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ABSTRACT 

A one-dimensional gas-flow drives a wedge-shaped fracture 
into a linearly elastic, impermeable half-space which is in uniform 
compression, a^, at infinity. Under a constant driving pressure, 
p 0, the fracture/flow system accelerates through a sequence of 
three self-similar asymptotic regimes (laminar, turbulent, invia-
cid) in which the fracture grows like an elementary function of 
time (exponential, near-unity power, and linear; respectively). 
In each regime, the transport equations are reducible under a 
separation-of-variables transformation. The integro-differential 
equations which describe the viscous flows an? solved by iterative 
shooting-methods, using expansion techniques to accommodate a zero-
pressure singularity at the leading edge of the flow. These 
numerical results are complemented by an asymptotic analysis for 
large pressure ratio (N = p ^ o ^ •+ °°) which exploits the disparity 
between the fracture-length and penetration-length of the flow. 
The considered prototypic problem has geologic applications: con­
tainment evaluation of underground nuclear tests, explosive stimu­
lation of oil and gas wells, and explosive permeability-enhancement 
prior to in-situ combustion of coal or oil-shale. 
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I. INTRODUCTION 
In a fluid-driven fracture process, it is the internal fluid 

pressure which wedges open the fracture and, hence, controls the 
rate of propagation. The fluid velocity and the induced fracture-
tip velocity are generally small compared to the velocity of 
stress waves; so, the displacement field adjusts almost instantan­
eously to the changing fluid-pressure distribution. This quasi-
steady strain field is representative of both the classical pump-
driven hydrofracture and of the late time response of explosion-
driven systems. Despite this similarity in the solid mechanics 
of these two cases, there is very little similarity in the fluid 
mechanics) 

(1) Liquid-driven hydrofracture of petroleum reservoirs is 
a well-developed practice [1]. Here the fracture-
velocity is controlled by a predetermined pumping 
schedule, and the injected fluid is incompressible. 
The flow-field and the elastic-field are both quasi-
steady. The driving pressure is only slightly greater 
than the confining tectonic stress, and the fluid pres­
sure is nearly uniform along the fracture. 

(2) Gas-driven fracture propagation arises in a number of 
current or proposed applications! containment of 
underground nuclear tests; explosive stimulation of 
oil, gas, and geothermal wells; permeability enhance­
ment of oil shale or coal prior to in-situ combustion. 
Here the fracture velocity is controlled by the dynamic 
interaction of a compressible fluid with the elastic 



solid. Only the elastic-field is quasi-steady. The 
driving pressure, p 0, may greatly exceed the resisting 
compressive stress, o m, and the fluid pressure varies 
considerably along the fracture. 

The latter problem is addressed in the present paper and in two 
previous studies [2,3]. 

In those previous analyses of gas-driven fracture, the con­
servation equations are integrated in space and time using general 
numerical methods which are applicable to complex geometries, to 
porous media, and even to multiphase flows. Although very general 
and informative in these regards, the previous studies suppress the 
fluid/solid coupling by neglecting temporal wall-divergence in the 
flow analysis and also by imposing an arbitrary pressure at [3] or 
near [2] the tip, rather than enforcing continuity and a local 
specification of the stress state. These coupling considerations 
may be of little consequence w'.ien the pressure ratio N » Po/0,„ i s 

near unity, but with increasing N, they become the dominant deter­
minant of even the qualitative behavior. 

The present study addresses the elementary problem of a wedge-
shaped, gas-driven fracture in a linearly elastic, impermeable 
medium. Under constant driving pressure, the flow accelerates 
through a sequence of self-similar, asymptotic regimes (laminar, 
turbulent, and inviscid) in which the conservation equations are 
separable, time from position. The resulting ordinary differential 
equations are solved, for the laminar and turbulent regimes, using 
standard shooting methods. The analysis reveals a number of inter­
esting mathematical and physical features which are summarized at 

2 



the end of the paper. The results are useful in estimating frac­
ture growth rates under subsonic gas-drive. 



II. FORMULATION 
In the planar geometry of Figure 1, a constant pressure p 

drives a wedge-shaped fracture to a penetration, depth ;(t). The 
internal gas pressure p(x,t) spreads the walls >'' ; .'if fracture, 
producing a flow oha.-.nel with aperture width, \'[i,'.]. TU.» con­
sidered geometry is often studied in oil-fial 1 >pi . -jf ons : where 
vertical-plane fractures are expected to occur be.-...::-.<= the least-
principle-stress is horizontal. Although there -re tnree-Jiaensiona: 
cases where the fracture-height (here assumed i-i:" iiw.i influences 
the aperture [4,5], the present wedge-shaped ... i ... :'_lor. is sub­
mitted as a simple and representative case. f Tin* *•..-.i-,e-sh iped 
example should place an upper bound on fraot.ui-.- , n-.th because it 
neglects the fracture-closing effect of a fi;r.-- . i • .re-hei'jht 
and because it eliminates the flow-divergem _• „;,_.', •xeiua in 
axisymmetric penny-shaped configurations. 

Since the velocity of stress waves greatly ox^'mis the frac­
ture velocity in a subsonic gas-drive, the >'.'. :;pi ji:w.ent field 
adjusts almost instantaneously to the changing pressure loading. 
A quasi-steady stress analysis is therefore appropriate. Suppose 
that the tectonic stress u^ (normal to the fi .t.L.re plane) is 
uniform in the far field, that x » 0 is a line oi symmetry, and 
that viscous traction is negligible. Then the ,ipurcure distribu­
tion is functionally related to the pressure distiibution by the 
theory of linear elasticity [5,6,7], 

The radial growth of a penny-shaped crack is ;i!s& it-scribed by 
the wedge-shaped analysis, so long as the t -..•:• rat. i >:. depth ( R ) 
is small compared to the base radius (R Q). ••- :i. the early-time 
propagation of a fracture from an undergro^r..: nuclear cavity. 
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FIGURE 1. Schematic of Wedge-Shaped Fracture Driven by 
Internal Gas Pressure 
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G and '•' are the shear modulus and Poisson's ratio, respectively, 
and ) = x/Mt) is the normalized position variable. Since w(0,t) 
depends on t only through Z (t), the shape w(0) is preserved durii'.-
fracture growth whenever p(0) remains stationary. 

The mechanics of the tip region are addressed by Barenblor.t' s 

theory of equilibrium fracture [8] which ha3 been broadly applied 
[5,7,8,93 to geologic hydrofracture. The theory postulates that 
the stress must be finite at the tip of a fracture which io in 
mobile equilibrium. Accordingly, the pressure must satisfy an 
integral constraint [7,8] 

/5T r d8 = JL_ , (2) 

which ensures a smooth closure with w x •* 5w/Sx = 0, rather than a 
cusp at the tip. Although this argument removes the indefinite-
ness of the fracture length, it raises the question of tensile 
strength (or cohesive modulus [7,8], or stress intensity factor 
[9]), as embodied in the symbol K immediately above. Fortunately, 
estimates show [8,10] that the tensile strength often has a negli­
gible influence in the geologic applications where the resistive 
(fracture closing) effect of the in-situ compressive stress is far 
greater than the local action of molecular cohesion. This is 
particularly true when fractures are long and when natural fissur-
ing is taken into account. The tensile strength is therefore 
neglected by setting K = 0. 
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; 

In .scaling the aquation* it i» helpful to examine the limiting 
case where the driving pressure greatly exceeds the tectonic stress 

The Barenblatt condition (2) then demands a steep pressure decline 
within a narrow entry-zone (i.e., boundary-layer) just inside 
the entrance. Under the rough approximation that the pressure 
decreases linearly to zero in crossing this boundary-layer, the 
elastic solution (1,2) furnishes the following a priori estimates 
of the boundary-layer thickness S and the entrance aperture w(0) 

( . i J . o(|)3 

These expressions are useful in scaling the problem, and they are 
shown to be asymptotically exact for a laminar flow as N - ». 

Transient compressible flow in the fracture is governed by 
conservation of mass and momentum, here written in the one-
dimensional form [11] 

^f <P*0 + 35j(pwu) 

Si(pwu) • ^(pwu*) - -pw(l | | + x) 

in which p and u are density and velocity, each averaged across 
the channel [12]. The viscous shear stress X is approximated as 

(5) 
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follows for the limiting cases of low and high Reynolds number 

(Ke 0 = u 0w of> o/v 0), respectively 

i = fls - i 12PU ,, 
* " I^T - p - 2 ~ (laminar) 

w (6) 
" a(w) w~ (turbulent) . 

The former is the standard Poiseuille expression for a laminar 
channel flow; the latter is baaed on an experimental study (a -
0.1, b = 0,5) [13] of turbulent flow in simulated geologic frac­
tures having roughness heights r. . Regarding thermodynamics, i •: 
is here assumed that the gas is both idea;, aii isitlieriM 1 

- =£_ . <£ = R T = c 
RT ' do o Y ' ("'> 

o 
which depicts a convenient and representative : :nr i:v.; i~niv, and 
often places an upper bound [2] on fracture growth. 'I'hs opposite 
extreme of adiabatic flow is equally tractable. 
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III. ANALYSIS 
To solve the stated problem we will first apply a general 

separation-of-variables transformation, carrying along in parallel 
the distinct cases of laminar and turbulent flow. I' then becomes 
apparent from examination of the resulting ordinary differential 
equations (ODE's) that the fracture growth process can be parti­
tioned into a sequence of asymptotic regimes: exponential fracture 
growth in the early-time laminar flow regime, power-law fracture 
growth in the intermediate-time turbulent flow regime, and ulti­
mately a linear fracture growth (e.g. choked) in the late-time 
inertia dominated flow regime. In this section, #3, several 
matters are discussedt the scaling and transformations are intro­
duced, the time-dependent ODE's are integrated, a physical expla­
nation is given for the progressive acceleration of the fracture 
growth phenomenon, and preparations are made for dealing with a 
singularity in the flow field. The integration of the space-
dependent ODE's is accomplished in sections #4 and #5, respec­
tively, for the separate cases of laminar and turbulent flow; and 
the laminar/turbulent transition is discussed in section #6. 

The transformation to ordinary differential equations is 
accomplished by a separation-of-variables approach which distin­
guishes between global dependence on the growth rate &(t) and 
local dependence upon the normalized position variable e. Denoting 
the fracture-growth function as 

t ( t ) * V T > . (8, 
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the appropriate independent variables are 
B _ __x t 

" i^m ' T * t ; • (9) 

The dependent variables w, u, p, and ,, are now presumed separable 

in a manner which is compatible with the WMMnt noundairy con­

ditions on P and n, and is compatible with the obnt.rvit.ion that 

w(6,t) increases linearly with I. ( t ) , and is minimally restrici : i/e 

on u ( x , t ) • 

w ( x , t ) = v* og(T) W(8) p ( x r t ) = P Q P ( 8 ) 

u ( x , t ) = u Q f ( T ) U{6) p ( x , t ) = p 0(B) ( L 0 ) 

in which .. , u 0, t 0, p 0 and . Q are characteristic constants; f and 
g are functions of r alone; P, p , W ard U depend upon both x and i, 
bat only through (x, 1). Thus, the PDE's (5,6) can be transformed 
into a separable form by substituting the separated expressions 
for the dependent variables (10) into the PDE's (5,C) and then 
expanding the derivatives as follows 

1_ . 1 3 8 1 , 3 .lSg 5 > 3T ' tog<T) 38-' It " t 0' IT " 8 5 S T 3T > 

Then, letting 

*° W ° - H ( i - v ) p o ] IT » „ / 2 / 5 N \ 

-0> -o-[-ir-cr\^l\-T-} • 
t { > ^ , _° B | jux-v) ^ £ | „ » i n l " e ") , (11) 

the latter from (4b), and noting that /0(6) = P(J) in isothermal 
flow, the problem statement (5,6,1) becomes 

10 

http://obnt.rvit.ion


•WP' - |,(WPU)' - P (W - 8 W ) (12) 

A W l f g " "efS,U, + f S u"'f + f*UU' U i p ' 

u t ? ^ f (laminar) ( 1 3 ) 

uo f 2 O 2 

u^ 5 b^I+E) 't^bulent) 

2» nfiiw-*-1)* g d 0 ( 1 4 , 
'e "o 

Subject to the boundary and Integral conditions (the latter from 
(2)) 

J0 / I -J0 /l - e 2" ** ( 1 > 

The primes on W, U and P indicate derivatives with respect to 0, 
whereas primes on f or g represent derivatives with respect to T. 
In these equations there appear three different velocity scaless 
the sound speed c Q, the laminar velocity u., and the turbulent 
velocity u t, with the latter two defined in the following way 

Tt is hereafter assumed that the characteristic Mach number, M Q = 
u 0/c 0, is sufficiently small that the inertial terms (in script 
brackets) remain negligible during the time of interest. Then, 
the reference velocity u 0 is taken as either u . or u t, in the 
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Laminar art:i tubulent cases respect; ly in order that there 
remains only one parameter, N. 

The usual separation argument requires that the time func-
(ions satisfy (for email M Q) either 

*' * a t f » n d g - f (iMinar) 
or , v, •> (1 ?) 

9 ° a t f * n d 9 * f (turbulent) . 

In each, only the one separation constant, ,, need be left arbi­
trary to maintain full generality. So, by integration of (1?) 

g - e x p t a ^ ) (laminar) 
or < 1 S> 

g - (C + 2z£ a t T t>2/(2-b) ( t u l . b u l e n t ) 

The time variable T is subscripted here as a reminder that the 
r. ime scale (t Q = f /u 0) is different Tor the laminar and turbulent 
periods. Since f and g are increasing with i, the flow la acceLo-
rating from laminar dominance at early times to turbulent dominance 
at intermediate times, followed by in>/iscid inertial dominance 
even later. Thus, the constant of integration in g is taken as 
unity in the laminar case to have .' = i when t = 0, and in the 
turbulent case the constant C, which drops out at late times, is 
determined by matching considerations at laminar/turbulent tran­
sition. 

The functional character of the fracture growth can be 
explained by an informal physical argument which is outlined below 
for a laminar flow. Taking the inlet aperture w ac representative 
of the entire channel, the increasing fracture volume (V i, w£) 
must be accounted for by the inflow of gas (wu) which is, in turn. 
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controlled by molecular friction (u •>. Apw2/8.) 

Since Ap la constant and w is directly proportional to I (from 
elasticity), the above differential equation suggests that i grows 
exponentially. In the proposed separation-of-variables approach, 
the separation constant a serves as a quantitative link between 
this fracture growth argument and a flow-structure analysis. This 
analysis is based on the integro-differential equations which relate 
P, W and U. But first, there is need for a qualitative discussion 
concerning the boundary conditions at the leading edge. 

The presence of high pressure in the entry region is mechan­
ically communicated to the entire flow. Global spreading and 
frontal extension of the fracture walls pulls a vacuum in the tip 
region, drawing the flow down the channel. The influence of tem­
poral divergence is illustrated by the following rearrangement of 
the continuity equation (Eqn 12 with f/g' - 1/a from 17a or 17b) 

Pt)' + (U - a6)p' —p[(U - o6) j*'+ a] , (20) 

in which U - a8 is the local velocity of the fluid relative to the 
moving coordinate system (since (dx/dt) /u Qf » a6). Whenever U -
oe > 0, the flow experiences the axial convergence (We < 0) of the 
wedge-shaped channel, particularly near the tip where W'/W •* ». 
But, there is an offsetting effect (Pa term) due to the temporal 
divergence (w > 0) of the walls at any fixed 6 and this is domi­
nant near 9 » 0, where W -*• 0. The flow, therefore, sees a 
diverging-converging channel. 
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Evacuation of the tip region due to wall-diverge',ce is 
favored by the smooth closure, and hence small aperture, within 
the leading zone. The resulting viscous stresp.es ('- 1/Wn, n » 2, 
or 1 + b) prevent the flow from overtaking the tip. An analogous 
situation occurs in liquid-driven fractures where the fracture-
fluid is unable to wet the tip [7,8,9J. In spite of these expec­
tations of an evacuated tip, the only justifiable a priori asser­
tion is that no mass crosses the impermeable walls and, hence 
p ( ufluid " "tip' *" °' o r equivalently 

P(U - a6| * 0 as 6 - 1 , (21) 

which implies either a finite fluid velocity U -» a or a full 
vacuum p -»• 0 at the leading edge. An important aspect of the 
present analysis is the identification and resolution of the 
singularity which must be present if this condition is to be 
satisfied. To this end, use will be made of the jump-balance 
[14] relations, derived from first principles or by integrating 
[12,13] across the jump, 

[P] = 0 , [P(U - at)} = o < 2 2> 

which, respectively, ensure conservation of momentum (in the 
degenerate, low M Q sense) and of mass at a singular surface. 

14 
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TV. EARLY-TIME LAMINAR FLOW STRUCTURE 
Already it is known that the fracture grow* exponentially 

during the early laminar-flow period, in accordance with the inte­
gral (18) of the time dependent ODE's. But, it remains to deter­
mine the separation constant, a in (18). To do that we must 
calcualte the complete flow field by solving the space dependent 
(i.e., e-dependent) ODE'a. These solutions are obtained by stan­
dard shooting-methods, giving special attention to a singularity 
at the leading edge of the flow. The asymptotic solution for 
large N is deduced from a boundary-layer argument. 

In laminar flow the integro-differential system (12,13,14,15, 
21) can be written in the following form obtained by substituting 
the equality U - -P'W2 from (13a) into (20) and (21). 

F(P'V72)' + (P'v?2 + aO)P« — P((P'w 2 + a6) {*'- a) , (23) 

P(0) * 1 , Urn P(P'w 2 + a8) 
6*1 0 (24) 

W(6;N) = W( P(6);N) . f P d e - _*. (25) 

The ordinary differential equation (ODE) is second order with a 
like number of boundary conditions. The separation constant a 

affords the auxilliary degree of freedom necessary to satisfy the 
integral constraint. 

A singularity is present at an interior point 6* where in 
keeping with (22) 
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r 

p(e*) = o , p'tej) =- 06*7^(8*) 
(26) 

p'(e*> - o . 

T!ie List ensures that P(0) = 0 for 0^ £ 0 £ 1, BO that the leading-
••1qr; boundary condition (21) is automatical1/ satisfied. The sup­
porting argument outlined below is based on the nature of the ODF. 

g 
as well as the condition that W'(l) = 0, and hence W ^ CC (C = 
const > 0 , f; = l — 0, ts> 1) near 5 = 1 . 

(1) It must be that P(l) * 0. Otherwise, the boundary eon-
2 2 2 3 dition at •; = 1 requires that P' •» -»/W ">. -uC /(, with 

the unacceptable consequence that P •> -">. 

(2) P must vanish at an interior point 0* so that W / W has 
a finite limit from the left. Supposing to the contrary 
that P » 0 as i, - 1 , the ODIi requires that P" - -PW /W 
P/r,, and, henoe, the contradiction th;it P •- l/f, . 

(3) P^ -» a';/w2 at 0*. The ODE admits only two other possi­
bilities; each is discounted: (a) if P£\ -» 0, all the 
higher derivatives also vanish which, on the finite 
interval, implies that the function is constant to the 
left of 6*; (b) if P' - », then PP'' + P' 2 » 0, where­
upon PP' •* C in violation of the jump mass-balance (22). 

The discontinuity in P' has the character of a degenerate shock. 
Pressure jump is precluded by the absence of inertial terms at 
low Mach number. The trailing fluid velocity matches the shock 
speed, as in a so-called contact interface. 

The numerical solution procedure consists of successive 
iterations of the sequence listed below, starting from the initial 
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guess that P(8) is linear across an entry-layer of thickness 6 
(with & estimated from (4a)). 

(1) Calculate W(6) •W[P(e), N] from the elastic represen­
tation (14) using most-reeent P(e) in the integrand. 
Averaging this result with previous W(6) affords advan­
tageous damping. 

(2) By application of a two-parameter shooting method, solve 
the problem (23, 24a, 25b, 26) for P(S) using most-
recent W(8) in the ODE. It is elected to regard 8* and 
a as shooting parameters (rather than P'(0) and a). 
Starting with a leftward expansion from guessed 8*, inte­
gration proceeds backward to f* » 0; thereafter checking 
to see whether P(0) » 1 and whether the integral con­
straint (25b) is met. 

(3) Test convergence by checking the agreement between suc­
cessive interactions. 

Standard library routines perform the major operations: simplex 
minimization iterates the shooting parameters, and a fifth order 
Runge-Kutta procedure integrates the ODE such that a specified 
error tolerance (here 10~ 6) is maintained by adaptive control of 
the forward step size. 

Profiles of pressure and aperture are displayed in Figure 2 
for selected values of N. The corresponding data in Table I can 
be used to estimate the location and velocity of the tip as well 
as aperture, gas velocity, and mass flow at the entrance. KB 

expected (from (4)) the singular point 9* shifts backward toward 
the inlet as N increases. The fracture shape clearly reflects 
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LONGITUDINAL POSITION, 0 = x/Kt) 

FJGURE 2. Apercure and Pressure D i s t r i b u t i o n s in Laminar 
Flow 
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LAMINAP 

TABLE 

FLOV? 

I 

RESULTS 

H - p c 

2 

/ « - a e* H(0) U(0) H - p c 

2 

/ « -

0 . 2 9 0 . 8 6 0 . 9 8 0 . 2 9 

4 1 .4 0 . 5 4 0 . 9 9 0 . 8 4 

6 3 . 2 0 . 4 0 1 .0 1 .4 

10 9 . 2 0 . 2 7 1 . 1 2 . 7 

20 3B.0 0 . 1 3 1 .0 C.4 

' 
w IT 

N 1 . 0 

TASLE I I 

TURBULE? 3T TLOI J RESULTS 

« = P 0 /°- a W(0) U(0) 

2 0 . 7 3 0 . 8 2 0 . 6 8 

4 2 . 0 0 . 9 5 1 . 1 

6 3 . 4 1 . 0 1 . 5 

10 7 . 3 0 . 9 8 . 1 .9 

20 2 1 . 0 0 . 9 8 2 . 8 

«B 
. ( r -vl.O or 
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the extent of the pressurized zone since a discontinuity in W" 
accompanies the inflection point at *. Mote that W(l) stays 
nnzr unity, in-Heating that the scaling considerations alwnys 
provide a good estimate (11) of the aspect ratio w0/y.0. An unex-
rĵ cted feature of the flow ia the nearly uniform fluid velocity. 

An asymptotic analysis fc.-r . arqe N is based on the recogni-
i-.io.'i of growing disparity between the fracture-length and the 
^nt-ry-layer thickness, ",*. Upon i_r<;:*.sfor™.ation to a boundary-
layer coordinate 

n = S ^ ' (27; 

i 1'it; 0I1J-: no longer depends explicitly on .. For large enough M, 
(.ind, hence, large <i), it can then be nrgued th«t W = 1 an:? '••)' '< 

within the entry region, in which rose P(•) satisfies the fol­
low, ng problem (from (23,24a, 26)) jr. *-hieh ( )' = d( )/d-

pp.. + p . ( p . + n ) ^ p ( 2 8 . 

P(0) = 1 

P(n*) = o . P'fr,*) -- -r,*, P'( n*) = o . (~n) 

The piecewise l i n e a r s o l u t i o n , which i s s ingu la r a t ••* = 1, 

P = 1 - n , 0 < i < n l 
( 3 0 ! 

n . < n « .'a 

is exact in the limit (N > »••). Substitution of this profile into 
the integral constraint (25b) shows that c< -» (N/TT) as noted in 
Table I. Convergence to this asymptotic result ia demonstrated in 
Figure 3 where P(n)(from the numerical calculations) is plotted 
Lor increasing large N. 
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BOUNDARY-LAYER COORDINATE, v =J« x / i 

FIGURE 3. Convergence of Laminar Pressure Distribution to 
The Large-N, Boundary-Layer Solution 
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V. INTERMEDIATE-TIME TURBULENT FLOW STRUCTURE 
The fracture grows like a near-unity power of time during the 

intermediate turbulent-flow period, in accordance with the integral 
(18) cf the time dependent ODE's. As in the previous laminar-fIn-

regime, it remains to determine the structure of the flow fie-1'I 
to calculate the vaiuo of the separation constant. The numeri-
and the asymptotic large-N analyses are essentially the same *. 

before, except that the singularity now lies at the tip of ': -• 
fracture. 

The integro-differential system for a turbulent flow is the 
same as the laminar case (23-25) except that the previous ODE for 
P is now replaced by the pair of equations (take P'/P = -l)2/w 
from (13b) and substitute into (20)) 

• 2 , w • „. - C U - a 6 ) _ ^ = - [(U - cO) |'+ a] 

G XP ! " / T+E d e (3?: 
o 

This form is chosen (over the second-order equation for P) ber-.v.ise 
the ODE for U is only first-orde.- and it happens to be independent 
of P. 

The singularity must now lie at the leading edge where ir> 
keeping with (21) 

P •+ 0 and U + a6 as 6 -» 1 . ( 3 3 , 

There is no other way to satisfy the requirement that P(U - -VJ) -
0, as 8 •» 1. 
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(1) A lingularity at an interior point 8* is strong enough 
to bring P to zero, but is not strong enough to hold it 
there. To have P -• 0 internally, it is necessary that 
U + » in which case the ODE requires that U' • U 3 / W 1 + b 

(U 2 •+• W 1 + b/2f;, £ • 8 - 8*) and hence (using the integral 
for P) P(U - aO) •» constant, so that (by virtue of the 
jump mass-balance) P cannot be identically zero to the 
right of 6*. 

(2) It is not possible that U - c.6 - «» or that U - a8 - ± 
constant j* 0 as 8 •* 1. This can be verified by loci 
analysis, liXe that above, with W ^ (1 - ? ) S , ?, > 1. 

The requirement that U(l) « a is the only boundary condition to 
be satisfied by U. 

The numerical calcualtions are easier than in laminar flow, 
because a is now the only shooting parameter, expansion from the 
singularity is followed by a leftward march to the origin, there­
after checking to see if the integral constraint is satisfied. 
The pressure, P, and the integral constraint, I, are conveniently 
evaluated by carrying along supplementary ODE's for (Pr,p)' and I'. 
Cyclical alternation between the ODE's and the integral equation 
is the same as in laminar flow. Results are given in Figure 4 and 
T*ble II. 

The asymptotic (N - ~) entrance-layer argument is carried 
over from laminar to turbulent flow. Upon transformation to the 
appropriate boundary-layer scaling 

n - 8a 2/ 3 , U = U/a 1' 3 , < 3 4> 
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the inner problem statement (W » 1, W << 1) is again independent 
of a (taken from (31,32,33) with ( )' - d( )/dn) 

(V - n)G 2 - -1 (35) 

P • exp [lo "^ (36) 

V » n as n - » . < 3 7> 

The requirement that U •* n (U •* afc ) enforces agreement between 
the outer behavior of the inner (boundary-layer) solution and the 
inner behavior (leading terms) of the outer solution (tip expan­
sion) in the spirit of matched asymptotic expansions [15]. By 
the introduction of a so-called defect-function o = U - u which 
satisfies 

iK - iM* + f) ) 2 - -2 , *(">> - 0 » ( 3 8 ) 

it is seen that the boundary condition cannot be satisfied unless 
<ii •* 2/fj as n •* °°, in which case the ODE is singular at infinity. 
The computational problem is therefore posed in the independent 
variable £ » exp(-n) in order to bring the singularity to a finite 
location (£ • 0) from which the local expansion initiates numeri­
cal integration toward the entrance (<, = 1). The outcome (for 
which n(0) » 1.1159) is plotted in Figure 5 where the large-N 
convergence of P(ri) is also presented. The corresponding asymp­
totic entries in Table II are based on the following observations 
(from (15b) and examination of Figure 5), 

^ ' f 1 — = * . - 2 / 3 / % * a a - V 3 a s N , . . (39) 
•'ft A 7 1 -Tn 2 /TT '0 
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VI. TRANSITIONS 
The considered laminar and turbulent flows belong to the 

class called self-similar asymptotics, each being valid only 
within a limited window of time. Such asymptotics are often inde­
pendent of the initial data, as in the initial-boundary value 
problem for diffusion equations [16]. But, it is not uncommon to 
find lasting dependence upon the initial data or on an integral 
measure of the early impetus, as in the spherical propagation of a 
strong-explosion shock [17] where the late-time asymptotic solu­
tion depends upon the initial energy release. The present problem 
has this latter character throughout the early laminar-dominated 
period, but it finally becomes independent of the initial data in 
the late turbulent-dominated period. 

The fracture-growth function g(x) satisfies a first-order 
ODE, so it is possible to satisfy only one initial condition at 
the onset and only one matching condition at each transition. 
This single constant-of-integration can be interpreted as any 
extensive measure of the fracture/flow system such as length, 
volume, or elastic strain energy. It matters little which measure 
we choose to emphasize since the functional relationships among 
these integral measures are nearly the same from one asymptotic 
regime to the next. In this regard, it is recalled that the 
fracture shape (and, hence, volume and strain-energy) is, for a 
given pressure ratio N, essentially the same in laminar and tur­
bulent flow, despite the difference in pressure distribution. 

The early laminar solution depends linearly upon the (neces­
sarily nonzero) integration constant £ Q which characterizes the 
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the extent ol thj fracture at the onset of elongation. 
(1) Under the supposition of a pre--exi st iny fracture of 

finite length f. 0, it is not difficult to estimate the 
time required for a presnuro wave to pprwtrste to such 
a depth (roughly * or ' ) that ol.inqnu .n begins to 
occur. liuring the f-irly stage? of '.IDS pr >?pi <>r;o'ia-ir-i 
period, inertial forces may influent-;? -.ne fluwiield '.'.-. \. 

but viscous forces soon dominate dj' i > ti!.; .in.-; ,s;-." 
ratio of a fracture. 

{?-) hs an alternative to a direct spe- .•':•. -.• , • 
is apparently sufficient to pre;- •..•••• 
of the unfracMued ::-e!i "r. (i.e. , '• •..-.,• • ,... ;.ru;-.•-..•• ..-) ; 
incipient- brcaV.dowr. (L - :"> ). .• •••. • ••. r. •' •••.••: >• 
'•ciri then be used to -Ic • r;::l :-•; . :"• i • : -""Ji ' s' 
which the elastic si. rai n-enev.}} i' ; .„ • . t ho K •>• 

as the strain-energy at t = 0 . 
'hat is necessary is that so^e in iic-:t :-••:. L • ;ivcn of the 

i •;•'. niq condition from which the gas-lrivL- _-• -i. .-<:» initiates. 

The flow is not self-similar at brea^d •**->, but is expected to 
• o.,- : T 1,% R O i_n time. The proof that a solution always settles into 
•si-1 f-sinilority, regardless of initial d a n , is nf;.en prohibi-
fiveiy difficult* but has been, given for -• me representative 
problems [16.17]. 

The transition from laminar to L.JI ' ;.' •,. -a:. He 2 •:. 

10 ) is not long in coming because the Reynolds number (Re = 

Re fg) grows exponentially on a very short *.i<Tvr- ocn'ir, c = 12 
(f /w ) 2 U^/p-C << 1 s. The integration eon--! ant of the 
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turbulent flow ahould be chosen so that one of the extensive 
(Integral) measure* i» continuous at transition. The rate-
measures such as g' will, of course, be discontinuous. Aside from 
the considered case of laminar/turbulent transition during propa­
gation, it is possible (for some prescriptions of data) that the 
flow could be turbulent at breakdown. The initial or matching 
conditions for the turbulent flow are not, however, a critical 
issue since the turbulent solution eventually becomes independent 
of the initial data. 

The dependence upon initial data is qualitatively different 
in the laminar and turbulent flow regimes. In the laminar solu­
tion (from (18a,6,9,16a)) 

t-l0«xp(at (̂ )2 £-!&-) (40) 

there is a lasting dependence on the initial data, £ Q. But in 
the late-time limit of the turbulent solution, which is when it 
becomes asymptotically valid, (from (18b,8,9,16b) as T •» «•>) 

there is no longer any dependence on the initial length scale £ Q, 
since the ratio w 0 / £ Q is given by (11) in terms of p 0, N and the 
elastic constants. 

The dependence upon initial data is a physical feature of 
the problem — not an artifact of the mathematical formulation. 
The use of asymptotic analysis is, in fact, beneficial in this 
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respect, because the initial data IB distilled inLo a sinqle con­
stant of integration. This lessens the need for a comprehensive 
analysis of the initiation process. There has been little pre­
vious study of this initiation/propagation coupling because the 
initial data has no lasting influence if the flow-rato (pumping 
schedule) is prescribed instead of the driving pressure, as in 
the oil-field practice of hydrofracture. 

The asymptotic solutions for the laminar and turbulent 
regimes are strictly valid only when the Reynolds number if oither 
very low or very high everywhere within the channel. The transi­
tion from laminar to turbulent flow will therefore be a gradual 
one with turbulence taking over a longer and longer section of 
the fracture, and there will always bo a laminar 20.ie near the tip. 
The character of such a transition and the validity of the asymp­
totic solutions have been investigated for the closely related 
problem of the high-Re to low-Re transitional flow which occurs 
during transient fluid flow in porou media, or equi"alently ir 
narrow capillary tubes or in constant-aperture fractures [18]. 
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VII. SEEPAGE INTERACTIONS IN PERMEABLE MEDIA 
If n hydrofracture is driven into a permeable medium, as in 

U\o geologic application*, it is important to account for the 
interactions between the longitudinal flow in the fracture and 
the induced transverse flow in the surrounding porous medium. 
"'his problem has been previously studied for the prototypic case 
of a constant-aperture fracture and also as a perturbation on the 
pump-driven hydrofracture problem ClJ. In the present application 
the transport equations for flow in porous media are used to show 
f'n.-jt seepage interactions become less important as the fracture 
length increases, and hence the stated self-similar solutions are 
late-time asymptotics with respect to this consideration. 

if a lateral loss-flow with local transverse velocity, v, 
•tarries fluid from the fracture into the surrounding medium, the 
continuity equation for the fracture flow (5a) takes the following 
i-tijrlified form 

J£(DW) + ̂ (owi) - -»» ( 4 2 ) 

hat the momentum equation for the fracture remains the same as 
before (from (5b), dropping the inertial terms for low Mach num­
ber) 

1 5p _, 1 12UU ,, . , 
7 3x p ~T~ UMinar) 

l(w) w~ (turbulent) _\ b U 2 ..... . . .. (43) 

To evaluate the seepage velocity, v, it is necessary to consider 
the surrounding porous-flow field which is governed by the two 
tHniensional continuity equation and by Darcy's Law, respectively. 

31 



* i£. « \?. oil anc v. 
v at 

which combine to form the composite i'Ji-. 

*§-$*<> f i t 
in which ; and > are porosity .:••. : • . .. 
additional initial condition pix.y,! ) - . .... • 
field pressure in the porous me .; 

Reconsider now the fracture pi 
previous similarity transforMtn : : d 

transverse similarity variable 

in which y is measured away fir-
formed problem statement, int:n 
follows (where we momentarily i •*._ • • r . >w>_. . 

8WP- - | , ( W P U ) ' • (g'.-rj-i , - . , ,, . o w ) ) 

g w (X+bl 

; 4 7 

-1 f 2 V2 

2 n an - H ( P 3 ^ J ~ ( T ' g o 

in which • = 2 / ( 2 - b ) and t h e new •,••••• • - ...-• ; . , i , p , i raraeter , •••, 

i s d e f i n e d as 

I P.,** 'Vcr-: ..-•. 
u ( - 2 — j - ;-)(,; 

o \ v - .. . . r 
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and for simplicity it has been assumed that the interstitial fluid 
is the same as the fracture fluid, say air. The porous diffusion 
equation (49) is indicative of a boundary-layer structure in which 
longitudinal diffusion is negligible, particularly at late times 
when i/g < 1. From previous solutions of this diffusion equation 
(49) for constant-aperture fractures [19], it is known that ?P/9n 
is of order 1 along the fracture surface, and hence 3P/3ii is of 
order 1 in equation (47). 

The question is, under what limit (%ariy or late) does the 
seepage term make a negligible contribution contribution to the 
fracture-flow continuity equation (47)? in that limit (be it 
early or late) the fracture growth rate will revert to the form 
given previously 

g - T (>.>1) (turbulent; , 5 1 , 

Thus, the limiting condition of negligible seepage must occur as 
. - •>, because in that limit 

gTTp - T ( X _ 1 > / 7 - 0 (turbulent) ( 5 2 ) 

and hence the seepage term becomes negligible in (47). In order 
for seepage losses to diminish as time increases, it is only 
necessary that 1 « 2/(2-b) be greater than 1. Typically b « 1/2 
and >• « 3/2 in turbulent flow, and in laminar flow the exponential 
growth is stronger than any power of time (i.e., >• " * ) . Thus, 
seepage losses should always become negligible at late times, 
either in laminar or in turbulent flow. 
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Physically, the seepage interaction diminishs at late times, 
because an increase in aperture, w, enhances the longitudinal 
through-flow more than the corresponding increase in length, 
enhances the seepage losses (i.e., enhances the surface area for 
seepage loss). This would not be the case if the fracture ape-
were held constant during extension or if the geometry were . 
symmetric and, hence, the loss area were increasing in propcLtior. 
to ?/, instead of I. 

Although the impermeable-medium results must be reqarded as 

late-time asymptotics for the permeable case, and the seepage 
interactions will always result in a finite tip-pressure, the 
zm'-nressure impermeable analysis should be a good approximation 
so long as the pressure ratio, pdri.vinq' ''tip' l s > l a r 9 e ( S < 3 V< 5 o r 

more) as observed for the closely related problem of transient 
flow through porous media or in slei.der channels [IB], 
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VIII. SUMMARY 
A problem of gas-driven fracture propagation has been solved 

by separation of the time and position variables, followed by 
numerical integration of the resulting ordinary differential 
equations. The considered case is a prototypic one, subject to 
a number of simplifications: the elastic field is symmetric and 
two-dimensional, the ideal-gas fow is one-dimensional and iso­
thermal, the driving pressure p Q is constant, and the fractured 
medium is linearly-elastic, impermeable, and in uniform compres­
sion oni at infinity. 

In the formulation and analysis of such a rudimentary problem, 
there has been little mention of the many complications which may 
accompany gas-drivfen fractures three-dimensionality, seepage 
losses in porous media, and energy transfer mechanisms which are 
particularly prominent in two-phase, steam-driven, nuclear appli­
cations. Such interactions must ultimately be integrated in the 
general and comprehensive context of code development, as exemp­
lified by the pioneering work of Pitts and Brandt [2] and Keller, 
Davis, and Stewart [33. The complementary purpose of rudimentary 
analyses is to: <solate important aspects; gain qualitative 
understanding; identify mathematical and numerical difficulties 
associated with boundary layers, singularities, and untractable 
boundary conditions; and to provide fundamental quantitative 
results for estimation purposes and as a validation tool in more 
advanced code development. 
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The prototypic problem of gas-driven fracture reveals a nun-

btr of interesting and perhaps unexpected features of the fluid/ 

solid system response 
(1) The flow accelerates through a sequence a self-eimi J,jr 

asymptotic regimes: laminar, turbulent, ana inviscid; 
only the first two are reported here. 

(2) A strong vacuum exists at the tip of the fracture, 
either in an impermeable medium or in a permeable medlur. 
at late times. 

(3) The flow effectively experiences a diverying/conver7n:'i 
channel, because of the competing effects of tiine-w!se 
wall divergence, Nw/^t, and space-wise W.T! 1 convergence, 
3w/3x. 

(4) If the pressure ratio (M = PQ/• } ie large, the flow is 
confined to a narrow entry-layer region at the en'.ra':c« 
to the channel. 

(5) In laminar-dominated flow at early times: the fracture 
grows exponentially, the pressure goes to zero at mid-
span, and the pressure distribution is linear for large 
values of N. 

(6) In turbulent-dominated flow at late times: the fracture 
grows like a near-unity power of time, the pressure 
goes to zero at the tip, and the pressure distribution 
is exponential for large values of time. 

(7) The initial data (i.e., length . at the onset of gas-
drive) has a lasting influence in the early laminar 
period but not in the late-time limit of tne turbulent 
period. 
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Assumptions and approximations in the analysis are self-consistent' 
with rsspsot to two different critariat late-time, long-fracture 
limit (quasistsady stress field, impermeable media, no tensile 
strength),* and upper-bound on fracture extension (all above, iso­
thermal in spite of work done, wedge-shaped configuration). 

Quantitative results provide convenient estimates of fracture 
propagation rates and other engineering data. 

(1) Temporal variation of length, aperture and velocity is 
described by the analytic expressions 

1 - 1 09(T), w(0,t) - w oW(0)g(t), u(O.t) - uoU(0)f(T) 

in which* g(i) and f(r) are given by (16,17)r = t/t0 

and t Q • H 0/u 0; SL0 is the initial fracture length: * 0 

and u Q are defined in (9) and (15); and Tables I and II 
provide a, W(0), and U(0) as functions of N. See in 
particular equations (40,41) for ;.(t). 

(2) Spatial variations in pressure, aperture, and velocity 
are presented graphically. 

(3) Asymptotic results for large N are particularly simple 
and, by demonstrating convergence, they lend verifica­
tion to the numerics. 

The dependence upon physical constants, process parameters, and 
initial data is clear, particularly as N becomes asymptotically 
large. 
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