High explosives reaction model and its application to booster performance

PDF Version Also Available for Download.

Description

Initiation of insensitive high explosives requires a boosting system using more sensitive and usually more energetic explosives. However, problems arise if the booster material is too energetic. The initiability of some insensitive but less energetic high explosives can be enhanced by lowering the density and decreasing the grain size or by adding a sensitive component; thus these explosives can be used as booster materials. This paper presents a unified initiation and detonation reaction model and then the simulation of the development of the detonation wave in a PBX-9502 main charge using three booster explosives: low-density superfine TATB, low-density ultrafine TATB, ... continued below

Physical Description

Pages: 12

Creation Information

Tang, P.K. January 1, 1989.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Initiation of insensitive high explosives requires a boosting system using more sensitive and usually more energetic explosives. However, problems arise if the booster material is too energetic. The initiability of some insensitive but less energetic high explosives can be enhanced by lowering the density and decreasing the grain size or by adding a sensitive component; thus these explosives can be used as booster materials. This paper presents a unified initiation and detonation reaction model and then the simulation of the development of the detonation wave in a PBX-9502 main charge using three booster explosives: low-density superfine TATB, low-density ultrafine TATB, and X-0407. The last two are found to be acceptable for booster application. 12 refs., 5 figs.

Physical Description

Pages: 12

Notes

NTIS, PC A03/MF A01 - OSTI; 1.

Source

  • 3. international symposium on behavior of media under high dynamic pressures, La Grande Motte, France, 5 Jun 1989

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE89005459
  • Report No.: LA-UR-88-4130
  • Report No.: CONF-890661-2
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5988668
  • Archival Resource Key: ark:/67531/metadc1101479

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1989

Added to The UNT Digital Library

  • Feb. 18, 2018, 3:59 p.m.

Description Last Updated

  • May 31, 2018, 12:47 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tang, P.K. High explosives reaction model and its application to booster performance, article, January 1, 1989; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1101479/: accessed June 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.