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ABSTRACT

We discuss the assignment of boundary values for the chemical potential
and the calculation of cnergy release tates for the growth of creep cavities
along grain boundaries by self-diffusion., For simplicicy it is assumed
that the boundaries are flat and that surface and grain-boundary diffusicn
are the dominant transport mechanisms. As matter diffuses from the void
surface into and along the grain boundary, misfit residual stresses are
induced to alleviate the high stress concentration ahead of the cavity apex.
As a result, it is shown that the contribution of strain energy terms to
the chemical potential can be neglected in typical cases. Also, contrary
to the Griffith crack extension model, the energy dissipation incurred by
diffusive removal of material from the cavity surface and deposition in
the grain beundary is a major term in the snergy transfers associated with
cavity growth, We show that the primary energy "sink" in diffusive cavity
growth arises from the work done by the grain-boundary normal stress when
matter is inserted in the near-tip region by diffusion, and not from the
less of strain energy of matter that is removed from the cavity at its
tip or from a work of bend separation. We alse comment on thermodynamic
restrictions on the angle formed by the void surfaces at their apex,
where fhay join the grain boundary. Further, our derivation of boundary
values for the chemical potential is carried out in a manner appropriate
for arbitrarily large but elastic distertions of material near the cavity
tip and, by contrast to most previous work in the area, we include rigor-
ously the effects of surface tension (i.e., of 'surface stress", as

distinct from surface energy).



I. INTRODUCTION

When subject to creep conditions, polycrystalline materials tend
te develop cavities at grain interfaces. Their growth and final
coaleseence leads to intergranular failure. The kinetics of cavity
growth by diffusion has become a topic of extensive recent interest,
and there is not full agreement in the literature on fundamentals of
the suBject. The papers by Hull and Rimmer (1959) and others (Speight
and Harris, 1967; Weertman, 1973; Vitovec, 1972; Raj and Ashby, 1975)
wonsidered the diffusive growth of an array of spherical-caps (or
lenticular] cavities in a planar grain interface. This assumprion as
to cavity shape implies that surface diffusion is sufficiently rapid
that cavity growth is controlled only by grain boundary (g.b.) diffusion.
Further, the grains were assumed to be non-deforming (rigid), and the
result predicted is that the growth rate varies linearly with the applied
stress. However, conditions do not always allow this quasi-equilibrium
cavity shape and p.b. cavities sometimes have an elongated, crack-like
shape. Hence, Chuang and Rice (1973) and others (Vitek, 1978; Speight
et al., 1978; Beere and Speight, 1978; Chuang et al., 1979) comsidered the
other limiting case of a thin crack-like cavity growing in a g.b. and
estahlished different relationships between applied stress and growth
speed,

In an overview of non-equilibrium models, Chuang et al. {1979)
examined the entire spectrum of interfacial void shapes in diffusive
cavitation and concluded that over a variety of conditions, a cavity can
grow from one extreme case of slow advance in a lenticular shape to the

other extreme case of rapid advance in a crack-like shape. The growth
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pechanisms on which those analyses are based are such that under the
action of the applied stress normal to the boundary where cavities are
located, matter on the cavity surfaces is driven by surface diffusion
toward the cavity apex and intc and along the g.b.

Based on this kinetic model, it is worthwhile to investigate the
thermodynamic forces driving a cavity. Indeed, the subject of chemical
forees in a stressed hody containing defects has heen studied by several
authors. Specifically, Stevens and Dutton (i971) considered Griffith
crack propagation by mass transport and fermulated the thermodynamic
potentials for incremental advance of crack due to various diffusion
paths. McCartney (1977} and Heald and Speight (1977) investigated the
thermodynamic stability of a cavity and determined the shape at which
subcritical growth can be maintained. Their studies are esssntially
limited to cases in which cavities are located in a perfect crystal.
However, it is well recoynized that grain boundaries are perfect matter
sinks [or vacancy sources] and the fact that voids are often observed
at the g.b. suggests that it plays an important role during the stages
of nucleation and growth.

The objective of this paper is to re-examine the formulation of
chemical potentials and the calculation of energy release rates in
cavity growth. We place emphasis on the special features induced by the
existence of grain boundaries. Their action as matter sinks can change
the whole picture of the formulation. Specifically, in centrast to
Griffith cracks, we show that the strajin energy term in the chemical
potential expression can typically be neglected even in cavity growth

in a relatively narrow crack-like shape. We also show that the major sink




of energy in cavity growth is from the work of normal stresses on the
effecfive opening of the grain boundary due to the additien of matter
te it by diffusion. -

While our considerations have modelled the matarial as an elastic
s$01id, undergoing self-diffusion along interfaces, it is well to remember
that the cavitation process is often accompanied by significant amounts

of plastic creep flow through dislocation motion.
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11. THE BQUNDARY VALUES OF CHEMICAL POTENTIAL

In phenomenological terms, diffusive fluxes of a substance are
driven by thermodynamic forces generated by chemical potential gradients.
Consider a stressed body containing defects in the form of veids and
grain boundaries, and suppose for simplicity that the body consists
of a single component which, again for simplicity, is taken as isotropic
with respect to its elastic and surface energy properties. Temperature
is held constant and we suppose that an unstressed patter reserveir,
without defects, is avajlable at the same temperature as the body,

A11 thermodynamic potentials, including the chemical potential yu , ¢an
arbitrarily be assigned the valus zero in the reservoir. It is conven-
tional to define p in units of energy per atom although the concepts
are continuum in character and treat matter as being indefinitely
divisible;, atoms are mérely a convenient unit for mass,

The classic work on establishing boundary values for u  is that
of Herring (}951,1953). We follow essentizlly his procedures, but three
comments are in order. First, since we shall assume that matter is
always added coherently to surfaces, at full composition equilibrium with
the immediately adioining bulk, there is no need to distinguish separate
potentials for atoms and vacancies as he does. Indeed, Herring makes
gimilar assumptions about matter addition, so that in the end the distinc-
tion is unnacessary and only W, - ¥, appears in his formulae (A" denotes
atoms, '"v vacancies). Second, although Herring classifies carefully the
diffarence between surface emnergies and surface tensions {i.e., surface
stresses), in a context which assumes clearly that surface energies are

dependent on elastic strazins of surface elements, in his evaluations of




he gives no discussion of snergy changes that come about because matter
gddition will, in general, alter the strains along a surface. We derive
expressions for w in B manner appropriate to arbitrarily large elastic
distortions (important because some models for diffusive cavitation assume
large strains at the cavity tip) and show, by a simple verbal argument

in the folloewing text and a more detailed analysis in the Appendix, that
Herring's expressions do in faet remain valid so long as the terms within
them are properly referenced to the current deformed state., Third,
although some of Herring's discussion of potentisls is directed to
{global) nén-equilihrium states, notably to diffusion, his methods of
evaluating p are phrased mostly in terms of conditions for equilibrium.
Qur metheds are somevhat more in keeping with the spirit of irreversible
thermodynamics although, certainly, we adopt tacitly the notions of local
thermedynamic equilibrium which are inherent to the accepted, if thereby
limited, procedures of that subject.

To proceed, we observe that y  is defined at any location within
the stressed body such that pdn  is the reversible work of taking an
infinitesimal element of matter, equivalent te 4&n atoms, from the reser-
voir and placing it st that location, while the displacements are held
fixed on the loaded external boundary. Equivalently, ufn = §F where
F is the total Helmholt: free energy of the body, and more generally,
when matter is transferred without Testrictions on the sxternal boundary

displacements,
&F = W + uén (1)

where &W iz the work of external loads. OQur concern here is with




matter addition to (or removal from) void surfaces and grain boundaries.
If these, collectively, have an area in the current deformed configuration

denoted by A , then u satisfies

&F = GW # I u 4N da (23
A
for arbitrary additions of infinitesimal matter layers to A , consisting
of 4N atoms per unit (current) area. Expressions in the form of (2)
arise in "internal variable' formulations (Rice, 1974} of inelastic
processes in solids, due to structural rearrangements of constituent
elements of material by diffusien or (with appropriate terms analogous
to v &N ) slip, phase changes, etc. In applying {2) we will generaliy
wrTite &N = 8§t/ where &t is the local thickness of the (coherently)
added layer and 2 is the local volume per atom in the deformed confipu-
ration. Further, F will be represented as Fe + Fs ,» where Fe is the
elastic strain energy. of local density w per unit volume of the current
deformed configuratien, and F! is the energy of interfaces, of density

¥ per unit (current) area (Y =y, on cavity surfaces and y = vy, on

)
grain boundaries}.

Consider the addition of a layer of matter of {variable) local thick-
ness 6t over some pertiom of a cavity surface, under circumstances for
which the external boundary is fixed [(6W = 0) . To obtain u we need
te calculate &F , and this has contributicons from the following scurces:

{i) the added layer must be given a strain energy w  to make it fit

coherently; (ii) the area of the surface changes such that, if additional




elastic strains quﬂ of surface elemsnts are neglected, &{dA) =

-(:1 + ﬂz}ﬁt dA by an easy geometric construction, where ) and Ky
are the principal curvatures and the sign convention is such that both
would be positive on a spherical cavity; (iii) surface elements strain

by ﬁau causing a change in ¥y and an additional change in dA ; {iv)

i
the tractiens acting on the bulk solid immediately below the surface,
which are in general mon-:zero whenever surface tensions exist, are
carried through somg additional displacements Gui when matter is added,
thus causing a change iR strain energy of material external to the surface.
Herring's (1951,1953) discussion.makes no reference to (iii) and (iv).
It is carried out as if the preduct ¢ dA is wnaffected by-the strains
Geﬂﬁ ; im such circumstances the conptribution from (iii) would be zersg
and because (see Appendix} the surface tensions vanish in these circum-
stances, there would then be no contributions from (iv) either. (Rice
and Drucker (1967) gbserved that when matter is added or removed from an
unstressed surface the energy alteration analogous to {i?] is of second
order in &t , hence zere for our present purpoeses).

We evaluate &F as if vy dA was invariant to strain and then
explain briefly (relegating a detailed analysis to the Appendix) why
the result is valid in general, Hence the contributions to &F arise

from (i) and {ii}, and are

§E

w 5t dA + J ¥ [-(x +k )} 6t]dA . (3)
Ih A S |

I1f vwe now write &t = 0 &N  and compare ﬂith {1}, it iz seen that

v o= Wi - Ts[xl+n2]ﬂ {3



on a cavity surface, This is the same as the exprassion given by
Herring, so long as it is understood that w , @, e and the x's are
referenced to the current deformed state at the place of matter addition.
Now, let us drop the generally untenable assumption that vy dA is
invariant to surface strain and that surface tensions vanish, We can
caleulate &F by first carrying out steps (i) and (ii}, while applying
to the system whatever system of (workless) forces are necessary to pre-

vent occurrence of the surface strains Gﬂu and displacements &ui .

B
This gives a &F exactly as in eq. (3) and the net addivional 4&F ,
associated with steps (iii) and (iv}, is just minus the work of removing
this additional set of forces. But the final state to which the system
goes is one of elastic (as opposed to compositional, sr surface shape)
equilibrium, and at this state F is stationary with respect to elastic
distortions. Hence the net work of remeving the set of constraining
forces is a quantity of second order in &t , apd the net contribution
of (iii) and (iv) to &F is therefore zero to the first order terms of
interest. Hence (3) and, particularly, (4] for u are valid generally.
A fuller analysis, necessarily of some mathematical complexity, is given
in the Appendix. Indeed, it is shown there that when surface tensions
Exist GFE and GFS both separately contain terms of first order in
6t (in addition to those already listed in eq. 3), but these terms are
of opposite sign and cancel when &F = 8F, *+ SF, is-fnrmed.

Often, throughout the body of the paper, we simplify derivations

by neglecting surface tension and the variation of vy dA with surface

strain. As we remark, the finzl results in ezch case are valid without

these assumptions, provided that terms are properly interpreted, and details
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of complete derivations are given in the Appendix,

Consider now the addition of a matter layer 41 €0 a flat grain
boundary subject te tensile stress, again under conditions fu; which
6W = 0 , The layer must be given strain energy appropriate for coherent
fit, and the boundary must be separated by the distance &t to allow the
new matter, resulting in a change -Juﬁt dA of strain energy of the
adjoining material, where ¢ is the normal stress (Ytrue” stress, i.e.,

force per unit current area)l acting on the grain boundary. Thus
oF = [ (v - ¢)ét da (s)
A
and writing &t = Q&H ,
¥ = wil - o (%)

along a grain boundayy, Again, this agrees with Herring's result so loag
as the terms are propsrly referenced to the current deformed state, and
{5ce Apperdix] the result remains valid when surface temsion along the
grain boundary and dependence of Y, ©n strain is included,

Indeed, this last forsula makes evident cur reasons for csre in
defining quantities per unit volume or area of the deformed configuration,
The difference hegwaan oif and ﬁﬂr R wheré ﬂr iz the value of £ in
the unstressed reserveir, is itself of the same order as the strain energy
term wi in (8). If, instead ; is the strain energy per unit volume
as measured in the unstressed state, and ; and ;s are force and

surface energy per unit arca of the unstressed state (so that o is a
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"nominal” stress), then it is straightforward to shew that (4) and (8)

are modified to
u = Hﬁr - YS(I*En](K1+K2]ﬂr 4)
on the cavity surface and
= wﬂr - u[lfen)ﬂr . (&)

on the grain boundary, where € is the strain of adjcining material
elenents in the direction normal to the surface being considered. Obwvicusly,
;e“ is of the same order as ; s and hence great care is required in
discussing the effect of strain energy contributicns to the chemical
potentials (Stevens and Dutton, 1971; McCartney, 1977; Charles, 1576; [utton
and Puls, 1378). Similar remarks apply to [4r] since )Y is generally
of the same order as o at a cavity tip (see below).

In a material capable of matter transport by diffusion, u must
be continuous at the cavity apex where it meets the grain boundary; other-
wise an unbounded matter flux weuld result thers. Hence, when the strain

energy terms are negligible

T5(‘11.1*‘21:] =% 7
where Klo * ¥24 and 7, are, respectively, the cavity surface curvatures
as the apex is appreoached along the cavity walls and the grain boundary nor-

mal stress as the apex L5 approached. Using this formula as an approximate
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estimate of stress in the vicinity of the apex, we can estimate the
relative importance of the strain energy terms. For simplicity, consider
cylindrical voids under plane strain conditions [:1 =K, 6, = 0} and
assume linear elasticity. Then

2E o~ 2 Y5 © 50;:-ﬂ Yo (8)

where b is the lattice spacing, P, = lfrﬂ is the radius of curvature
of the cavity wall at the apex, and we use the estimate Y ® Eb/25 .
Since Py typically has values of 50 to 500 b {i.e., 100 A tol wm) ,

the straim energy term is quite negligible,

We emphasize, however, that this result occurs because of the mebility

of matter in the circumstances considered, Surface diffusion allows the
attainment of large values of Po {compared, say, to that for a flat.
Griffith crack} and misfit stresses induced by matter flow into the g.b.
effectively thicken the boundary near the tip, alleviating the stress con-
centration normally associated with cracks or cavities. Very different
conclusions on the importance of w could arise when the cavity does not
lie along, or itself constitute, a high diffusivity path.

These latter circumstances ;ﬂem to coincide with those assumed by
Stevens and Dutton {1971} and Dutton and Puls {1978) fer the diffusive
growth of Griffith cracks and, at this peint, it is perhaps interesting
to compare the directions of wmatter flow in the different models proposed.
As Dutton and coworkers remarked, in the case of their Griffith crack
extension model the chemical potential at the tip region is very ligh due

to high strain energy density developed in this region, and they consider
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the first term in (4} to dominate. Hence they assumed that the direction

of diffusion is awsy from the tip along the cavity surface, On the other
hand, as envisioned in our model, baszed on the Hull-Rimmer model and its
generalizations, misfit stress has been induced to reduca greatly the

stress concentration associated with a notch so that the second term of

{4] takes over. The chemical potential at the cavity surface far away

from the tip is higher than at the tip regien and the flow is then reversed
toward the tip and into the g.b., Intuitively, this must be true since in
our model the p.b. which lies ahead of the cavity tip is capable of
accepting the matter previously diffused from the cavity surface, whereas

in the Griffith model, the cavity is regarded as bejng essentially the same
as if it were located in 2 perfect crystal so that no sinks are available
to accommodate the matter, and thus flow must carry atoms away from the tip.
However, it remains an open guestion as to whether a full solution to the
coupled equations of elasticity and diffusion would actually produce

cavity growth in the pmarrow crack-like mode assumed in the Griffith model

of Durton and coworkers. Instead, e.g., it is possible that a full amalysis
would merely predict a rounding out of the crack near its tip, By contrast,
a variety of complete soluticns have been carried out for the model which
we envision for cavities along grain boundaries, and these do indeed pre-
dict growth, ultimately in a comparatively narrow crack-like mode (Chuang,
1974 Vicek, 1978; Chuang et al., 1979), but with negligible strain enerpy

terms at the tip so long as £, *> b,
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IT11. ENERGY RELEASE BATE IN CAVITY GROWTH

In fracture mechanics terminology. there is an energy release rate
associated with cavity growth. Since there is not full agreement in the
published literature, we examine here the compuration af this rate and
arswer the question as to where the energy goes for diffusive crack growth.
This is done with teference to a plane strain mode (i.e., cylindrical
cavities pr cracks) so that all works and energies are on a unit thick-
ness hasis,

In the case of elastic-brittle crack growth without diffusion, as
formulated within the Griffith context, an energy release rate G is

defined by

{9)

where a Iis crack length. Hare it is customary to neglect surface tension
effects (whether they can be included consistently within a model for a
mathematically sharp tipped crack remains an open question}, so that Fe

is just the ordinary strain energy of the cracked body as computed from
continuum elasticity theery and G is given by the well-known expression
(1-v23K2/E for an isotropic linear elastic solid. Further, in the
Griffith model dF5 is written as [ETS - Tb]da because iR an increment
da of growth a length 2da of crack surface is created at the expense

of length da of grain boundary. Actually, this should be written as

[2;5 - ;b}d; . where d; is the growth increment as measured off relative

-y
to some reference confipuration, and the y's are based on unit area of

that configuration (the +'s are independent of surface strain when



surface tensions vanish). Understanding the terms in this way ans has,

for the Griffith model of reversible crack growth

dW = dF = dF + dF = dF_ + (2r - v )da {103
during growth, and hence the reguired value of G is
(11)

It has been emphasized recently [Rice, I978) however, that the actual
requirement of thermodynamics for gquasi-static, isothermal crack growth
should be phrased as the inequality W3 F {i.e., the inequality assuring

non-negative entropy production) which requires only that
W-F 2 [6 - (2v_ - v )]a z 0 (12)

for growth {or healing, a s 0) , and this is gensral enough to include
lattice trapping with thermally activated growth at values of G different
from (11). Here 275 - Y, canr be interpreted as the reversible work of
pulling the interface apart against cohesive forces.

The fermulation is rather different for the diffusive prowth process
considered here, because there is no direct rupturing of cohesive bonds.
We asszume, cvonsistently with procedures in the thermedynamics of diffusien,
that u is defined as in eqs. [4} and (&) during processes, and that
diffusive fluxes J are established on the c¢avity surface and grain

boundary, such that Jaufés < ¢ where s is arc length along the flow path,
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We consider a half-veoid of length a as in fig. 1 and let Tb dencte
the grain interface and Ps the uppar surface of the cavity. Then eq. (2},
which is regarded as an identity given the definitions of u ; can he

written with F = Fe + F5 » Where

F5 = 7 Jr Y, ds + Jr Vg ds {13)
5 b
and ds denotes arc length. Hence if an energy releass rate is defined
as ﬁ-ﬁa the rate is given by
LB S . J ui ds - I WM ds (14)
Some rearramgements of this equation are useful. We note, however,
that contrary to the case for Griffith cracks, the quantity like G ,
namely (¥-F )/a , will not in general be simply a function of applied
load snd netch size but, as shown by examples later, will depend on details
of the matter placement aleng the grain boundary. First, observing that

J and K are related by mass conservation,
aljas + N=0, (15)

that B T My oo 2.]5 = J, 4t the cavity apex, and that J wvanishes at

the left and right boundaries (the latter if the right boundary is a

half-spacing between cavities), integration by parts leads to

W-E =F_ =+ 2[ (-J 3u/3s)ds + [ (-J 3p/as)ds| . (186}
] -3 T r
s b
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Hence the energy release rate ﬁ-ﬁe supplies two terms, the first

[ﬁsj being the snergy which goes to cavity surface creation and grain
boundary remcval, and the second being diffusive dissipation in the form
of necessarily positive products (-J &u/8s)

Next, we observe that directly from elasticity thepry, the rate of
change in strain energy {calqulated, e.g., as by Rice and Drucker (1967),
Rice (1968a), and Eshelby {1970} when material jis5 added or removed from
surfaces) is

E'.-=2J “ﬂﬂdS...I u;‘gﬁ[dsl-i‘-l saN ds . (17

® r, Ty Ty

Here N {generally positive on rh and negative on rs} iz the volu-
metric rate of matter addition per unit area, or rate of thickening % ;
the first two terms represent the strain energy of the added matter, and
the last two the work of all applied tractions, both external and those
{-9) acting along the g.b. Equatior {17]) is written for the case vhen no
surface tensions exist, consistently with the references by Rice and others
cited above, The full form of the equation is given in the Appendix. We
can also compute IE's . where ]"'5 is given by (13). ﬂonsisténtly with the
neglect of surface temsion in (17), in evaluating ﬁﬁ the effects of the
surface strain rate € on products of the form vyds are neglected (againm,

see the Appendix for the full expression), and hence

ﬁs x -2 [r ysmnﬁ ds + (2, coss, - M) @ - (18)

s
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The integral here represents the effect of adding matter at the rate
t = aN to the surface (of course, t will generally be negative along
r, when cavity is growing); as in our earlier discussion, xt ds = -x0N¥ ds
is the rate of change of an arc ds , at a place where the curvature is «
due to matter addition. The last term of eg. (l8) arises because the
integral only gives the rate of change of F5 from matter addition (o1
removal] from the existing arc ]‘5 but, as iltustrated by the inset
diagram in fig. 1, it does not include the new surface element created
during growth., As shown in the diagram, in cavity growth by da inte
the grain boundary, two arcs of length da cos¢0 (¢0 iz the angle
between I‘5 and the negative x-axis at the cavity tip] are added t¢ the
cavity surface and the grain boundary diminishes by da , thus leading to
the last term of [18) for Fs + The subscript "o" on this last term
means that the vy's refer te values at the cavity tip,

Whern eqs. (17} and {19) are added together there results

E=F -|-]':-‘5-ﬁ{+2]r [w-*;st}ﬂt—'lds

5

. J (w-a)aR ds + (2ycos8, - v,), & (19)
r
b

and, as shown in the Appendix, this equation is correct generally, i.e.,
when surface tensions and associated dependences of products yds on

surface strains are present, but note there that if surface tension L
exists at the tip, the distribution of © must he regarded as including
a concentrated tensicn T, sing_ at the tip in this formula and in eqs.
(23,24} to follow. As noted in the Appendix, however, there are grounds

for arguing that T and T, must vanish at the tip. If we now recall
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the defiritions of u in eqs. (4) and (6), recognizing that K] =%,

K, = 0 in the present case, and then compare eqs. {14) and (19), we

conclude that -

(2v, cos¢_ - Y), = &, or cosp = (v, /2v ), (20)

during cavity growth., This 1z the well-known expression for the
equilibrium angle ¢, at the apex of a grain boundary veid. The same
expression has generally been assumed to apply during growth, and the
present analysis provides a rationalization for this.

On the other hand, eq. (2), and hence eq. (14}, were assumed to
apply as equalities during growth. If instead they were assumed to apply

as inequalities in the form (notation of eq. (2))

Wy F - J Wi dA (21)
A

to allow for some form of entropy production at the cavity tip in addition
to the diffusive entrepy production (-J auf3s) already exhibited, a.p.,
in eq. (16), then combination of eq. (14), with = replaced by =z .,

and eq. (19) (which remains valid as an squality) leads to
{E*rs cos$ - Yha}a s 0 . (22}

This inequality will be satisfied during cavity growth (i.e., when a > 0)
only if cns¢a £ {TbIETs]o : that is, only if ¢a is greater than or equal
to the angle given by the squilibrium expression. During cavity shrinkage
{i.e., sintering) it will be satisfied only if *o is less than or equal

te the result of the equilibrium expression. Consequences of the inequality

version of the Second Law of Thermodynamics are perhaps not often surprising
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but this seems to be an exception. One might well expect that because the
cavity advances by the drawing-in of materizl to the grain boundary at the
cavity apex, under action of applied stress, that ¢, might decrease from
the value given by the equilibrium expression as 3 increases from zero,
and conversely. But themmodynamics prohibits this. 1If there is to be any
deviation from the equilibrium expression, it must be in the opposite sense.
In the_circumstances it seens ressonable to gssume that ¢, alvays retains
the value given by the relation for equilibrium and, indeed, as shown by eq. (20)
this must necessarily ba the case if the cavity apex does not constitute
a2 "point scurce" of entropy production. We have been careful to use the
phrasing "angle given by the equilibrium expression" rather than
Yaquilibrium angle' in this discussion. For example, owing to the depen-
dence of the 1'§ on surface strain it is possible that the angle ¢n
given by the equilibrium expression in a stressed solid would differ frem
the corresponding angle 4, in an unsiressed solid. _

As a final expression for the energy release rate; which is perhaps

mest revealing in comparing different models, we may rearrange eq. (17),

which retains validity regardless of whether eq. (21) is regarded as an

equality or inequality, to read

H-ﬁe = 2[ w(=aN)ds - J
r

wiN ds| + J oON ds . (z3
5 Ty Ty

{(Since eq. (17) neglects surface tension effects, so also does this equation.
However, we show in the Appendix that this equation and, hence, our sub-
sequent discussion in this section remains valid if Fe is replaced by
a new quantity F; which is, in fact, a more loglcal quantity to use in

. 4t .
calculating an energy release rate, as HnFE , when surface tension
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tension effects exist. Also, as noted zlready, o than includes the
concentrated tension Te simp0 at the tip). Fquatiun [23) can be inter-
preted relative to fig. 2 where, in growing the void by some infinitesimal
increment 4a , material of local thickness AR "15 removed from the notch
surface and the grain boundary effectively thickens by an amount AS .

Hence

oK - nFe = 2 Jr wan ds - jr wid dx + Jr oaé dx , (24)
% b b

and from this the difference between the Griffith-1like mxdel envisioned
by Stevens and Dutton {1971) and the misfit model is clear. In the former
case there is assumed to be no or negligible opening A& ahead of the
crack, and sll of the snergy release goes to the first term of (24), repre-
senting strain energy of material 4iffused away from the highly stressed
notch surface. As remarked, it remains to be demonstrated that a model
of this type will actually lead to cavity growth. On the other hand, in
the Hull-Rimmer model and its generalizations, high stresses are alleviated
by the misfitting material which effectively thickens the grain boundary
ar the notch tip. As we have demonstrated, in this case the w terms are
negligible and all of the energy release goes to the last term of [24]),
which represents work done by lecal stresses in opening the grain boundary
to accommodate the diffused matter.

It is tempting to regard the left side of (24) as being G da where
G = (1-v2)K2/E 1is the usual enerpy release rate of linear elastic fracture
mechanics. However, this is valid only in special cases, considered by

Chuang (1974), of essentlially steady state growth in which the creep
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cavity iz indeed thin (i.e., ¢rack-like] in shape¢, and in which all
effective thickening of the grain boundary is limited te a small vicinity
of the void tip, with the diffused matter being accommodated i:r}r elastic
distortion of the adjoining grains. In such case: Chuang shows, by
developing numerically am explicit solution to the coupled (linsarized)
equations of elasticity and diffusion, that the G leavel t¢ drive the
void is always greater than the Griffith level of eq. {11}, Indesd, this
.is required by general considerations embodied in eq. (16) (in which

we may set is = (ZTS - T£]5 for the present case}, since {-J 3uf3s)

is necessarily positive. In fact, Chuang's analysis suggests that K
can never fall below approximately 1.7 times the Griffith value, and

by an application of the J-integral (Rice, 1968a,b; Eshelby, 1970} he

was able to derive an equation anslogous to (24), neglecting the w terms,
and demonstrate . that his numerieal results for o(x) and &§(x) closely

satisfied this aquation.
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IV, TOTAL ENERCY CHANGE DUE TO INTRODUCING A CAVITY

Stevens and Dutton (1871 have considered the total energy change
AE due to introducing a cavity into a stressed body. In our notatiom
E =z F-# where the external loads are assumed to be fixed so that W
varies in proportion te the displacement of the loaded boundary.
Following their classification, with slight modifications, AE includes
contributions from the following four scurces (here we neglect completely
surface rension effects]:

(1) change of energy due te void surface area introduced
and lost grain boundary srea (ﬂFS) .

(2) elastic strain energy change [&fﬁ] due to removal of
material from the body te¢ ferm a veid,

(3) work done by external loads (4W) during removal of

material,

(4) work done in processes of local matter rearramgement, such
45 by local stress fields when the matter removed from the
]

void is deposited at the g.b. (AW ) ., (A1l other possible

sources such as dislecatlion, slip, etc., are neglected}.
It is important to note, as was not emphasized by Stevens and Dutton, that
the ﬂFe and AW terms calculated in step (2) and (3) are not the total
Terms aFe and AW (which, for example, enter into the enerpy release
rate expression). Both nFE and AW 1nclude & contribution from the work

1

W in step (4], and typically this is z very significant term. Indeed,

1 '
the work W i analopous to the effect of o term in eq. (6} for a

on a grain boundary; the part -oQéN of uwéN in eq. (2} is essentially

[ 4
a work of type W , and we have seen its importance in eq. (24).
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With the preceding classification of terms, the total energy change

is

AE £ ﬁFS * ﬁFE - &N = &F + &F - AW + W | (25)

In fact, the specific terms aFE , AW and H' depend on the sequence of
operations and are different if matter (say, from a reservoir) is first
inserted inte the prain boundary, and then an equivalent amount of matter
is removed from the body to form the void, and placed in the reservoir.
Of ¢ourse, the total effect, ﬁFe - &W , which these tarms rapresent, is
independent of sequence.

Consider a small elliptical cylindrical veoid lying along a g.b. as
illustrated in fig. 3 with its major axis normal to the direction of the
uniaxial applied stress o_ . We proceed to compute the energy change &E
of this configuration in the following mamner: First, we cut out the
“yolume" V (actually, an area in the 2-D model), thus creating a void
on the boundary, and temporarily deposit it in an unstressed matter reser-
voir., This operation produces the free energy changes an . ﬁFE and

AR , where {Rice, 1968a)

1{1-u2}ai;2

v {1+d/2a) . (26)

ﬁFe - AW = -

Next we take the volume ¥V  out of the reservoir and insert it inta thes
g.b., thus adding 2 non-uniform layer of material of local thickness § ,

such that

l d(x)}dx = ¥ = wad . (27)
g.b.
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To get the H1 term, we calculate the work done during the insertion
process. This includes the work done on the surrounding material, plus
the work necessary to bring the strain energy of the material being inserted
to the proper lesvel. Let ca(x] ke the normal tensile stress of an
Inglis-type stress distribution induced by ¢, , &nd let cb[x] be the’
final total stress that results after the matter V has been stuffed
~into the g.b. To compute H‘ , we first cut the g.b., hold it in place
by applying o , and quasi-statically alter these stresses until the

cut has apened locally by &{x) (at which point the g.b. stresses are
uh[x]]. WI is simply the_[ﬂegative] work dome an the surface of the cut
during this operation and if we assume the material is linearly elastic,

then

W o= -% (6® + o°)6 dx . (28)
R-b.

Qf course, the material V that is inserted into the opensd cut must be
stressed and thus there will be an additicnal part of Hr related to the
strain energy increase in the inserted volume V at state {h), but this
portion is insipnificant when nh is small compared to E . 5Still, if
ﬁb is of the order of o, over the region where the matrer is added, the
term is of order n{l-uz]ai ad/?E , which is of the same order as
a?e - 4% of (26) unless dfa << 1 .

There are two observatinﬁs 1o make about w' . First, it is usually

far greater in magnitude than ﬂFe - AW , and hence cannot be neglected.

Suppose, for example, that the material is added uniformly over the entire
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g.b., 50 that ab = ¢® and both have average values of a_ . Then

1
W = -g ¥ =_-g rad
[ -

= [b?e—ﬂﬁj{E{[1+u3]am]{dfa}f{1+df23] , (29)

and the factor multiplying {h?e - &W) will be much greater than unity
unless dfa is the same order as o-fE . Second, there is no unique value
for WI ; it depends on how the matter is inserted. For example, concen-
tration of the matter along a limited segment of the g.b. could make ub
large and negative there, so much so that WI ¢ould become positive
{and indefinitely large). Also, additicn of matter just over the highly
stressed portions of the g.b., s0 as to reduce ab to negligible values
there, would produce a different expressicn for W' than [2%). Since H'
is not unique, neither are the terms &F= and AW and, hence, neither

i5 the net energy change AE ., Unique wvalues result only for a given

§(x) . In this sense it i5 meaningless to talk about an energy release

rate (axcept in the limiting case of steady state crack-like cavity growth
discussed in the last section) unless it is understood that the distriburion

§(x) 1is determined by the coupled equations of elasticity and diffusion

as part of the‘analysia.
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V. DISCUSSION

Dutton and Puls {1978} in a comment on the formulation presented
by Charles {1976), equated the crack extension force to the elastic
fracture mechanics strain energy release tate G = [(1-v2JK2/E . As we
have seen, the usual fracture mechanics expressions are valid only in
special circumstances, Essentially, their arguments are based on a
Griffith-like crack mcdel and treat the strain energy term in (24) as
dominant. We have pointed out, however, that when a crack is lacated
in a g.b. rather than in a perfect matrix, the g.b. is capable of
accommodating the material being removed from the crack surface and thus
relax the high stress concentration ahead of the crack tip. Hence the
strain energy contribution appears to be minor in the energy release
expression and the major portion comes from the work done by the boundary
stress o on the opening A4 as it appears in the last term of {24}.
Indeed, Charles (1978) noted in his reply that he believes that the
"PY work of insertion of a diffusible species in a highly stressed volume
dominates in the stress rupture process, although be did not provide a
full analysis as we do here, '

Speight, Beers and Roberts (1978) have recently presented an inter-
granular ¢rack growth modet based on the mechanisms discussed here. Rather
than relying on a full solution of relevant equations, as by Chuang {1974)
and Vitek (1978), they imposed ar approximate distribution & (see
eq. (1) of Speight et al., 1978) in order to solve for the maximum stress
in the g.b, Further, they attributed the energy release rate to the
"plastic work™ done by o_ on the crack voelume (H' = -g V) as in

L}
eq. (29). But we have shown that the work term W  is dependent on the
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-y

distribution of & and their feormuelation does not appear to be fully
consistent in this respect, although it is not clear as to how critically

these assumptions affect their conclusions.
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¥1. CONCLUSTONS

We have presented precise expressions for chemical potentials on
grain boundaries and free surfaces, and noted that in representative
cases the strain energy contributions to these are negligible for the
diffusive growth of grain boundary cavities. This is because surface
diffusion tends to round-out a cavity nesr its tip, and grain boundary
diffusion generates misfit stresses to a2lleviate its stress concentration,
reducing local stresses to the order of Tsfnn . An evaluation of
expressions for the ensrgy release rate in diffusive cavity growth
shaws that the major snergy sink is provided by the work of normal stresses
en the grain boundary, 3s it is effectively thickened by matter addition,
and not from the loss of strain energy of material diffused from the
cavity tip, We discuss the computation of ner energy changes associated
with introduction of cavities, and peint out that the dominant term is
dependent an details of the matter placement along the grain boundary.
In addition, we have commentad on restrictions placed by thermodynamics

on the angle formed by cavity walls where they join the grain boundary,
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YII. APPENDIX: SURFACE TENSION EFFECTS

At variocus peints throughout the paper surface tension (or surface
stress) effects were ignored for ease of pressntation, with tﬁe promise
that all would be made well here. Let al , 92 be curvilinear ceoordinates
in a surface (cavity surface, grain boundary) in some arbitrary reference
configuration, and let g:ﬂ be the surface metric tensor ({a,f=1,2) in
this configuration. If the coordinate lines are reparded as being scribed
onte the surface, in an elastic deformation the coordinates are convected
and the metric tensor changes to £ep The {covariant)} components of

strain are defined as

o - ¥ _

The contravariant components (on the convected coordinates) Tuﬁ of the
surface tension tensor are defined such that: ragﬁsusdh is cthe work of
incremental elastic distortion ﬁtﬂs of an-area dA . Singe y JdA is
the surface energy,

t°85e an = &(y dA) = by dA + vgPse  dA (A-2)

ob aB '

where guﬂ are the contravariant components of the metric, and we obtain

the well-known relation between surface tension and surface energy {e.g.,

Herring, 1951,1952; Murdoch, 1976}

= 3
A (A-3)
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valid for arbitrary deformation. Note that if we define v by‘
Y dAu = y di , where dhﬂ is the area of the considered element in

the reference configuration, then

_ dﬁu ay

TuB = _0
B

(h-4)

(Fon aeadens unfamilian with curvilingar fensons: 1f the coordinates
lines are locally orthogonal at the point considered, and normalized so
that del , de? are equal to the associated changes in arc length along

a8 -

the surface, then gﬂ of 2qs. [(A-2) and (A-3) is just the Kronecker

ap . . . . .
tensor and 10 35 the force acting in the B direction per unit
length of a cut aleng the surface with cutwzrd normal in the o direction.
Also, when the reference configuration differs only by an infinitesimal

amount from the current configuration, « is just the classical

aB
strain tensar).
ag

Mochanical equilibrium aquations for 1 are complicated {Gurtin and
Murdoch, 1975), but it is known that the field equations of equilibrium are

fully implied by the principle of wvirtwal work, and the latter is most con-
venient for our purposes. Let A denote a region of cavity surface with bounding
conteur C , let n, be components {in 3-D space) of the outward ﬁormnl

ta A [i.e., pointing away from the adjacent material, let uij be the

stress tensor acting immediately beneath the surface (Latin indices 1i,j

have the range 1 to 3), and let ™ be components of tﬁe surface tension

acting normal ta C . Hence the surface may be considered as a membrane

ij

loaded with forces per unit area -n.0 on A and forces per unit

length ™ along C . The principle of virtual work then requires that

;e?'«.

wr
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J Tuﬂﬁs dA = [ T%6u  dC - f n.uijﬁu, da {A-d)
A af C (1] g L j

for arbictrary virrtuval displacement fields ﬁui and associated virtual

surface strains Gtu Some well-known consequences sre, for example,

E L
that

(A-5)

where mu denotes the putward normal (in the tangent plane of the
surface) to C , and ‘uﬂ is the surface curvature tensor.

An equation identical to (A-4) can be written for an arbitrary area
A of the grain boundary, where Tua and T° are tensions in the .k,
but now the integral involving uij must be carried out over both sides
of the prain boundary. Observe that when the grain boundary is flat, as
considered here, the normal componsnts of uij are egual on botp sides
{and identical to what we have called ¢ }, This means that for grain
beoundaries we can write niaijﬁuj as niai':'ﬁu.:l where auu idre CcOmponents
of 5“1 parallel to the boundary and qia are shear stresses in the
imnediately adjacent material. Observe that for symmetrically loaded
boundaries as in figs. 1 to 3, ui“ will reverse sign on crossing the
boundary, and ui“ is generally non-zero whenever the surface tensions
in the boundary are non-uniform.

To calculate w  (section II} we proceeded by calculating &F when
a layer of local thickness &t was added to cavity surfaces and/or grain

boundaries, under conditions for which W = O . We write &F = ﬁFE + &F

5 1

and observe that when matter is added, there are associated displacements




ﬁui and strains Gau along As (the cavity surfaces) and Ab " {the

B
grain boundaries). The change in elastic strain energy is

6F = J w it dA + J w dr dA - J o 8§t dA
R ) A

= b ﬁh

+ Iﬁ niuijﬁui dA + thniuiuﬁuu an . (A-6)
'S

The first three terms have been discussed in the body of the paper, the

fourth corresponds to item (iv] in the list enumérated shortly before

eq. (3), and the last three terms together give the change in strain

energy of the material lying outside the added layers. The last intagral

on A, covers both sides of the g.b.'s and it is noted that the normal

stregses o 2 and shear styesses cia appear separately. Further, for

symmetrically loaded grain Boundaries as we consider, Guu iz the same

on both sides of the boundary. The change in FS is

of
EFS - [A 75[:1+x2]5t dA + Ih (GTS+TSE GEQB} dA
-3 -1

* ap
Iﬁh[ﬁvb+1bg EEaE] dd . (a-7)

The first term haz been dizcussed in the body of the paper. The second
two are contributions, of type (iii) in the list shortly before eg. (3},
due to effects of elastic strain in changing ¥ by &y and dA by

gﬂgﬂamg dA . Using eq. {A-2),
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- _ af
ﬂFs = JA 15{K1+K2}§t da + JE T ﬁﬁuﬁ dA -
& 5

o] e an (A-8)
A op
b

Mechanical equilibrium is expreszed by the principle of virtual work
in eq. {A-4). Let us write this equation separately for the grain boundaries
and for the cavities, taking € to¢ be the arc where the two make contact.
Adding these squations together, we observe that contributions on C
cancel (because of mechanical equilibrium between T, and T at the
cavity tip, irscoséﬂ = Tb} if there is a unique displacement Gui at
the tip, On the other hand, if there is matter addition &t (=Q86N) 1o
the grain boundary at the tip, s¢ that the veTtical components tgsin¥;

of T, separdte by &t , the sum of the two terms invelving (€ is
- J T sind 3t dC .
S o
C
Hence the resulting "grand" form of the principle of virtual work is

aB .
T ﬁEuH dA J T551n+° it dC

af
JA 1 chﬂ dA + J

s p

C

- ij im
JA n.o Guj da - J n.o Euu da (A-9)
5 Ab

where. the last integral covers both sides of Ah . Since the actual field

Su. , e

i associated with matter additjon invelves comtinuity of du

af
ACYOS5 Ab , it can be taken as the field to be entered in this form of
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the virtual work equation. Now, when we add together egs. (A-6) and
(A-8), so as to write §F = ﬁFE * EFS , we find that because of eq. (A-9),
ab ij

. . ia
all the terms involving = , O and o cancel one another. Hence

&F = 6F  + 6F_ = fﬁ [w - v (k) *e;)]6t dA
3

+ I (w - glét da (A-10Q)
where here, and in eq. [A-15) to follow, for simplicity in the presemta-
tion of formulae, the integral invelving o is understood to include a
"delta functien” contribution to o at the cavity tip due to the vertical
conponent of concentrated tension, Tssin¢° » acting there.

Thus, if we write &t = @SN  and observe that u is definad by
&F = J u SN dA + J u 5N da (A-11}
A

{in the case considered of matter additioen under conditions for which
&W=0) , then we cbtain at once eqs. (4) and (&) in the body of the paper
for uw . Thus we see that while the terms associated with aui and GEuE
make first order contributions to ﬁFe and EFS separately, they make
only higher erder contributions to the total 4F , There is, however, a
curious result ar the tip. Because o has the delta-function contribution
there, of integrated intensity T551n¢0 , we must conclude that p  has

a similar negatively infinite delta-function form of integrated intensity

-T551n¢ﬂﬂ , 8t the tip. We leave open the interpretation to be given to

this. Certainly, to the extent that thermodynamics required continuity
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of p , such a condition can be met only if the material adjusts its state
of surface strain at the tip in a manner such that L {and hence b too)
vanishes there.

In the discussien of plane straiﬁ growth of a cylindrical cavity,
surface tensicn effects were ignored in deriving eqs. (17) and {18). HNow

ab

we can drop indices on 1 and € , , writing 1t and ¢ for the

=g
components in the plane of deformation. With the previous discussion

as background,. the full version of eq. (17) is readily sesn to be

=2 ] w OGN ds + J w GN ds + W - I o N ds
¢ r r r
5 b b

+ 2 J n.aijﬁ. d= + J niaixﬁ ds {A-12)
r ) r x
3 b

where the integral eon rh covers both sides of the g.b. and, as in

figs. 1 to 3, the x direction is parallel to the grain boundary. Here
i,j range over X,y . Similarly, the full version of =q. {18) is:

Fg =2 Jp YW ds « [Zy cosy - v, ) 2

5
+ z[ 1 ds + I 16 ds . {(A-13)
Fs s

Again, a grand form of the principle of virtual work may be written,

analogeusly to {A-9), and this is
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2 I T fg ds + I r 8¢ ds
rs rb

- i _ ij _ ix _
[1551H¢D5t}0 2 [r n.o Euj ds JP n; o 5ux ds . (A-14}

- 5 b

Thus, when eq. (A-17) and {A-13) are added together the terms multiplying
e and Gi cancel, and we obtain eq. (1%} in the body of the paﬁer {which
we remarked there to be valid in the general case when surface tension
effects exist, so long as & is taken to include the concentrated tension
at the tip--if, indeed, this is non-zere].

Finally, if eq. (A-14) is used in (A-12), and then (A-12) is re-
arrahged to the form of eq. [23) in the body of the paper, we obtain

t

W.F = ZJ wi-aN)ds - J w N ds| + I a N ds (A-15}
e
rs rh rb

{i.e., the same right side as eq, (23)) if we define

1

P o=t +2] teds+ | teds . {(A-16)
& ¢ r r

s b
¥hen we recazll that ie can be written as the integral over the volume of
the body of stress components times cerresponding componsnts of strain rata,

) . !

these added terms seem certainly to be appropriate, and W - Fa SSEME
to be the obvious extension of the concept of an energy release rate to

cases In which surface tensions exist during cavity growth.
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FIGURE CAPTIOMS

Figure 1,

Figure 2,

Figure 3,

Cylindrical void in a grain boundary.

Tllustration of matter transfer in diffusive cavity growth,
In growth Aa a layer of local thickness an  is removed
from the cavity surface and the grain boundary, effectively,
thickens by a local amount 44 due to matter addition.

An etliptical cavity in a linear elastic material; ot is
the grain boundary tensile stress if there is no matter

placement in the grain boundary, and ah resuits after

placement.
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Figure 2
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Figure 3




