INDIAN POINT NUCLEAR POWER STATION: VERIFICATION
 ANALYSIS OF COUNTY RADIOLOGICAL EMERGENCY-RESPONSE PLANS

by
J. Nagle and R. Whitfield

Energy and Environmental Systems Division Integrated Assessments and Policy Evaluation Group

May 1983

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Unitud States Government or any agency thereof. The views and opinions of authors expressed herein do not nec.issarily state or reflect those of the United States Government or any agency thereof.
work sponsored by
FEDERAL EMERGENCY MANAGEMENT AGENCY
Region II

CONTENTS

ACKNOWLEDGMENTS v
l INTRODUCTION 1
1.1 Purpose and Scope of Analysis 1
1.2 Selection of Samples L
1.3 Surveying Procedures 2
1.4 Significance of the Results. 3
2 RESULTS OF THE SURVEY 5
2.1 B^{-}- Companies 5
2.2 K ption Centers 10
2.3 Congregate Care Centers 14
2.4 Public Schools within the EPZ 18
2.5 Nonpublic Schools, Nursery Schools, and Day Care Centers within the EPZ 21
2.6 School Districts within the EPZ 22
2.7 Hospitals and Nursing Homes within the EPZ 28
2.8 Hospitals Capable of Treating Radiologically Contaminated Patients 32
2.9 Ambulances. 37
2.10 Personnel Monitoring Centers 41
APPENDIX A: QUESTIONNAIRES USED IN THE SURVEY 43
APPENDIX B: CONFIDENCE INTERVALS 77
APPENDIX C: INDIVIDUAL AND CUMULATIVE PROBABILITIES FOR THE HYPERGEOMETRIC DISTRIBUTION. 85
TABLES
1 Population and Sample Sizes 4
2 Results of the Survey of Bus Companies ϵ
3 Results of the Survey of Reception Centers. 11
4 Results of the Survey of Congregate Care Centers 15
5 Results of the Survey of Public Schools within the EPZ 19

TABLES (Cont'd)

6 Results of the Survey of Nonpublic Schools, Nursery Schools, and Day Care Centers within the EPZ. 23
7 Results of the Survey of School Districts within the EPZ 26
8 Results of the Survey of Hospitals and Nursing Homes to be Evacuated 29
9 Results of the Survey of Hospitals Capable of Treating Radiologically Contaminated Patients 33
10 Results of the Survey of Ambulance Companies 38
FIGURES
1 Choice of Confidence Intervals for the Bus Company Category -- Low Proportion Observed 82
2 Choice of Confidence Intervals for the Bus Company Category -- High Proportion Observed 82
3 Choice of Confidence Intervals for the Ambulance Companies Category 83

This study was prepared for the Federal Emergency Management Agency, Region II. The direction and support provided by Roger B. Kowieski, Chairman of the Regional Assistance Committee for Region II, is gratefully acknowledged. Stewart M. Glass, Regional Counsel for Region II, also played a key role in the development of the report.

Many Argonne National Laboratory personnel were involved in the verification effort. Thomas E. Baldwin was instrumental in managing Argonne's work with Region II staff and reviewing the report. Susan Barisas, Karen Guziel, Donald Hulet, Yehuda Klein, Elliott Levine, and Dee Wernette made the telephone calls that were the basis of the stidy. Mark Jusko assisted in the statistical analysis of the results. Kenneth Lerner reviewed and commented on an earlier draft of this report. Jacqueline Dzingel and the entire word processing staff of the Energy and Environmental Systems Division typed and retyped earlier drafts of this report. The report was edited by Donna Kenski.

Deficiencies or errors that remain in spite of the assistance of these individuals are the responsibility of the authors.

1 INTRODUCTION

1.1 PURPOSE AND SCOPE OF THE ANALYSIS

This report was developed as a management tool for use by the Federal Emergency Managenent Agency (FEMA) Region lI staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. Nine categories of emergency response organizations were contacted:

- Bus companies,
- Reception centers,
- Congregate care centers,
- Public schools within the 10 -mile plume exposure emergency planning zone (EPZ) to be evacuated,
- Nonpublic schools, nursery schools, and day care centers within the EPZ to be evacuated,
- School districts within the EPZ to be evacuated,
- Hospitals and nursing homes within the EPZ to be evacuated,
- Hospitals capable of treating radiologically contaminated patients, and
- Ambulance companies.

This report presents the results of responses obtained from this survey of county emergency response organizations.

Time, manpower, and financial constraints prohibited a comprehensive survey of all the emergency response organizations with responsibilities assigned in the CRERPs. Therefore emergency response organizations within the nine categories listed above were sampled randomly instead. Emergency response organizations designated in CRERPs that were available on January 19, 1983, were inventoried and lists of organizations to be contacted by telephone were then randomly sampled from these inventories.

At the time of the verification analysis, Rockland County had not adopted a radiological emergency preparedness plan. For this reason, Rockland County was not included in this study.

1.2 SELECTION OF SAMPLES

The following guidelines were used to determine the size of the sample taken for each category of emergency response organization within each county*:

No. of Organizations	Sample size
1	1
$2-4$	2
$5-6$	3
$7-20$	4
$21-54$	5
55 and up	10% of organizations
	(rounded to nearest
integer)	

These guidelines were constructed with the help of FEMA Region II staff. The guidelines were influenced by the time, manpower, and financial constraints mentioned above. As the number of organizations in a category decreases, a larger percentage of the total must be included in the sample to adequately estimate the parameters (variables) under study. Accordingly, the proportion of organizations sampled ranges from 100% (where the organizations of interest number two or less) to 10% (where the organizations of interest number 50 or greater). To avoid introducing undue bias into the sample, a simple randomizing technique was used to select the emergency response organizations to be sampled.

1.3 SURVEYING PROCEDURES

The questionnaires used in the verification analysis were developed by FEMA Region II staff with the assistance of personnel from Argonne National Laboratory. These questionnaires can be found in Appendix A. Argonne National Laboratory personnel telephoned each sampled emergency response organization and queried the person in charge of the organization or that persun's representative.

[^0]Of the 98 emergency response organizations randomly selected to be sampled, 95 responded to the survey. The other emergency response organizations either declined to answer any questions, were not available for comment, or did not respond for other reasons.

1.4 SIGNIFICANCE OF THE RESULTS

Table l summarizes the population (number of organizations in a category) and sample sizes for the study. The statistical significance of the responses to selected questions is included in Sec. 2. Confidence intervals and confidence levels are calculated for responses that were considered to be the most important, including responses on the training of emergency response personnel, the level of involvement with state and county authorities, and other particulaily relevant topics. For example, where one out of five schools sampled from a population of 36 schools (see Table 1 and Tabie f, question 4 for Westchester County) had been trained in evacuation procedures, the confidence interval is the range 0.03 to 0.56 for ine proportion trained, and the confidence level is 89%. A more detailed description of the confidence intervals and their selection is included in Appendix B.

Table 1 Population and Sample Sizes

Facility Type	Hestchester Co.			Putnam Co.			Orange Co.			All Counties		
	$\begin{gathered} \text { Population } \\ \text { size } \end{gathered}$	Sample Size	$\begin{aligned} & \text { Completed } \\ & \text { Surveys }{ }^{\text {a }} \end{aligned}$	$\begin{aligned} & \text { Population } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { Sfze } \end{gathered}$	Completed Surveys ${ }^{\text {a }}$	$\begin{gathered} \text { Population } \\ \text { slze } \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Completed Surveys ${ }^{\text {a }}$	$\begin{aligned} & \text { Population } \\ & \text { Size } \end{aligned}$	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$	Completed Surveya ${ }^{\text {a }}$
Bus companies	7	7	5	5	5	3	3	3	1	15	15	9
Reception centers	39	5	4	6	3	3	8	4	4	53	12	11
Congregate care relocation centers	77	8	\&	30	5	5	12	4	4	119	17	17
Public achools within the EPZ	41	5	4	4	2	2	5	3	3	50	10	9
Nonpublic schools, nursery schools, and day care centers within the EPZ	36	5	5	3	2	2	2	2	2	41	9	9
School diatricts within the EPZ	B	4	4	3	2	2	2	2	2	13	8	8
Hospitals and nursing howeg Within the EP2	20	4	4	2	2	2	1	1	1	23	7	7
Hospitals treating radiologically contaminated patents	3	3	3	1	1	1	2	2	2	6	6	6
Ambulance compantes	51	5	4	11	4	4	27	5	4	89	14	12

Fie number of surveys actually completed is smaller than the number in the sample because some organizations elected not to reapond to queationa over the telephone or could not be contacted despite repeated attempts,

2 RESULTS OF THE SURVEY

Of the total 409 emergency response organizations with responsibilities assigned in the CRERPs, 98 were included in the sample. However, the number of surveys actually completed is smaller than the number of emergency organizations selected for the sample because some organizations elected not to respond to questions over the telephone or could not be contacted despite repeated attempts. The analysis that follows is based on the 88 completed interviews.

The following results are organized by type of emergency response organization. For each type of organization, a narrative summary presents results for the three counties combined and then for each county separately. Following this narrative is a table that contains the numerical results of each question asked.

2.1 BUS COMPANIES

Nine bus companies -- 60% of the companies listed in the CRERPS -responded to the survey. Of these nine companies,

- Seven (78\%) had been contacted by tae state or county concerning the CRERP,
- Five (55\%) had garages located within the EPZ,
- One (11%) had at least one driver who had been trained in radiological emergency response preparedness, and
- Two (22\%) had such training scheduled.

Table 2 lists the numerical results of the bus company survey.
Orange County

Three bus companies in Orange County are designated to assist in an evacuation, and all three were included in the sample. The CRERP, however, is organized so that one company is responsible for contacting the other two companies. The survey respondent at the company responsible for contacting the other two companies was not aware of this system. Argonne personnel were unable to contact the other two companies. The one company that was questioned had been contacted by the county concerning the CRERP. Personnel at this company had not received any training for radiological emergency response preparedness, but such training was scheduled. The company did not have information on evacuee pick-up locations or dosimeters available for drivers.

Table 2 Results of the Survey of Bus Companies

2a. How many buses do you have in your garage?

| | Orange | Putnam | Westchester | | All Counties |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| Range | 65 | $17-163$ | $10-250$ | $10-250$ | |
| Mean | 65 | 78 | 84 | 80 | |

2b. How many vans do you have in your garage?

	Orange	Putnam	Westchester	All Counties
Range	2	8-20	0-23	0-23
Mean	2	16	12	12

3a. On an average day, how many buses do you have in working condition?

Orange	Putnam	Westchester		All Counties
63	$15-147$	$10-225$		$10-225$
63	70	80		75

3b. On an average day, how many vans do you have in working condition? Orange Putnam Westchester All Counties
Range
2 8-18
Mean
214
$0-18$
11
0-18
Range
63
70
75

$$
14
$$

11

4a. What is the average capacity of the buses that you have in working condition on an average day?

	Orange	Putnam	Westchester	All Counties
Range	43	60-77	42-66	42-77
Mean	43	67	58	59

4b. What is the average capacity of the vans that you have in working condition on an average day?

	Orange		Putnam	Westchester		All Counties
Range	8		$7-15$		$12-16$	
Mean	8	11	15	16		12

5. How many of your vehicles are equipped to transport handicapped, nonambulatory individuals?

	Orange	Putnam	Westchester	All Counties
Range	0	2-9	0-86	0-86
Mean	0	5	---	-

Table 2 (Cont'd)
6. How many 1 icensed bus and van drivers do you employ?

	Orange	Putnam	Westchester		All Counties	
Range	80	$25-225$		$30-316$		$25-316$
Mean	80	107		115		108

7. How many vehicles do you use on an ordinary daily basis when schools are in session?

	Orange	Putnam	Westchester		All Counties
Range	61	$23-180$		$22-220$	
Mean	61	92		80	82

8. How many vehicles do you use on an ordinary daily besis when schools are not in session? (weekends, vacation, summer, etc.) Orange Putnam Westchester All Counties

Range
13
Mean
13
$0-13 \quad 0-196$
$0-196$

9. Approximately how many vehicles are equipped with mobile commaications equipment?

Orange Putnam Westchester All Counties

Range
67
Mean
67
$8-183$
0-118
$0-183$
58
10. Have you or someone in your organization been contacted by state or county representatives to discuss your role in the Indian Point Radiological Emergency Response Plan?

Orange	Putnam	Westchester		All Counties
1^{a}	2^{b}	4^{c}	7^{d}	
0	0	1	1	
0	1	0	1	

10a. If yes, when was the company contacted regarding the plan? Orange Putnam Westchester All Counties

1983	0	1	0	1
1982	1	1	2	4
1981	0	0	1	1
Don't kncw	0	0	2	2

Table 2 (Cont'd)
12. Who would contact you and tell you to deploy your vehicles in the event. an evacuation became necessary?

	Orange	Putnam	Westchester	All Counties
County	'	0	3	3
Superintendent of schools	1	2	2	5
Civil defense	O	1	0	1

13. How would you be contacted? (n-g., telephone, radio, etc.) Orange Putnam Westchester All Counties

Telephone
$0 \quad 2$
25
5
7
Don't know
$1 \quad 1$
0
2
14. How would you notify your vehicle drivers to report to the garage in the event they were needed for an evacuation? ${ }^{\text {e }}$

Orange Putnam Westchester All Counties

Telephone	1	3	4	8
Radio	0	1	3	4

15. Is your garage located within the 10 -mile Emergency Planning Zone? Orange Putnam Westchester All Counties

Yes	1 f	1	3	5^{f}
No	1 F	2	2	5^{f}

16. If the garage is witiin the EPZ, how will you communcate with your drivers if there is a total evacuation and your dispatcher must leave the garage?

Orange Putnam Westchester All Counties
Radio
$0 \quad 0$
0
3
3
Don't know
$0 \quad 1$
$1 \quad 0$
1
Move headquarters
1
$0 \quad 0$
1
17. Do you have maps or lists of evacuee pick-up locations available for distribution to your vehicle drivers?

Orange	Putnam	Westchester	Ail Counties
0^{8}	1^{h}	4^{c}	5^{1}
1	2	1	4

Table 2 (Cont'd)
18. How many of your vehicie drivers have received formal training in radiological emergency response preparedness (including dosimetry, evacuation routes, etc:)?

$;$	Orange	Putnam		Westchester	
	0^{g}		0^{j}		1^{k}

19. Are your vehicle drivers scheduled to receive radiological emergency response training in the future?

	Orange	Putnam		Westchester	
All Counties					
Yes	1	1	0	2	
No	0	2	5	7	

20. How many dosimeters do you have available for distribution to you: drivers?

	Orange		Putnam		Westchester	
Une dosineter Counties						
No dosimeters	0	0		1	1	
Don't know	1	3	3	7		
D	0	0	1	1		

[^1]
Putnam County

Of the five bus companies chosen to be surveyed in Putnam County, the respondent at one refused to answer questions without compensation and surveyors ware not able to contact a second company. Two of the remaining companies tiat completed the survey had been contacted by the state or county concerning the CRERP. None of these three companies had personnel trained in radiological emergency response preparedness, but one indicated that such training sas scheduled. One company had information on evacuee pick-up locations s ailable for drivers. No companies bad dosimeters available for drivers.

Westchester County

Seven bus companies in Westchester County were included in the CRERP and all were selected to be surveyed. Argonne surveyors were unable to contact one company, and another company refused to answer the questionnaire. Four of the five companies that completed the survey had been contacted by the state or county concerning the CRERP. The survey indicated that one driver in one company had been trained in radjological emergency response preparedness. No training sessions were scheduled for any company. Fnur companies had information on evacuee pick-up locations available for drivers, and one had dosimeters available for drivers.

2.2 RECEPTION CENTERS

Twelve of the 53 facilities designated to serve as reception centers were included in the sample, and 11 responded to the survey. of these facilities,

- All (100\%) were schools, and
- Seven (78%) had plans for students if the buildings were to be used as reception centers.

Nine (82\%) of the respondents were aware that their buildings were designated as reception centers, but none knew who would be in charge of reception center operations. Table 3 lists the questions and numerical results of the reception center survey.

Orange County

Respondents at all four of the schools sampled in Orange County were aware that their buildings had been designated as reception centers. One respondent knew who would notify the school if it became necessary to activate the building as a receptiol center. None of the respondents knew who would be in charge of reception center operations. Three of the schools had plans (e.g., dismissal of school) for the students if the taildings were to be used as reception centers.

Table 3 Results of the Survey of Reception Centers

1. Are you aware that your building is designated as a Reception Center in the Indian Point Radiological Emergency Response Plan? $\begin{array}{cccc}\text { Orange } & \frac{\text { Putnam }}{4^{\mathrm{a}}} & 3^{\mathrm{b}} & \\ & 0 & 2^{\mathrm{c}} & \text { Westchester } \\ 0 & 0 & 2^{\mathrm{e}} & 9^{\mathrm{d}} \\ & & 2^{\mathrm{e}}\end{array}$
2. Who would notify you that your building is to be activated as a Reception Center?

	Orange	Putnam	Westchester		All Coun
Superintendent	1	0		1	2
Don't know	3	3	i	7	

3. How would you be notified that your building is to be activated as a Reception Center?

Orange Putnam Westchester All Counties

Telephone	2	1	1	4
Don't know	2	2	1	5

4. Ls your building utilized 12 months a year? Orange Putnam Westchester All Counties $\begin{array}{lllll}\text { Yes } & 2 & 3 & 2 & 7 \\ \text { No } & 2 & 0 & 0 & 2\end{array}$
5. Who is authorized to open the building after working hours (and weekends, vacations, summers if applicable) in case it is needed as a Reception Center during a Kadiological Emergency?

硡	Orange	Putnam	Westch ster	All Counties
Custodian	2	1	1	4
Principal	0	1	0	1
Superintendent	1	1	0	2
Other	1	0	1	2

6. Is there a backup person name available in case the regular person isn't available?

	Orange	Putnam	Westchester		
Yes	4	3	1	8	
No	0	0	1	1	

Table 3 (Cont'd)

7. What is the normal daily occupancy of your building?

	Orange		Putnam		Westchester	
All Councies						
Range	$660-2400$	$400-1850$		$80-750$		$80-2400$
Mean	1343	883		415	983	

8. What is the capacity of your parking lot? (automobiles)

	Orange		Putnam	Westchester		All Counties
Range	$75-100$	$40-50$		$80-300$		$40-300$
Mean	103		45		190	82

9. Are there showers in your building?

Orange	Putnam		Westchester	
3	2	2		
1	1	0	2	

9a. How many showers are there in the building? ${ }^{f}$

		Orange	Putnam	Westchester	All Counties
Male	\{Range	7-15	-	1-6	---
	Mean	11	--	4	---
Female	\{Range	0-15	--	2-6	---
	Mean	8	---	4	---
Male or Female	\{Range	--	6-10	---	---
	Mean	---	8	---	--

10. Approximately how many toilets are there in the building?

11. In the event of a radiological emergency at the Indian Point Nuclear Generating Station, who is in charge of operations at the Reception Center to be located in your building?
Orange Putnam Westchester All Counties

Don't know
Other
43
2
9
$0 \quad 0$
0
0

Table 3 (Cont'd)

12. Do you have any plans for your own students if you are notified that
your school will be used as a Reception Center? (Asked only for
Reception Centers located in schools.)

Yes
No
No answerge
${ }^{\text {a Confidence }}$ interval $=(0.62,1.00)$, confidence level $=92 \%$; confidence interval $=(0.50,1.00)$, confidence level $=100 \%$.
${ }^{\mathrm{b}}$ Confidence interval $=(0.66,1.00)$, confidence level $=80 \%$; confidence interval $=(0.50,1.00)$, confidence level $=100 \%$.
${ }^{\text {C }}$ Confidence interval $=(0.10,0.85)$, confidence level $=90 \%$; confidence interval $=(0.05,0.75)$, confidence level $=100 \%$.
${ }^{d}$ Confidence interval $=(0.60,0.96)$, confidence level $=90 \%$; confidence interval $=(0.17,0.96)$, confidence level $=100 \%$.
$\mathrm{e}_{\text {[ncludes }}$ one school that has been closed and one school that has not accepted the responsibility of being a reception center.
${ }^{f}$ Includes only chose facilities with showers.

Putnam County

Kespondents at each of the three schools questioned ir. Putnam County were aware that their buildings had been designated as reception senters, but did not know who would notify them if it became necessary to activate their buildings as reception centers or who would be in charge of reception center operations. All of those schools responding had plans (e.g., dismissal of school) for their students if the buildings were to be used as a reception centers.

Westchester County

Five schools designated as reception centers in the CRERP were chosen for the sample in Westchester County. Of these schools, one was closed in 1979, and one refused to accept the responsibility of serving as a reception center. The respondent at the third school whld not answer the questionnaire by telephone. Respondents at the two schools participating in the survey were aware that their buildings had been designated as reception centers. One of these knew who would notify the school if it became necessary to activate the building as a reception center. Neither knew who would be in charge of
reception center operations, but both schools had plans (e.g., dismissal of school) for the students if the buildings were to be used as reception centers.

2.3 CONGREGATE CARE CENTERS

Seventeen of the 119 facilities designated to serve as congregate care centers were sampled. Of those questioned,

- Eleven (65\%) of the respondents were aware that their buildings were designated as congregate care centers,
- Ten (59\%) of the respondents did not know wto would notify them that their buildings were to be activated as congregate care centers, and
- Nine (56\%) of the schools had plans for their students if the buildings were to be used as congfegate care centers.

Table 4 lists the questions and numerical results of the congregate care cencer survey.

Orange County

Four schools designated to serve as congregate care centers in Orange County were included in the sample. Each of these schools responded to the survey. Respondents at three of the schools were aware of their inclusion in the CRERP, but each respondent had a different idea as to who would notify the school if it became necessary to activate the building as a congregate care center. All of the schools had plans for their students if the buildings were activated as congregate care centers.

Putnam County

In Putnam County, five facilities were sampled. Respondents at two were aware that their buildings had been designated as congregate care centers. Four did not know who would notify them if it became necessary to activate their buildings as congregate care centers. Two of the schools (there was one hospital in the sample) had plans for their students if it became necessary to activate the buildings as congregate care centers.

Table 4 Results of the Survey of Congregate Care Centers

1. Ate you aware that your building is designated as a congregate care center?

	Orange		Putnam	Westchester	
	3^{a}	2^{b}	6^{c}		11^{d}
Yes	0	3	2	5	
No	1	0	0	1	

2. Who would notify you that your building is to be activated as a congregate care center?

Orange Putnam Westchester All Counties

Civil defense	1	1	1	3
Health department	0	0	1	1
Red Cross	1	0	0	1
Superintendent of schools	1	0	0	1
Other	0	0	1	1
Don't know	1	4	5	10

3. How would you be notified that your building is to be activated as a congregate care center? ${ }^{e}$

Orange Putnam Westchester All Counties
Telephone
Radio
In person
Don'r know
3
1
Telephone
Radio
In person
Don'r know
1
4
8
Telephone
Radio
In person
Don'r know
1
Telephone
Radio
In person
Don'r know
1
, $-$

1	4	8
0	0	1
0	0	1
4	4	9

4. Is your building utilized 12 months a year? Orange Putnam Westchester All Counties

Yes
No
No answer

4	4	6	14
0	1	1	2
0	0	1	1

Table 4 (Cont'd)
5. Who is authorized to open the building after working hours (and weekends, vacations, summers if applicable) in case it is needed as a congregate care center during a radiological emergency? ${ }^{e}$
Orange Putnam Westchester All Counties

Superintendent	0	0	5	5
Priccipal	3	1	4	8
Custodian	3	3	3	9
Secretary	1	0	1	2
Board of Education	1	1	3	5
Teacher	0	1	0	1
Don't know	0	0	1	1
Not applicable (open				1

6. Is there a backup person in case the regular person isn't available?

	Orange		Putnam	Hestchester	
Yes	4		4	7	15
No	0	0	0	0	
Don't know	0	0	1	1	

7. What is the normal occupancy of your building?

| | Orange | Putnam | Westchester | All Counties |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Range | $425-1800$ | $100-1600$ | $300-2300$ | $100-2300$ |
| Mean | 1062 | 621 | 966 | 887 |

8. What is the capacity of your parking lots? (automobiles)

	Orange	Putnam	Westchester	All Counties
Range	250-unlimited	40-500	40-600	40-unlimited
Mean	----	142		

9. Are there showers in the your building?

Orango Putnam Westchester All Counties

Yes	3	3	5	11
No	1	2	3	6

Table 4 (Cont'd)

9a. How many showers are there in the building? ${ }^{\text {f }}$

10. Approximately how many toilets are there in the building? ${ }^{f}$

Orange Putnam Westchester All Counties

Male	$\left\{\begin{array}{l}\text { Range } \\ \text { Mean }\end{array}\right.$
Female	Range Mean

$10-30$	$8-30$
18	16
$10-33$	$8-30$
23	16

$8-20$	$8-30$
---	--
$8-20$	$8-33$

11. In the event of a radiological emergency at the Indian Point Nuclear Generating Station, who is in charge of operations at the congregate care center?

	Orange	Putnam	Westchester	All Coun
Civil defense	0	0	1	1
Red Cross	0	0	1	1
Other	1	1	1	3
Don't know	3	4	5	12

12. Do you have any plans for your own students if you are notified that your school will be used as a congregate care center? (Asked only for congregate care centers located in schools.)

	Orange		Putnam	Westchester	
All Counties					
Yes	4		2	3	9
No	0	2	5	7	
Not applicable	0	1	0		7

[^2]
Westchester County

Of the eight schools sampled in Westchester County, respondents at six were aware that their buildings were designated as congregate care centers in the CRERP. Five respondents did not know who would notify them if it became necessary to activate their buildings as congregate care centers. Three of the schools had plans for student- if their buildings were to be activaced as congregate care centers.

2.4 PUBLIC SCHOOLS WITHIN THE EPZ

Of the 50 public schools within the EPZ, ten were chosen for the sample and nine responded to the survey. Of these nine schools,

- Eight (89\%) had been contacted regarding the CRERP,
- Two (22\%) had personnel with some training in evacuation procedures,
- Two (22\%) had such training scheduled, and
- Six (67%) had tone alert radios.

Table 5 lists the questions and numericai results of the public school survey.

Trange County
Three úrange County public schools within the EPZ were chosen in a rand om sample of all such schools in the county. Two of these three schools had been contacted regarding their roles in the CRERP, two had staff trained in procedures for evacuating the schools, and two had tone alert radios.

Putnam County

In Putnam County, two public schools within the EPZ were included in the survey. Both of the schools had been contacted regarding their roles in the CRERP. Neither of the schools had staff trained in procedures for evacuating the schools. One school had a tone alert ratio.

Westchester County

Five Westchester County public schools within the EPZ were questioned in the survey. Respondents at four of these schools were willing to answer questions on the telephone. The respondent at the other public school preferred to submit written responses to the questions and consequently this school is not included in the findings discussed here. Each of the remaining four schools had en contacted regarding its role in the CRERP. None of the schools had staff trained in procedures for evacuating the schools. Three schools had tone alert radios.

Table 5 Results of the Survey of Public Schools within the EPZ

1. How many students attend your school?

	Orange	Putnam	Westchester		All Counties
Range	$250-650$	$262-775$	$420-2000$	$250-2000$	
Mean	387	519	1023	699	

3. Have you or someone in your school been contacted to discuss your role in the Indian Point Radiological Emergency Response plan?

Orange	$\frac{\text { Putnam }}{2^{a}}$	2^{b}	4^{c}	
1^{c}	0	0	8^{d}	
	0	All Countiestchester		
		1		

3a. Li yes, who contacted your school? ${ }^{\mathrm{e}}$
Orange Putnam Westchester All Counties

County	0	0	1	1
State	0	0	1	1
Board of Education	1	0	1	1
Civil defense	0	1	0	3
Don't know	0	1	2	1
Other	1	0	0	1

3b. It yes, when was your school contacted? Orange Putnam Westchester All Counties

1983	0	0	1	1
1982	2	0	1	3
Don't know	0	2	2	4

4. Have you or any of your staff received any training in procedures for evacuating your school?

	Orange		Putnam	Westchester	
	2^{a}	0^{f}	0^{g}		2^{h}
Yes	1	2	4	7	

5. Are any training sessions planned? Orange Putnam Westchester All Counties

Yes	2	0	0	2
No	1	2	3	6
Don't know	0	0	1	1

6. Who will contact you to tell you that your school is to be evacuated? Orange Putnam Westchester All Counties

District office	0	0	3	3
Civildefense	1	1	0	2
County	1	0	0	1
Don't know	1	1	1	3

7. How will you be contacted? ${ }^{\text {e }}$ Urange Putnam Westchester All Counties

Telephone	2	2	2	6
Radio	1	0	2	3
In person	0	0	1	1
Don't know	1	0	0	1

8. Do you have a tone alert radio in your school?

| Orange | $\frac{\text { Putnam }}{2^{\mathrm{a}}}$ | 1^{i} | $\frac{\text { Westchester }}{1^{j}}$ |
| :---: | :---: | :---: | :---: | | 3^{k} | |
| :---: | :---: |
| 1 | 1 |

9. Are you responsible for contacting any other schools or facilities in your area to inform them that they are to be evacuated?

	Orange	Putnam	Westchester			
Yes	1	0	0	1		
No	2	1	3	6		
Don't know	0	1	1	2		

10. Have you been informed who will provide buses if evacuation becoms necessary?

Orange Putnam Westchester All Counties

Westpoint Tours	2	0	0	2
School district	1	1	0	2
Vanguard	0	0	2	2
Other	0	0	1	1
Don't know	0	1	1	2

11. Have you been informed where your students will be taken initially if your school is evacuated?

	Orange	Putnam		Westchester	
Yll Counties					
Yos	2	2		4	8
No	1	0	0	1	

${ }^{\text {a }}$ Confidence interval $=(0.40,0.80)$, confidence level $=100 \%$.
${ }^{\mathrm{b}}$ Confidence interval $=(0.50,1.00)$, confidence level $=100 \%$.
${ }^{C}$ Confidence interval $=(0.59,1.00)$, confidence level $=90 \%$; confidence interval $=(0.10,1.00)$, confidence level $=100 \%$.
${ }^{d}$ Confidence interval $=(0.66,0.98)$, confidence level $=90 \%$; confidence interval $=(0.16,0.98)$, confidence level $=100 \%$.
emultiple responses were given by some facilities.
${ }^{\mathrm{f}}$ Confidence interval $=(0.00,0.50)$, confidence level $=100 \%$.
Sonfidence interval $=(0.00,0.41)$, confidence level $=90 \%$; confidence interval $=(0.00,0.90)$, confidence level $=100 \%$.
$h_{\text {Confidence }}$ interval $=(0.04,0.46)$, confidence level $=89 \%$; confidence interval $=(0.04,0.86)$, confidence level $=100 \%$.
${ }^{1}$ Confidence interval $=(0.25,0.75)$, confidence level $=100 \%$.
$\mathrm{j}_{\text {Confidence }}$ interval $=(0.34,0.98)$, confidence level $=89 \%$; confidence interval $=(0.07,0.98)$, confidence level $=100 \%$.
$\mathrm{k}_{\text {Confidence }}$ interval $=(0.36,0.88)$, confidence level $=90 \%$; confidence interval $=(0.12,0.94)$, confidence level $=100 \%$.

2.5 NONPUBLIC SCHOOLS, NURSERY SCHOOLS, AND DAY CARE CENTERS WI THIN THE EPZ

Nine of the 41 nonpublic schools, nursery schools, and day care centers within the EPZ were sampled. Of the nine schools surveyed,

- Eight (89%) had been contacted regarding the CRERP,
- Two (22%) had personnel with some training in evacuation procedures,
- None had training sessions planned, and
- Seven (78%) had tone alert radios.

Table 6 lists the questions and numerical results of this survey.

Orange County

Two Urange County nonpublic schools, nursery schools, or day care centers within the EPZ were included in the sample. One of the two schools had been contacted regarding its role in the CRERP. The staft of one school had received some training in procedures for evacualing the school. One facility had a tone alert radio, and the respondent at this facility expected to be contacted by radio in an emergency. The other facility had not received a tone alert radio, and the respondent there expected to be contacted by celephone.

Putnam County

In Putnam County, two nonpublic schouls, nursery schools, or day care centers within the EPZ were included in the sample. Each of the schools had been contacted regarding its role in the CRERP. The staft of one school had received some training in procedures for evacuating the school. One of the schools haf a tone alert radio and the respondent expected to be contacied by radio in an emergency. The other school did not have a tone alert radio, and the respondent there expected to be contacted by telephone.

Westchester County

Five Westchester County nonpublic schools, nursery schools, or day care centers within the EPZ were included in the sample. Each of the five schools had been contacted regarding its role in the CRERP. The staff of one of the cive schools had received some training in procedures for evacuating the school. All five schools had tone alert radios in the buildings, and all respondents expected to be contacted by radio in an emergency.

2.6 SCHOOL DISTRICTS WITHIN THE EPZ

Eight of the school districts with schools within the EPZ were sampled. Of the eight districts surveyed;

- Seven (88%) had been contacted by the state or county,
- Two (25\%) had personnel with some training in evacuation procedures,

Table 6 Results of the Survey of Nonpublic Schools, Nursery Schools, and Day Care Centers within the EPZ

1. How many students attend your school?

	Orange	Putnam	Westchester	All Counties
Range	17-129	40-100	62-425	17-425
Mean	73	70	217	152

3. Have you or someone in your school been contacted to discuss your role in the Indian Point Radiological Emergency Response Plan?

Orange	Putnam	Westchester		All Coun
	1^{a}	2^{b}	5^{c}	
0	0	0		8^{d}
1	0	0		0
1	0	0	1	

3a. If yes, who contacted your school?

Orange	Putnam		Westchester	
			All Counties	
0	0	1	1	
1	2	4	7	

3b. If yes, when was your school contacted?
Orange Putnam Westchester All Counties
$\begin{array}{lllll}1982 & 0 & 0 & 3 & 3 \\ \text { 198: } & 0 & 0 & 2 & 2 \\ \text { Don't know } & 1 & 2 & 0 & 3\end{array}$
4. Have you or any of your staff received any training in procedures for evacuating your school?

	Orange	Putnam	Westchester	All Counties
Yes	1^{a}	$0^{\text {e }}$	${ }_{1} \mathrm{f}$	$2^{\text {g }}$
No	0	1	4	5
Don't know	1	1	0	2

5. Are any training sessions planned?

	Orange	Putnam	Westchester	All Counties
Yes	0	0	0	0
No	1	1	5	7
Don't. know	1	1	0	2

Table 6 (Cont'd)
6. Who will contact you to tell you that your school is to be evacuated? Orange Putnam Westchester All Counties

Civil defense	0	1	0	1
Police	1	0	0	1
Other school	1	0	0	1
Radio	0	0	5	5
Don't know	0	1	0	1

7. How will you be contacted? ${ }^{\text {h }}$

Orange Putnam Westchester All Counties
Telephone
$1 \quad 1$
10
0
2
Radio
$1 \quad 1$
7
8. Do you have a tone alert radio in your school?

Orange Putnam Westchester All Counties

Yes	$1^{\text {a }}$	$1^{\text {a }}$	$5^{\text {c }}$	$7^{\text {m }}$
No	1	1	0	2

9. Are you responsible for contacting any other schools or facilities in your area to inform them that they are to be evacuated?
Orange Putnam Westchester All Counties

Yes	0	0	1	1
No	2	2	4	8

10. Have you been informed who will provide buses if evacuation becomes necessary? ${ }^{\text {h }}$
Orange Putnam Westchester All Counties

West Point Tours	1	0	3	4
Vanguard	0	0	0	0
Omnivan	0	0	1	1
Don't know	1	2	2	5

11. Have you been informed where your students will be taken initially if your school is evacuated?

	Orange	Putnam	Westchester		All Counties
	2		2	4	8
Yes	2	0	1	1	

${ }^{\mathrm{a}}$ Confidence interval $=0.50$, confidence level $=100 \%$.
${ }^{b}$ Confidence interval $=1.00$, confidence level $=100 \%$.
$c_{\text {Confidence }}$ interval $=(0.64,1.00)$ confidence level $=91 \%$; confidence inter:al $=(0.14,1.00)$ confidence level $=100 \%$.
${ }^{d}$ Confidence interval $=(1.66,0.98)$, contidence level $=90 \%$; contidence interval $=(0.20,0.98)$, confidence level $=100 \%$.
${ }^{\text {e }}$ Confidence interval $=0.00$, confidence level $=100 \%$.
${ }^{f}$ Confidence interval $=(0.03,0.56)$, confidence level $=89 \%$; confidence interval $=(0.03,0.89)$, confidence level $=100 \%$.
$\mathrm{g}_{\text {confidence }}$ interval $=(0.05,0.46)$, confidence level $=90 \%$; confidence interval $=(0.05,0.83)$, confidence level $=100 \%$.
hMultiple responses were given by some facilities.
${ }^{i}$ contidence interval $=(0.54,0.95)$, confidence level $=90 \%$; confidence interval $=(0.17,0.95)$, confidence level $=100 \%$.

- Two (25%) had such training scheduled, and
- Six (75%) had an official who knew who would contact the district if schools needed to be evacuated.

Table 7 lists the questions and numerical results of the school districr survey.
vrange County

Both Orange County schoul districts within the EPZ were included in the sample. Une district had been contacted by the state or county. The staff of one of the school districts had received some training in procedures for evacuating its schools. Neither district had a tone alert radio in the district office.

Putnam County

In Putnam County, two school districts within the EPZ were surveyed. Both districts had been contacted by the state or county. The staffs of the two school districts had not received any training in procedures for evacuating their schools. One of the districts had a tone alert radio in the district office.

Westchester County
Four Westchester County school districts within the EPZ were included in the survey. Each of the school districts in the sample had been contacted by the state or county. The staff of one district had received some raining in procedures for evacuating its schools. Two of the sampled districts had tone alert radios in the district offices.

Table 7 Results of the Survey of School Districts within the EPZ

1. How many schools are in this district which are within the plume exposure emergency planning zone?

Orange	Putnam	Westchester	All Counties	
	1	1	1	3
0	1	0	1	
1	0	1	2	
0	0	1	1	
0	0	1	1	

2. Have you or some one on your staff been contacted by the state or county to discuss your role in Indian Point Radiological Emergency Response Plan?

	Orange	Putnam	Westchester		All Counties
Yes	1^{a}	2^{b}		4^{c}	
No	1	0	7^{d}		
No		0^{2}	1		

2a. If yes, who contacted you concerning the plan?

	Orange	Putnam	Westchester	All Counties
County	1	0	1	2
Civil defense	0	2	0	2
Utility	0	0	1	1
Other	0	0	2	2
Don't know	0	0	1	1

2b. If yes, when were you contacted concerning the plan? Orange Putnam Westchester All Counties 1983 1982
$0 \quad 0$
0
3
3
1
1
4
3. Have you or any of your staff received any training in procedures for evacuating the schools in your district?

	Orange	$\frac{\text { Putnam }}{}$	$\frac{\text { Westchester }}{}$		All Counties
Yes	1^{a}	0^{e}	1^{f}		2^{g}
No	1	2	3	6	

4. Are any training sessions planned?

Orange Putnam Westchester All Counties

Yes	1	0	1	2
No	0	1	3	4
Don't know	1	1	0	2

Table 7 (Cont'd)
5. Who will contact you to tell you that some or all of the schools in your district are to be evacuated?

your district aretobe	Orange	Putnam	Westchester	All. Counties
Superintendent of Hendrick	0	1	2	3
Huds on School District				
Civil defense	0	1	0	1
Other	1	0	1	2
Uon't know	1	0	1	2

b. How will you be contacted ? ${ }^{\text {h }}$

Orange Putnam Westchester All Counties

Telephone	1	2	4	7
Radio	0	1	0	1
Don't know	1	0	0	1

7. Is there a tone alert radio in the district offices?

Orange	Putnam	Westchester	
	1	2	All Counties
2	1	2	3
2	1		5

8. Are you responsible for contacting any other schools or facilities in your area to inform them that they are to be evacuated? Orange Putnam Westchester All Counties

Yes	1	0	3	4
No	1	2	0	3
Don't know	0	0	1	1

${ }^{\text {a }}$ Confidence interval $=0.50$, confidence level $=100 \%$.
${ }^{\mathrm{b}}$ Confidence interval $=(0.67,1.00)$, confidence level $=100 \%$.
$c_{\text {Confidence }}$ interval $=(0.62,1.00)$, confidence level $=92 \%$; confidence interval $=(0.5,1.00)$, confidence level $=100 \%$.
${ }^{\text {d }}$ Confidence interval $=(0.69,0.92$), confidence level $=88 \%$; confidence interval $=(0.54,0.92)$, confidence level $=100 \%$.
${ }^{e}$ Confidence interval $=(0.00,0.33)$, confidence level $=100 \%$.
${ }^{\mathrm{f}}$ Confidence interval $=(0.125,0.625)$, confidence level $=100 \%$.
${ }^{\text {g }}$ Confidence interval $=(0.15,0.46)$, confidence level $=91 \%$; confidence interval $=(0.15,0.54)$, confidence level $=100 \%$.
$h_{\text {Multiple }}$ responses were given by some facilities.

2.7 HOSPITALS AND NURSING HOMES WITHIN THE EPZ

Seven of the 23 hospitals and nursing homes within the EPZ were surveyed. Of the facilities surveyed;

- Six (86%) had been contacted by the state or county,
- Three (43\%) had personnel with some training in evacuation procedures, and
- All (100\%) had tone alert radios.

Respondents at three (43%) said that they did not know where residerts would be taken it if became necessary to evacuate the facilities. Table 8 lists the questions and numerical results of ihe hospital and nursing home survey.

Orange County
One hospital and no nursing homes in Orange County are within the EPZ, so the survey is based on a 100% sample. The hospital had not been contacted by the state or county concerning the CRERP, had no personnel trained in evacuation procedures, and had no evacuation training sessions planned. The respondent did not know who would contact the hospital if an evacuation were necessary or where residents would be taken during an evacuation. The hospital did have a tone alert radio and sufficient vehicles to execute an evacuation.

Putnam County

ln Putnam County, one hospital and one nursing home are within the EPZ, and each was surveyed. Both facilities had been contacted by the state or county concerning the CRERP. Neither facility had personnel tralned in evacuation procedures, but training sessions were planned for one. One respondent knew who would contact the facility if an evacuation were necessary, ard both facilities had tone alert radios. Neither respondent knew how many addi.zional vehicles were needed for an evacuation. One respondent knew where its residents would be taken during an evacuation.

Westchester County

Four of the 20 hospitals and nursing homes in Westchester County wituin the EPZ were surveyed. All of these facilities had been contacted by the state or county concerning the CRERP, and the staff of three facilities had received some training in procedures for evacuating the residents of their facilities. Three facilities reported that additional training sessions were planned. One respondent knew who would contact the facility if an evacuation were necessary. Each facility had a tone alert radio. All of the respondents indicated that additional vehicles were needed for an evacuation and three knew where residents would be taken during an evacuation.

Table 8 Results of the Survey of Hospitals and Nursing Homes to be Evacuated
l. How many patients and residents do you have, on average?

Orange Putnam Westclester All Counties

Range	80	$15-36$	$56-190$	$15-190$
Mean	80	26	96	74

2a. On average, how many are ambulatory?
Orange Putnam Westchester All Counties

Kange	75	$14-20$	$8-150$	$8-150$

$\begin{array}{lllll}\text { Mean } & 75 & 17 & 65 & 53\end{array}$

2b. On average, how many require a wheelchair?
Orange Putnam Westchester All Counties
Range
Mean
5
1-8
0-78
27
0-78
18

2c. On average, how many require a stretcher?
Orange Putnam Westchester All Counties

Kange
Mean

0-8
4

0-14
0-14
4
3
3. Have you been contacted by the state or county to discuss your role in the Indian Point Radiological Emergency Response Plan?

Orange Putnam Westchester All Counties

Yes	0^{a}	2^{b}	4^{c}	6^{d}
No	1	0	0	1

3a. If yes, who contacted you? ${ }^{\text {e }}$
Orange Putnam Westchester All Counties

Health department	---	0	1	1
Civil defense	---	1	0	1
County	---	0	2	2
Utility	--	0	1	1
Don't know	---	1	1	2

```
Table 8 (Cont'd)
```

3b. If yes, when were you contacted?

	Orange	Putnam	Westchester	All Counties
1982	---	2	1	3
Several times	---	0	2	2
Don't know	---	0	1	1

4. Have you or your staff received any training in procedures for evacuating the residents in your facility?

Orange		Putnam		Westchester
0^{a}	0^{b}		3^{f}	
1	2	1	3^{g}	
1	2	1	4	

5. Are training sessions planned?

	Orange	Putnam	Westchester			
Yes Counties						
Yo	0	$\underline{1}$	3			
No	1	1	1		3	

6. Who will contact you to tell you that your facility is to be evacuated
Orange Putnam Westchester All Counties

Sheriff	0	1	1	2
Other	0	0	0	0
Don't know	1	1	3	5

7. How will you be contacted? ${ }^{\text {e }}$

Orange	Putnam		Westchester	
	2	1	All Counties	
0	2	3	3	

8. Is there a tone alert radio in your facility?
Orange Putnam Westchester All Counties

Yes
12
4
7
No
$0 \quad 0$
0
0

Table 8 (Cont'd)
9. How many facility-owned vehicles do you have available for evacuation of your residents?

		Orange	Putnam	Westchester	All Counties
Buses	\{Range	---	0	0	0
	Mean	---	0	0	---
Vans	\{Range	--	0-1	1-2	0-2
	Mean	---	1	1	---
Ambulances	\{Range	---	0-3	0	0-3
	(Mean	---	2	0	---
Other	\{ Range	5	0-1	0-1	-3-0
	\{Mean	5	1	0	1

10. If this number is inadequate, how many additional vehicles would be needed?

	Orange	Putnam	Westchester	All Cou
2 buses	u	0	1	1
3 buses	0	0	1	1
Don't know	0	2	2	4
None	1	0	0	1

11. What facility will act as the reception center for your residents?

	Orange		Putnam		Westchester	
	0		0	2	2	
White Plains	0	1	0	1		
Beacon	0	0	1	1		
Cannon	1	1	1	3		

[^3]
2.8 HOSPITALS CAPABLE OF TREATING RADIOLOGICALLY CONTAMINATED PATIENTS

Each of the six hospitals listed in the CRERP as being capable of treating radiologically contaminated patients was surveyed. Of the hospitals listed in the CRERP,

- Five (83\%) had respondents who were aware that their hospitals may be used for the emergency treatment of patients if there is an emergency at the Indian Point Nuclear Power Station,
- Four (67%) had staffs Erained for radiological emergencies, and
- All (100\%) had standard operating procedures for treating contaminated patients.

Table 9 lists the questions and numerical results of this survey.

Orange County

Two hospitals are listed in the Orange County CRERP as being capable of treating radiologically contaminated patients, and both were included in the sample. Respondents at both hospitals were aware that their facilities may be used for the emergency treatment of radioactively contaminated patients if there is an emergency at Indian Point, and both had been contacted by the state or county. One respondent knew who would notify the hospital to prepare for contaminated patients. The staff of each hospital was trained for radiological emergencies, and each hospital had standard operating procedures for treating contaminated patients.

Putnam County

The one hospital in Putnam County that is listed in the CRERP was surveyed. Although the hospital had been contacted by the county, the survey respondent was not aware that the facility may be used for the emergency treatment of radioactively contaminated patients if there is an emergency at Indian Point. The respondent also did not know who would notify the hospital to prepare for such patients. The hospital staff has not been trained for radiological emergencies, but there were standard operating procedures for treating contaminated patients.

Westchester County

Westchester County has three hospitals listed in the CRERP to treat radioactively contaminated patients and each facility was surveyed. All of the respondents were aware that their hospitals may be used for the emergency treatment of patients if there is an emergency at Indian Point, and two had been contacted by the state or county. Each responded differently when asked

Table 9 Results of the Survey of Hospitals Capable of Treating Radiologically Contaminated Patients ${ }^{\text {a }}$

1. Do you know that this hospital may be used for the emergency treatment of patients if there is an emergency at the Indian Point Nuclear Power Station?

	Orange	Putnam		Westchester		All Counties
Yes	2	0	3	5		
No	0	1	0	1		

2. Who would notify you that your hospital should prepare for potentially contaminated injured patients?

	Orange		Putnam		Westchester
County Counties					

3. How would you be notified? ${ }^{\text {b }}$
Orange Putnam Westchester All Counties

Telephone	0	0	2	2
Radio	1	0	1	2
Other	0	0	1	1
Don't know	1	1	0	2

4. Have you been contacted by the state or county to discuss your role in responding to an emergency at the Indian Point Nuclear Power Station? Orange Putnam Westchester All Counties
Yes
2
1
2
5
No 0
$0 \quad 0$
0
Don't know
0
0
1
1

4a. If yes, who contacted you?
Orange Putnam Westchester All Counties

County	1	0	1	2
Office of Natural Disaster.	1	0	0	1
Other	0	0	1	1
Don'r know	0	1	0	1

```
Table 9 (Cont'd)
```

4b. If yes, when were you contacted?
Orange Putnam Westchester All Counties

Dec. 1982	0	0	1	1
Over a year ago	1	1	0	2
Don't know	1	0	1	2

5. Is the staff of this facility trained for radiological emergencies that may take place at a nuclear power station?

Orange Putnam Westchester All Counties
Yes
2
0
2
4
No
0
1
1
2

5a. Are the following personnel on the staff at the facility?
Orange Putnam Westchester All Counties

Health Physicist	2	0	3	5
Health Physiss Technician	0	0	2	2
X-ray Technician with	0	0	3	3

6. Are dosimeters provided for personnel who will be caring for contaminated injured persons?

	Orange	Putnam	Westchester	All Counties
Yes	1	1	3	5
No	0	0	0	0
Don't know	1	0	0	1

6a. If yes, what type of dosimeters are used? Orange Putnam Westchester Al 1 Counties

Pocket self reading

0	0	2	2
1	1	3	5
0	0	0	0

Table 9 (Cont'd)
7. Are there survey instruments available?

Orange Putnam Westchester All Counties

Yes	2	0	2	4
No	0	1	0	1
Don't know	0	0	1	1

7a. If yes, what type of survey instruments are available?
Orange Putnam Westchester All Counties

Geiger counters
2
0
2
4
8. Can an area be set aside for the treatment of radioactively contaminated patients that is separate from normal hospital operations?

	Orange	Putnam	Westchester	All Counties
Yes	2	0	3	5
No	0	0	0	0
Don't know	0	1	0	1

9. Are there sinks, showers, and change areas?

Orange Putnam Westchester All Counties

Yes	2	0	2	4
No	0	0	1	1
No answer	0	1	0	1

10a. Are there facilities for solid waste containment and/or disposal?
Orange Putnam Westchester All Counties

Yes	2	0	3	5
No	0	1	0	1

l0b. Are there facilities for liquid waste containment and or disposal? Orange Putnam Westchester All Counties

Yes	2	0	3	5
No	0	1	0	1

Table 9 (Cont'd)

10c. Can facilities for waste containment and/or disposal be disposed?
Orange Putnam Westchester All Counties

Yes	1	0	2	3
No	0	1	0	1
Don't know	1	0	1	2

11. Are commanications available to commuicate with fixed and mobile facilities?

	Orange	Putnam	Westchester	Al: ${ }^{\text {C Counties }}$
Yes	2	1	2	5
No	0	U	1	1

lla. If yes, what communications systems are used? Orange Putnam Westchester All Counties

Radio

- 2

1
2
5
12. Are there standard operating procedures for hospital personnel treating patiants who have radioactively contaminated wounds, gross contamination, or gross gamma whole body exposures?

	Orange	Putnam	Westchester	All Counties
Yes	2	1	3	6
No	0	0	0	0

${ }^{a}$ Sirce all of the hospitals listed in the plans as being capable of treating radiologically contaminated patients were surveyed, no statistical analysis needed to be performed on the results.
$\mathrm{b}_{\text {Multiple }}$ responses were given by some facilities.
who would notify the hospital to prepare for contaminated patients. Two hospitals had staff trained for radiological emergencies. All of the hospiLals had standard operating procedures for treating contaminated patients.

2.9 AMBULANCES

Of the 89 ambulance companies and volunteer ambulance corps listed in the CRERP, 14 were included in the sample. Of those 14 , three no longer exist; one was not operating at the time of the survey; and one is still operating, but repeated attempts to reach an official from this company were unsuccessful. From the completed nine surveys,

- Five (56%) of the companies were aware that they were designated to respond to radiological emergencies,
- Six (67%) had been contacted by the state or county,
- None had ambulances equipped with monitoring devices or potassium iodide (KI),
- Seven (78%) had ambulance crews that had been trained for radiological emergencies,
- Three (33\%) had crews that had been trained in the care and treatment of radiologically injured or contaminated patients, and
- Two (22%) had standard operating procedures for ambulance crews treating radiologically injured patients.

Table 10 lists the questions and numerical results of the ambulance company survey.

Orange County

Five ambulance companies were included in the sample for Orange County. Of these five, one had been disbanded and a second was also assumed to be disbanded because surveyors were unable to contact anyone who was aware of its existence. From the remaining three companies, one respondent was aware that the CRERP had designated the company to respond to radiological emergencies at Indian Point. One company had been contacted by the county. The ambulance crews of two of the three companies were trained for radiological emergencies. No ambulances were equipped with monitoring devices or KI.

Table 10 Results of the Survey of Ambulance Companies

1. Are you aware that your company is designated to respond to radiological emergencies in the Indian Point Radiological Emergency Response Plan?

	Orange	$\frac{\text { Putnam }}{}$		Westchester	
Yes	1^{a}	3^{b}	1^{c}		5^{d}
No	2	1	1	$8^{e, f}$	

2. Who would notify you that your company is to provide services? ${ }^{9}$
Orange Putnam Westchester All Counties

Sheriff/police	2	2	1	5
Civil defense	2	1	0	3
County	0	1	0	1
Don't know	0	0	2	2

3. How would you be notified that your company is to provide services? ${ }^{\text {g }}$ Orange Putnam Westchester All Counties

Radio
Te lephone 33

1
7
21
0
3
Police
0
0
1
4. Have you been contacted by the state or county to discuss your role in responding to an emergency at the Indian Point Nuclear Power Station?

| | Orange | Putnam | Westchester | | All Counties |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Yes | 1^{a} | 3^{b} | 2^{h} | 6^{i} | |
| No | 2 | 1 | 0 | $7^{\mathrm{e}, \mathrm{f}}$ | |

4a. If yes, who contacted the company?
Orange Putnam Westchester All Counties

County	0	1	1	2
Civil defense	1	2	0	3
Don't know	0	0	1	1

4b. If yes, when was the company contacted? Orange Putnam Westchester All Counties 1983
$0 \quad 0$
1982
10
2
2
Don't know
$0 \quad 3$
3

Table 10 (Cont'd)

5. Are ambulance crews of this facility trained for radiological emergencies that may take place at a nuclear power plant?

Orange	$\frac{\text { Putnam }}{2^{j}}$	4^{k}	1^{c}

6. What type of equipment is there to communicate with fixed and mobile facilities?

	Orange	Putnam	Westchester		All Counties	
Radio	3	4		2	9	
Walkie-talkie	1	0	0	1		
Radio pager	1	0	0	1		

7. Are ambulances equipped with monitoring devices? Orange Putnam Westchester All Counties

Yes	0	0	0	0
No	3	3	2	$12^{e}, \mathrm{f}$
Don't know	0	1	0	1

8. Are ambulance crews trained in the use of monitoring equipment and dosimeters?

Orange Putnam Westchester All Counties

Yes	0	1	0	1
No	3	2	2	$12^{e}, \mathrm{f}$
Don't know	0	1	0	1

9. Does the ambulance have the following equipment? (number of companies answering yes)

(Orange	Putnam	Westchester	All Counties
Gloves	2	3	2	7
Blankets	2	4	2	8
Waste containers	2	2	1	5
Batteries	1	2	0	3
Labels	2	2	2	6

10. Are ambulance crews trained in the care and treatment of radiologically injured or contaminated patients?

Orange Putnam Westchester All Counties

Yes	1	2	0	3
No	2	2	2	$10^{\text {e, }, f}$

1l. Are there standard operating procedures for ambulance crews treating patients that have radioactive wounds, gross contamination, or gross gamma whole body exposures?

Orange Putnam Westchester All Counties

Yes	1	1	0	2
No	2	3	2	$11 e^{e}, f$

12. Are ambulance crews trained in the use of potassium iodide and is it available for use?

	Orange	Putnam	Westchester	All Counties
Yes	0	0	0	0
No	3	4	2	$13^{e, f}$

13. Where do ambulance drivers transport patients?

	Orange	Putnam	Westchester	All Counties
Westchester County				
Medical Center	0	0	2	2
Putnam Commanity Hospital	0	1	0	1
Butterfield Hospital	0	1	0	1
St. Anthony's Hospital	1	0	0	1
Arden Hill Hospital	1	0	0	1
Nearest hospital	2	0	0	2
Don't know	0	2	0	2

[^4]${ }^{e}$ Includes one company that no longer exists and one company that. commenced operations in Feb. 1983.
${ }^{\text {F Includes }}$ one company that has been disbanded and one company that apparently no longer exists.
$\mathrm{g}_{\text {Multiple }}$ responses were given by some companies.
$h_{\text {Confidence }}$ interval $=(0.31,1.00)$, confidence level $=91 \%$; confidence interval $=(0.04,1.00)$, confidence level $=100 \%$.
$i_{\text {Confidence }}$ interval $=(0.24,0.70)$, confidence level $=90 \%$; confidence interval $=(0.07,0.92)$, confidence level $=100 \%$.
jConfidence interval $=(0.22,0.96)$, confidence level $=89 \%$; confidence interval $=(0.07,0.96)$, confidence level $=100 \%$.
${ }^{k}$ Confidence interval $=(0.64,1.00)$, confidence level $=91 \%$; confidence interval $=(0.36,1.00)$, confidence level $=100 \%$.
 interval $=(0.08,0.93)$, confidence level $=100 \%$.

Putnam County

In Putnam County, four ambulance companies were surveyed. All were associated with local fire departments. Three of the respondents questioned were aware that their companies were designated in the CRERP to respond to radiological emergencies at Indian Point, and three had been contacted by the state or county. All of the ambulance crews had received training for radiological emergencies. No ambulances were equipped with monitoring devices or KI.

Westcinester County

Five ambulance companies in Westchester County were chosen to be sampled. One of these no longer exists, a second was not operating at the time of the survey, and surveyors were unable to reach an official from a third company, despite repeated attempts to do so. One of the other two company respondents was aware that the CRERP designated the company to respond to radiological emergencies at Indian Point, and both of these companies had been contacted by the state or county. One company had crews that had been trained for radiological emergencies. No ambulances were equipped with monitoring devices or KI.

2.10 PERSONNEL MONITORING CENTERS

Based upon an examination of the Orange, Westchester, and revised Putnam CRERPs, it was determined that personnel monitoring centers will be established as needed and where needed during a radiological emergency. Attachment 11 in Sec. 3 (Health) of the Orange CRERP reads in part:

During a radiological emergency, the County Commissioner of Health is responsible for the radiological exposure control of emergency response personnel. Activities associated with this responsibility include, but are not limited to, the following: . . 7. Establishing facilities for the decontamination of exposed emergency personnel.

The revised Putnam CRERP states:
Personnel monitoring centers will be established at the time of an emergency outside but near the $10-\mathrm{mile} E P Z$. Locacions will be communicated at the time to emergency team leaders anc supervisors. (Attachment 12, County Radiological Officer)

Accordingly, since no sites in Orange County or Putnam County have been designated as personnel monitoring centers, it was impossible to survey such centers.

At the time of the verification analysis, the Westchester CRERP did not indicate where personnel monitoring centers will be located. Subsequent revisions to the plan state:
2.1 Appropriate personnel monitoring centers will be established and operational unless the determination is made by the County Chief Executive that none are needed because of the absence of a release of radioactive material sufficient to cause a contamination problem.
2.2 Personnel monitoring centers [PMCs] will be activated at the time of an emergency outside the lo-mile EPZ. Activation and locations will be commanicated to emergency team leaders and supervisors and Commissioner/Sheriff in the event traffic control is required at PMC locations. The PMC for County Emergency Workers is currently the Westchester County Fire Training Center, Dana Road, Valhalla, N.Y. (Section 3, Attachment 13)

Since the facility at the Westchester County Fire Training Center was not originally included in the CRERP, the verification analysis could not include the facility.

APPENDIX A

QUESTLONNAIRES USED IN THE SURVEY

BUS COMPANIES
B.C. Interview I.D. \# \qquad Interviewer Verified by: Date Completed
Telephone \qquad Letter (received) Field Visit

FEMA/REP VERIFICATION FORM
Indian Point Nuclear Generating Station
I. ORGANIZATION vERIFICATION DATA

Information taken from	
Plan	Verification Data (if same as plan, indicate "Same")

1. Company Information

Company Name
General Manager
Telephone Number
Business Address \qquad
2. Garage Information

Garage Address \qquad
\qquad
\qquad
\qquad
Telephone Number \qquad
\qquad
Person in Charge \qquad
\qquad
Title
II. QUESTIONNAIRE

1. Information source being verified (check one)

New York State Plan
County Plan
(Name of County)
B.C Interview I.D. \# Interviewer's Initials

PLAN
VERIFICATION
(enter response; put
D.K. if respondent does not know)
2. How many buses and vans do you have in your garage?

Buses
Vans
3. On an average day, how many buses and vans do you have in working condition?

Buses
Vans
4. What is the average caparity of the buses and vans that you have in working condition on an average day?

Buses
Vans
5. How many of your vehicles are equipped to transport handicapped, nonambulatory individuals?
6. How many licensed bus and van drivers do you employ?
B.C. Interview L.D. \# \qquad

II. QUESTIONNAIRE (Cont 'd)

PLAN
VERIFICATION
7. How many vehicles do you use on an ordinary daily basis when schools are in session?

For schools (public and private)
For general population
For special facilities
8. How many vehicles do
you use on an ordinary daily basis when schools are not in session?
(weekends, vacations, summers, etc.)

Not in use
For general population
For special facilities other (specify)

9. Approximately how many of your vehicles are equipped with mobile communications equipment?
10. Have you or someone in your organization been contacted by State or Ccunty representatives to discuss your role in the Indian Point Radiological Emergency Response Plan?
${ }^{\text {Yes }}$

Who \qquad When \qquad
11. Does your organization have a formal agreement to supply vebicles in the event of a radiological emergency at the Indian Point Nuclear Generating Station? \qquad Yes \qquad
No Date if known
Do not know

B.C. Interview I.D. \# Interviewer's Initials \qquad
II. QUSTIONNAIRE (Cont'd)

Plan
verification
17. Do you have maps or lists of evacuee pickup locations available for distribution to your vehicle drivers?
\qquad Yes No Other (specify) Do not know
18. How many of your vehicle drivers have received formal training on radiological emergency response preparedness (including dosimetry, evacuation routes, etc.)
19. Are your vehicle drivers scheduled to receive radiological emergency response training in the future?
Yes Date (if known)____ No not know
20. How many dosimeters do you have available for distribution to your drivers?

Low range self reading	
High range self reading	
Film badges	\square

21. Where are your dosimeters stored?

RECEPTION CENTERS

$$
\begin{aligned}
& \text { R.C. Interview I.D. } \\
& \text { Interviewer } \\
& \text { Verified by: } \\
& \text { Telephone } \\
& \quad \text { Letter } \\
& \quad \text { Field Visit }
\end{aligned}
$$

FEMA/REP VERIFICATIUN FORM

Indian Point Nuclear Generating Station

I. ORGANIZATION VERIFICATION DATA

Information taken from Plan

Verification Data
(if same pian, indicate "same")

1. Building Name
2. Address
3. Telephone Number
4. Ferson in Charge of Building
5. Person in charge of Congregate Care Center

Telephone Number
6. Is this a school?
\qquad Yes
No

II. QUESTIONNAIRE

Questions to be asked of person in charge of normal building operations:

1. Are you aware that your
building is designated as a
Reception Center
in the Indian Point
Radiological Emergency
Response Plan?
Yes
No (if no, ask who is "in charge"
of the building and ask the questions of that person)
2. Who would notify you that
your building is to be activated
as a Reception Center?

Name \qquad Don't know \qquad
3. How would you be notified that your
building is to be activated as
a Reception Center?
\qquad Telephone
Radio
——Other (specify) Don't know
4. Is your building utilized 12
months a year?
___ Yes
_ No
5. Who is authorized to open the building after working hours (and weekends, vacations, summers if applicable) in case it is needed as a Reception Center during a radiological emergency?

Don't know
6. Is there a back-up person name
available in case the regular person isn't available?

Yes
Name \qquad
No
Don't know \qquad

IL. QUESTIONNAIRE (Cont'd)
7. What is the normal daily occupancy of your building?
\qquad persons
8. What is the capacity of your parking lot?
\qquad automobiles
buses/vans
9. Are there showers in your building?

10. Approximately how many toilets are there in your building?
\qquad Male
——Memale
11. In the event of a radiological emergency at the Indian Point Nuclear Generating Station, who is in charge of operations at the Reception Center to be located in your building?

Name
Title
Address \qquad

Telephone Numbers
Business
Home
(Ask only for a reception center located in a school)
12. Do you have any plans for your own students if you are notified that your school will be used as a reception center?

III. QUESTIONNAIRE

Questions to be asked of person in charge of reception center at
(if respondent does not know, indicate with D.K.)

1. Who would notify you that your Reception center is to be activated.
2. How would you receive this notification?

Telephone \qquad EBS message \qquad
Radio
Other \qquad
3. How many staff are assigned to the facility?
\qquad
4. Are there enough personnel to staff more than one shift?

Yes \qquad
\qquad
5. Are ail personnel assigned to work in the facility trained in handing mass evacuees?

Yes \qquad No \qquad
6. Do you have forms for registering people who come to the facility?

Yes \qquad No \qquad
7. Is there a capability for decontamination and radiation monitoring?

Yes \qquad No \qquad
(Ask questions $8,9,10$ and 11 only if yes to 7)
8. Are you able to:

Monitor people?
Decontaminate people?
Monitor vehicles?
Decontaminate vehicles?

9. Do you have procedures to hand le waste generated during contamination of people and vehicles?
Solid waste?
Yes \qquad No
\qquad
III. QUESTIONNAIRE (Cont'd)
10. Do you have a supply of clothing for use in place of contaminated clothing?

Yes \qquad
No \qquad
11. Where can additional supplies be obtained?
12. How would the Reception center maintain communications with the county Emergency Operations Center?

Te lephone \qquad Radio \qquad Other (Specify) \qquad
13. How would the Reception center maintain communications with Congregate Care Center?

Telephone
Radio \qquad Same location \qquad Other (Specify) \qquad
14. From whom would you receive notifications on the status of the emergency?

County EOC \qquad EBS reports \qquad Other (Specify) \qquad

CONGREGATE CARE RELOCATION CENTERS
 C.C.R.C. Interview I.D. \#
 Interviewer
 Verified by:
 Date Completed
 Telephone
 Letter
 Field Visit
 FEMA/REP VERIFICATION FORM
 Indian Point Nuclear Generating Station

I. ORGANIZATION VERIFICATION DATA

Information taken from Verification Data
_ Plan (if same plan, indicate "same")

1. Building Name
2. Address
3. Telephone Number
4. Person in Charge of Building
5. Person in Charge of Congregate Care Center

Telephone Number
6. Is this a school?
\ldots Yes
II. QUESTIONNAIRE

Questions to be asked of person in charge of normal building operations: (if respondent does not know, indicate with D.K.)

1. Are you aware that your
building is designated as
a Congregate Care Center
in the Indian Point
Radiological Emergency
Response Plan?
\qquad Yes
No (if no, ask who is "in charge" of the building and ask the questions of that person)
2. Who would notify you that your building is to be activated as
a Congregate Care Center?
Name \qquad Don't know \qquad
3. How would you be notified that your
building is to be activated as a
Congregate Care Center?
\qquad Telephone
\square Radio
-_ Other (specify)
4. Is your building utilized 12 months a year?

$$
\begin{aligned}
& \text { Yes } \\
& \ldots \\
& \text { No }
\end{aligned}
$$

5. Who is authorized to open the building after working hours (and weekends, vacations, summers, if applicable) in case it is needed as a Congregate Care Center during a radiological emergency?
6. Is there a back-up person available
in case the regular person isn't available?

Name \qquad
II. QUESTIONNAIRE (Cont'd)
7. What is the normal daily occupancy of your building?
\qquad persons
8. What is the capacity of your parking lot?
\qquad Automobiles
\qquad buses/vans
O. Are there showers in your building?

Yes	How many male?
No	How many female?

10. Approximately how many toilets are there in your building?
___ Male
___ Female
11. In tine event of a radiological emergency at the Indian Point Nuclear Generating Station, who is in charge of operations at the Congregate Care Center to be located in your building?

Telephone Numbers
Business \qquad
Home
12. Do you have any plans for your students if you are notified that your school will be used as a reception center:
No Yes If yes, please briefly describe them.
III. QUESTIONNAIRE

Questions to be asked of person in charge of Congregate Care Center at
(if respondent does not know, indicate with D.K.)

1. Who would notify you that your Congregate Care Center is to be activated?
2. How would you receive this notification?

Telephone $\quad \begin{aligned} & \text { EBS Message } \\ & \text { Radio }\end{aligned} \quad$ Other
3. What is the capacity of the facility?
4. How many personnel are assigned to the facility?
5. Are there enough personnel to staff more than one shift?

Yes \qquad No \qquad
6. Are all personnel assigned to work in the facility trained in hand ling mass evacuees?

Yes \qquad No \qquad
If no, how many individuals have been trained?
7. Do you have procedures for handling people arriving without papers indicating that they have been processed at a reception center?

Yes \qquad Don't know \qquad
8. If yes, what are your proceciures:
9. (If yes to 7) Can your facility be configured to maintain a separation between people who have been processed through a reception center and those who have not?

Yes \qquad No \qquad Don't know \qquad
10. Are sleeping accommodations (beds, cots, blankets) provided?

Yes \qquad No \qquad If yes, how many \qquad
11. How would the Congregate Care Center maintain communications with the County Emergency Operation Center?

Telephone \qquad Radio \qquad Other (specify) \qquad

III. QUESTIONNAIRE (Cont'd)

12. How would the center maintain communcations with the Reception Center? Telephone \qquad Radio \qquad Same location \qquad Other (specify)
13. From whom would you receive emergency notification on the status of the emergency?

County EOC \qquad EBS Reports \qquad Other (Specify) \qquad

SCHOOLS TO BE EVACUATED

School Interview I.D.	
Interviewer	
Verified by:	Date Completed
Telephone	
Letter	
\quad Field Visit	

FEMA/REP VERIFICATION FORM
Indian Point Nuclear Generating Station
I. ORGANIZATION VERIFICATION DATA

Information taken from	
Plan	Verification Data (if same plan, indicate "same")

1. School Name
2. Address
3. Person in Charge of School
4. Telephone Number
5. Is school still in operation?

Yes \qquad No \qquad
II. QUESTIONNAIRE

1. How many students attend your school?
2. What hours is your school in session?
3. Have you or someone in your school been contacted to discuss your role in the Indian Point Radiological Emergency Response Plan?
Yes_ No Don't know___

If yes,
Who (name) \qquad When \qquad
Title/Organization \qquad
4. Have you or any of your staff received any training in procedures for evacuating your school?
Yes No Don't know___

If yes, what?
5. Are any training sessions planned?
\qquad No \qquad Don't know \qquad

If yes, details (what, when) \qquad
6. Who will contact you to tell you that your school is to be evacuated? Name \qquad Title \qquad
7. How will you be contacted?
\qquad Telephone Tone alert radio
\square Other (specify)
d
\qquad
8. Do you have a tone alert radio in your school?
Yes___ No_ Don't know____
9. Are you responsible for contacting any other schools or facilities in your area to inform them that they are to be evacuated?
\qquad
Yes
No
Don't know
If so, which one(s)?
II. QUESTIONNAIRE (Cont'd)
10. Have you been informed who will provide buses if evacuation becomes necessary?
\qquad
Yes
No
Don't know
If yes, who? \qquad
11. Have you been informed where your students will be taken initially if your school is evacuated?

Yes

\qquad No \qquad Don't know \qquad
If yes, where?

SCHOOL DISTRICTS WITHIN THE PLIME EXPOSURE EPZ

School District Interview I.D. \#	
Interviewer	
Verified by:	
Telephone	
Letter	
Field Visit	

FEMA/REP VERIFICATION FORM
Indian Point Nuclear Power Station
I. ORGANIZATION VERIFICATION DATA

1. School District Name
2. Add ress
3. Superintendent of Schools
4. Telephone Number

II. QUESTIONNAIRE (Cont'd)

1. How many schools are in this district which are within the plume exposure emergency planning zone?
2. Have you or someone on your staff been contacted by the state or county to discuss your role in the Indian Point Radiological Emergency Response Plan?

Yes \qquad Don't know \qquad

If yes, Who (name) \qquad , When \qquad Title/Organization
3. Have you or any of your staff received any training in procedures for evacuating the schools in your district?
Yes_ No_ Don't know_

If yes, please briefly describe.
4. Are any training sessions planned?
Yes \qquad

No \qquad
Don't know \qquad

If yes, please give details (when, what)?
\qquad
\qquad
5. Who will contact you to tell you that some or all of the schools in your district are to be evacuated?

Name \qquad Title \qquad
6. How will you be contacted?
\qquad Telephone
___ Tone alert radio
_ O Other (specify)
7. Is there a tone alert radio in the district offices?
\qquad
Yes
No \qquad Don't know \qquad
8. Are you responsible for contacting any other schools or facilities in your area to inform them that they are to be evacuated?

Yes_No_Don't know_.
If so, which ones(s)?
\qquad

SPECIAL FACILITIES TO BE EVACUATED
S. F. Interview I.D. \# Interviewer Verified by: Date Completed
Telephone
Letter
Field Visit
\qquad -

FEMA/REP VERIFICATION FORM

Indian Point Nuclear Power Station
I. ORGANIZATION VERIFICATION DATA
Information taken from
Plan

Verification Data (if same plan, indicate "same")

1. Facility Type

Hospital Nursing Home \qquad Other (specify)

Nursing Home _-___
\qquad
\qquad
2. Facility Name
3. Address
4. Person in charge of facility
5. Title/Position
6. Telephone Number

II. QUESTIONNAIRE

1. How many patients and residents do you have, on average?
2. On average, how many:
are ambulatory?
require a wheelchair?
require a stretcher?
3. Have you been contacted by the state or county to discuss your role in the Indian Point Radiological Emergency Response Plan?
Yes \qquad
No \qquad
Don't know \qquad

If yes,
Who \qquad , When \qquad
Title/Organization
4. Have you or your staff received any training in procedures for evacuating the residents in your facility?
\qquad No \qquad Don't know \qquad
If yes, describe briefly:
\because Are training sessions planned:
Yes_ No Don't know \qquad
If yes, please describe briefly:
6. Who will contact you to tell you that your facility is to be evacuated?

Name \qquad Title \qquad
7. How will you be contacted?
\qquad Telephone
Tone alert radio
Other (specify)
8. Is there a tone alert radio in your facility?
\qquad No
Don't know \qquad

II. QUESTIONNAIRE (Cont'd)

9. How many facility-owned vehicles do you have available for evacuation of your residents?
Buses
Vans
Ambulances
10. If this number is inadequate, how many additional vehicles would be needed?

Who will pruvide them?
11. What facility will act as the reception center for your residents?

Name \qquad Location \qquad

HOSPITALS
H. Interview I.D. \# \qquad
Interviewer Verified by:

Date Completed
Telephone
Letter
Field Visit

FEMA/REP VERIFICATION FORM

Indian Point Nuclear Generating Station

I. ORGANIZATION VERIFICATION DATA

Information taken from Verification Data Plan (if same plan, indicate "same")

1. Hospital Name
2. Address
3. Telephone Number
4. Person in Charge Radiological
Emergency Response

II. QUESTIONNAIRE

Questions to be asked of person in charge of Radiological Emergency Response at the facility:

1. Do you know that this hospital may be used for emergency treatment of patients if there is an emergency at the Indian Point Nuclear Power Station?
\qquad No
Don't know \qquad
2. Who would notify you that your hospital should prepare for potentially contaminated injured patients?

Name
Don't know
3. How would you be notified?

Telephone
Radio
Other (specify)
4. Have you been contacted by the state or county to discuss your role in responding to an emergency at the Indian Point Nuclear Power Stations:
Yes \qquad
No
Don't know \qquad

If Yes, By Whom \qquad When \qquad
Title/Organization \qquad
5. Is the staff of this facility trained for Radiological Emergencies that may take place at a nuclear power station?
\qquad No \qquad Don't know \qquad
If Yes,
Is there a Health Physicist on the staff Yes Is there a Health Physics Technician Yes An X-Kay technician with H.P. training Yes \qquad No \qquad No \qquad
6. Are dosimeters provided for personnel who will be caring for contaminated injured persons?
\qquad No \qquad Don't know \qquad
II. QUESTIONNAiRE (COnt'd)

If Yes,
What type of dosimeters are used,
\qquad Pocket self reading Film Badge TLDs
7. Are there survey instruments available?
Yes \qquad No \qquad Don't know \qquad

If yes,
What type? explain briefly
8. Can an area be set aside for the treatment of radioactive contaminated patients that is separate from normal hospital operations?
\qquad
Yes
No \qquad Don't know \qquad
9. Are there sinks, showers and change areas?
Yes \qquad No \qquad Don't know \qquad
10. Are there facilities for waste containment and /or disposal?
\qquad
Yes
No \qquad

Solids?
Liquids?
Can they be disposed?
\qquad
\qquad
11. Are communications available to communicate with fixed and mobile facilities?
\qquad No \qquad Don't know \qquad
If Yes,
What is used?
Telephone \qquad
Radio
Radio pagers \qquad
12. Are there Standard Operating Procedures for hospital personnel treating patients who have radioactive contaminated wounds, gross contamination or gross gamma whole body exposures?

Yes \qquad No \qquad Don't know \qquad
II. QuESTIONNAIRE (Cont'd)

If this facility cannot treat contaminated patients, what hospitals with capabilities for doing blood chemistry and whole body scanning are mentioned in the SOP's?

$$
\begin{aligned}
& \text { AMBULANCE COMPANIES } \\
& \text { A.C. Interview I.D. } \\
& \text { Interviewer } \\
& \text { Verified by: } \\
& \quad \text { Telephone } \\
& \quad \text { Letter } \\
& \quad \text { Field Visit }
\end{aligned}
$$

FEMA/REP VERIFICATION FORM

Indian Point Nuclear Generating Station

I. ORGANIZATION VERIFICATION DATA

Information taken from	
Plan	Verification Data (if same plan, indicate "same")

1. Company Name
2. Address
3. Telephone Number
4. Person in Charge of Company
II. QUESTIONNAIRE

Questions to be asked of person in charge of Radiological Emergency Response at Ambulance Services.

1. Are you aware that your company is designated to respond to radiological emergencies in the Indian Point Radiological Emergency Response Plan?
\qquad
Yes
No (if no, ask who is "in charge" of the company and ask the questions of that person)
2. Who would notify you that your company is to provide services?

Name \qquad Don't know \qquad
3. How would you be notified that your company is to provide services?
\qquad Telephone Radio
\qquad Other (specify)
4. Have you been contacted by the state or county to discuss your role in responding to an emergency at the Indian Point Nuclear Power Station?
\qquad No \qquad
\qquad
Don't know

If Yes,
By Who \qquad When \qquad
Title/Organization \qquad
5. Are the ambulance crews of this facility trained for Radiological Emergencies that may take place at a nuclear power plant?

If Yes, By Whom \qquad When \qquad
Title/Organization \qquad
6. Is there equipment to communicate with fixed and mobile facilities?
\qquad
Yes
No

Don't know

If Yes, What type?
Radio \qquad
Radio pagers Walkie-talkie \qquad

II. QUESTIONNAIRE (Cont'd)

7. Are ambulances equipped with monitcring devices?
Yes \qquad No \qquad Don't know \qquad

If Yes,
What type?
Survey meters
Dosimeters, pocket self reading \qquad
TLDs or film badges \qquad
8. Are ambulance crews trained in the use of monitoring equipment and dosimeters?
Yes
No \qquad
Don't know

If Yes,
By Whom \qquad When \qquad
Title/Organization \qquad
9. Does the ambulance have the following equipment?

Gloves (rubber or plastic)
Blankets or coverings (plastic or paper)
Plastic bags or large metal cans for wastes
Batteries for survey instruments Tags, labels, tape \qquad
10. Are ambulance crews trained in the care and treatment of radiologically injured or contaminated patients?
Yes_ No Don't know

If Yes, By Whom \qquad When \qquad
Title/Organization \qquad
11. Are there standard operating procedures for ambulance crews treating patients that have radioactive wounds, gross contamination or gross gamma whole body exposures?
\qquad No \qquad Don't know \qquad
12. Potassium iodide (KI) as a radioactive iodine blocker is used for protection against the uptake radioactive iodine that may be present during an accident at nuclear power stations. Are ambulance crews trained in the use of this drug and is it available for use?

II. Questionnaire (Cont'd)
13. Where do ambulance drivers transport patients?

Place

APPENDIX B
CONFIDENCE INTERVALS

Introduction

In many practical situations, statistical and probability theory can be used to analyze the information obtained by surveys. In particular, a confidence interval can be placed around an estimate of the presence or absence of some characteristic in a population by taking random samples of only a portior of that pozulation.* For example, a confidence interval can be placed around the estimated number of institutions prepared to meet a radiological emergency by randomly sampling only a fraction of these institutions. For this and similar situations in which sampling all members of the population is expensive or impossible, statistical and probability theory is used to interpret information from a given set of samples. This theory allows one, for example, to estimate the characteristic of interest and place a "C x 100% " confirlence interval around that estimate. The general theory further states that $C x$ 100% of all such confidence intervals so constructed will in fact contain the "true" value. The confidence limits are upper and lower bounds.

Theory

Consider a population of N objects, K of which are "successes" (prepared, for example), and N - K of which are "not successes" (not prepared). If a random sample of size $N S$ is taken from the population of N, then the hypergeometric probability function provides the probability that X objects of those NS sandomly sampled without replacement will be successes, given that K of the N objects in the whole population are successes. The hypergeometric probability function is defined as

$$
f(X ; N, N S, K)=\frac{\binom{K}{X}\binom{N-K}{N S-X}}{\binom{N}{N S}}
$$

where the ":ombination" or "binomial coefficient" expression is

$$
\binom{a}{b}=\frac{a!}{(a-b)!b!}
$$

and the factorial is defined as

$$
a!=a(a-1)(a-2)(a-3) \ldots(3)(2)(1)
$$

[^5]The cumula*. hypergeometric distribuicion function is defined as the probability of fondr: X or fewer successes in a random sample of NS objects from a population $\lrcorner \perp$ objects. Mathematically this is written as:

$$
F(X ; N, N S, K)=\sum_{r=0}^{X} \frac{\binom{K}{r}\binom{N-K}{N S-r}}{\binom{N}{N S}}=\sum_{r=0}^{X} f(r ; N, N S, K)
$$

The tables of Apnendix C provide individual and cumulative values of the hypergeometric distribution for $N=2$ to 12 , for all possible combinations of NS, K and X.*

To illustrate the use of the tables, consider the first page of Appendix C; the first entry in the right-hand column indicates that there is a 0.60 probability of having 1 success out of 2 items selected randomly from a population of 5 in which there are a total of 3 successes. There is also a 0.70 probability of selecting either 0 or 1 successful item under the same conditions.

These tables can be used to construct an approximate C $\mathrm{x} \quad 100 \%$ confidence interval around an estimate of K. The confidence intervals will generally be approximate due to the discrete nature of the hypergeometric $\dot{c} i s t r i b u t i o n$. Denote K_{u} as the upper limit and K_{ℓ} as the lower linit for the estimate of K where:

$$
K_{u}=\text { smallest } K \text { such that } F(X ; N, N S, K) \leq(1-C) / 2
$$

and

$$
K_{\ell}=\text { largest } K \text { such that } F(X-1 ; N, N S, K) \geq(1+C) / 2
$$

When the above equation yields a value of K iess than X, due to the discrete nature of the hypergeometric distribution and the definition of confidence intervals, K_{ℓ} is taken to be X.
K_{ℓ} and K_{ℓ} provide a $C \times 100 \%$ confidence interval for the proportion of successes, namely, $K_{\ell} / N \quad K_{u} / N$; the observed proportion of successes is $X / N S$. It follows that $K_{\ell} / N \geq X / N S \leq K_{u} / N$.

Example

Consider a case in which $N=11$, $N S=5, X=1$ and $C=0.80$. That is, the statistician wants 80% confidence that the true value of K lies between

[^6]the values K_{ℓ} and K_{u}, given that l out of 5 samples was successful from a total population of ll. Using the tables, the following is found:

K	$F(1 ; 11,5, K)$	$F(0 ; 11,5, K)$
1	1.000	1.00
2	0.818	0.545
3	0.516	0.273
4	0.348	0.121
5	0.175	0.045
6	0.067	

K_{u} is determined by finding the smallest value of K such that $F(1 ; 11$, $5, K) \leq 0.1$; this value is $K_{u}=6 . K_{\ell}$ is determined by finding the largest value of K such that $F(0 ; 11,5, K) \geq 0.9$; this value is 0 , but is less than the observed number of successes; therefore $K_{\ell}=1$. As a result, the statistician is approximately 80% confident that the true value of the number of successes in a population of 11 is between l and 6 , given that 1 success was found in 5 rand om samples drawn from these 11 . To ie more precise, the interval 2 to 8 is a 93.3% confidence interval. Similarly, the interval 1 to 5 is an 82.5% confidence interval.

A 93.3% confidence interval on the proportion of successes is 0.09 to 0.55 ; the observed proportion is 0.20 .

Choice of Confidence Intervals

Confidence intervals are constructed by first observing that the hypergeometric distribution properly describes the probabilities of observing the various outcomes while sampling (without replacement) fewer than all of the members of a finite population. It is important to use this distribution when the population of interest is small or the percent sampled is large (both usually apply here) in order to obtain correct results and conclusions. The theory of confidence intervals is used to construct upper and lower bounds for the estimated parameters. These bounds are influenced by the size of the population of interest, the number of samples taken, and the observed results.

When confidence intervais are stated in this report, usually both an approximate 90% and a 100% confidence interval are given. The 100% confidence interval is not a statistical device, but represents the possible minimum and maximum values implied by the sample. The approximate 90% confidence intervals are statistical devices; they are approximate due to the discrete nature of the hypergeometric distribution (i.e., it deals with integer numbers). It is not possible or deaningful to construct an approximate 90% confidence interval when the population of interest is too small. This problem does arise if all or almost all of the population can be sampled; in such a case, an exact (or nearly exact) estimate can be obtained.

Confidence intervals usually can be located at any number of places in the allowable interval (i.e., the 100% confidence interval). The following nrinciples were used to set the confidence intervals listed in this report:

- The confidence level was chosen to be as close as possible to 90%.
- If moving the confidence interval a small distance to the right of the lowest possible value (0.07 in Fig. 1) decreases the maximum confidence level below about 85%, then the l ow end of the confidence interval is set at the lowest pussible value (i.e., the 86% confidence interval is appropriate).
- A similar argument applies to locating the confidence interval if the observed proportion is near l.00, as illustrated in Fig. 2. The 88% confidence interval, which has its high end at the highest possible value (0.87), is the appropriate choice.
- When possible, the confidence interval is "shortened" at both ends, as illustrated in Fig. 3. In this case, there is 95% confidence that the true proportion is greater than or equal to $0.18,95 \%$ confidence that it is less than or equal to 0.63 , and therefore 90% confidence that it is in the range 0.18 to 0.63 . A qualitative argument for preferring the 90% confidencf. interval to the 89% confidence interval in Fig. 3 is that the 90% confidence interval is more conservative in estimating the upper bound on the proportion. This conservative interval seems to be appropriate since the observed proportion is 0.38.

Fig. 1 Choice of Confidence Intervals for the Bus Company Category -- Low Proportion Observed

Population Size	15
Sample Size	9
Number Answering "Yes"	7

Alternative Corifidence Interval Confidence Level
c

a
b

Fig. 2 Choice of Confidence Intervals for the Bus Company Category -- High Proportion Observed

Fig. 3 Choice of Confidence Intervals for the
Ambulance Companies Category

APPENDIX C

INDIVIDUAL AND CUMULATIVE

PROBABILITIES

FOR THE

HYPERGEOMETRIC DISTRIBUTION

FOR

$$
N=2, \ldots, 12
$$

$$
N S=1, \ldots, N-1
$$

$$
K=1, \ldots, N
$$

$$
x=0, \ldots, N S
$$

N	NS			$\mathrm{X} \mathrm{P}(<=\mathrm{X})$	$\mathrm{P}(\mathrm{=X})$
,	1	1		00.500000	0.500000
2	1	1		11.000000	0.500000
2	1	2		11.000000	1.000000
3	1	1		00.666667	0.666667
3	1	1		11.000000	0.333333
3	1	2		00.333333	0.333333
3	1	2		11.000000	0.666667
3	1	3		11.000000	1.000000
3	2	1		00.333333	0.333333
3.	2	1		11.000000	0.666667
3	2	2		10.666667	0.666667
3	2	2		21.000000	0.333333
3	2	3		21.000000	1.000000
4	1	1		00.750000	0.750000
4	1	1		11.000000	0.250000
4	1	2		00.500000	0.500000
4	1	2		11.000000	0.500000
4	1	3	0	00.250000	0.250000
4	1	3		11.000000	0.750000
4	1	4		11.000000	1.000000
4	2	1		00.500000	0.500000
4	2	1		11.000000	0.500000
4	2	2		00.166667	0.166667
4	2	2		10.833333	0.666667
4	2	2		21.000000	0.166667
4	2	3		10.500000	0.500000
4	2	3		21.000000	0.500000
4	2	4		21.000000	1.000000
4	3	1		00.250000	0.250000
4	3	1		11.000000	0.750000
4	3	2		10.500000	0.500000
4	3	2		21.000000	0.500000
4	3	3		20.750000	0.750000
4	3	3		31.000000	0.250000
4	3			31.000000	1.000000
5	1	1		00.800000	0.800000
5	1	1		11.000000	0.200000
5	1	2		00.600000	0.600000
5	1	2		11.000000	0.400000
5	1	3		00.400000	0.400000
5	1	3		11.000000	0.600000
5	1	4		00.200000	0.200000
5	1	4		11.000000	0.800000
5	1	5		11.000000	1.000000
5	2			00.600000	0.600000
5	2	1		11.000000	0.400000
5	2	2		00.300000	0.300000
5	2	2	1	10.900000	0.600000
5	2	2		21.000000	0.100000
5	2	3	0	00.100000	0.103000

N	NS			$x \mathrm{P}(<=\mathrm{X})$	$\mathrm{P}(=\mathrm{X})$
5	2	3	1	10.700000	0.600000
5	2	3		21.000000	0.300000
5	2	4		10.400000	0.400000
5	2	4		21.000000	0.600000
5	2	5		21.000000	1.000000
5		1		00.400000	0.400000
5	3	1		11.000000	0.600000
5	3	2		00.100000	0.100000
5	3	2	1	10.700000	0.600000
5	3	2		21.000000	0.300000
5	3	3	1	10.300000	0.300000
5	3	3		20.900000	0.600000
5	3	3		31.000000	0.100000
5	3	4		20.600000	0.600000
5	3	4		31.000000	0.400000
5	3	5		31.000000	1.000000
5	4	1		00.200000	0.200000
5	4	1		11.000000	0.800000
5	4	2		10.400000	0.400000
5	4	2		21.000000	0.600000
5	4	3		20.600000	0.600000
5	4	3		31.000000	0.400000
5	4	4		30.800000	0.800000
5	4	4		41.000000	0.200000
5	4	5		41.000000	1.000000
6	1	1		00.833333	0.833333
6	1	1		11.000000	0.166667
6	1	2		00.666667	0.666667
6	1	2		11.000000	0.333333
6	1	3		00.500000	0.500000
6	1	3		11.000000	0.500000
6	1	4		00.333333	0.333333
6	1	4		11.000000	0.666667
6	1	5		00.166667	0.166667
6	1	5		11.000000	0.833333
6	1	6		11.000000	1.000000
6	2	1		00.666667	0.666667
6	2	1		11.000000	0.333333
6	2	2		00.400000	0.400000
6	2	2		10.933333	0.533333
6	2	2		21.000000	0.066667
6	2	3		00.200000	0.200000
	2	3		10.800000	0.600000
6	2	3		21.000000	0.200000
6	2	4		00.066667	0.066667
6	2	4		10.600000	0.533333
	2	4		21.000000	0.400000
6	2	5		10.333333	0.333333
6	2	5	2	21.000000	0.666667
6	2	5		21.000000	1.00000

N	NS	K	$\mathrm{X} \mathrm{P}(<=\mathrm{X})$	$\mathrm{P}(=\mathrm{X})$
6	3	1	00.500000	0.500000
6	3	1	11.000000	0.500000
6	3	2	00.200000	0.200000
6	3	2	10.800000	0.600000
6	3	2	21.000000	0.200000
6	3	3	00.050000	0.050000
6	3	3	10.500000	0.450000
6	3	3	20.950000	0.450000
6	3	3	31.000000	0.050000
6	3	4	10.200000	0.200000
6	3	4	20.800000	0.600000
6	3	4	31.000000	0.200000
6	3	5	20.500000	0.500000
6		5	31.000000	0.500000
6	3	6	31.000000	1.000000
6	4	1	00.333333	0.333333
6	4	1	11.000000	0.666667
6	4	2	00.066667	0.066667
6	4	2	10.600000	ก. 533333
6	4	2	21.000000	0.400000
6	4	3	10.200000	0.200000
6	4	3	20.800000	0.600000
6	4	3	31.000000	0.200000
6	4	4	20.400000	0.400000
6	4	4	30.933333	0.533333
6	4	4	41.000000	0.066667
6	4	5	30.666667	0.666667
6	4	5	41.000000	0.333333
6	4	6	41.000000	1.000000
6	5	1	00.166667	0.166667
6	5	1	11.000000	0.833333
6	5	2	10.333333	0.333333
6	5	2	21.000000	0.666667
6	5	3	20.500000	0.500000
6	5	3	31.000000	0.500000
6	5	4	30.666567	0.656667
6	5	4	41.000000	0.333333
6	5	5	40.833333	0.833333
6	5	5	51.000000	0.166667
6	5	6	51.000000	1.000000
7	1	1	00.857143	0.857143
7	1	1	11.000000	0.142857
7	1	2	00.714286	0.714286
7	1	2	11.000000	0.285714
7	1	3	00.571429	0.571429
7	1	3	11.000000	0.428571
7	1	4	00.428571	0.428571
7	1	4	11.000000	0.571429
7	1	5	00.285714	0.285714
7	1	5	11.000000	0.714286

N	NS	R		$\mathrm{P}(<=X)$	$\mathrm{P}(\mathrm{EX})$
	1	6	0	0.142857	0.142857
7	1	6		1.000000	0.857143
7	1	7	1	1.000000	1.000000
7	2	1		0.714286	0.714286
7	2	1		1.000000	0.285714
7	2	2	0	0.476190	0.476190
7	2	2		0.952381	0.476190
7	2	2		1.000000	0.047619
7	2	3	0	0.285714	0.285714
7	2	3	1	0.857143	0.571429
7	2	3	2	1.000000	0.142857
7	2	4		0.142857	0.142857
7	2	4		0.714286	0.571429
7	2	4	2	1.000000	0.285714
7	2	5		0.047619	0.047619
7	2	5		0.523810	0.476190
7	2	5	2	1.000000	0.476190
7	2	6		0.285714	0.285714
7	2	6		1.000000	0.714286
7	2	7	2	1.000000	1.000000
7	3	1	0	0.571429	0.571429
7	3	1		1.000000	0.428571
7	3	2	0	0.285714	0.285714
7	3	2		10.857143	0.571429
7	3	2	2	21.000000	0.142857
7	3	3		0.114286	0.114286
7	3	3	1	10.628571	0.514286
7	3	3	2	2.971429	0.342857
7	3	3	3	31.000000	0.028571
7	3	4	0	0.028571	0.028571
7	3	4		10.371429	0.342857
7	3	4	2	20.885714	0.514286
7	3	4		31.000000	0.114286
7	3	5		10.142857	0.142857
7	3	5	2	20.714286	0.571429
7	3	5		31.000000	0.285714
7	3	6		20.428571	0.428571
7	3	6	3	31.000000	0.571429
7	3	7		31.000000	1.000000
7	4	1		0.428571	0.428571
7	4	1		11.000000	0.571429
7	4	2		00.142857	0.142857
7	4	2		10.714286	0.571429
7	4	2		21.000000	0.285714
7	4	3		0.028571	0.028571
7	4	3		10.371429	0.342857
7	4	3		20.885714	0.514286
7	4	3		31.000000	0.114286
7	4	4		10.114286	0.114286
7	4	4		20.628571	0.514286

N	NS	K	$\mathrm{X} P(<x)$	P ($=\mathrm{X}$)
9	2	3	$0 \overline{0.416667}$	0.416667
9	2	3	10.916667	0.500000
9	2	3	21.000000	0.083333
9	2	4	00.277778	0.277778
9	2	4	10.833333	0.555556
9	2	4	21.000000	0.166667
9	2	5	00.166667	0.166667
9	2	5	10.722222	0.555556
9	2	5	21.000000	0.277778
9	2	6	00.083333	0.083333
9	2	6	10.583333	0.500000
9	2	6	21.000000	0.416667
9	2	7	00.027778	0.027778
9	2	7	10.416667	0.388889
9	2	7	21.000000	0.583333
9	2	8	10.222222	0.222222
9	2	8	21.000000	0.777778
9	2	9	21.000000	1.000000
9	3	1	00.666667	0.666667
9	3	1	11.000000	0.333333
9	3	2	00.416667	0.416667
9	3	2	10.916667	0.500000
9	3	2	21.000000	0.083333
9	3	3	00.238095	0.238095
9	3	3	10.773810	0.535714
9	3	3	20.988095	0.214286
9	3	3	31.000000	0.011905
9	3	4	00.119048	0.119048
9	3	4	10.595238	0.476190
9	3	4	20.952381	0.357143
9	3	4	31.000000	0.047619
9	3	5	00.047619	0.047619
9	3	5	10.404762	0.357143
9	3	5	20.880952	0.476190
9	3	5	31.000000	0.119048
9	3	6	00.011905	0.011905
9	3	6	10.226190	0.214286
9	3	6	2 0.761905	0.535714
9	3	6	31.000000	0.238095
9	3	7	$\therefore 0.083333$	0.083333
9	3	7	$\because 0.583333$	0.500000
9	3	7	31.000000	0.416667
9	3	8	20.333333	0.333333
9	3	8	31.000000	0.666667
9	3	9	31.000000	1.000000
9	4	1	00.555556	0.555556
9	4	1	11.000000	0.444444
9	4	2	00.277778	0.277778
9	4	2	10.833333	0.555556
9	4	2	21.000000	0.166667

N	NS			$\mathrm{X} \frac{\mathrm{P}(\ll \mathrm{X})}{}$	$P(=X)$
9	4	3	0	0 0.119048	0.119048
9	4	3	31	10.595238	0.476190
9	4	3	32	20.952381	0.357143
9	4	3	3	31.000000	0.047619
9	4	4	40	00.039683	0.039683
9	4	4	41	10.357143	0.317460
9	4	4	42	20.833333	0.476190
9	4		43	30.992063	0.158730
9	4	4	4	41.000000	0.007937
9	4	5	50	00.007937	0.007937
9	4	5	51	10.166667	0.158730
9	4	5	2	20.642857	0.476190
9	4	5	5	30.960317	0.317460
9	4	5	5	41.000000	0.039683
9	4	6	1	10.047619	0.047619
9	4	6	62	20.404762	0.357143
9	4	6	53	30.880952	0.476190
9	4	6	64	41.000000	0.119048
9	4	7	72	20.166567	0.166667
9	4	7	73	30.722222	0.555556
9	4	7	74	41.000000	0.277778
9	4	8	8	30.444444	0.444444
9	4	8	84	41.000000	0.555556
9	4	9	94	41.000300	1.000000
9	5		10	00.444444	0.444444
9	5	1	1 1	11.000000	0.555556
9	5	2	20	00.165567	0.166667
9	5	2	21	10.722222	0.555556
	5	2	2	21.000020	0.277778
9	5	3	30	00.047619	0.047619
9	5		31	10.404762	0.357143
9	5		32	20.880952	0.476190
9	5		33	31.000000	0.119048
9	5	4	40	00.007937	0.007937
9	5	4	41	10.166667	0.158730
9	5	4	42	20.642857	0.476190
9	5		4	30.960317	0.317460
9	5		4	41.000000	0.039683
9	5		51	10.039683	0.039683
9	5		52	20.357143	0.317460
9	5		53	30.833333	0.476190
9	5		54	40.992063	0.158730
9	5	5	5	51.000000	0.007937
9	5		62	20.119048	0.119048
O	5	6	63	30.595238	0.476190
9	5	6	64	40.952381	0.357143
9	5		65	51.000000	0.047619
9	5	7	73	30.277778	0.277778
9	5		74	40.833333	0.555556
9	5	7	75	51.000000	0.166667

N	NS	R	$X P(<=X)$	$\mathrm{P}(\mathrm{FX})$
9	5	8	$4 \overline{0.555556}$	0.555556
9	5	8	51.000000	0.444444
9	5	9	51.000000	1.000000
9	6	1	00.333333	0.333333
9	6	1	11.000000	0.666667
9	6	2	00.083333	0.083333
9	6	2	10.583333	0.500000
9	6	2	21.000000	0.416667
9	6	3	00.011905	0.011905
9	6	3	10.226190	0.214286
9	6	3	20.761905	0.535714
9	6	3	31.000000	0.238095
9	6	4	10.047619	0.047619
9	6	4	20.404762	0.357143
9	6	4	30.880952	0.476190
9	6	4	41.000000	0.119048
9	6	5	20.119048	0.119048
9	6	5	30.595238	0.476190
9	6	5	40.952381	0.357143
9	6	5	51.000000	0.047619
9	6	6	30.238095	0.238035
9	6	6	40.773810	0.535714
9	6	6	50.988095	0.214286
9	6	6	61.000000	0.011905
9	6	7	40.416667	0.416667
9	6	7	50.916667	0.500000
9	6	7	61.000000	0.083333
9	6	8	50.666667	0.666667
9	6	8	61.000000	0.333333
9	6	9	61.000000	1.000000
9	7	1	00.222222	0.222222
9	7	1	11.000000	0.777778
9	7	2	00.027778	0.027778
9	7	2	10.416667	0.388889
9	7	2	21.000000	0.583333
9	7	3	10.083333	0.083333
9	7	3	20.583333	0.500000
9	7	3	31.000000	0.416667
9	7	4	20.166667	0.166667
9	7	4	30.722222	0.555556
9	7	4	41.000000	0.277778
9	7	5	30.277778	0.277778
9	7	5	40.833333	0.555556
9	7	5	51.000000	0.166667
9	7	6	40.416667	0.416667
9	7	6	50.916667	0.500000
9	7	6	61.000000	C. 083333
9	7	7	50.583333	0.583333
9	7	7	60.972222	0.388889
9	7	7	71.000000	0.027778

N	NS	K	$\mathrm{X} \mathrm{P}(<=X)$	$\mathrm{P}(\mathrm{EX})$
9	7	8	60.777778	0.777778
9	7	8	71.000000	0.222222
9	7	9	71.000000	1.000000
9	8	1	00.111111	0.111111
9	8	1	11.000000	0.888889
9	8	2	10.222222	0.222222
9	8	2	21.000000	0.777778
9	8	3	20.333333	0.333333
9	8	3	31.000000	0.666667
9	8	4	30.444444	0.444444
9	8	4	41.000000	0.555556
9	8	5	40.555556	0.555556
9	8	5	51.000000	0.444444
9	8	6	50.666667	0.666667
9	8	6	61.000000	0.333333
9	8	7	60.777778	0.777778
9	8	7	71.000000	0.22222 .2
9	8	8	70.888889	0.888889
9	8	8	81.000000	0.111111
9	8	9	81.000000	1.000000
10	1	1	00.900000	0.900000
10	1	1	11.000000	0.100000
10	1	2	00.800000	0.800000
20	1	2	11.000000	0.200000
20	1	3	00.700000	0.700000
10	1	3	11.000000	0.300000
10	1	4	00.600000	0.600000
10	1	4	11.000300	0.400000
10	i	5	00.500000	0.500000
10	1	5	11.000000	0.500000
10	1	6	00.400000	0.400000
10	1	6	11.000000	0.600000
10	1	7	00.300000	0.300000
10	1	7	11.000000	0.700000
10	1	8	00.200000	0.200000
10	1	8	11.000000	0.800000
10	1	9	00.100000	0.100000
10	1	9	11.000000	0.900000
10	1	10	11.000000	1.000000
10	2	1	00.800000	0.800000
10	2	1	11.000000	0.200000
10	2	2	00.622222	0.622222
10	2	2	10.977778	0.355556
10	2	2	21.000000	0.022222
10	2	3	00.466667	0.466667
10	2	3	10.933333	0.466667
10	2	3	21.000000	0.066667
10	2	4	00.333333	0.333333
10	2	4	10.866667	0.533333
10	2	4	21.000000	0.133333

N	NS	R	X $\mathrm{P}(\mathrm{c}=\mathrm{X})$	$\mathrm{P}(\mathrm{EX})$
10	2	5	00.222222	0.222222
10	2	5	10.777778	0.555556
10	2	5	21.000000	0.222222
10	2	6	00.133333	0.133333
10	2	6	10.666667	0.533333
10	2	6	21.000000	0.333333
10	2	7	00.066667	0.066667
10	2	7	10.533333	0.466667
10	2	7	21.000000	0.466667
10	2	8	00.022222	0.022222
10	2	8	10.377778	0.355556
10	2	8	21.000000	0.622222
10	2	9	10.200000	0.200000
10	2	9	21.000000	0.800000
10	2	10	21.000000	1.000000
10	3	1	00.700000	0.700000
10	3	1	11.000000	0.300000
30	3	2	00.466567	0.466667
10	3	2	10.933333	0.466667
10	3	2	21.000000	0.066667
10	3	3	00.291667	0.291667
10	3	3	10.815667	0.525000
10	3	3	20.991667	0.175000
10	3	3	31.000000	0.008333
10	3	4	00.166667	0.166667
10	3	4	10.666667	0.500000
10	3	4	20.966667	0.300000
10	3	4	31.000000	0.033333
10	3	5	00.083333	0.083333
10	3	5	10.500000	0.416667
10	3	5	20.916667	0.416667
10	3	5	31.000000	0.083333
10	3	6	00.033333	0.033333
10	3	6	10.333333	0.300000
10	3	6	20.833333	0.500000
10	3	6	31.000000	0.166667
10	3	7	00.008333	0.008333
10	3	7	10.183333	0.175000
10	3	7	20.708333	0.525000
10	3	7	31.000000	0.291667
10	3	8	10.066667	0.066667
10	3	8	20.533333	0.466667
10	3	8	31.000000	0.466667
10	3	9	20.300000	0.300000
10	3	9	31.000000	0.700000
10	3	10	31.000000	1.000000
10	4	1	00.600000	0.600000
10	4	1	11.000000	0.400000
10	4	2	00.333333	0.333333
10	4	2	10.866667	0.533333

N	NS	R	X $\mathrm{P}(\ll \mathrm{X})$	$\mathrm{P}(=\mathrm{X})$
10	4	2	$2 \frac{1}{1.000000}$	0.133333
10	4	3	00.166667	0.166667
10	4	3	10.666667	0.500000
10	4	3	20.966667	0.300000
10	4	3	31.000000	0.033333
10	4	4	00.071427	0.071429
10	4	4	10.452381	0.380952
10	4	4	20.880952	0.428571
10	4	4	30.995238	0.114286
10	4	4	41.000000	0.004762
10	4	5	00.023810	0.023810
10	4	5	10.261905	0.238095
10	4	5	20.738095	0.476190
10	4	5	30.976190	0.238095
10	4	5	41.000000	0.023810
10	4	6	00.004762	0.004762
10	4	6	10.119048	0.114786
10	4	6	20.547619	0.428571
10	4	6	30.928571	0.380952
10	4	6	41.000000	0.071429
10	4	7	10.033333	0.033335
10	4	7	20.333333	0.30000
10	4	7	30.833333	0.500000
10	4	7	41.000000	$0.16666{ }^{\circ}$
10	4	8	20.133333	0.133333
10	4	8	30.666667	0.533333
10	4	8	41.000000	0.333333
10	4	9	30.400000	0.400000
10	4	9	41.000000	0.600000
10	4	10	41.000000	1.000000
10	5	1	00.500000	0.500000
10	5	1	11.000000	0.500000
10	5	2	00.222222	0.222222
10	5	2	10.777778	0.555556
10	5	2	21.000000	0.222222
10	5	3	00.083333	0.083333
10	5	3	$10.5000{ }^{\prime}$:	0.416667
10	5	3	20.916667	0.416667
10	5	3	31.000000	0.083333
10	5	4	00.023810	0.023810
10	5	4	10.261905	0.238095
10	5	4	20.738095	0.476190
10	5	4	30.776190	0.238095
10	5	4	41.000000	0.023810
10	5	5	00.003968	0.003968
10	5	5	10.103175	0.099206
10	5	5	20.500000	0.396825
10	5	5	30.896825	0.396825
10	5	5	40.996032	0.099206
10	5	5	51.000000	0.003968

N	NS	K	$\mathrm{X} \mathrm{P}(<=\mathrm{X})$	$\mathrm{P}(=\mathrm{X})$
10	5	6	10.023810	7.023810
10	5	6	20.261905	0.238095
10	5	6	30.738095	0.476190
10	5	6	40.976190	0.238095
10	5	6	51.000000	0.023810
10	5	7	20.083333	0.083333
10	5	7	30.500000	0.416667
10	5	7	40.916667	0.416667
10	5	7	51.000000	0.083333
10	5	8	30.222222	0.222222
10	5	8	40.777778	0.555556
10	5	8	51.000000	0.222222
10	5	9	40.500000	0.500000
10	5	9	51.000000	0.500000
10	5	10	51.000000	1.000000
10	6	1	00.400000	0.400000
10	6	1	11.000000	0.600000
10	6	2	00.133333	0.133333
10	6	2	10.666667	0.533333
10	6	2	21.000000	0.333333
10	6	3	00.033333	0.033333
10	6	3	10.333333	0.300000
10	6	3	20.833333	0.500000
10	6	3	31.000000	0.166667
10	6	4	00.004762	0.004762
10	6	4	10.119048	0.114286
10	6	4	20.547619	0.428571
10	6	4	30.928571	0.380952
10	6	4	41.000000	0.071429
10	6	5	10.023810	0.023810
10	6	5	20.261905	0.238095
10		5	30.738095	2.476190
10	6	5	40.976190	0.238095
10	6	5	51.000000	0.023810
10	6	6	20.071429	0.071429
10	6	6	30.452381	0.380952
10	6		40.880952	0.428571
10	6	6	50.995238	0.114286
10	6	6	61.000000	0.004762
10	6	7	30.166667	0.166667
10		7	40.666667	0.500000
10	6	7	50.966667	0.300000
10	6	7	61.000000	0.033333
10	6	8	40.333333	0.333333
10	6	8	50.866667	0.533333
10		8	61.000000	0.133333
10	6	9	50.600000	0.600000
10		9	61.000000	0.400000
1.0	6	10	61.000000	1.000000
10	7	1	00.300000	0.300000

N	NS	K	$\mathrm{X} \mathrm{P}(<=\mathrm{X})$	$\mathrm{P}(=\mathrm{X})$
10	7	1	11.000000	0.700000
10	7	2	00.066667	0.066667
10	7	2	10.533333	0.466667
10	7	2	21.000000	0.466667
10	7	3	00.008333	0.008333
10	7	3	10.183333	0.175000
10	7	3	20.708333	0.525000
10	7	3	31.000000	0.291667
10	7	4	10.033333	0.033333
10	7	4	20.333333	0.300000
10	7	4	30.833333	0.500000
10	7	4	41.000000	0.166667
10	7	5	20.083333	0.083333
10	7	5	30.500000	0.416667
10	7	5	40.916667	0.416667
10	7	5	51.000000	0.083333
20	7	6	30.166667	0.166667
10	7	6	40.666667	0.500000
10	7	6	50.966667	0.300000
10	7	6	61.000000	0.033333
10	7	7	40.291667	0.291667
10	7	7	50.816667	0.525000
10	7	7	60.991667	0.175000
10	7	7	71.000000	0.008333
10	7	8	50.466667	0.466667
10	7	8	60.933333	0.466667
10	7	8	71.000000	0.066667
10	7	9	60.700000	0.700000
10	7	9	71.000000	0.300000
10	7	10	71.000000	1.000000
10	8	1	00.200000	0.200000
10	8	1	11.000000	0.800000
10	8	2	00.022222	0.022222
10	-	,	10.377778	0.355556
10	8	2	21.000000	0.622222
10	8	3	10.066667	0.066667
10	8		20.533333	0.466667
10	8	3	31.000000	0.466667
10	8	A	20.133333	0.133333
10		4	30.666667	0.533333
10	8	4	41.000000	0.333333
10	8	5	30.222222	0.222222
10	8	5	40.777778	0.555556
10	8	5	51.000000	0.222222
10	8		40.333333	0.333333
10	8		50.866667	0.533333
10	8	6	61.000000	0.133333
10	8	7	50.466667	0.466667
10	8	7	60.933333	0.466667
10	B	7	1.000	0.066667

N	NS	K	$\mathrm{X} \mathrm{P}(<=\mathrm{X})$	P (EX)
10	8	8	$6 \frac{1}{0.622222}$	0.622222
10	8	8	70.977778	0.355556
10	8	8	81.000000	0.022222
10	8	9	70.800000	0.800000
10	8	9	81.000000	0.200000
10	8	10	81.000000	1.000000
10	9	1	00.100000	0.100000
10	9	1	11.000000	0.900000
10	9	2	10.200000	0.200000
10	9	2	21.000000	0.800000
10	9	3	20.300000	0.300000
10	9	3	31.000000	0.700000
10	9	4	30.400000	0.400000
10	9	4	41.000000	0.600000
10	9	5	40.500000	0.500000
10	9	5	51.000000	0.500000
10	9	6	50.600000	0.600000
10	9	6	61.000000	0.400000
10	9	7	60.700000	0.700000
10	9	7	71.000000	0.300000
10	9	8	70.800000	0.800000
10	9	8	81.000000	0.200000
10	9	9	80.900000	0.900000
10	9	9	91.000000	0.100000
10	9	10	91.000000	1.000000
11	1	1	00.909091	0.909091
11	1	1	11.000000	0.090909
11	1	2	00.818182	0.818182
11	1	2	11.000000	0.181818
11	1	3	00.727273	0.727273
11	1	3	11.000000	0.272727
11	1	4	00.636364	0.636364
11	1	4	11.000000	0.363636
11	1	5	00.545455	0.545455
11	1	5	11.000000	0.454545
11	1	6	00.454545	0.454545
11	1	6	11.000000	0.545455
11	1	7	00.363636	0.363636
Il	1	7	11.000000	0.636364
11	1	8	00.272727	0.272727
11	1	8	11.000000	0.727273
11		9	00.181818	0.181818
11		9	11.000000	0.818182
11	1	10	00.090909	0.090909
11	1	10	11.000000	0.909091
11	1	11	11.000000	1.000000
11		1	00.818182	0.818182
11	2	1	11.000000	0.181818
11	2	2	00.654545	0.654545
11	2	2	10.981818	0.327273

N	NS	R	$\mathrm{X} \mathrm{P}(<=\mathrm{X})$	$\mathrm{P}(=\mathrm{X})$
11	2	2	21.000000	0.018182
11	2	3	00.509091	0.509091
11	2	3	10.945455	0.436364
11	2	3	21.000000	0.054545
11	2	4	00.381818	0.381818
11	2	4	10.890909	0.509091
11	2	4	21.000000	0.109091
11	2	5	00.272727	0.272727
11	2	5	10.818182	0.545455
11	2	5	21.000000	0.181818
11	2	6	00.181818	0.181818
11	2	6	10.727273	0.545455
11	2	6	21.000000	0.272727
11	2	7	00.109091	0.109091
11	2	7	10.618182	0.509091
11	2	7	21.000000	0.381818
11	2	E	00.054545	0.054545
11	2	8	10.490909	0.436364
11	2	8	21.000000	0.509091
11	2	9	00.018182	0.018182
11	2	9	10.345455	0.327273
11	2	9	21.000000	0.654545
11	2	10	10.181818	0.181818
11	2	10	21.000000	0.818182
11	2	11	21.000000	1.000000
11	3	1	00.727273	0.727273
11	3	1	11.000000	0.272727
11	3	2	00.509091	0.509091
11	3	2	10.945455	0.436364
11	3	2	21.000000	0.054545
11	3	3	00.339394	0.339394
11	3	3	10.848485	0.509091
11	3	3	20.993939	0.145455
11	3	3	31.000000	0.006061
11	3	4	00.212121	0.212121
11	3	4	10.721212	0.509091
11	3	4	20.975758	0.254545
11	3	4	31.000000	0.024242
11	3	5	00.121212	0.121212
11	3	5	10.575758	0.454545
11	3	5	20.939394	0.363636
11	3	5	31.000000	0.050606
11	3	6	00.060606	0.060606
11	3	6	10.424242	0.363636
11	3	6	20.878788	0.454545
11	3	6	31.000000	0.121212
11	3	7	00.024242	0.024242
11	3	7	10.278788	0.254545
11	3	7	20.787879	0.509091
11	3	7	31.000000	0.212121

N	NS	R	$\mathrm{X} \mathrm{P}(\ll \mathrm{X})$	$P(=X)$
11	3	8	00.006061	0.006061
11	3	8	10.151515	0.145455
11	3	8	20.660606	0.509091
11	3	8	31.000000	0.339394
11	3	9	10.054545	0.054545
11	3	9	20.490909	0.436364
11	3	9	31.000000	0.509091
11	3	10	20.272727	0.272727
11	3	10	31.000000	0.727273
11	3	11	31.000000	1.000000
11	4	1	00.636364	0.636364
11	4	1	11.000000	0.363636
11	4	2	00.381818	0.381818
11	4	2	10.890909	0.509091
11	4	2	21.000000	0.109091
11	4	3	00.212121	0.212121
11	4	3	10.721212	0.509091
11	4	3	20.975758	0.254545
11	4	3	31.000000	C. 024242
11	4	4	00.106061	0.106061
11	4	4	10.530303	0.424242
11	4	4	20.912121	0.381818
11	4	4	30.996970	0.084848
11	4	4	41.000000	0.003030
11	4	5	00.045455	0.045455
11	4	5	10.348485	0.303030
11	4	5	20.803030	0.454545
11	4	5	30.984848	0.181818
11	4	5	41.000000	0.015152
11	,		00.015152	0.015152
11	4	6	10.196970	0.181818
11	4	6	20.651515	0.454545
11	4	6	30.954545	0.303030
11	4	6	41.000000	0.045455
11	4	7	00.003030	0.003030
11	4	7	10.087879	0.084848
11	4	7	20.469697	0.381818
11	4	7	30.893939	0.424242
11	4	7	41.000000	0.106061
11	4	8	10.024242	0.024242
11	4	8	20.278788	0.254545
11	4	8	30.787879	0.509091
11	4	8	41.000000	0.212121
11	4	9	20.109091	0.109091
11	4	9	30.618182	0.509091
11	4	9	41.000000	0.381818
11	4	10	30.363636	0.363636
11	4	10	41.000000	0.636364
11	4	11	41.000000	1.000000
11	5	1	00.545455	0.545455

N	NS	K	$\mathrm{X} \mathrm{F}(<\times \mathrm{X})$	$\mathrm{P}(\mathrm{x} \times$)
11	5	1	11.000000	0.454545
11	5	2	00.272727	0.272727
11	5	2	10.818182	0.545455
11	5	2	21.000000	0.181818
11	5		00.121212	0.121212
11	5	3	10.575758	0.454545
11	5	3	20.939394	0.363636
11	5	3	31.000000	0.060606
11	5	4	00.045455	0.045455
11	5	4	10.348485	0.303030
11	5	4	20.803030	0.454545
11	5	4	30.984848	0.181818
11	5	4	41.000000	0.015152
11	5	5	00.012987	0.012987
11	5	5	10.175325	0.162338
11	5	5	20.608225	0.432900
11	5	5	30.932900	0.324675
11	5	5	40.997835	0.064935
11	5	5	51.000000	0.002165
11	5	6	00.002165	0.002165
11	5	6	10.067100	0.064935
11	5	6	20.391775	0.324675
11	5	6	30.824675	0.432900
11	5	6	40.987013	0.162338
11	5	6	51.000000	0.012987
11	5	7	10.015152	0.015152
11	5	7.	20.196970	0.181818
11	5	7	30.651515	0.454545
11	5	7	40.954545	0.303030
11	5	7	51.000000	0.045455
11	5	8	20.060606	0.060606
11	5	8	30.424242	0.363636
11	5	8	40.878788	0.454545
11	5	8	51.000000	0.121212
11	5	9	30.181818	0.181818
11	5	9	40.727273	0.545455
11	5	9	51.000000	0.272727
11	5	10	40.454545	0.454545
11	5	10	51.000000	0.545455
11	5	11	51.000000	1.000000
11	6	1	00.454545	0.454545
11	6	1	11.000000	0.545455
11	6	2	00.181818	0.181818
1.	6	2	10.727273	0.545455
11	6	2	21.000000	0.272727
11	6	3	00.060606	0.060606
11	6	3	10.424242	0.363636
11	6	3	20.878788	0.454545
11	6	3	31.000000	0.121212
11	6		00.015152	0.015152

N	NS	R	X $P(\ll X)$	$\mathbf{P}(=X)$
11	6	4	$1 \overline{0.196970}$	0.181818
11	6	4	20.651515	0.454545
11	6	4	30.954545	0.303030
11	6	4	41.000000	0.045455
11	6	5	00.002165	0.002165
11	6	5	10.067100	0.064935
11	6	5	20.391775	0.324675
11	6	5	30.824675	0.432900
11	6	5	40.987013	0.162338
11	6	5	51.000000	0.012987
11	6	6	10.012987	0.012987
11	6	6	20.175325	0.162338
11	6	6	30.608225	0.432900
11	6	6	40.932900	0.324675
11	6	6	50.997835	0.064935
11	6	6	61.000000	0.002165
11	6	7	20.045455	0.045455
11	6	7	30.348485	0.303030
11	6	7	40.803030	0.454545
11	6	7	50.984848	0.181818
11	6	7	61.000000	0.015152
11	6	8	30.121212	0.121212
11	6	8	40.575758	0.454545
11	6	8	50.939394	0.363636
11	6	8	61.000000	0.060606
11	6	9	40.272727	0.272727
11	6	9	50.818182	0.545455
11	6	9	61.000000	0.181818
11	6	10	50.545455	0.545455
11	6	10	61.000000	0.454545
11	6	11	61.000000	1.000000
11	7	1	00.363636	0.363636
11	7	1	11.000000	0.636364
11	7	2	00.109091	0.109091
11	7	2	10.618182	0.509091
11	7	2	21.000000	0.381818
11	7	3	00.024242	0.024242
11	7	3	10.278788	0.254545
11	7	3	20.787879	0.509091
11	7	3	31.000000	0.212121
11	7	4	00.003030	0.003030
11	7	4	10.087879	0.084848
11	7	4	20.469697	0.381818
11	7	4	30.893939	0.424242
11	7	4	41.000000	0.106061
11	7	5	10.015152	0.015152
11	7	5	20.196970	0.181818
11	7	5	30.651515	0.454545
11	7	5	40.954545	0.303030
11	7	5	51.000000	0.045455

N	NS	K	$\mathrm{X} \mathrm{P}(\ll \mathrm{X})$	$\mathrm{P}(\mathrm{XX})$
i1	7	6	20.045455	0.045455
11	7	6	30.348485	0.303030
11	7	6	40.803030	0.454545
11	7	6	50.984848	0.181818
11	7	6	61.000000	0.015152
11	7	7	30.106061	0.106061
11	7	7	40.530303	0.424242
11	7	7	50.912121	0.381818
11	7	7	60.996970	0.084848
11	7	7	71.000000	0.003030
11	7	8	40.212121	0.212121
11	7	8	50.721212	0.509091
11	7	8	60.975758	0.254545
11	7	8	71.000000	0.024242
11	7	9	50.381818	0.381818
11	7	9	60.890909	0.509091
11	7	9	71.000000	0.109091
11	7	10	60.636364	0.636364
11	7	10	71.000000	0.363636
11	7	11	71.000000	1.000000
11	8	1	00.272727	0.272727
11	8	1	11.000000	0.727273
11	8	2	00.054545	0.054545
11		2	10.490909	0.436364
11	8	2	21.000000	0.509091
11	8	3	00.006061	0.006061
11	8	3	$10.15 \geq 515$	0.145455
11	8	3	20.660606	0.509091
11	8	3	31.000000	0.339394
11	8	4	10.024242	0.024242
11	8	4	20.278788	0.254545
11	8	4	30.787879	0.509091
11	8	4	41.000000	0.212121
11	8	5	20.060606	0.060606
11	8	5	30.424242	0.363636
11	8	5	40.878788	0.454545
11	8	5	51.000000	0.121212
11	8	6	30.121212	0.121212
11	8	6	40.575758	0.454545
11	8	6	50.939394	0.363636
11	8	6	61.000000	$0.066^{\prime} .06$
11	8	7	40.212121	0.212121
11	8	7	50.721212	0.509091
11	8	7	60.975758	0.254545
11	8	7	71.000000	0.024242
11	8	8	50.339394	0.339394
11	8	8	60.848485	0.509091
11	8	8	70.993939	0.145455
11	8	8	81.000000	0.006061
11	8	9	60.509091	0.509091

N	NS	R	-X)	$\mathrm{P}(=\mathrm{X})$
11	8	9	70.945455	0.436364
11	8	9	81.000000	0.054545
11	8	10	70.727273	0.727273
11	8	10	81.000000	0.272727
11	8	11	81.000000	1.000000
11	9	1	00.181818	0.181818
11	9	1	11.000000	0.818182
11	9	2	00.018182	0.018182
11	9	2	10.345455	0.327273
11	9	2	21.000000	0.654545
11	9	3	10.054545	0.054545
11	9	3	20.490909	0.436364
11	9	3	31.000000	0.509091
11	9	4	20.109091	0.109091
11	9	4	30.618182	0.509091.
11	9	4	41.000000	0.381818
11	9	5	30.181818	0.181818
11	9	5	40.727273	0.545455
11	9	3	51.000000	0.272727
11	9	6	40.272727	0.272727
11	9	6	50.818182	0.545455
11	9	6	61.000000	0.181818
11	9	7	50.381818	0.381818
11	9	7	60.890909	0.509091
11	9	7	71.000000	0.109091
11	9	8	60.509091	0.509091
11	9	8	70.945455	0.436364
11	9	8	81.000000	0.054545
11	9	9	70.654545	0.654545
11	9	9	80.981818	0.327273
11	9	9	91.000000	0.018182
11	9	10	80.818182	0.818182
11	9	10	91.000000	0.181818
11	9	11	91.000000	1.000000
11	10	1	00.090909	0.090909
11	10	1	11.000000	0.909091
11	10		10.181818	0.181818
11	10	2	21.000000	0.818182
11	10	3	20.272727	0.272727
11	10	3	31.000000	0.727273
11	10	4	30.363636	0.363636
11	10	4	41.000000	C. 636364
11	10	5	40.454545	0.454545
11	10	5	51.000000	0.545455
11	10	6	50.545455	0.545455
11	10	6	61.000000	0.454545
11	10	7	60.636364	0.636364
11	10	7	71.000000	0.363636
11	10	8	70.727273	0.727273
11	10	8	81.000000	0.272727

N	NS		X P ($<=X$)	$\mathrm{P}(\mathrm{EX})$
11	10	9	8 \% 0.818182	0.8181.82
11	10	9	91.000000	0.181818
11	10	10	90.909091	0.909091
11	10	10	101.000000	0.090909
11	10	11	101.000000	1.000000
12	1	1	00.916667	0.916667
12	1	1	11.000000	0.083333
12	1	2	00.833333	0.833333
12	1	2	11.000000	0.166667
12	1	3	00.750000	0.750000
12	1	3	11.000000	0.250000
12	3	4	00.666667	0.666667
12	1	4	11.000000	0.333333
12	1	5	00.583333	0.583333
12	1	5	11.000000	0.416667
12	1	6	00.500000	0.500000
12	1	6	11.000000	0.500000
12	1		00.416667	0.416667
12	1	7	11.000000	0.583333
12	1	8	00.333333	0.333333
12	1	8	11.000000	0.666667
12	1	9	00.250000	0.250000
12	1	9	11.000000	0.750000
12	1	10	00.166667	0.166667
12	1	10	11.000000	0.833333
12	1	11	00.083333	0.083333
12	1	11	11.000000	0.916667
12	1	12	11.000000	1.000000
12	2	1	00.833333	0.833333
12	2	,	11.000000	0.166667
12	2	2	00.681818	0.681818
12	2		10.984848	0.303030
12	2	2	21.000000	0.015152
12	2	3	00.545455	0.545455
12	2	3	10.954545	0.409091
12	2		21.000000	0.045455
12	2	4	00.424242	0.424242
12	2	4	10.909091	0.484848
12	2	4	21.000000	0.090909
12	2	5	00.318182	0.318182
12	2	5	10.848485	0.530303
12		5	21.000000	0.151515
12	2	6	00.227273	0.227273
12	2	6	10.772727	0.545455
12	2	6	21.000000	0.227273
12	2	7	00.151515	0.151515
12		7	10.681818	0.530303
12	2		21.000000	0.318182
12	2	8	00.090909	0.090909
12	2	8	10.575758	0.484848

N	NS		X P (<<X)	$\mathrm{P}(\mathrm{EX})$
12	2	8	21.000000	0.424242
12	2	9	00.045455	0.045455
12	2	9	10.454545	0.409091
12	2	9	21.000000	0.545455
12	2	10	00.015152	0.015152
12	2	10	10.318182	0.303030
12	2	10	21.000000	0.681818
12	2	11	10.166667	0.166667
12	2	11	21.000000	0.833333
12	2	12	21.000000	1.000000
12	3	1	00.750000	0.750000
12	3	1	11.000000	0.250000
12	3	2	00.545455	0.545455
12	3	2	10.954545	0.409091
12	3	2	21.000000	0.045455
12	3	3	00.381818	0.381818
12	3	3	10.872727	0.490909
12	3	3	20.995455	0.122727
12	3	3	31.000000	0.004545
12	3	4	00.254545	0.254545
12	3	4	10.763636	0.509091
12	3	4	20.981818	0.218182
12	3	4	31.000000	0.018182
12	3	5	00.159091	0.159091
12	3	5	10.636364	0.477273
12	3	5	20.954545	0.318182
12	3	5	31.000000	0.045455
12	3	6	00.090909	0.090909
12	3	6	10.500000	0.409091
12	3	6	20.909091	0.409091
12	3	6	31.000000	0.090909
12	3	7	00.045455	0.045455
12	3	7	10.363636	0.318182
12	3	7	20.840909	0.477273
12	3	7	31.000000	0.159091
12	3	8	00.018182	0.018182
12	3	B	10.236364	0.218182
!2	3		20.745455	0.509091
12	3	8	31.000000	0.254545
12	3		00.004545	0.004545
12	3	9	10.127273	0.122727
12	3		20.618182	0.490909
12	3	9	31.000000	0.381818
12	3	10	10.045455	0.045455
12	3	10	20.454545	0.409091
12	3	10	31.000000	0.545455
12		11	20.250000	0.250000
12	3	11	31.000000	0.750000
12	3	12	31.000000	1.000000
12	4	1	00.666667	0.666667

N	NS	R	$\mathrm{X} \mathrm{P}(<\mathrm{X})$	$P(5 X)$
12	4	1	11.000000	0.333333
12	4	2	00.424242	0.424242
12	4	2	10.909091	0.484848
12	4	2	21.000000	0.090909
12	4	3	00.254545	0.254545
12	4	3	10.763636	0.509091
12	4	3	20.981818	0.218182
12	4	3	31.000000	0.018182
12	4	4	00.141414	0.141414
12	4	4	10.593939	0.452525
12	4	4	20.933333	0.339394
12	4	4	30.997980	0.064646
12	4	4	41.000000	0.002020
12	4	5	00.070707	0.070707
12	4	5	10.424242	0.353535
12	4	5	20.848485	0.424242
12	4	5	30.989899	0.141414
12	4	5	41.000000	0.010101
12	4	6	00.030303	0.030303
12	4	6	10.272727	0.242424
12	,	6	20.727273	0.454545
12	4	6	30.969697	0.242424
12	4	6	41.000000	0.030303
12	4	7	00.010101	0.010101
12	4	7	10.151515	0.141414
12	4	7	20.575758	0.424242
12	4	7	30.929293	0.353535
12	4	7	41.000000	0.070707
12	4	8	00.002020	0.002020
12	4	8	10.066657	0.064646
12	4	8	20.406061	0.339394
12	4	8	30.858586	0.452525
12	4	8	41.000000	0.141414
12	4	9	10.018182	0.018182
12	4	9	20.236364	0.218182
12	4	9	30.745455	0.509091
12	4	9	41.000000	0.254545
12	4	10	20.090909	0.090909
12	4	10	30.575758	0.484848
12	4	10	41.000000	0.424242
12	4	11	30.333333	0.333333
12	4	11	41.000000	0.666667
12	4	12	41.000000	1.000000
12	5	1	00.583333	0.583333
12	5	1	11.000000	C. 416667
12	5	2	00.318182	0.318182
12	5	2	10.848485	0.530303
12	5	2	21.000000	0.151515
12	5	3	00.159091	0.159091
12	5	3	10.636364	0.477273

N	NS	K	$\mathrm{X} \mathrm{P}(\ll \mathrm{X})$	$\mathrm{P}(\mathrm{CX})$
12	5	3	20.954545	0.318182
12	5		31.000000	0.045455
12	5	4	00.070707	0.070707
12	5		10.424242	0.353535
12	5	4	20.848485	0.424242
12	5	4	30.989899	0.141414
12	5	4	41.000000	0.010101
12	5	5	00.026515	0.026515
12	5	5	10.247475	0.220960
12	5	5	20.689394	0.441919
12	5	5	30.954545	0.265152
12	5	5	40.998737	0.044192
12	5	5	51.000000	0.001263
12	5	6	00.007576	0.007576
12	5	6	10.121212	0.113656
12	5	$\overline{6}$	20.500000	0.378788
12	5	6	30.878788	0.378788
12	5	6	40.992424	0.113636
12	5	6	51.000000	0.007576
12	5	7	00.001263	$0.001<63$
12	5	7	10.045455	0.044192
12	5	7	20.310606	0.265152
12	5	7	30.752525	0.441919
12	5	7	40.973485	0.220960
12	5	7	51.000000	0.026515
12	5	8	10.010101	0.010101
12	5	8	20.151515	0.141414
12	5	8	30.575758	0.424242
12	5	8	40.929293	0.353535
12	5	8	51.000000	0.070707
12	5	9	20.045455	0.045455
12	5	9	30.363636	0.318182
12	5	9	40.840909	0.477273
12	5	9	51.000000	0.159091
12	5	10	30.151515	0.151515
12	5	10	40.681818	0.530303
12	5	10	51.000000	0.318182
12	5	11	40.416667	0.416667
12	5	11	51.000000	0.583333
12	5	12	51.000000	1.000000
12	6	1	00.500000	0.500000
12	6	1	11.000000	0.500000
12	6	2	00.227273	0.227273
12	6	2	10.772727	0.545455
12	6	2	21.000000	0.227273
12	6	3	00.090909	0.090909
12	6	3	10.500000	0.409091
12	6	3	20.909091	0.409091
12	6	3	31.000000	0.090909
12	6	4	00.030303	0.030303

	NS	R	X P (cix $)$	-x)
12	7	4	30.929293	0.353535
12	7	4	41.000000	0.070707
12	7	5	00.001263	0.001263
12	7	5	10.045455	0.044192
12	7	5	20.310606	0.265152
12	7	5	30.752525	0.441919
12	7	5	40.973485	0.220960
12	7	5	51.000000	0.026515
12	7	6	10.007576	0.007576
12	7	6	20.121212	0.113636
12	7	6	30.500000	0.378788
12	7	6	40.878788	0.378788
12	7	6	50.992424	0.113636
12	7	6	61.000000	0.007576
12	7	7	20.026515	0.026515
12	7	7	30.247475	0.220960
12	7	7	40.689394	0.441919
12	7	7	50.954545	0.265152
12	7	7	60.998737	0.044192
12	7	7	71.000000	0.001263
12	7	8	30.070707	0.070707
12	7	8	40.424242	0.353535
12	7	8	50.848485	0.424242
12	7	8	60.989899	0.141414
12	7	8	71.000000	0.010101
12	7	9	40.159091	0.159091
12	7	9	50.636364	0.477273
12	7	9	60.954545	0.318182
12	7	9	71.000000	0.045455
12	7	10	50.318182	0.318182
12	7	10	60.848485	0.530303
12	7	10	71.000000	0.151515
12	7	11	60.583333	0.583333
12	7	11	71.000000	0.416667
12	7	12	71.000000	1.000000
12	8	1	00.333333	0.333333
12	8		11.000000	0.666667
12	8	2	00.090909	0.090909
12	8	2	10.575758	0.484848
12	8		21.000000	0.424242
12	8	3	00.018182	0.018182
12	-	3	10.236364	0.218182
12	8	3	20.745455	0.509091
12	8	3	31.000000	0.254545
12	8	4	00.002020	0.002020
12	-		10.066667	0.064646
12	8	4	20.406061	0.339394
12	-	4	30.858586	0.452525
12	8	4	41.000000	0.141414
12	8	5	10.010101	0.010101

N	NS		$\mathrm{X} \mathrm{P}(\ll \mathrm{X})$	X)
12	9	7	40.159091	0.159091
12	9	7	50.636364	0.477273
12	9	7	60.954545	0.318182
12	9	7	71.000000	0.045455
12	9	8	50.254545	0.254545
12	9	8	60.763636	0.509091
12	9	8	70.981818	0.218182
12	9	8	81.000000	0.018182
12	9	9	60.381818	0.381818
12	9	9	70.872727	0.490909
12	9	9	80.995455	0.122727
12	9	9	91.000000	0.004545
12	9	10	70.545455	0.545455
12	9	10	80.954545	0.409091
12	9	10	91.000000	0.045455
12	9	11	80.750000	0.750000
12	9	11	91.000000	0.250000
12	9	12	91.000000	1.000000
12	10	1	00.166667	0.166667
12	10	1	11.000000	0.833333
12	10	2	00.015152	0.015152
12	10	2	10.318182	0.303030
12	10	2	21.000000	0,681818
12	10	3	10.045455	0.045455
12	10	3	20.454545	0.409091
12	10	3	31.000000	0.545455
12	10	4	20.090909	0.090909
12	10	4	30.575758	0.484848
12	10	4	41.000000	0.424242
12	10	5	30.151515	0.151515
12	10	5	40.681818	0.530303
12	10	5	51.000000	0.318182
12	10	6	40.227273	0.227273
12	10	6	50.772727	0.545455
12	10	6	61.000000	0.227273
12	10	7	50.318182	0.318182
12	10	7	60.848485	0.530303
12	10	7	71.000000	0.151515
12	10	8	60.424242	0.424242
12	10	8	70.909091	0.484848
12	10	8	81.000000	0.090909
12	10	9	70.545455	0.545455
12	10	9	80.954545	0.409091
12	10	9	91.000000	0.045455
12	10	10	80.681818	0.681818
12	10	10	90.984848	0.303030
12	10	10	101.000000	0.015152
12	10	11	90.833333	0.833333
12	10	11	101.000000	0.166667
12	10	12	101.000000	1.00000

N	NS	K	$\mathrm{X} \mathrm{P}(\ll \mathrm{X})$	P (=X)
12	11	1	0 0,083333	0.083333
12	11	1	11.000000	0.916667
12	11	2	10.166667	0.166667
12	11	2	21.000000	0.833333
12	11	3	20.250000	0.250000
12	11	3	31.000000	0.750000
12	11	4	30.333333	0.333333
12	11	4	41.000000	0.666667
12	11	5	40.416667	0.416667
12	11	5	51.000000	0.583333
12	11	6	50.500000	0.500000
12	11	6	61.000000	0.500000
12	11	7	60.583333	0.583333
12	11	7	71.000000	0.416667
12	11	8	70.666667	0.666667
12	11	8	81.000000	0.333333
12	11	9	80.750000	0.750000
12.	11		91.000000	0.250000
12	11	10	90.833333	0.833333
12	11	10	101.000000	0.166667
12	11	11	100.916667	0.916667
12	11	11	111.000000	0.083333
12	11	12	111.000000	1.000000

[^0]: *All bus companies and hospitals capable of treating radiologically contaminated patients were surveyed.

[^1]: a Confidence interval $=(0.33,1.00)$, confidence level $=100 \%$.
 ${ }^{\mathrm{b}}$ Confidence interval $=(0.40,0.80)$, confidence level $=100 \%$.
 ${ }^{C}$ Confidence interval $=(0.57,0.85)$, confidence level $=100 \%$.
 ${ }^{d}$ Confidence interval $=(0.60,0.87)$, confidence level $=88 \%$; confidence interval $=(0.47,0.87)$, confidence level $=100 \%$.
 $\mathrm{e}_{\text {Multiple }}$ responses were given by same companies.
 ${ }^{\text {E }}$ One company had garages located both within and outside the EPZ.
 $\mathrm{g}_{\text {Confidence }}$ interval $=(0.00,0.67)$, confidence level $=100 \%$.
 ${ }^{\mathrm{h}}$ Confidence interval $=(0.20,0.60)$, confidence level $=100 \%$.
 ${ }^{i}$ Confidence interval $=(0.40,0.73)$, confidence level $=83 \%$; confidence interval $=(0.33,0.73)$, crafidence level $=100 \%$.
 $\mathrm{j}_{\text {Confidence }}$ interval $=(0.00,0.40)$, confidence level $=100 \%$.
 ${ }^{\mathrm{k}}$ Confidence interval $=(0.14,0.43)$, confidence level $=100 \%$.
 ${ }^{1}$ Confidence interval $=(0.07,0.27)$, confidence level $=86 \%$; confidence interval $=(0.07,0.47)$, confidence level $=100 \%$.

[^2]: ${ }^{\text {a Confidence }}$ interval $=(0.33,0.92)$, confidence level $=93 \%$; confidence interval $=(0.25,0.92)$, confidence level $=100 \%$.
 ${ }^{\mathrm{b}}$ Confidence interval $=(0.07,0.77)$, confidence level $=90 \%$ confidence interval $=(0.07,0.90)$, confidence level $=100 \%$.
 ${ }^{\text {C }}$ Confidence interval $=(0.47,0.97$), confidence level $=90 \%$; confidence interval $=(0.08,0.97)$, confidence level $=100 \%$.
 ${ }^{d}$ Confidence interval $=(0.47,0.95)$, confidence level $=90 \%$; confidence interval $=(0.09,0.95)$, confidence level $=100 \%$.
 $\mathrm{e}_{\text {Multiple }}$ responses were given by some facilities.
 f
 Number of unspecified facilities is divided equally between male and female.

[^3]: ${ }^{\text {a }}$ Confidence interval $=0.00$, confidence level $=100 \%$.
 ${ }^{\mathrm{b}}$ Confidence interval $=1.00$, confidence level $=100 \%$.
 ${ }^{c}$ Confidence interval $=(0.60,1.00)$, confidence level $=90 \%$; confidence interval $=(0.20,1.00)$, confidence level $=100 \%$.
 ${ }^{\text {d Confidence }}$ interval $=(0.57,0.96)$, confidence level $=92 \%$; confidence interval $=(0.26,0.96)$, confidence level $=100 \%$.
 e_{Mu} tiple responses were given by some facilities.
 ${ }^{\mathrm{F}}$ Confidence interval $=(0.35,0.95)$, confidence level $=90 \%$; confidence interval $=$ ($0.15,0.95$), confidence level $=100 \%$.
 $g_{\text {Confidence }}$ interval $=(0.13,0.70)$, confidence level $=91 \%$; confidence interval $=(0.13,0.83)$, confidence level $=100 \%$.

[^4]: $a_{\text {Confidence }}$ interval $=(0.04,0.78)$, confidence level $=89 \%$; confidence interval $=(0.04,0.93)$, confidence level $=100 \%$.
 ${ }^{b}$ Confidence interval $=(0.36,0.91)$, confidence level $=91 \%$; confidence interval $=(0.27,0.91)$, confidence level $=100 \%$.
 ${ }^{\text {c }}$ Confidence interval $=(0.02,0.80)$, confidence level $=91 \%$; confidence interval $=(0.02,0.96)$, confidence level $=100 \%$.
 ${ }^{d}$ Confidence interval $=(0.18,0.63)$, confidence level $=90 \%$; confidence interval $=(0.06,0.91)$, confidence level $=100 \%$.

[^5]: *A confidence interval is a range of values which may or may not include the parameter of interest. The degree of belief (which should not be interpreted as a probability) that the confidence interval actually contains the true value is the confidence level.

[^6]: *Additional values for those cases where $F(\bullet) \leq 0.20$ or $F!$.) ≥ 0.80 were also tabulated and can be obtained on microfiche from Ron Whitfield, Argonne National Laboratory.

