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ABSTRACT 

We discuss the assignment of boundary values for the chemical potential 

and the calculation of energy release rates for the growth of creep cavities 

along grain boundaries by self-diffusion. For simplicity it is assumed 

that the boundaries are flat and that surface and grain-boundary diffusion 

are the dominant transport mechanisms. As matter diffuses from the void 

surface into and along the grain boundary, misfit residual stresses are 

induced to alleviate the high stress concentration ahead of the cavity apex. 

As a result, it is shown that the contribution of strain energy terms to 

the chemical potential can be neglected in typical cases. Also, contrary 

to the Griffith crack extension model, the energy dissipation incurred by 

diffusive removal of material from the cavity surface and deposition in 

the grain boundary is a major term in the energy transfers associated with 

cavity growth. We show that the primary energy "sink" in diffusive cavity 

growth arises from the work done by the grain-boundary normal stress when 

matter is inserted in the near-tip region by diffusion,, and not from the 

loss of strain energy of matter that is removed from the cavity at its 

tip or from a work of bond separation. We also comment on thermodynamic 

restrictions on the angle formed by the void surfaces at their apex, 

where they join the grain boundary. Further, our derivation of boundary 

values for the chemical potential is carried out in a manner appropriate 

for arbitrarily large but elastic distortions of material near the cavity 

tip and, by contrast to most previous work in the area, we include rigor

ously the effects of surface tension (i.e., of "surface stress", as 

distinct from surface energy). 
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I. INTRODUCTION 

When subject to creep conditions, polycrystalline materials tend 

to develop cavities at grain interfaces. Their growth and final 

coalescence leads to intergranular failure. The kinetics of cavity 

growth by diffusion has become a topic of extensive recent interest, 

and there is not full agreement in the literature on fundamentals of 

the subject. The papers by Hull and Rimmer (1959) and others (Speight 

and Harris, 1967; Weertman, 1973; Vitovec, 1972; Raj and Ashby, 1975) 

considered the diffusive growth of an array of spherical-caps (or 

lenticular), cavities in a planar grain interface. This assumption as 

to cavity shape implies that surface diffusion is sufficiently rapid 

that cavity growth is controlled only by grain boundary (g.b.) diffusion. 

Further, the grains were assumed to be non-deforming (rigid), and the 

result predicted is that the growth rate varies linearly with the applied 

stress. However, conditions do not always allow this quasi-equilibrium 

cavity shape and g.b. cavities sometimes have an elongated, crack-like 

shape. Hence, Chuang and Rice (.1973) and others (Vitek, 1978; Speight 

et al., 1978; Beere and Speight, 1978; Chuang et al., 1979) considered the 

other limiting case of a thin crack-like cavity growing in a g.b. and 

established different relationships hetween applied stress and growth 

speed. 

In an overview of non-equilibrium models, Chuang et al. 1(1979) 

examined the entire spectrum of interfacial void shapes in diffusive 

cavitation and concluded that over a variety of conditions, a cavity can 

grow from one extreme case of slow advance in a lenticular shape to the 

other extreme case of rapid advance in a crack-like shape. The growth 
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mechanisms on which those analyses are based are such that under the 

action of the applied stress normal to the boundary where cavities are 

located, matter on the cavity surfaces is driven by surface diffusion 

toward the cavity apex and into and along the g.b. 

Based on this kinetic model, it is worthwhile to investigate the 

thermodynamic forces driving a cavity. Indeed, the subject of chemical 

forces in a stressed body containing defects has been studied by several 

authors. Specifically, Stevens and Dutton (1971) considered Griffith 

crack propagation by mass transport and formulated the thermodynamic 

potentials for incremental advance of crack due to various diffusion 

paths. McCartney (1977) and Heald and Speight (1977) investigated the 

thermodynamic stability of a cavity and determined the shape at which 

subcritical growth can be maintained. Their studies are essentially 

limited to cases in which cavities are located in a perfect crystal. 

However, it is well recognized that grain boundaries are perfect matter 

sinks (or vacancy sources) and the fact that voids are often observed 

at the g.b. suggests that it plays an important role during the stages 

of nucleation and growth. 

The objective of this paper is to re-examine the formulation of 

chemical potentials and the calculation of energy release rates in 

cavity growth. We place emphasis on the special features induced by the 

existence of grain boundaries. Their action as matter sinks can change 

the whole picture of the formulation. Specifically, in contrast to 

Griffith cracks, we show that the strain energy term in the chemical 

potential expression can typically be neglected even in cavity growth 

in a relatively narrow crack-like shape. We also show that the major sink 
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of energy in cavity growth is from the work of normal stresses on the 

effective opening of the grain boundary due to the addition of matter 

to it by diffusion. 

While our considerations have modelled the material as an elastic 

solid, undergoing self-diffusion along interfaces, it is well to remember 

that the cavitation process is often accompanied by significant amounts 

of plastic creep flow through dislocation motion. 



-5-

II. THE BOUNDARY VALUES OF CHEMICAL POTENTIAL 

In phenomenological terms, diffusive fluxes of a substance are 

driven by thermodynamic forces generated by chemical potential gradients. 

Consider a stressed body containing defects in the form of voids and 

grain boundaries, and suppose for simplicity that the body consists 

of a single component which, again for simplicity, is taken as isotropic 

with respect to its elastic and surface energy properties. Temperature 

is held constant and we suppose that an unstressed matter reservoir, 

without defects, is available at the same temperature as the body. 

All thermodynamic potentials, including the chemical potential y , can 

arbitrarily be assigned the value zero in the reservoir. It is conven

tional to define y in units of energy per atom although the concepts 

are continuum in character and treat matter as being indefinitely 

divisible; atoms are merely a convenient unit for mass. 

The classic work on establishing boundary values for y is that 

of Herring (1951,1953). We follow essentially his procedures, but three 

comments are in order. First, since we shall assume that matter is 

always added coherently to surfaces, at full composition equilibrium with 

the immediately adjoining bulk, there is no need to distinguish separate 

potentials for atoms and vacancies as he does. Indeed, Herring makes 

similar assumptions about matter addition, so that in the end the distinc

tion is unnecessary and only y - y appears in his formulae ("a" denotes 

atoms, "v" vacancies). Second, although Herring classifies carefully the 

difference between surface energies and surface tensions (i.e., surface 

stresses), in a context which assumes clearly that surface energies are 

dependent on elastic strains of surface elements, in his evaluations of y 
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he gives no discussion of energy changes that come about because matter 

addition will, in general, alter the strains along a surface. We derive 

expressions for y in a manner appropriate to arbitrarily large elastic 

distortions (important because some models for diffusive cavitation assume 

large strains at the cavity tip) and show, by a simple verbal argument 

in the following text and a more detailed analysis in the Appendix, that 

Herring's expressions do in fact remain valid so long as the terms within 

them are properly referenced to the current deformed state. Third, 

although some of Herring's discussion of potentials is directed to 

(global) non-equilibrium states, notably to diffusion, his methods of 

evaluating y are phrased mostly in terms of conditions for equilibrium. 

Our methods are somewhat more in keeping with the spirit of irreversible 

thermodynamics although, certainly, we adopt tacitly the notions of local 

thermodynamic equilibrium which are inherent to the accepted, if thereby 

limited, procedures of that subject. 

To proceed, we observe that y is defined at any location within 

the stressed body such that y6n is the reversible work of taking an 

infinitesimal element of matter, equivalent to 6n atoms, from the reser

voir and placing it at that location, while the displacements are held 

fixed on the loaded external boundary. Equivalently, y6n = 5F where 

F is the total Helmholtz free energy of the body, and more generally, 

when matter is transferred without restrictions on the external boundary 

displacements, 

6F = 6W + y6n (1) 

where 6W is the work of external loads. Our concern here is with 
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matter addition to (or removal from) void surfaces and grain boundaries. 

If these, collectively, have an area in the current deformed configuration 

denoted by A , then y satisfies 

6F = 6W + y 6N dA (2) 
A 

for arbitrary additions of infinitesimal matter layers to A , consisting 

of 6N atoms per unit (current) area. Expressions in the form of (2) 

arise in "internal variable" formulations (Rice, 1974) of inelastic 

processes in solids, due to structural rearrangements of constituent 

elements of material by diffusion or (with appropriate terms analogous 

to y SN ). slip, phase changes, etc. In applying (2) we will generally 

write 6N = 6t/ft where St is the local thickness of the (coherently) 

added layer and P. is the local volume per atom in the deformed configu

ration. Further, F will be represented as F + F , where F is the 

elastic strain energy, of local density w per unit volume of the current 

deformed configuration, and F is the energy of interfaces, of density 

Y per unit (current) area ( Y = Y S on cavity surfaces and y = y, on 

grain boundaries). 

Consider the addition of a layer of matter of (variable) local thick

ness 6t over some portion of a cavity surface, under circumstances for 

which the external boundary is fixed (SW = 0) . To obtain y we need 

to calculate 6F , and this has contributions from the following sources: 

(.i) the added layer must be given a strain energy w to make it fit 

coherently; (ii) the area of the surface changes such that, if additional 
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elastic strains fie of surface elements are neglected, 6(dA) = 
ap 

-(K. + <„)6t dA by an easy geometric construction, where K and K_ 

are the principal curvatures and the sign convention is such that both 

would be positive on a spherical cavity; (iii) surface elements strain 
by <SE causing a change in y and an additional change in dA ; (iv) ap 
the tractions acting on the bulk solid immediately below the surface, 

which are in general non-zero whenever surface tensions exist, are 

carried through some additional displacements 6u. when matter is added, 

thus causing a change in strain energy of material external to the surface. 

Herring's (.1951,1953) discussion makes no reference to (iii) and (iv) . 

It is carried out as if the product y dA is unaffected by the strains 

6E . ; in such circumstances the contribution from (iii) would be zero ap 
and because (see Appendix) the surface tensions vanish in these circum

stances, there would then be no contributions from (iv) either. (Rice 

and Drucker (1967) observed that when matter is added or removed from an 

unstressed surface the energy alteration analogous to (iv) is of second 

order in fit , hence zero for our present purposes). 

We evaluate 6F as if Y dA was invariant to strain and then 

explain briefly (relegating a detailed analysis to the Appendix) why 

the result is valid in general. Hence the contributions to 6F arise 

from (i) and (ii), and are 

<5F I w fit dA + y [-(ie.+K-)5t]dA . (3) 
A '* S l 

If we now write fit = Q <SN and compare with (1),- it is seen that 

y = wfi - Ys(<1+K2)n (4) 
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on a cavity surface. This is the same as the expression given by 

Herring, so long as it is understood that w , fi , y and the K'S are 

referenced to the current deformed state at the place of matter addition. 

Now, let us drop the generally untenable assumption that y dA is 

invariant to surface strain and that surface tensions vanish. We can 

calculate 6F by first carrying out steps (i) and (ii), while applying 

to the system whatever system of (workless) forces are necessary to pre

vent occurrence of the surface strains fie „ and displacements 5u. . 
ag r 1 

This gives a fiF exactly as in eq. (3) and the net additional fiF , 

associated with steps (iii) and (iv), is just minus the work of removing 

this additional set of forces. But the final state to which the system 

goes is one of elastic (as opposed to compositional, or surface shape) 

equilibrium, and at this state F is stationary with respect to elastic 

distortions. Hence the net work of removing the set of constraining 

forces is a quantity of second order in fit , and the net contribution 

of (iii) and (iv) to fiF is therefore zero to the first order terms of 

interest. Hence (3) and, particularly, (4) for y are valid generally. 

A fuller analysis, necessarily of some mathematical complexity, is given 

in the Appendix. Indeed, it is shown there that when surface tensions 

exist 6F and 5Fc both separately contain terms of first order in 

fit (in addition to those already listed in eq. 3), but these terms are 

of opposite sign and cancel when 6F = 6F + fiF is formed. 

Often, throughout the body of the paper, we simplify derivations 

by neglecting surface tension and the variation of Y dA with surface 

strain. As we remark, the final results in each case are valid without 

these assumptions, provided that terms are properly interpreted, and details 
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of complete derivations are given in the Appendix. 

Consider now the addition of a matter layer fit to a flat grain 

boundary subject to tensile stress, again under conditions for which 

6W = 0 . The layer must be given strain energy appropriate for coherent 

fit, and the boundary must be separated by the distance fit to allow the 

new matter, resulting in a change -
J 
afit dA of strain energy of the 

adjoining material, where o is the normal stress ("true" stress, i.e., 

force per unit current area) acting on the grain boundary. Thus 

(w - a) fit 
J A 

fiF = | (w - a) fit dA (5) 

and writing fit = fifiN , 

y = wft - an (6) 

along a grain boundary. Again, this agrees with Herring's result so long 

as the terms are properly referenced to the current deformed state, and 

(see Appendix) the result remains valid when surface tension along the 

grain boundary and dependence of Yh
 o n strain is included. 

Indeed, this last formula makes evident our reasons for care in 

defining quantities per unit volume or area of the deformed configuration. 

The difference between ail and ail , where P. is the value of SI in 
r r 

the unstressed reservoir, is itself of the same order as the strain energy 

term wfi in (6). If, instead w is the strain energy per unit volume 

as measured in the unstressed state, and a and y are force and 
s 

surface energy per unit area of the unstressed state (so that a is a 
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"nominal" stress), then it is straightforward to show that (4) and (6) 
are modified to 

y = wo. - Y (1+e ) (K .+K-)n (4 ) 
r s n 1 2 r 

on the cavity surface and 

y = wP. - o(l+e )ft , (6 ) 
r nJ r ' J 

on the grain boundary, where e is the strain of adjoining material 
elements in the direction normal to the surface being considered. Obviously, 
ae is of the same order as w , and hence great care is required in 
discussing the effect of strain energy contributions to the chemical 
potentials (Stevens and Dutton, 1971; McCartney, 1977; Charles, 1976; Dutton 
and Puis, 1978). Similar remarks apply to (4 ) since K..Y is generally 
of the same order as a at a cavity tip (see below). 

In a material capable of matter transport by diffusion, y must 
be continuous at the cavity apex where it meets the grain boundary; other
wise an unbounded matter flux would result there. Hence, when the strain 
energy terms are negligible 

Y (K, +K~ ) = 0 (7) 
s lo 2o o 

where K , K and a are, respectively, the cavity surface curvatures 
10 ^0 o 

as the apex is approached along the cavity walls and the grain boundary nor
mal stress as the apex is approached. Using this formula as an approximate 
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estimate of stress in the vicinity of the apex, we can estimate the 
relative importance of the strain energy terms. For simplicity, consider 
cylindrical voids under plane strain conditions (K = K , K - 0) and 
assume linear elasticity. Then 

i 2 y K u 1-v* ? s o b ,_.. w x a' x ^-"y K K — — Y < (8) 2E o 2E s o 50p s o 

where b is the lattice spacing, p = 1/K is the radius of curvature 
o o 

of the cavity wall at the apex, and we use the estimate Y ** Eb/25 . 
Since p typically has values of 50 to 500 b (i.e., 100 A to 1 ym) , 
the strain energy term is quite negligible. 

We emphasize, however, that this result occurs because of the mobility 
of matter in the circumstances considered. Surface diffusion allows the 
attainment of large values of p (compared, say, to that for a flat. 
Griffith crack) and misfit stresses induced by matter flow into the g.b. 
effectively thicken the boundary near the tip, alleviating the stress con
centration normally associated with cracks or cavities. Very different 
conclusions on the importance of w could arise when the cavity does not 
lie along, or itself constitute, a high diffusivity path. 

These latter circumstances seem to coincide with those assumed by 
Stevens and Dutton (1971). and Dutton and Puis (1978) for the diffusive 
growth of Griffith cracks and, at this point, it is perhaps interesting 
to compare the directions of matter flow in the different models proposed. 
As Dutton and coworkers remarked, in the case of their Griffith crack 
extension model the chemical potential at the tip region is very high due 
to high strain energy density developed in this region, and they consider 



-13-

the first term in (4) to dominate. Hence they assumed that the direction 

of diffusion is away from the tip along the cavity surface. On the other 

hand, as envisioned in our model, based on the Hull-Rimmer model and its 

generalizations, misfit stress has been induced to reduce greatly the 

stress concentration associated with a notch so that the second term of 

(4) takes over. The chemical potential at the cavity surface far away 

from the tip is higher than at the tip region and the flow is then reversed 

toward the tip and into the g.b. Intuitively, this must be true since in 

our model the g.b. which lies ahead of the cavity tip is capable of 

accepting the matter previously diffused from the cavity surface, whereas 

in the Griffith model, the cavity is regarded as being essentially the same 

as if it were located in a perfect crystal so that no sinks are available 

to accommodate the matter, and thus flow must carry atoms away from the tip. 

However, it remains an open question as to whether a full solution to the 

coupled equations of elasticity and diffusion would actually produce 

cavity growth in the narrow crack-like mode assumed in the Griffith model 

of Dutton and coworkers. Instead, e.g., it is possible that a full analysis 

would merely predict a rounding out of the crack near its tip. By contrast, 

a variety of complete solutions have been carried out for the model which 

we envision for cavities along grain boundaries, and these do indeed pre

dict growth, ultimately in a comparatively narrow crack-like mode (Chuang, 

1974; Vitek, 1978; Chuang et al., 1979), but with negligible strain energy 

terms at the tip so long as p >> b . 
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III. ENERGY RELEASE RATE IN CAVITY GROWTH 

In fracture mechanics terminology, there is an energy release rate 

associated with cavity growth. Since there is not full agreement in the 

published literature, we examine here the computation of this rate and 

answer the question as to where the energy goes for diffusive crack growth. 

This is done with reference to a plane strain mode (i.e., cylindrical 

cavities or cracks) so that all works and energies are on a unit thick

ness basis. 

In the case of elastic-brittle crack growth without diffusion, as 

formulated within the Griffith context, an energy release rate G is 

defined by 

Ga = W-F (9) 
e v 

where a is crack length. Here it is customary to neglect surface tension 

effects (whether they can be included consistently within a model for a 

mathematically sharp tipped crack remains an open question), so that F 

is just the ordinary strain energy of the cracked body as computed from 

continuum elasticity theory and G is given by the well-known expression 

(l-v2)K2/E for an isotropic linear elastic solid. Further, in the 

Griffith model dF is written as (2Y - Y, )da because in an increment 
s v 's b 

da of growth a length 2da of crack surface is created at the expense 

of length da of grain boundary. Actually, this should be written as 

(2Y - Yh)da , where da is the growth increment as measured off relative 

to some reference configuration, and the Y'S are based on unit area of 

that configuration (the Y'S are independent of surface strain when 
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surface tensions vanish). Understanding the terms in this way one has, 

for the Griffith model of reversible crack growth 

dW = dF = dF + dF = dF + (2y - YJda (10) 

during growth, and hence the required value of G is 

G = 2 Y S - Y b - (ID 

It has been emphasized recently (Rice, 1978) however, that the actual 

requirement of thermodynamics for quasi-static, isothermal crack growth 

should be phrased as the inequality W ^ F (i.e., the inequality assuring 

non-negative entropy production) which requires only that 

W-F = [G - (2YS - Yb)]a * 0 (12) 

for growth (or healing, a < 0) , and this is general enough to include 

lattice trapping with thermally activated growth at values of G different 

from (11). Here 2y - Yh can be interpreted as the reversible work of 

pulling the interface apart against cohesive forces. 

The formulation is rather different for the diffusive growth process 

considered here, because there is no direct rupturing of cohesive bonds. 

We assume, consistently with procedures in the thermodynamics of diffusion, 

that y is defined as in eqs. (4) and (6) during processes, and that 

diffusive fluxes J are established on the cavity surface and grain 

boundary, such that J3y/3s < 0 where s is arc length along the flow path. 
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We consider a half-void of length a as in fig. 1 and let I\ denote 

the grain interface and r the upper surface of the cavity. Then eq. (2), 

which is regarded as an identity given the definitions of y , can be 

written with F = F + F , where 
e s 

F = 2 s Y ds + s Yb ds (13) 

and ds denotes arc length. Hence if an energy release rate is defined 

as W-F the rate is given by 

W-F = F -2 e s yN ds yN ds . (14) 

Some rearrangements of this equation are useful. We note, however, 

that contrary to the case for Griffith cracks, the quantity like G , 

namely (W-F )/a , will not in general be simply a function of applied 

load and notch size but, as shown by examples later, will depend on details 

of the matter placement along the grain boundary. First, observing that 

J and N are related by mass conservation, 

3J/3s + N = 0 , (15) 

that y = y, , 2J = J, at the cavity apex, and that J vanishes at 

the left and right boundaries (the latter if the right boundary is a 

half-spacing between cavities), integration by parts leads to 

W-F = F + e s (-J 3y/3s)ds + (-J 3y/3s)ds (16) 
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Hence the energy release rate W-F supplies two terms, the first 

(F ) being the energy which goes to cavity surface creation and grain 

boundary removal, and the second being diffusive dissipation in the form 

of necessarily positive products (-J 3y/3s) . 

Next, we observe that directly from elasticity theory, the rate of 

change in strain energy (calculated, e.g., as by Rice and Drucker (1967), 

Rice (1968a), and Eshelby (1970) when material is added or removed from 

surfaces) is 

F = 2 e wf2N ds + 
r 

w^N ds + W - aW ds . (17) 
r, 

Here ON (generally positive on r, and negative on r ) is the volu

metric rate of matter addition per unit area, or rate of thickening t ; 

the first two terms represent the strain energy of the added matter, and 

the last two the work of all applied tractions, both external and those 

(-a) acting along the g.b. Equation (17) is written for the case when no 

surface tensions exist, consistently with the references by Rice and others 

cited above. The full form of the equation is given in the Appendix. We 

can also compute F , where F is given by (13) . Consistently with the 

neglect of surface tension in (17), in evaluating F the effects of the 

surface strain rate e on products of the form Yds are neglected (again, 

see the Appendix for the full expression), and hence 

F = -2 s 
(18) 

:»W us T V-I „ ~ ~ - Y „ ' h'n S 
S 

YeKfiN ds + ( 2 Y S cos<(>o - Yb)Qa 
r 
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The integral here represents the effect of adding matter at the rate 

t = £2N to the surface (of course, t will generally be negative along 

r when cavity is growing); as in our earlier discussion, -<t ds = -<fiN ds 

is the rate of change of an arc ds , at a place where the curvature is K , 

due to matter addition. The last term of eq. (18) arises because the 

integral only gives the rate of change of F from matter addition (or 

removal) from the existing arc r but, as illustrated by the inset 

diagram in fig. 1, it does not include the new surface element created 

during growth. As shown in the diagram, in cavity growth by da into 

the grain boundary, two arcs of length da cos<j> (<|> is the angle 

between T and the negative x-axis at the cavity tip) are added to the 

cavity surface and the grain boundary diminishes by da , thus leading to 

the last term of (18) for F . The subscript "o" on this last term 

means that the Y'S refer to values at the cavity tip. 

When eqs. (17) and (19) are added together there results 

F = F + F = W + 2 (w-
e s j v 

F
b 

Y K)ftN ds 
r 
s 

(w-o)fiN ds + (2Y cos$ - Yb) a (19) 

and, as shown in the Appendix, this equation is correct generally, i.e., 

when surface tensions and associated dependences of products Yds on 

surface strains are present, but note there that if surface tension T 
s 

exists at the tip, the distribution of a must be regarded as including 

a concentrated tension T sin<j> at the tip in this formula and in eqs. 

(23,24). to follow. As noted in the Appendix, however, there are grounds 

for arguing that Tg and x must vanish at the tip. If we now recall 
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the definitions of y in eqs. (4) and (6), recognizing that K = < , 

K_ = 0 in the present case, and then compare eqs. (14) and (19), we 

conclude that ̂  

(2YS COS<{.O - Y b ) Q = 0 , or cos<t.o = (Yb/2YS)Q (20) 

during cavity growth. This is the well-known expression for the 

equilibrium angle <(> at the apex of a grain boundary void. The same 

expression has generally been assumed to apply during growth, and the 

present analysis provides a rationalization for this. 

On the other hand, eq. (2), and hence eq. (14), were assumed to 

apply as equalities during growth. If instead they were assumed to apply 

as inequalities in the form (notation of eq. (2)) 

W * F - yN dA , (21) 
'A 

to allow for some form of entropy production at the cavity tip in addition 

to the diffusive entropy production (-J 3y/3s) already exhibited, e.g., 

in eq. Q6), then combination of eq. (14), with = replaced by >, , 

and eq. (19) (which remains valid as an equality) leads to 

(2Y cos<J> - y, ) a $ 0 . (22) 
s o bo 

This inequality will be satisfied during cavity growth (i.e., when a > 0) 

only if cos<(> s (Y,/2Y ) ; that is, only if <f> is greater than or equal 

to the angle given by the equilibrium expression. During cavity shrinkage 

(i.e., sintering) it will be satisfied only if <|> is less than or equal 

to the result of the equilibrium expression. Consequences of the inequality 

version of the Second Law of Thermodynamics are perhaps not often surprising 
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but this seems to be an exception. One might well expect that because the 

cavity advances by the drawing-in of material to the grain boundary at the 

cavity apex, under action of applied stress, that <j> might decrease from 

the value given by the equilibrium expression as a increases from zero, 

and conversely. But thermodynamics prohibits this. If there is to be any 

deviation from the equilibrium expression, it must be in the opposite sense. 

In the circumstances it seems reasonable to assume that <J> always retains 

the value given by the relation for equilibrium and, indeed, as shown by eq. (20) 

this must necessarily be the case if the cavity apex does not constitute 

a "point source" of entropy production. We have been careful to use the 

phrasing "angle given by the equilibrium expression" rather than 

"equilibrium angle" in this discussion. For example, owing to the depen

dence of the Y'S o n surface strain it is possible that the angle $ 

given by the equilibrium expression in a stressed solid would differ from 

the corresponding angle <J> in an unstressed solid. 

As a final expression for the energy release rate, which is perhaps 

most revealing in comparing different models, we may rearrange eq. (17), 

which retains validity regardless of whether eq. (21) is regarded as an 

equality or inequality, to read 

W-F = e 2 w(-nN fiN)ds - wQN ds am ds (23) 

(Since eq. (17) neglects surface tension effects, so also does this equation. 

However, we show in the Appendix that this equation and, hence, our sub

sequent discussion in this section remains valid if F is replaced by 

a new quantity F which is, in fact, a more logical quantity to use in 
. . > calculating an energy release rate, as W-F , when surface tension 
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tension effects exist. Also, as noted already, a then includes the 

concentrated tension T sin<j> at the tip). Equation (23) can be inter

preted relative to fig. 2 where, in growing the void by some infinitesimal 

increment Aa , material of local thickness An is removed from the notch 

surface and the grain boundary effectively thickens by an amount A6 . 

Hence 

AW - AF = 2 e -I wAn ds - wAfi dx + 
r ^r. 

oAfi dx , (24) 
I\ 

and from this the difference between the Griffith-like model envisioned 

by Stevens and Dutton (1971) and the misfit model is clear. In the former 

case there is assumed to be no or negligible opening A6 ahead of the 

crack, and all of the energy release goes to the first term of (24), repre

senting strain energy of material diffused away from the highly stressed 

notch surface. As remarked, it remains to be demonstrated that a model 

of this type will actually lead to cavity growth. On the other hand, in 

the Hull-Rimmer model and its generalizations, high stresses are alleviated 

by the misfitting material which effectively thickens the grain boundary 

at the notch tip. As we have demonstrated, in this case the w terms are 

negligible and all of the energy release goes to the last term of (24), 

which represents work done by local stresses in opening the grain boundary 

to accommodate the diffused matter. 

It is tempting to regard the left side of (24) as being G Aa where 

G = (l-v2)K2/E is the usual energy release rate of linear elastic fracture 

mechanics. However, this is valid only in special cases, considered by 

Chuang (1974), of essentially steady state growth in which the creep 
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cavity is indeed thin (i.e., crack-like) in shape, and in which all 

effective thickening of the grain boundary is limited to a small vicinity 

of the void tip, with the diffused matter being accommodated by elastic 

distortion of the adjoining grains. In such cases Chuang shows, by 

developing numerically an explicit solution to the coupled (linearized) 

equations of elasticity and diffusion, that the G level to drive the 

void is always greater than the Griffith level of eq. (11). Indeed, this 

is required by general considerations embodied in eq. (16) (in which 

we may set F = (2Y - Yh)a for the present case), since (-J 3y/3s) 

is necessarily positive. In fact, Chuang's analysis suggests that K 

can never fall below approximately 1.7 times the Griffith value, and 

by an application of the J-integral (Rice, 1968a,b; Eshelby, 1970) he 

was able to derive an equation analogous to (24), neglecting the w terms, 

and demonstrate that his numerical results for o(x) and 6(x) closely 

satisfied this equation. 
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IV. TOTAL ENERGY CHANGE DUE TO INTRODUCING A CAVITY 

Stevens and Dutton (1971) have considered the total energy change 

AE due to introducing a cavity into a stressed body. In our notation 

E = F - W where the external loads are assumed to be fixed so that W 

varies in proportion to the displacement of the loaded boundary. 

Following their classification, with slight modifications, AE includes 

contributions from the following four sources (here we neglect completely 

surface tension effects): 

(1) change of energy due to void surface area introduced 
and lost grain boundary area (AF ) , 

(2) elastic strain energy change (AF ) due to removal of 
material from the body to form a void, 

(3) work done by external loads (AW) during removal of 
material, 

(4) work done in processes of local matter rearrangement, such 
as by local stress fields when the matter removed from the 
void is deposited at the g.b. (AW ) . (All other possible 
sources such as dislocation, slip, etc., are neglected). 

It is important to note, as was not emphasized by Stevens and Dutton, that 

the AF and AW terms calculated in step (2) and (3) are not the total 

terms AF and AW (which, for example, enter into the energy release 

rate expression). Both AF and AW include a contribution from the work 
i 

W in step (4)_, and typically this is a very significant term. Indeed, 
i 

the work W is analogous to the effect of a term in eq. (6) for y 

on a grain boundary; the part -ofifiN of yfiN in eq. (2) is essentially 
t 

a work of type W , and we have seen its importance in eq. (24). 
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With the preceding classification of terms, the total energy change 

is 

AE H AF + AF - AW = AF + AF - AW + W . r2S"l s e s e ^"J 

i 

In fact, the specific terms AF , AW and W depend on the sequence of 

operations and are different if matter (say, from a reservoir) is first 

inserted into the grain boundary, and then an equivalent amount of matter 

is removed from the body to form the void, and placed in the reservoir. 

Of course, the total effect, AF - AW , which these terms represent, is 

independent of sequence. 

Consider a small elliptical cylindrical void lying along a g.b. as 

illustrated in fig. 3 with its major axis normal to the direction of the 

uniaxial applied stress 0 . We proceed to compute the energy change AE 

of this configuration in the following manner: First, we cut out the 

"volume" V (actually, an area in the 2-D model), thus creating a void 

on the boundary, and temporarily deposit it in an unstressed matter reser

voir. This operation produces the free energy changes AF , AF and 

AW , where (Rice, 1968a) 

ir(l-v2)a2a2 
AF - AW = 1 — — (l+d/2a) . (26) 

Next we take the volume V out of the reservoir and insert it into the 

g.b., thus adding a non-uniform layer of material of local thickness fi , 

such that 

fi(x)dx = V = Trad . (27) 
Jg.b. 
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To get the W term, we calculate the work done during the insertion 
process. This includes the work done on the surrounding material, plus 
the work necessary to bring the strain energy of the material being inserted 
to the proper level. Let a (x) be the normal tensile stress of an 
Inglistype stress distribution induced by a , and let a (x) be the" 
final total stress that results after the matter V has been stuffed 
into the g.b. To compute W , we first cut the g.b., hold it in place 
by applying o , and quasistatically alter these stresses until the 
cut has opened locally by fi(x) (at which point the g.b. stresses are 
b ■ 
a DO). w is simply the (negative) work done on the surface of the cut 

during this operation and if we assume the material is linearly elastic, 
then 

«'--i (a
a + a )S dx . (28) 

g.b. 

Of course, the material V that is inserted, into the opened cut must be 
r 

stressed and thus there will be an additional part of W related to the 
strain energy increase in the inserted volume V at state (b), but this 
portion is insignificant when a is small compared to E . Still, if 
a is of the order of a over the region where the matter is added, the 
term is of order Tr(lv

2
)a

2 ad/2E , which is of the same order as 
AF  AW of (26) unless d/a « 1 . 

i 

There are two observations to make about W . First, it is usually 
far greater in magnitude than AF  AW , and hence cannot be neglected. 
Suppose, for example, that the material is added uniformly over the entire 
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b a 
.b., so that a = a and both have average values of a . Then 

i 
W = 0 V = a Trad 

(AF AW) (E/(l+v2)oJ(d/a)/(l+d/2a) , (29) 

and the factor multiplying (AF  AW) will be much greater than unity 

unless d/a is the same order as o /E . Second, there is no unique value 

for W ; it depends on how the matter is inserted. For example, concen

tration of the matter along a limited segment of the g.b. could make o 
t 

large and negative there, so much so that W could become positive 

(and indefinitely large). Also, addition of matter just over the highly 

stressed portions of the g.b., so as to reduce a to negligible values 

there, would produce a different expression for W than (29) . Since W 

is not unique, neither are the terms AF and AW and, hence, neither 

is the net energy change AE . Unique values result only for a given 

6(x) . In this sense it is meaningless to talk about an energy release 

rate (except in the limiting case of steady state cracklike cavity growth 

discussed in the last section) unless it is understood that the distribution 

fi(x) is determined by the coupled equations of elasticity and diffusion 

as part of the analysis. 
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V. DISCUSSION 

Dutton and Puis (1978) in a comment on the formulation presented 

by Charles (1976), equated the crack extension force to the elastic 

fracture mechanics strain energy release rate G = (l-v2)K2/E . As we 

have seen, the usual fracture mechanics expressions are valid only in 

special circumstances. Essentially, their arguments are based on a 

Griffith-like crack model and treat the strain energy term in (24) as 

dominant. We have pointed out, however, that when a crack is located 

in a g.b. rather than in a perfect matrix, the g.b. is capable of 

accommodating the material being removed from the crack surface and thus 

relax the high stress concentration ahead of the crack tip. Hence the 

strain energy contribution appears to be minor in the energy release 

expression and the major portion comes from the work done by the boundary 

stress a on the opening Afi as it appears in the last terra of (24). 

Indeed, Charles (1978) noted in his reply that he believes that the 

"PV" work of insertion of a diffusible species in a highly stressed volume 

dominates in the stress rupture process, although he did not provide a 

full analysis as we do here. 

Speight, Beere and Roberts (1978) have recently presented an inter-

granular crack growth model based on the mechanisms discussed here. Rather 

than relying on a full solution of relevant equations, as by Chuang (1974) 

and Vitek (1978), they imposed an approximate distribution 6 (see 

eq. (1) of Speight et al., 1978) in order to solve for the maximum stress 

in the g.b. Further, they attributed the energy release rate to the 

"plastic work" done by a on the crack volume (W = -a V) as in 

eq. C29). But we have shown that the work term W is dependent on the 
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distribution of 6 and their formulation does not appear to be fully 

consistent in this respect, although it is not clear as to how critically 

these assumptions affect their conclusions. 
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VI. CONCLUSIONS 

We have presented precise expressions for chemical potentials on 

grain boundaries and free surfaces, and noted that in representative 

cases the strain energy contributions to these are negligible for the 

diffusive growth of grain boundary cavities. This is because surface 

diffusion tends to round-out a cavity near its tip, and grain boundary 

diffusion generates misfit stresses to alleviate its stress concentration, 

reducing local stresses to the order of Y /P • An evaluation of & 's o 
expressions for the energy release rate in diffusive cavity growth 

shows that the major energy sink is provided by the work of normal stresses 

on the grain boundary, as it is effectively thickened by matter addition, 

and not from the loss of strain energy of material diffused from the 

cavity tip. We discuss the computation of net energy changes associated 

with introduction of cavities, and point out that the dominant term is 

dependent on details of the matter placement along the grain boundary. 

In addition, we have commented on restrictions placed by thermodynamics 

on the angle formed by cavity walls where they join the grain boundary. 
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VII. APPENDIX: SURFACE TENSION EFFECTS 
At various points throughout the paper surface tension (or surface 

stress) effects were ignored for ease of presentation, with the promise 
that all would be made well here. Let 61 , 02 be curvilinear coordinates 
in a surface (cavity surface, grain boundary) in some arbitrary reference 
configuration, and let g be the surface metric tensor (a,B=l,2) in 

ap 

this configuration. If the coordinate lines are regarded as being scribed 
onto the surface, in an elastic deformation the coordinates are convected 
and the metric tensor changes to g . The (covariant) components of 

ap 
strain are defined as 

£aB = (*aB " O 2 * (A"1} 

a8 The contravariant components (on the convected coordinates) T of the 
a8 surface tension tensor are defined such that' T fie „dA is the work of 

aB 
incremental elastic distortion fie „ of an area dA . Since Y dA is 

ap 
the surface energy, 

xaefie „dA = <5(Y dA) = 6Y dA + yga&Se „ dA , (A-2) aB aB 

aB where g are the contravariant components of the metric, and we obtain 
the well-known relation between surface tension and surface energy (e.g., 
Herring, 1951,1952; Murdoch, 1976). 

aB 3Y ^ aB (K ,A 
T = -rr— + Yg , (A-3) 

aB 
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valid for arbitrary deformation. Note that if we define Y by 
Y dA = Y dA , where dA is the area of the considered element in ' o o 
the reference configuration, then 

T dA 3e . ' lA 4J 

aB 

\Jofi HQja.d<LhA an^amUMJA. UIAXW caAv-ULinzxin. tzmofu: If the coordinates 

lines are locally orthogonal at the point considered, and normalized so 
that de1 , de2 are equal to the associated changes in arc length along 
the surface, then g of eqs. (A-2) and (A-3) is just the Kronecker 

aB tensor and T is the force acting in the B direction per unit 
length of a cut along the surface with outward normal in the a direction. 
Also, when the reference configuration differs only by an infinitesimal 
amount from the current configuration, e „ is just the classical 

" aB 
strain tensor). 

aB Mechanical equilibrium equations for T are complicated (Gurtin and 
Murdoch, 1975), but it is known that the field equations of equilibrium are 
fully implied by the principle of virtual work, and the latter is most con
venient for our purposes. Let A denote a region of cavity surface with bounding 
contour C , let n. be components (in 3-D space) of the outward normal 
to A (i.e., pointing away from the adjacent material, let a ^ be the 
stress tensor acting immediately beneath the surface (Latin indices i,j 
have the range 1 to 3), and let T be components of the surface tension 
acting normal to C . Hence the surface may be considered as a membrane 
loaded with forces per unit area -n.o on A and forces per unit 
length T along C . The principle of virtual work then requires that 

file:///Jofi
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x^fie Q dA = 
A a B 

Tafiu dC 
C a 

n.o1 ; )fiu. dA (A-4) 
A X ^ 

for arbitrary virtual displacement fields 5u. and associated virtual 
surface strains fie fi . Some well-known consequences are, for example, 
that 

„8 aB aB ii ,. .-> 
TP = m x , T K = n.a Jn. (A-5) 

a aB i J 
where m denotes the outward normal (in the tangent plane of the 
surface) to C , and K „ is the surface curvature tensor. 

aB 
An equation identical to (A-4) can be written for an arbitrary area 

A of the grain boundary, where r and T are tensions in the g.b., 
but now the integral involving a ^ must be carried out over both sides 
of the grain boundary. Observe that when the grain boundary is flat, as 
considered here, the normal components of a J are equal on both sides 
(and identical to what we have called a ). This means that for grain 
boundaries we can write n.a ^6u. as n.a 5u where 5u are components 

1 j 1 a a r 

of 6u. parallel to the boundary and a are shear stresses in the 
immediately adjacent material. Observe that for symmetrically loaded 
boundaries as in figs. 1 to 3, o will reverse sign on crossing the 
boundary, and a is generally non-zero whenever the surface tensions 
in the boundary are non-uniform. 

To calculate y (section II) we proceeded by calculating 5F when 
a layer of local thickness fit was added to cavity surfaces and/or grain 
boundaries, under conditions for which 6W = 0 . We write 6F = 6F + fiF 
and observe that when matter is added, there are associated displacements 
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6u. and strains fie „ along A (the cavity surfaces) and A, (the 1 aB & s ' b 
grain boundaries). The change in elastic strain energy is 

fiF w fit dA + w fit dA a fit dA 
\ 

n.a •'fiu. dA + 
\ 

n.alafiu dA 1 a (A-6) 

The first three terms have been discussed in the body of the paper, the 
fourth corresponds to item (iv) in the list enumerated shortly before 
eq. (.3), and the last three terms together give the change in strain 
energy of the material lying outside the added layers. The last integral 
on A, covers both sides of the g.b.'s and it is noted that the normal 
stresses a and shear stresses a appear separately. Further, for 
symmetrically loaded grain boundaries as we consider, 5u is the same 
on both sides of the boundary. The change in F is 

5F = s Ys(K1+ic2)«t dA + s 's° aBJ (fiY +Y ga65e J dA 

(6Y bn bg a e6e a e) dA (A-7) 

The first term has been discussed in the body of the paper. The second 
two are contributions, of type (iii) in the list shortly before eq. (3), 
due to effects of elastic strain in changing Y by 6Y and dA by 

dA . Using eq. (A-2), aBr g fie aB 



-34-

6F Y (K.+K_)5t dA + s i 2 
{ xa6fie R dA 
A °B 
s 

x fie J A, a£ dA (A-8) 

Mechanical equilibrium is expressed by the principle of virtual work 

in eq. (A-4). Let us write this equation separately for the grain boundaries 

and for the cavities, taking C to be the arc where the two make contact. 

Adding these equations together, we observe that contributions on C 

cancel (because of mechanical equilibrium between x and x, at the 

cavity tip, 2x cos<}> = x, ) i£ there is a unique displacement 5u. at 

the tip. On the other hand, if there is matter addition fit (=P.fiN) to 

the grain boundary at the tip, so that the vertical components x sin<J> 

of x separate by fit , the sum of the two terms involving C is 

x sin<f) fit dC s o 

Hence the resulting "grand" form of the principle of virtual work is 

xaf55e a dA + aB 
\ 

xa65e B dA = aB x sind> fit dC , s o 

J. n.a1;i6u. dA - n.alafiu JA x ] J. i a dA (A-9) 

where.the last integral covers both sides of A_ . Since the actual fie 

fiu. , fie n associated with matter addition involves continuity of 6u 
l aB a 

Id 

across A, , it can be taken as the field to be entered in this form of b 
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the virtual work equation. Now, when we add together eqs. (A-6) and 

(A-8), so as to write 6F = 6F + fiF , we find that because of eq. (A-9), 

all the terms involving x , a ^ and a cancel one another. Hence 

6F = fiF + fiF = [w - Y (K.+K_)]6t dA e s . L s 1 2 J 'A s 

+1 (w - o)5t dA (A-10) 

where here, and in eq. (A-15) to follow, for simplicity in the presenta

tion of formulae, the integral involving a is understood to include a 

"delta function" contribution to o at the cavity tip due to the vertical 

component of concentrated tension, x sin<|> , acting there. 

Thus, if we write fit = ftfiN and observe that y is defined by 

fiF 
; 

y fiN dA + 
A 

y 6N dA (A-ll) 
A,. 

(in the case considered of matter addition under conditions for which 

6W=0) , then we obtain at once eqs. (4) and (6) in the body of the paper 

for y . Thus we see that while the terms associated with Su. and fie 

make first order contributions to 6F and 6F separately, they make 
aB 

only higher order contributions to the total 6F . There is, however, a 

curious result at the tip. Because a has the delta-function contribution 

there, of integrated intensity x sin<(> , we must conclude that y has 

a similar negatively infinite delta-function form of integrated intensity 

-x sin<j> Q , at the tip. We leave open the interpretation to be given to 

this. Certainly, to the extent that thermodynamics required continuity 
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of y , such a condition can be met only if the material adjusts its state 

:b of surface strain at the tip in a manner such that x (and hence xK too) 

vanishes there. 

In the discussion of plane strain growth of a cylindrical cavity, 

surface tension effects were ignored in deriving eqs. (17) and (18). Now 
aB we can drop indices on x and e a , writing x and e for the ap 

components in the plane of deformation. With the previous discussion 

as background,, the full version of eq. (17) is readily seen to be 

F = 2 re w fiN ds + w m ds + W -
'l\_ JI 

m ds + W - I a fiN ds 

+ 2 n.a Ju. ds + V n.a u ds x (A-12) 

where the integral on r, covers both sides of the g.b. and, as in 

figs. 1 to 3, the x direction is parallel to the grain boundary. Here 

i,j range over x,y . Similarly, the full version of eq. (18) is: 

F = -2 s Y K£2N ds + (2Y cos<j> - y.) a ' s s o b ' o 

+ 2 xe ds + xe ds (A-13) 

Again, a grand form of the principle of virtual work may be written, 

analogously to (A-9), and this is 
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x &e ds + x Sc ds 

= -(x sinif) fit) - 2 
s 
n.a fiu. ds ixr , n.a fiu ds 1 x (A-14) 

Thus, when eq. (A-12) and (A-13) are added together the terms multiplying 

e and u. cancel, and we obtain eq. (19) in the body of the paper (which 

we remarked there to be valid in the general case when surface tension 

effects exist, so long as a is taken to include the concentrated tension 

at the tip--if, indeed, this is non-zero). 

Finally, if eq. (A-14) is used in (A-12), and then (A-12) is re

arranged to the form of eq. (23) in the body of the paper, we obtain 

w(-nN.)ds w £2N ds a m ds (A-15) 

(i.e., the same right side as eq. (23)) if we define 

F = F + 2 e e xe ds + xe ds (A-16) 

When we recall that F can be written as the integral over the volume of 

the body of stress components times corresponding components of strain rate, 

these added terms seem certainly to be appropriate, and W - F seems 

to be the obvious extension of the concept of an energy release rate to 

cases in which surface tensions exist during cavity growth. 
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FIGURE CAPTIONS 

Figure 1. Cylindrical void in a grain boundary. 

Figure 2. Illustration of matter transfer in diffusive cavity growth. 

In growth Aa a layer of local thickness An is removed 

from the cavity surface and the grain boundary, effectively, 

thickens by a local amount Afi due to matter addition. 

Figure 3. An elliptical cavity in a linear elastic material; a is 

the grain boundary tensile stress if there is no matter 

placement in the grain boundary, and a results after 

placement. 
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Figure 2 
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Figure 3 


