hydrogen abstraction, and thermal decomposition. Detection of one carbon atom molecule
such as CH$_3$Cl clearly suggests that the TCE molecule is thermally cleaved to produce chlorine, among other products.

C. Temperature of Carbon Bed during Microwave Heating

Since one advantage of microwave-assisted detoxification of TCE over the corresponding catalyzed oxidation of TCE conducted under thermal heating is its low-temperature operation, the temperature of the carbon beds during heating in the microwave oven (Model MDS-81) was measured. The active carbons, with and without the catalyst, have a high dielectric loss constant; consequently, they are expected to absorb microwave energy significantly.

All three types of carbons (base, FCA, and PCB carbons from Calgon Corp.) were subjected to microwave irradiation at 2.45 GHz (maximum power = 600 W). The mass of carbon used in the quartz reactor tube was 6 to 10 g during the measurements.

The temperature was determined in the following manner. After 5 min of continuous microwave irradiation, the temperature of the carbon bed was measured while gas flow through the bed was maintained. This was done by switching off the microwave power after 5 min and quickly inserting a thermocouple.
Table 8. Chlorine Mass Balance Between Reactant and Products of Reaction from Trichloroethylene Oxidation Experiments Conducted with Microwave Heating (20% power level, air flow at 100 mL/min, and reaction time of 60 minutes)

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Fresh Carbon (unused)</th>
<th>Air Flow</th>
<th>TCE<sup>a</sup> Loading (g/g) in Carbon</th>
<th>Calc. Cl Loading (g/g) in Carbon</th>
<th>Cl in<sup>b</sup> Carbon Bed (% of original Cl loading)</th>
<th>Cl as HCl (from AgCl)</th>
<th>Cl as HCl (gas anal.)</th>
<th>Cl as C<sub>2</sub>H<sub>2</sub>Cl<sub>2</sub> (gas anal.)</th>
<th>Cl as C<sub>2</sub>HCl<sub>3</sub> (gas anal.)</th>
<th>Chlorine Accounted For, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>FCA dry</td>
<td>0.217</td>
<td>0.176</td>
<td>37.3</td>
<td>41.3</td>
<td>45.5</td>
<td>4.1</td>
<td>3.9</td>
<td>90.8</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>FCA dry</td>
<td>0.284</td>
<td>0.230</td>
<td>36.0</td>
<td>32.9</td>
<td>37.6</td>
<td>5.2</td>
<td>12.1</td>
<td>90.9</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Base moist Carbon</td>
<td>0.107</td>
<td>0.159</td>
<td>12.5</td>
<td>36.2</td>
<td>42.0</td>
<td>2.2</td>
<td>32.6</td>
<td>89.3</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>PCB moist</td>
<td>0.180</td>
<td>0.146</td>
<td>8.2</td>
<td>36.5</td>
<td>41.8</td>
<td>5.1</td>
<td>29.2</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>FCA moist</td>
<td>0.215</td>
<td>0.174</td>
<td>28.7</td>
<td>52.6</td>
<td>48.7</td>
<td>2.9</td>
<td>3.6</td>
<td>83.9</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>FCA moist</td>
<td>0.268</td>
<td>0.217</td>
<td>29.2</td>
<td>30.9</td>
<td>37.5</td>
<td>6.1</td>
<td>10.6</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>FCA moist</td>
<td>0.168</td>
<td>0.136</td>
<td>35.1</td>
<td>37.6</td>
<td>43.2</td>
<td>3.5</td>
<td>6.2</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

^a As TCE initially preadsorbed on carbon bed.

^b Chlorine retained in the bed after reaction and as HCl, C₂H₂Cl₂, and C₂HCl₃ species in gas stream.
The temperature was then read every 40 seconds. An extrapolation of the temperature-time plot gave an estimate of the bed temperature during irradiation.

All three types of carbon, when irradiated at the 50% power level in an \(\text{N}_2 \) stream at 100 mL/min, attained temperatures close to 425°C. At 20% power level in an \(\text{N}_2 \) stream, the temperature was observed to be \(\sim 330°C \) after 2 min of heating and remained so after longer heating periods.

The temperatures attained by active carbon beds during detoxification experiments in moist air streams were also measured. For FCA carbon with preadsorbed TCE, when subjected to microwave radiation in a dry-air stream at a flow rate of 100 mL/min through the carbon bed (~8 g) at 20% power level, the temperature was \(\sim 425°C \); when moist air was used, the temperature was \(\sim 355°C \). These results can be seen in Fig. 3. Routinely, the values recorded in moist air were 50-100°C lower than those recorded in dry air. This is a key element for safety of the waste-treatment process. If an air and steam mixture flows over the carbon bed, the danger of carbons bursting into flame from temperature overruns may not exist.

![Temperature Curve](image)

Fig. 3. Temperature of TCE Adsorbed on Fresh Carbon after Reaction with Dry and Moist Air at 100 mL/min for 5 min. (Thermocouple introduced into bed. Zero time is the time of power cut off to microwave oven. No gas flow during temperature measurement.)
D. Regeneration of Carbon

In order that the microwave-assisted detoxification process be cost effective, the active carbon (with or without catalyst loading), once used in detoxification of TCE, must be regenerated in the same system. Results from preliminary experiments suggest that this is feasible. During microwave-assisted TCE desorption, some TCE conversion to \(\text{CO}_2 \) and HCl was observed.

Desorption of TCE from the carbon bed was studied in four successive steps. In the first step, dry nitrogen was passed through the TCE loaded bed while the bed was subjected to microwave irradiation (2.45-GHz frequency, 25% power level). In the second step, dry nitrogen was passed through the bed, and the power was increased to the 50% level. In the third step, the nitrogen was presaturated with water at 22°C (partial pressure of 2.57 kPa) and passed through the bed with a power setting of 25%. In the fourth step, nitrogen was presaturated with water at 40°C (partial pressure of 7.19 kPa) with a power setting of 50%. The gas flow rate for the studies was maintained at 150 mL/min for 30 minutes.

During the desorption/detoxification step, the weight loss of the bed was determined after each step, and any HCl generated was determined by monitoring the chloride content of a 1.0 N NaOH solution that was used to scrub the exit gases. The results of the four-step study, shown in Table 9, indicate that HCl is

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Active Carbon with Catalyst</th>
<th>Active Carbon without Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCE Mass Converted to HCl, wt %</td>
<td>TCE Mass Converted to HCl, wt %</td>
</tr>
<tr>
<td>I</td>
<td>50.9</td>
<td>14.4</td>
</tr>
<tr>
<td>II</td>
<td>9.9</td>
<td>1.7</td>
</tr>
<tr>
<td>III</td>
<td>3.4</td>
<td>9.5</td>
</tr>
<tr>
<td>IV</td>
<td>15.8</td>
<td>14.3</td>
</tr>
<tr>
<td>Total</td>
<td>80.0</td>
<td>39.9</td>
</tr>
</tbody>
</table>

*The amounts of TCE initially adsorbed were 0.168 g and 0.154 g on the catalyst-free and catalyst-containing beds, respectively.

\(\text{b} \) Vapor pressure is 2.57 kPa.

\(\text{c} \) Vapor pressure is 7.19 kPa.
formed in each step, even in dry nitrogen. The presence of HCl in the exit gas indicates that TCE is being, in part, converted to HCl. Since the active carbons have only \(\sim 0.6\% \) hydrogen and the total HCl produced far exceeds this amount, the TCE molecule must be decomposing to liberate HCl and free chlorine. This free chlorine probably reacts with the carbon bed since the chlorine in carbon is difficult to remove.

The results in Table 9 also indicate that, under in situ heating by microwave radiation, TCE and the detoxification products are more readily desorbed from a catalyst-free bed than from one containing a catalyst. Separate experiments indicated that chlorine retention in the reacted or used carbon adversely affected the detoxification or oxidative capacity of carbon. This effect is shown in the curves of Fig. 4 and the results of Table 10. It is not easy to remove the last traces of chlorine from used carbon. However, simple boiling with water reduces the chlorine content from 6.2 to 1.5 wt %. Passing water vapor through the used carbon bed (under microwave irradiation) removed only one-third of the chlorine. This may be due to the low concentration of water vapor (determined by saturated vapor pressure at 25°C) in the air stream. If we use a higher concentration of water vapor (e.g., steam plus air), we anticipate that regeneration of carbon would be more successful.

![Figure 4](image_url)

Fig. 4. Effect of Chlorine Content of Carbon on the Decomposition of TCE
Table 10. Moist Air Oxidation of TCE Adsorbed on Used Carbon (FCA Variety)* under Microwave Heating at 20% Power Level for 60 Minutes with Moist Air Flow

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Initial Chlorine, wt %</th>
<th>TCE Adsorbed, g/g</th>
<th>Total Chlorine Loading, g/g</th>
<th>Cl in Carbon Bed</th>
<th>Cl in HCl as AgCl(^c) (from gas anal.)</th>
<th>Cl in C(_2)H(_2)Cl(_2) (from gas anal.)</th>
<th>Chlorine Accounted For, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>5.1</td>
<td>0.198</td>
<td>0.212</td>
<td>26.2</td>
<td>16.6</td>
<td>19.7</td>
<td>27.3</td>
</tr>
<tr>
<td>118</td>
<td>3.5</td>
<td>0.268</td>
<td>0.252</td>
<td>20.7</td>
<td>21.3</td>
<td>19.3</td>
<td>3.3</td>
</tr>
<tr>
<td>121</td>
<td>2.5</td>
<td>0.201</td>
<td>0.187</td>
<td>31.4</td>
<td>31.9</td>
<td>36.5</td>
<td>4.2</td>
</tr>
</tbody>
</table>

*Variable chlorine content obtained by prior treatment (moist N\(_2\) for 30 min at 20% power, washing in 90°C water).

*Equals initial chlorine in carbon plus chlorine in TCE.

*Chlorine in HCl from gas analysis arbitrarily chosen for mass balance.
IV. DESIGN OF 6-kW MICROWAVE REACTOR

A microwave heating assembly was designed, procured, and fabricated. This assembly consists of (1) a microwave generator (Cobler Electronics) capable of providing 6-kW adjustable power at 2.45 GHz with 16-kW power input, (2) a microwave cavity (2 x 2 x 4 ft) fabricated from cold-rolled steel and equipped with a hinged door with a choke-screen/glass window, (3) an infrared temperature sensor operable at a 250-800°C temperature range, (4) quartz tubing, which has 48-mm OD and 72-cm long sections with quartz standard taper joints, (5) the required connectors, tuners, wave guide sections, flanges, and (6) a microwave power meter. The design of the assembly is shown in Fig. 5. The facility is not yet operational in the laboratory because of funding cuts. The installation and testing of the assembly will be conducted as soon as funds become available.

![Diagram of Microwave Heating Assembly](image-url)

Fig. 5. Microwave Heating Assembly

V. CONCLUSIONS

Our experimental study has established that TCE in a vapor stream can be adsorbed on an active carbon bed (loaded with Cu and Cr catalysts) of adequate length at room temperature. On heating the bed with microwave radiation to
moderate temperatures (<400°C) while a moist air stream is passed through it, the TCE is readily detoxified, i.e., converted into HCl, CO, CO₂, and C₂H₂Cl₂. Conversion higher than 80 wt % has been observed.

The mass flow rate of oxygen should be such that the exit streams do not contain any free oxygen. This precaution will assure safety and avoid fire hazards in any temperature overruns. Also, if the moisture content in the air stream is kept high (e.g., 20%), the risks for temperature overruns leading to fire are avoided.

Chlorine removal from the active carbon is critical to the regeneration of used carbon. Results from preliminary experiments have suggested that regeneration of used active carbon is possible. The used carbon can be conveniently regenerated by microwave heating while moist N₂ (or better still, steam mixed with an air stream) is passed through the bed. Several Japanese patents¹⁴ report that active carbons can be regenerated using microwave radiation in the frequency range of 0.9 to 4 GHz. The temperature attained during regeneration is claimed to be in the range from 450 to 550°C.

Our research has laid the groundwork for a successful demonstration of new technologies for detoxifying liquid hazardous organic wastes such as TCE, tetrachloroethylene, trichloroethane, and polychlorobiphenyls. The proposed new technology may serve the dual purpose of detoxifying the TCE and regenerating the carbons. Our preliminary cost calculations show that the TCE removal cost from vapor will be ~$1.20 per pound of TCE, and the carbon regeneration cost will be ~$0.18 per pound of carbon for the proposed process.

Another concept for detoxifying halohydrocarbons would utilize microwave-assisted fluidized-bed combustion (using suitable ceramic, e.g., yttria pellets or granules) at 600-700°C in a single-step flow process. This is a cost-effective technology worth considering.

REFERENCES

Distribution for ANL-87-20

Internal:

C. S. Abrams K. M. Myles R. Varma
S. S. Borys S. P. Nandi D. R. Vissers
D. C. Cleaveland J. B. Rajan ANL Contract File
J. E. Harmon N. F. Sather ANL Libraries
R. Kumar M. J. Steindler TIS Files (5)
D. Michalek C. E. Till

External:

DOE-TIC, for distribution per UC-69 (57)
Manager, Chicago Operations Office, DOE
W. Griffing, DOE-CH
T. Joseph, DOE-CH
G. Marshall, DOE-CH

Chemical Technology Division Review Committee Members:

S. Baron, Brookhaven National Lab., Upton, NY
T. L. Brown, U. of Illinois, Urbana, IL
L. Newman, Brookhaven National Lab., Upton, NY
J. B. Wagner, Jr., Arizona State U., Tempe, AZ
R. G. Wymer, Oak Ridge National Lab., Oak Ridge, TN
R. E. Adams, Oak Ridge National Laboratory, Oak Ridge, TN
T. Allen, Westinghouse Materials Company of Ohio, Cincinnati, OH
C. Allen, Westinghouse Hanford, Richland, WA
T. D. Anderson, USDOE, Germantown, MD
R. E. Anderson, Goodyear Atomic Corporation, Piketon, OH
B. Andreson, Lawrence Livermore National Laboratory, Livermore, CA
I. Aoki, USDOE, Idaho Operations Office, Idaho Falls, ID
F. L. Ashworth, Rockwell Hanford Operations, Richland, WA
J. Bailey, Oak Ridge, TN
L. Barrett, USDOE, Washington, DC
R. Batig, Savannah River Plant, Aiken, SC
H. F. Bauman, Oak Ridge National Laboratory, Oak Ridge, TN
R. A. Benson, Los Alamos National Laboratory, Los Alamos, NM
R. K. Blauvelt, Monsanto Research Corporation, Mound Facility, Miamisburg, OH
J. R. Boland, USDOE, Nevada Operations Office, Las Vegas, NV
L. Borduin, Los Alamos National Laboratory, Los Alamos, NM
R. J. Borkowski, Oak Ridge National Laboratory, Oak Ridge, TN
L. Bracken, USDOE, Richland Operations Office, Richland, WA
R. T. A. Bredderman, USDOE, San Francisco Operations Office, Oakland, CA
J. Bresson, USDOE, Albuquerque Operations Office, Albuquerque, NM
D. S. Browning, USDOE, Savannah River Operations Office, Aiken, SC
T. Burke, New Jersey State Department of Health, Trenton, NJ
R. S. Burns, Oak Ridge National Laboratory, Oak Ridge, TN
D. W. Burton, Oak Ridge National Laboratory, Oak Ridge, TN
T. R. Butz, Oak Ridge, TN
A. A. Camacho, USDOE, Germantown, WV
D. B. Campbell, Oak Ridge National Laboratory, Oak Ridge, TN
C. L. Carlson, Lawrence Livermore National Laboratory, Livermore, CA
M. J. Carricato, OASD/MINL (I-EP), Washington, DC
R. J. Cash, Westinghouse Hanford, Richland, WA
S. A. Castle, Westinghouse Materials Company of Ohio, Cincinnati, OH
Central Research Library, Oak Ridge National Laboratory, Oak Ridge, TN
K. A. Chacey, USDOE, Savannah River Operations Office, Aiken, SC
T. C. Chee, USDOE, Defense Waste and Transportation Management, Germantown, MD
B. Church, USDOE, Nevada Operations Office, Las Vegas, NV
M. Clearwater, EG&G Idaho, Inc., Idaho Falls, ID
J. Collins, USDOE, Richland Operations Office, Richland, WA
R. B. Craig, Oak Ridge National Laboratory, Oak Ridge, TN
R. M. Cranwell, Sandia National Laboratory, Albuquerque, NM
A. G. Croff, Oak Ridge National Laboratory, Oak Ridge, TN
J. T. D'Ambrosia, USDOE, Defense Waste and Byproducts Manage., Germantown, MD
G. H. Daly, USDOE, Defense Waste and Byproducts Management, Germantown, MD
C. J. Dankowski, USDOE, San Francisco Operations Office, Oakland, CA
H. B. Davidson, Oak Ridge National Laboratory, Oak Ridge, TN
K. D. Davis, EG&G Idaho, Inc., Idaho Falls, ID
R. M. Davis, Oak Ridge, TN
M. P. DeLozier, Oak Ridge, TN
P. T. Dickman, REECO, Mercury, NV
J. E. Dieckhoner, USDOE, Germantown, MD
Document Reference Section, Oak Ridge National Laboratory, Oak Ridge, TN
C. Dwight, USDOE, Idaho Operations Office, Idaho Falls, ID
C. P. East, Oak Ridge, TN
B. M. Eisenhower, Oak Ridge National Laboratory, Oak Ridge, TN
L. Emma, Brookhaven National Laboratory, Upton, NY
J. L. Epler, Oak Ridge, TN
L. D. Eyman, Oak Ridge National Laboratory, Oak Ridge, TN
A. C. Ficklin, Rockwell International, Golden, CO
R. B. Fitts, Oak Ridge National Laboratory, Oak Ridge, TN
P. Fitzsimmons, USDOE, Nevada Operations Office, Las Vegas, NV
G. F. Flanagan, Oak Ridge National Laboratory, Oak Ridge, TN
F. T. Fong, USDOE, San Francisco Operations Office, Oakland, CA
C. S. Fore, Oak Ridge National Laboratory, Oak Ridge, TN
E. C. Fox, Oak Ridge National Laboratory, Oak Ridge, TN
P. J. Franco, Oak Ridge National Laboratory, Oak Ridge, TN
W. A. Frankhauser, USDOE, Germantown, MD
W. Freeman, Fermi National Accelerator Laboratory, Batavia, IL
R. Garde, Los Alamos National Laboratory, Los Alamos, NM
K. Gentry, Eagle-Picher Industries, Inc., Joplin, MO
R. K. Genung, Oak Ridge National Laboratory, Oak Ridge, TN
C. H. George, USDOE, Defense Waste and Byproducts Manage., Germantown, MD
L. Goldell, USDOE, Savannah River Operations Office, Aiken, SC
G. S. Goldstein, Denver, CO
P. D. Grimm, USDOE, Germantown, MD
W. R. Hansen, Los Alamos National Laboratory, Los Alamos, NM
HAZWRAP Library, Oak Ridge National Laboratory, Oak Ridge, TN (10)
W. F. Heine, Rockwell Hanford Operations, Richland, WA
B. D. Helton, E. I. Du Pont de Nemours and Company, Aiken, SC
S. Herron, Oak Ridge National Laboratory, Oak Ridge, TN
R. K. Heusser, USDOE, Germantown, MD
C. C. Hill, Oak Ridge, TN
T. B. Hindman, USDOE, Defense Waste and Byproducts Management, Germantown, MD
D. Van Hoesen, Oak Ridge National Laboratory, Oak Ridge, TN
F. J. Homan, Oak Ridge National Laboratory, Oak Ridge, TN
P. Hooper, Feed Materials Production Center, Cincinnati, OH
E. K. Hunter, USDOE, Idaho Operations Office, Idaho Falls, ID
E. A. Jennrich, EG&G Idaho, Inc., Idaho Falls, ID
I. Jeter, Oak Ridge, TN
R. L. Jolley, Oak Ridge National Laboratory, Oak Ridge, TN
L. S. Jones, Oak Ridge, TN
M. A. Kane, Oak Ridge, TN
J. Katz, USDOE, Lawrence Livermore National Laboratory, Livermore, CA
E. W. Kendall, REECO, Mercury, NV
C. M. Kendrick, Oak Ridge National Laboratory, Oak Ridge, TN
A. F. Kluk, USDOE, Germantown, MD
D. Krenz, USDOE, Albuquerque Operations Office, Albuquerque, NM
P. Krupin, USDOE, Richland Operations Office, Richland, WA
Laboratory Records, ORNL-RC, Oak Ridge National Laboratory, Oak Ridge, TN (2)
Laboratory Records Department, Oak Ridge National Laboratory, Oak Ridge, TN
P. E. Lamoreaux, Environ. Inst. for Waste Manage. Studies, Tuscaloosa, AL
B. Lawrence, Savannah River Laboratory, Aiken, SC
J. C. Lehr, USDOE, Germantown, MD
J. A. Logan, EG&G Idaho, Inc., Idaho Falls, ID
L. W. Long, Oak Ridge National Laboratory, Oak Ridge, TN
J. Lougheed, EG&G Idaho, Inc., Idaho Falls, ID
J. R. Loyd, Oak Ridge National Laboratory, Oak Ridge, TN
D. Lund, USDOE, Albuquerque Operations Office, Albuquerque, NM
J. Ellman Lyyde, USDOE, Germantown, MD
S. P. Mathur, USDOE, Germantown, MD
J. F. McBryer, Oak Ridge National Laboratory, Oak Ridge, TN
D. W. McCune, Oak Ridge, TN
C. P. McGinnis, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN
D. McGrath, REECO, Mercury, NV
T. J. McLaughlin, Battelle Pacific Northwest Laboratories, Richland, WA
J. H. McMenamin, Mason and Hanger - Silas Mason Co., Amarillo, TX
L. E. McNeese, Oak Ridge National Laboratory, Oak Ridge, TN
L. Mezga, Oak Ridge National Laboratory, Oak Ridge, TN
G. Millard, Sandia National Laboratory, Albuquerque, NM
C. E. Miller, USDOE, Richland Operations Office, Richland, WA
M. L. Mullins, Monsanto Company, St. Louis, MO
T. E. Myrick, Oak Ridge National Laboratory, Oak Ridge, TN
J. Napier, Oak Ridge, TN
G. Nelson, USDOE, Idaho Operations Office, Idaho Falls, ID
D. D. Nishimoto, EG&G Idaho, Inc., Idaho Falls, ID
M. O'Rear, USDOE, Savannah River Operations Office, Aiken, SC
R. L. Oelrich, Westinghouse Materials Company of Ohio, Cincinnati, OH
Office of Assist. Manager Energy R&D, USDOE, Oak Ridge Operations Office, Oak Ridge, TN
Office of Scientific and Technical Information, USDOE, Oak Ridge, TN
W. W. Owens, Oak Ridge National Laboratory, Oak Ridge, TN
F. Parker, Vanderbilt University, Nashville, TN
J. C. Parker, Oak Ridge National Laboratory, Oak Ridge, TN
G. Paulson, Alexandria, VA
T. Perry, Oak Ridge National Laboratory, Oak Ridge, TN
J. L. Petty, Oak Ridge National Laboratory, Oak Ridge, TN
T. Poff, Westinghouse Corporation, Cincinnati, OH
A. L. Porell, Oak Ridge National Laboratory, Oak Ridge, TN
A. D. Rodgers, EG&G Idaho, Inc., Idaho Falls, ID
C. Rofer, Los Alamos National Laboratory, Los Alamos, NM
J. G. Rogers, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, TN
N. E. Rothermich, Oak Ridge, TN
T. H. Row, Oak Ridge National Laboratory, Oak Ridge, TN
J. J. Russell, Oak Ridge, TN
W. W. Schulz, Rockwell Hanford Operations, Richland, WA
J. Shadel, USDOE, Richland Operations Office SMD, Richland, WA
F. E. Sharples, Oak Ridge National Laboratory, Oak Ridge, TN
K. Siegfriedt, Sandia National Laboratories, Livermore, CA
S. C. Slate, Battelle Pacific Northwest Laboratories, Richland, WA
C. Soden, USDOE, Albuquerque Operations Office, Albuquerque, NM
J. E. Solecki, USDOE, Idaho Operations Office, Idaho Falls, ID
M. Stephenson, Oak Ridge, TN
R. K. Stewart, USDOE, Richland Operations Office, Richland, WA
T. L. Stewart, Pacific Northwest Laboratories, Richland, WA
D. H. Stitt, Oak Ridge National Laboratory, Oak Ridge, TN
S. Suffern, Oak Ridge National Laboratory, Oak Ridge, TN
E. R. Taylor, Lawrence Livermore National Laboratory, Livermore, CA
W. Travis, USDOE, Nevada Operations Office, Las Vegas, NV
P. J. Valenti, West Valley (Westinghouse), West Valley, NY
J. L. Warren, Los Alamos National Laboratory, Los Alamos, NM
R. E. Watts, Westinghouse Materials Company of Ohio, Cincinnati, OH
R. B. Weidner, Westinghouse Materials Company of Ohio, Cincinnati, OH
A. Weisenfeld, USDOE, Germantown, MD
J. White, USDOE, Richland Operations Office, Richland, WA
D. Whitehead, Oak Ridge, TN
E. L. Wilhite, E. I. du Pont de Nemours & Co., Savannah River Lab., Aiken, SC
J. D. Williams, Oak Ridge, TN
J. L. Willimas, Paducah Gaseous Diffusion Plant, Paducah, KY
W. A. Williams, U.S. Environmental Protection Agency, Washington, DC