Experiments were performed to assess the operating characteristics and potential performance of water-augmented dry cooling systems. The work was aimed at evaluating a deluged air-cooled HOETERV plate fin heat exchanger surface proposed for integrated dry/wet cooling systems and using test results to guide the development of a predictive analytical model. In the process, all-dry performance data were obtained for the HOETERV surface as well as for two Curtiss-Wright chipped fin surfaces. The dry heat transfer data indicate that a slotted Curtiss-Wright surface slightly outperforms the HOETERV and nonslotted Curtiss-Wright surfaces based on heat rejection rate per unit of fan power. ...
continued below
Publisher Info:
Battelle Pacific Northwest Labs., Richland, WA (USA)
Place of Publication:
Richland, Washington
Provided By
UNT Libraries Government Documents Department
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
Experiments were performed to assess the operating characteristics and potential performance of water-augmented dry cooling systems. The work was aimed at evaluating a deluged air-cooled HOETERV plate fin heat exchanger surface proposed for integrated dry/wet cooling systems and using test results to guide the development of a predictive analytical model. In the process, all-dry performance data were obtained for the HOETERV surface as well as for two Curtiss-Wright chipped fin surfaces. The dry heat transfer data indicate that a slotted Curtiss-Wright surface slightly outperforms the HOETERV and nonslotted Curtiss-Wright surfaces based on heat rejection rate per unit of fan power. However, all three surfaces are so close in performance that other factors, such as surface cost and piping and mounting costs, will probably determine which surface is preferred at a given installation. Comparisons of deluged HOETERV performance with dry HOETERV and Curtiss-Wright performance under prototypic conditions have established that deluging can provide considerable heat rejection enhancement, particularly at low ITD and low air humidity. A deluged HOETERV core operating at a 115/sup 0/F primary fluid temperature in 105/sup 0/F air at 10% relative humidity can reject over 7 times as much heat as a dry HOETERV core operating under the same conditions at the same air-side pressure drop. Deluged tests were performed to evaluate the effect of airflow rate, deluge flow rate and core tilt angle on performance. Both increased airflow and increased deluge flow increase both heat rejection rate and required fan power. Optimal airflow rate will thus be determined for a given location by the competing costs of heat exchanger surface area versus fan operation. Changes in core tilt angle from vertical to 16/sup 0/ from vertical have a negligible effect on performance.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Parry, H.L.; MacGowan, L.J.; Kreid, D.K.; Wiles, L.E.; Faletti, D.W. & Johnson, B.M.Augmented dry cooling surface test program: analysis and experimental results,
report,
September 1, 1979;
Richland, Washington.
(digital.library.unt.edu/ark:/67531/metadc1101669/:
accessed February 23, 2019),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.