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CHAPTER 1

BACKGROUND

In topological dynamics, a dynamical system (X,G) consists of a Hausdorff space X

together with a group G of homeomorphisms of X. The dynamical system is called free

if g(x) 6= x for every x ∈ X and every non-identity g ∈ G, and it is called minimal if

{g(x) | g ∈ G} = X for every x ∈ X. In 1938, G. A. Hedlund and M. Morse began a

movement to better understand a tool known as symbolic dynamics and to furthermore view

this tool as an object of study in its own right ([5]). As a tool, symbolic dynamics arises

through the following process. Take a dynamical system (X,G) with G countable, and

choose a partition of X consisting of finitely many sets A0, A1, . . . , An. We define φ : X →

{0, 1, . . . , n}G by setting φ(x)(g) = k if k is the unique number for which g(x) ∈ Ak. One

can define an action of G on {0, 1, . . . , n}G which makes ({0, 1, . . . , n}G, G) into a dynamical

system (with the product topology) and which also makes the action of G commute with

the function φ. With this action {0, 1, . . . , n}G is called a symbolic flow, and φ(X) is called

a subflow. The purpose of this method is to study φ(X) in order to reveal properties of the

original dynamical system.

Traditionally, emphasis in symbolic dynamics has been placed on subflows of symbolic

flows of the form {1, 2, . . . , n}Z. This has left much to be unknown about subflows of more

general symbolic flows. In particular, the existence and properties of free subflows and free

minimal subflows, which are central notions in dynamics, had not been investigated until

only the last few years.

In 2007, E. Glasner and V. Uspenskij investigated which countable groups G had the

property that {0, 1}G contained a free subflow ([4]). They concluded that abelian groups,

residually finite groups, and a few other groups have this property, but they could not

draw any conclusions for more general groups. Similarly, in 2007 A. Dranishnikov and V.

Schroeder also did work on this problem. They were only able to conclude that torsion free

hyperbolic groups have the property ([1]). Around the same time, a complete solution to this
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problem was found by S. Gao, S. Jackson, and the author ([2]). They proved that {0, 1}G

contains continuum-many pairwise disjoint free subflows whenever G is a countably infinite

group. With Zorn’s Lemma it is true that every free subflow contains a minimal free subflow.

Therefore their result reveals that {0, 1}G contains continuum-many pairwise disjoint free

minimal subflows when G is countably infinite.

The purpose of this paper is to strengthen this last result. The main theorem is that

for countably infinite groups G the union of the free minimal subflows of {0, 1}G is dense.

Actually, a stronger result is obtained which states that if G is a countably infinite group

and U ⊆ {0, 1}G is open, then there is a collection of size continuum consisting of pairwise

disjoint free minimal subflows intersecting U . The methods here are self-contained, however

they constitute an abstraction and strengthening of the methods found in [2]. In section 2,

notation is developed and combinatorial equivalents for dynamical properties are presented.

In section 3, general countable groups are studied and useful properties they posses are found.

Finally, in the last section it is shown how to construct free minimal subflows intersecting a

given open set. A much more in-depth study of symbolic flows using these methods will be

available in [3].
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CHAPTER 2

PRELIMINARIES

We first give a more detailed description of general symbolic flows. We will work only

with {0, 1}G, however all of our methods and results can be effortlessly modified to work for

{0, 1, . . . , n}G. We let 2G denote {0, 1}G and

2<G =
⋃
H⊆G

{0, 1}H .

Fix a countably infinite group G, and let G be enumerated without repetition as 1G =

g0, g1, g2, . . . . Define a metric on 2G by

d(x, y) =

 2−n, if x 6= y and n ∈ N is the least such that x(gn) 6= y(gn),

0, if x = y.

The metric d is an ultrametric on 2G compatible with the compact product topology on 2G.

The action of G on 2G is given by

(g · x)(h) = x(g−1h).

One can easily check that each map x 7→ g · x is a homeomorphism of 2G. For each x ∈ 2G

let [x] denote the orbit of x, i.e., [x] = {g · x | g ∈ G}.

Remark 2.1. The action defined above is the left shift action of G on 2G. The action

referred to in the previous section was the right shift action of G on 2G, which is defined by

(g · x)(h) = x(hg).

Using the left shift action is not a problem because as dynamical systems 2G with the left

shift action is isomorphic to 2G with the right shift action.

Definition 2.2. Let G be a countable group. A subflow A of 2G is a closed subset of 2G

which is invariant under the action of G, meaning g · A = A for each g ∈ G.
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Definition 2.3. Let G be a countable group. A subflow A of 2G is free if g ·x 6= x for every

x ∈ A and every non-identity g ∈ G.

Definition 2.4. Let G be a countable group. A subflow A of 2G is minimal if [x] = A for

every x ∈ A.

The previous three definitions come from the general context of dynamical systems. The

useful thing about symbolic dynamics is that it brings combinatorics into dynamical systems.

The next three definitions are combinatorial in nature, and we will soon see that they are

very important.

Definition 2.5. For a countable group G, a 2-coloring on G is a function c : G → {0, 1}

such that for any s ∈ G with s 6= 1G there is a finite set T ⊆ G such that

∀g ∈ G ∃t ∈ T c(gt) 6= c(gst).

Definition 2.6. For a countable group G, c ∈ 2G is called minimal if for every finite A ⊆ G

there exists a finite T ⊆ G such that

∀g ∈ G ∃t ∈ T ∀a ∈ A x(gta) = x(a).

Definition 2.7. Let G be a countable group and let c0, c1 ∈ 2G. We say that c0 and c1 are

orthogonal if there is a finite set T ⊆ G such that

∀g0, g1 ∈ G ∃t ∈ T c0(g0t) 6= c1(g1t).

The following lemma appears in [2], but was also independently discovered by Vladimir

Pestov.

Lemma 2.8. If G is a countable group and x ∈ 2G, then [x] is free if and only if x is a

2-coloring on G.

Proof. (⇒) Assume [x] is free. Denote C = [x]. Fix any s ∈ G with s 6= 1G. Then for

any y ∈ C, s−1 · y 6= y, and hence there is t ∈ G with (s−1 · y)(t) 6= y(t). Define a function

τ : C → G by letting τ(y) = gn where n is the least so that (s−1 · y)(gn) 6= y(gn). Then τ is
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a continuous function. Since C is compact we get that τ(C) ⊆ G is finite. Let T = τ(C).

Then for any g ∈ G, there is t ∈ T with x(gt) = (g−1 · x)(t) 6= (s−1g−1 · x)(t) = x(gst). This

proves that x is a 2-coloring.

(⇐) Assume that x is a 2-coloring on G. Suppose z ∈ [x], that is, there are hm ∈ G

with hm · x → z as m → ∞. We must show g · z 6= z for 1G 6= g ∈ G. Towards a

contradiction suppose s ·z = z for s 6= 1G. Then by the continuity of the action we have that

s−1hm ·x→ s−1 ·z = z. Let T ⊆ G be a finite set such that for any g ∈ G there is t ∈ T with

x(gt) 6= x(gst). Let n be large enough so that T ⊆ {g0, . . . , gn} and let m ≥ n be such that

d(hm · x, z), d(s−1hm · x, z) < 2−n. Now fix t ∈ T with (hm · x)(t) = x(h−1
m t) 6= x(h−1

m st) =

(s−1hm · x)(t). Then z(t) = (hm · x)(t) 6= (s−1hm · x)(t) = z(t), a contradiction. �

This next lemma is a simple generalization of a well known fact for Z.

Lemma 2.9. If G is a countable group and c ∈ 2G, then [c] is minimal if and only if c is

minimal.

Proof. (⇒) Assume [c] is minimal. Let A ⊆ G be finite, and let k ∈ N be such that A ⊆

{g0, g1, . . . , gk}. Since [c] is minimal, for every y ∈ [c] there exists h ∈ G with d(h·y, c) < 2−k.

Define φ(y) to be the least m ∈ N such that d(gm · y, c) < 2−k. Then φ is continuous and [c]

is compact so φ([c]) ⊆ N is finite. Let M ∈ N bound φ([c]) and set T = {g0, g1, . . . , gM}. It

follows that for any g ∈ G there is t ∈ T with d(t · g−1 · c, c) < 2−k. Therefore, for all a ∈ A

we have c(gt−1a) = t · g−1 · c(a) = c(a). Thus, T−1 is the desired finite subset of G.

(⇐) Now assume c is minimal. Fix y ∈ [c] and let ε > 0 be arbitrary. Let k ∈ N be such

that 2−k < ε, and set A = {g0, g1, . . . , gk}. By our assumption, we may let T ⊆ G be finite

such that for all g ∈ G there is t ∈ T with c(gta) = c(a) for all a ∈ A. Let hm be a sequence

in G with hm · c → y as m → ∞. Let r ∈ N be such that TA ⊆ {g0, g1, . . . , gr}, and fix

m ∈ N with d(hm · c, y) < 2−r. Then we have for some t ∈ T , c(h−1
m ta) = c(a) for all a ∈ A.

But since d(hm · c, y) < 2−r, y(ta) = hm · c(ta) = c(h−1
m ta) = c(a) for all a ∈ A. It follows

d(t−1 · y, c) < 2−k and therefore d([y], c) < 2−k < ε. But ε was arbitrary and [y] is closed so
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c ∈ [y]. Additionally, [y] is G-invariant so [c] ⊆ [y] and therefore [c] ⊆ [y]. Similarly, [c] is

G-invariant and y ∈ [c] so [y] ⊆ [c]. We conclude [c] is minimal. �

The following lemma appears in [2].

Lemma 2.10. Let G be a countable group and let c0, c1 ∈ 2G. Then [c0] and [c1] are disjoint

if and only if c0 and c1 are orthogonal.

Proof. (⇒) Conversely, suppose [c0]∩ [c1] = ∅. Since they are both compact it follows that

there is some δ > 0 such that for any y0 ∈ [c0] and y1 ∈ [c1], d(y0, y1) ≥ δ. Let n be large

enough such that δ ≥ 2−n. Then in particular for any x0 ∈ [c0] and x1 ∈ [c1], d(x0, x1) ≥ 2−n.

This implies that there is t ∈ {g0, . . . , gn} such that x0(t) 6= x1(t).

(⇐) Let n be large enough such that T ⊆ {g0, . . . , gn}. Then for any x0 ∈ [c0] and

x1 ∈ [c1], there is t ∈ T such that x0(t) 6= x1(t), and thus d(x0, x1) ≥ 2−n. It follows that

d(y0, y1) ≥ 2−n for any y0 ∈ [c0] and y1 ∈ [c1], and therefore [c0] ∩ [c1] = ∅. �
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CHAPTER 3

FINDING STRUCTURE WITHIN COUNTABLE GROUPS

The sole purpose of this section is to study countable groups in their full generality and

develop the tools which we will use in the next section to prove the main theorem. Thus, no

mention of 2G will be made in this section. Our first definition will be central to our studies

for the rest of the paper.

Definition 3.1. Let G be a group and let A,B,∆ ⊆ G. We say that the ∆-translates of A

are maximally disjoint within B if the following properties hold:

(i) for all γ, ψ ∈ ∆, if γ 6= ψ then γA ∩ ψA = ∅;

(ii) for every g ∈ G, if gA ⊆ B then there exists γ ∈ ∆ with gA ∩ γA 6= ∅.

When property (i) holds we say that the ∆-translates of A are disjoint. Furthermore, we say

that the ∆-translates of A are contained and maximally disjoint within B if the ∆-translates

of A are maximally disjoint within B and ∆A ⊆ B.

Notice that in the definition above we were referring to the left translates of A by ∆ but

never explicitly used the term left translates. Throughout this paper when we use the word

translate(s) it will be understood that we are referring to left translate(s). Additionally, note

that in the definition above there is no restriction on ∆ being nonempty. So at times it may

be that the ∅-translates of A are contained and maximally disjoint within B.

Let G be a group and let A,B ⊆ G be finite with 1G ∈ A. Define

ρ(B;A) = min{|D| | D ⊆ B and ∀g ∈ B (gA ⊆ B ⇒ gA ∩DA 6= ∅)}.

This is well defined since B is finite. The definition of ρ was tailored so that the following

two statements hold:

(i) If ∆ ⊆ B and the ∆-translates of A are maximally disjoint within B, then |∆| ≥

ρ(B;A);

(ii) If A′ ⊆ A then ρ(B;A′) ≥ ρ(B;A).

7



The reader should verify the truth of these two statements.

Lemma 3.2. Let G be an infinite group and let A,B ⊆ G be finite with 1G ∈ A. For any

ε > 0 there exists a finite C ⊆ G containing B such that ρ(C;A) > |C|
|A|(1− ε).

Proof. Let ∆ ⊆ G be countably infinite and such that the ∆-translates of AA−1 are disjoint

and ∆AA−1A ∩B = ∅. Let λ1, λ2, . . . be an enumeration of ∆. For each n ≥ 1, define

Bn = B ∪

( ⋃
1≤k≤n

λkA

)
.

Fix n ≥ 1 and let D ⊆ Bn be such that gA ∩DA 6= ∅ whenever g ∈ Bn with gA ⊆ Bn. It

follows that for each 1 ≤ i ≤ n there is di ∈ D with diA ∩ λiA 6= ∅. Then

di ∈ λiAA−1.

Since the ∆-translates of AA−1 are disjoint, the di’s are all distinct. Additionally, diA∩B ⊆

∆AA−1A ∩B = ∅ so that ρ(Bn;A)− n ≥ ρ(B;A). Therefore we have

ρ(Bn;A)
|A|
|Bn|

≥ n|A|+ ρ(B;A)|A|
n|A|+ |B|

.

Clearly as n goes to infinity the fraction on the right goes to 1. So there is n ≥ 1 with

ρ(Bn;A) |A||Bn| > 1− ε and ρ(Bn;A) > |Bn|
|A| (1− ε). Setting C = Bn completes the proof. �

Definition 3.3. A function f : N → N is said to have subexponential growth if for every

u > 1 there is N ∈ N so that f(n) < un for all n ≥ N .

Lemma 3.4. Let G be an infinite group and let A,B ⊆ G be finite with 1G ∈ A. If f :

N → N has subexponential growth then there exists a finite C ⊆ G containing B such that

2ρ(C;A) > f(|C|).

Proof. Let N ∈ N be such that 2
n

2|A| > f(n) for all n ≥ N . Let B′ ⊆ G be a finite set

containing B with |B′| ≥ N . By Lemma 3.2 there exists a finite C ⊆ G containing B′ with

ρ(C;A) > 1
2
|C|
|A| . Then C ⊇ B and as |C| is at least N ,

2ρ(C;A) > 2
|C|
2|A| > f(|C|).
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The following proposition is the key result of this section. Unfortunately, at this time it

is difficult both to express the importance of this proposition and to explain where it fits in

the overall proof of the main theorem.

Proposition 3.5. Let G be a countably infinite group and let (Hn)n∈N be an increasing

sequence of finite subsets of G with 1G ∈ H0,
⋃
n∈NHn = G, and

Hn−1(H
−1
0 H0)(H

−1
1 H1) · · · (H−1

n−1Hn−1) ⊆ Hn

for n ≥ 1. Then there exists an increasing sequence (Fn)n∈N of subsets of G and a decreasing

sequence (∆n)n∈N of subsets of G such that

(i) F0 = H0;

(ii) 1G ∈ Fn ⊆ Hn for all n ≥ 1;

(iii) 1G ∈ ∆n for all n ∈ N;

(iv) for all n ∈ N the ∆n-translates of Fn are maximally disjoint within G;

(v) for all n ≥ 1 the ∆n−1 ∩Fn-translates of Fn−1 are contained and maximally disjoint

within Hn;

(vi) for all n > 0 and 0 ≤ k ≤ n the ∆k ∩ Fn-translates of Fk are maximally disjoint

within Hn−1;

(vii) for every k ∈ N and γ ∈ ∆k, there is n ≥ k with γFk ⊆ Fn;

(viii) γFn ∩∆kf = γ(Fn ∩∆k)f for all n ≥ k, γ ∈ ∆n, and f ∈ Fk.

Proof. Set F0 = H0 so (i) is satisfied. We will construct (Fn)n∈N. Choose δ1
0 ⊆ H1 so that

1G ∈ δ1
0 and the δ1

0-translates of F0 are contained and maximally disjoint within H1. We

then define F1 =
⋃
γ∈δ10

γF0. Note F1 ⊆ H1.

We will continue the construction inductively. Assume F0 through Fn−1 have been defined

with Fm ⊆ Hm for m < n. Again we choose δnn−1 ⊆ Hn so that 1G ∈ δnn−1 and the δnn−1-

translates of Fn−1 are contained and maximally disjoint within Hn. Once δnn−1 through

δnn−k+1 have been defined with 1 < k ≤ n, choose δnn−k so that the δnn−k-translates of Fn−k
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are contained and maximally disjoint within

Bn
n−k −

⋃
1≤m<k

⋃
γ∈δn

n−m

γFn−m = Bn
n−k −

⋃
1≤m<k

δnn−mFn−m

where for r, s ∈ N with r < s

Bs
r = {g ∈ G | {g}(F−1

r+1Fr+1)(F
−1
r+2Fr+2) · · · (F−1

s−1Fs−1) ⊆ Hs}.

Note Hs−1 ⊆ Bs
r so Bs

r 6= ∅.

Finally, we define

Fn =
⋃

0≤m<n

⋃
γ∈δn

m

γFm =
⋃

0≤m<n

δnmFm.

Note Fn ⊆ Hn since Bn
k ⊆ Hn for all 0 ≤ k < n − 1. The construction of (Fn)n∈N is now

complete and satisfies (i) and (ii).

The use of the Bn
k ’s plays a vital role in this proof. Their main function is to achieve

conclusion (iv). Let us reveal the important property of the Bn
k ’s. Fix n, k ∈ N with n > k.

Suppose g ∈ G satisfies gFk∩Fn 6= ∅. Then gFk∩ δnmFm 6= ∅ for some k ≤ m < n (this may

be true for several values of m, some of which may be less than k). Let us show why this is

true. Suppose gFk ∩ δnmFm = ∅ for all k < m < n. It will suffice to show gFk ∩ δnkFk 6= ∅.

As Fn =
⋃

0≤t<n δ
n
t Ft, there is 0 ≤ t ≤ k with gFk ∩ δnt Ft 6= ∅. If t = k, then we are done.

So suppose t < k. We have

gFk ⊆ δnt FtF
−1
k Fk ⊆ δnt Ft(F

−1
t+1Ft+1)(F

−1
t+2Ft+2) · · · (F−1

k Fk)

and hence

gFk(F
−1
k+1Fk+1) · · · (F−1

n−1Fn−1) ⊆ δnt Ft(F
−1
t+1Ft+1) · · · (F−1

n−1Fn−1).

However, by definition δnt Ft ⊆ Bn
t . So the right hand side of the expression above is contained

within Hn, and therefore gFk ⊆ Bn
k . Thus

gFk ⊆ Bn
k −

⋃
k<m<n

δnmFm.

It now follows from the definition of δnk that gFk ∩ δnkFk 6= ∅. This substantiates our claim.
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The collection (δnk )k<n was useful in constructing (Fn)n∈N but is inadequate for our further

needs. For k ≤ n we wish to recognize exactly how translates of Fk were both explicitly and

implicitly used in constructing Fn. For example, for k < m < n we have δmk Fk ⊆ Fm and

δnmFm ⊆ Fn so δnmδ
m
k Fk ⊆ Fn. Thus informally we would say the δnmδ

m
k -translates of Fk were

implicitly used in constructing Fn. However if for g ∈ Fn we only have gFk ⊆ Fn we would

not necessarily want to say the g-translate of Fk was used in constructing Fn. Hopefully we

have made the point that we only wish to consider translates which, in some sense, were

either explicitly or implicitly used. Informally, we wish to define Dn
k to be the set of all γ’s

in Fn such that the γ-translate of Fk was used in constructing Fn. We now give the formal

definition for this. For k ∈ N define Dk
k = {1G}, Dk+1

k = δk+1
k , and in general for n > k

Dn
k = δnn−1D

n−1
k ∪ δnn−2D

n−2
k ∪ · · · ∪ δnk+1D

k+1
k ∪ δnk =

⋃
k≤m<n

δnmD
m
k .

The Dn
k ’s are a discrete version of the ∆n’s which we will soon construct. First we must

spend the next few paragraphs proving that the Dn
k ’s possess the following properties for all

k,m, n ∈ N with k ≤ m ≤ n:

(1) Dn
kFk ⊆ Fn;

(2) Dn
mD

m
k ⊆ Dn

k ;

(3) the Dn
k -translates of Fk are disjoint;

(4) the Dn
k -translates of Fk are maximally disjoint with Bn

k .

(Proof of 1) Clearly Dk
kFk = Fk. If we assume Di

kFk ⊆ Fi for all k ≤ i < n, then

Dn
kFk =

⋃
k≤i<n

δni D
i
kFk ⊆

⋃
k≤i<n

δni Fi ⊆ Fn.

The claim now immediately follows from induction.

(Proof of 2) Clearly when n = m we have Dn
mD

m
k = Dn

nD
n
k = Dn

k . If we assume

Di
mD

m
k ⊆ Di

k for all m ≤ i < n, then

Dn
mD

m
k =

⋃
m≤i<n

δni D
i
mD

m
k ⊆

⋃
m≤i<n

δni D
i
k ⊆

⋃
k≤i<n

δni D
i
k = Dn

k .

The claim now immediately follows from induction.
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(Proof of 3) The Dn
k -translates of Fk are disjoint when n = k and when n = k + 1.

Assume the Di
k translates of Fk are disjoint for all k ≤ i < n. Recall Dn

k =
⋃
k≤i<n δ

n
i D

i
k. If

k ≤ r < s < n, then by the definition of δnr we have δnrFr ∩ δnsFs = ∅. It then follows from

(1) that δnrD
r
kFk ∩ δnsDs

kFk = ∅. Additionally, if k ≤ i < n and γ, ψ ∈ δni are distinct, then

γFi ∩ ψFi = ∅ because the δni -translates of Fi are disjoint by definition. Again by (1) we

have γDi
kFk ∩ ψDi

kFk = ∅. Finally, by assumption the Di
k-translates of Fk are disjoint for

every k ≤ i < n. It follows that the Dn
k -translates of Fk must be disjoint. The claim now

follows from induction.

(Proof of 4) Here one will see exactly why the Bn
k ’s were defined. When n = k and

n = k + 1 claim is guaranteed by definition (we take Bn
n = Bn

n−1 = Hn). So fix k ∈ N

and towards a contradiction suppose n > k + 1 is such that the Dn
k -translates of Fk are

not maximally disjoint within Bn
k . Fix g ∈ Bn

k such that gFk ⊆ Bn
k and gFk ∩ Dn

kFk = ∅.

Our argument will rely on inductively creating a finite sequence of natural numbers. We

first detail how the starting number v0 is determined. Recall that in the construction of Fn

we defined δnn−1 through δnk+1 first and then chose δnk so that its translates of Fk would be

maximally disjoint within Bn
k−
⋃
k<m<n δ

n
mFm. However, δnk = δnkD

k
k ⊆ Dn

k so gFk∩δnkFk = ∅.

So we cannot have gFk ⊆ Bn
k −
⋃
k<m<n δ

n
mFm as this would violate the definition of δnk . Since

gFk ⊆ Bn
k , we must have gFk ∩ (

⋃
k<m<n δ

n
mFm) 6= ∅. Therefore there exists v0 ∈ N with

k < v0 < n and γ0 ∈ δnv0 such that gFk ∩ γ0Fv0 6= ∅. Note that γ0D
v0
k ⊆ δnv0D

v0
k ⊆ Dn

k

so γ−1
0 gFk ∩ Dv0

k Fk = γ−1
0 (gFk ∩ γ0D

v0
k Fk) = ∅. For notational convenience, we will set

v−1 = n. Now assume v0 through vi−1 have been defined and γj ∈ δ
vj−1
vj has been fixed for

each 0 ≤ j ≤ i− 1 such that

(a) n > v0 > v1 > · · · > vi−1 > k,

(b) (γ0γ1 · · · γi−1)
−1gFk ∩ Fvi−1

6= ∅, and

(c) (γ0γ1 · · · γi−1)
−1gFk ∩Dvi−1

k Fk = ∅.

We will find a new number vi and from here the sequence may either terminate or continue

further. By (b) and our earlier comment on the Bs
r ’s, we have that there is k ≤ vi < vi−1
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and γi ∈ δvi−1
vi with

(γ0γ1 · · · γi−1)
−1gFk ∩ γiFvi

6= ∅.

If vi > k then γiD
vi
k Fk ⊆ δ

vi−1
vi Dvi

k Fk ⊆ D
vi−1

k Fk which, together with the induction hypothesis

(c), shows that (c) is again satisfied. Therefore if vi > k then (a), (b), and (c) are satisfied

and we can continue this construction further. As we are constructing a strictly decreasing

sequence with initial term k < v0 < n, we will eventually have vi = k. But if vi = k then we

would have γiFvi
⊆ δ

vi−1

k Fk = δ
vi−1

k Dk
kFk ⊆ D

vi−1

k Fk which contradicts (c) of the induction

hypothesis. This completes the proof of (4).

Considering (4), in particular we have for all n > k the Dn
k -translates of Fk are maximally

disjoint within Hn−1 since Hn−1 ⊆ Bn
k . We remark that Dn

k ⊆ Dn+1
k since δn+1

n Dn
k ⊆ Dn+1

k

and 1G ∈ δn+1
n . For k ∈ N we define ∆k =

⋃
n≥kD

n
k . As

⋃
n∈NHn = G, we have for each

k ∈ N the ∆k-translates of Fk are maximally disjoint within G. Properties (iii) and (iv) are

immediately satisfied.

To finish the proof we will show that ∆kf ∩ γFn = γDn
kf for n ≥ k, γ ∈ ∆n, and f ∈ Fk.

Since 1G ∈ ∆n and 1G ∈ Fk, this will give Fn ∩ ∆k = 1GFn ∩ ∆k1G = Dn
k . Conclusion

(viii) will then be clear. Conclusion (v) will follow from the definition of δnn−1 = Dn
n−1, and

conclusion (vi) will follow from (4) together with the fact that Hn−1 ⊆ Bn
k . For (vii) just

note that if γ ∈ ∆k then γ ∈ Dn
k for some n ≥ k and hence γFk ⊆ Fn by (1).

Fix k ≤ n, f ∈ Fk, and γ ∈ ∆n. Then γ ∈ Ds
n for some s ≥ n. So

γDn
kf ⊆ Ds

nD
n
kf ⊆ Ds

kf ⊆ ∆kf

and γDn
kf ⊆ γDn

kFk ⊆ γFn. Therefore γDn
kf ⊆ ∆kf ∩ γFn.

For the opposite inclusion, let ψ ∈ ∆k with ψf ∈ γFn. Let s ≥ n be large enough so that

ψ ∈ Ds
k and γ ∈ Ds

n. We will prove ψf ∈ γDn
kf by induction on s. Clearly, if s = n then

γ = 1G and ψf ∈ Dn
kf = γDn

kf . Now suppose the claim is true for all n ≤ r < s. By the

definition of Ds
k and Ds

n, there are k ≤ i < s and n ≤ t < s with ψ ∈ δsiDi
k and γ ∈ δstDt

n.

However, if i 6= t then by the definition of δsi and δst we have

{ψf} ∩ γFn ⊆ δsiD
i
kf ∩ δstDt

nFn ⊆ δsiFi ∩ δstFt = ∅.

13



So it must be that i = t. Let λ, σ ∈ δst be such that ψ ∈ λDt
k and γ ∈ σDt

n. If λ 6= σ then

we would have

{ψf} ∩ γFn ⊆ λDt
kf ∩ σDt

nFn ⊆ λFt ∩ σFt = ∅.

So we must have λ = σ. Then λ−1ψ ∈ Dt
k ⊆ ∆k, λ

−1γ ∈ Dt
n ⊆ ∆n, and λ−1ψf ∈ λ−1γFn.

By the induction hypothesis we conclude λ−1ψf ∈ λ−1γDn
kf and hence ψf ∈ γDn

kf . This

completes the proof. �

Definition 3.6. Let G be a countably infinite group and (Hn)n∈N an increasing sequence

of finite sets with 1G ∈ H0,
⋃
n∈NHn = G, and

Hn−1(H
−1
0 H0)(H

−1
1 H1) · · · (H−1

n−1Hn−1) ⊆ Hn

for n ≥ 1. Let (Fn)n∈N and (∆n)n∈N be respectively increasing and decreasing sequences of

subsets of G satisfying the conclusions of Proposition 3.5. Set α0 = β0 = 1G. If for each

n ≥ 1 there are distinct non-identity αn, βn ∈ ∆n−1∩Fn, then we call (Hn, Fn,∆n, αn, βn)n∈N

a blueprint.

Remark 3.7. Whenever we have a blueprint (Hn, Fn,∆n, αn, βn)n∈N, the following symbols

will have a fixed meaning:

Λn = (∆n−1 ∩ Fn)− {1G, αn, βn} (for n ≥ 1);

an = αnαn−1 · · ·α0 (for n ∈ N);

bn = βnβn−1 · · · β0 (for n ∈ N).

The following lemma consists of a collection of facts which are easily derived from Propo-

sition 3.5. These facts are frequently needed in the next section. This lemma serves the

purpose of collecting these statements together for easy reference for those times when one’s

intuition or memory is faltering.

Lemma 3.8. Let G be a countably infinite group and let (Hn, Fn,∆n, αn, βn)n∈N be a blue-

print. Then

14



(i) λFn−1 ⊆ Fn for all n ≥ 1 and all λ ∈ ∆n−1 ∩ Fn;

(ii) λ1Fn−1 ∩ λ2Fn−1 = ∅ for all n ≥ 1 and distinct λ1, λ2 ∈ ∆n−1 ∩ Fn;

(iii) ∆nλ ⊆ ∆n−1 for all n ≥ 1 and all λ ∈ ∆n−1 ∩ Fn;

(iv) both ∆nan and ∆nbn are decreasing sequences;

(v) an, bn ∈ Fn for all n ∈ N;

(vi) an 6= bn for all n ≥ 1;

(vii) ∆nan ∩∆kbk = ∅ for all n, k > 0;

(viii) for n > k ∈ N

∆n(∆n−1 ∩ Fn)an−1 ∩∆kFk ⊆ ∆kak

and

∆n(∆n−1 ∩ Fn)bn−1 ∩∆kFk ⊆ ∆kbk;

(ix) for n > k ∈ N

∆n(∆n−1 ∩ Fn)an−1 ∩∆k(∆k−1 ∩ Fk)ak−1

⊆ ∆kαkak−1 = ∆kak

and

∆n(∆n−1 ∩ Fn)bn−1 ∩∆k(∆k−1 ∩ Fk)bk−1

⊆ ∆kβkbk−1 = ∆kbk;

(x)
⋂
n∈N ∆nan =

⋂
n∈N ∆nbn = ∅.

Proof. (i). By conclusion (viii) of Proposition 3.5

λFn−1 ⊆ (∆n−1 ∩ Fn)Fn−1 = ∆n−1Fn−1 ∩ Fn ⊆ Fn.

(ii). λ1 and λ2 are in ∆n−1, and the ∆n−1-translates of Fn−1 are disjoint.

(iii). By conclusion (viii) of Proposition 3.5,

∆nλ ⊆ ∆n(∆n−1 ∩ Fn) = ∆n−1 ∩∆nFn ⊆ ∆n−1.

(iv). By (iii), ∆nan = ∆nαnan−1 ⊆ ∆n−1an−1. The same argument applies to ∆nbn.
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(v). Clearly a0 ∈ F0. If we assume an−1 ∈ Fn−1, then by (i)

an = αnan−1 ∈ αnFn−1 ⊆ Fn.

By induction, and by a similar argument, we have an, bn ∈ Fn for all n ∈ N.

(vi). From (v) we have that an = αnan−1 ∈ αnFn−1. Similarly, bn ∈ βnFn−1. Since

1G ∈ Fn−1, the claim follows from (ii).

(vii). Suppose 0 < k ≤ n. Since ak 6= bk ∈ Fk, and since the ∆k-translates of Fk are

disjoint, from (iv) and (vi) we have

∆nan ∩∆kbk ⊆ ∆kak ∩∆kbk = ∅.

The case 0 < n ≤ k is identical.

(viii). Let n, k ∈ N with n > k. Suppose γ ∈ ∆n, ψ ∈ ∆k, λ ∈ ∆n−1 ∩ Fn, and f ∈ Fk

satisfy

γλan−1 = ψf.

Then by repeated application of (iii),

g = γλαn−1αn−2 . . . αk+1 ∈ ∆k.

Since gak = γλan−1 = ψf , we have gFk ∩ ψFk 6= ∅. As the ∆k-translates of Fk are disjoint,

we must have g = ψ. Thus

ψak = gak = γλan−1 = ψf =⇒ ak = f.

With bn in place of an the argument is essentially identical.

(ix). This follows immediately from (v), (i), (viii), and the definition of ak and bk.

(x). The ∆n-translates of Fn are disjoint and Fn−1 ⊆ Fn, so by (v)

∆nan ∩ Fn−1 ⊆ ∆nan ∩ Fn = {an}.

From (ii) and (v) we have an = αnan−1 6∈ Fn−1 since 1G ∈ ∆n−1∩Fn. Therefore ∆nan∩Fn−1 =

∅. Now choose any g ∈ ∆0a0. Then g ∈ ∆0 since a0 = 1G. By conclusion (vii) of

Proposition 3.5, there is n ∈ N with gF0 ⊆ Fn. In particular, g ∈ Fn since 1G ∈ F0. As
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∆n+1an+1∩Fn = ∅, we must have g 6∈ ∆n+1an+1. It follows
⋂
n∈N ∆nan = ∅. By an identical

argument
⋂
n∈N ∆nbn = ∅ as well. �
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CHAPTER 4

CONSTRUCTION OF SUBFLOWS

This section primarily consists of two long proofs. The first of these is Proposition 4.5

below. This proposition presents a rather general method for constructing elements of 2G

with desirable properties. Definitions 4.1 and 4.4 below play a significant role in deriving

the main theorem from Proposition 4.5.

Definition 4.1. Let G be a group, let 1G ∈ A ⊆ G with A finite, and let R : A → {0, 1}.

We call R locally recognizable if for every x ∈ 2G with x|A = R

∀a ∈ A (∀b ∈ A x(ab) = x(b) =⇒ a = 1G).

R is called trivial if |{a ∈ A | R(a) = R(1G)}| = 1.

Definition 4.2. Let G be a countably infinite group and let (Hn, Fn,∆n, αn, βn)n∈N be a

blueprint. If R : A → {0, 1} is locally recognizable, then we say (Hn, Fn,∆n, αn, βn)n∈N

is compatible with R if H0 = A. If (pn)n≥1 is a sequence of functions of subexponential

growth, then we say (Hn, Fn,∆n, αn, βn)n∈N is compatible with (pn)n≥1 if ρ(Hn;Hn−1) >

3 + log2 pn(|Hn|) for each n ≥ 1.

Lemma 4.3. If G is a countably infinite group, R : A → {0, 1} is locally recognizable, and

(pn)n≥1 is a sequence of functions of subexponential growth, then there exists a blueprint

compatible with R and (pn)n≥1.

Proof. Let (An)n∈N be a sequence of finite subsets of G with A0 = A and G =
⋃
n∈NAn.

Set H0 = A0. Once H0 through Hn−1 have been defined, apply Lemma 3.4 to find a finite

Hn ⊆ G satisfying

Hn ⊇ Hn−1(H
−1
0 H0)(H

−1
1 H1) · · · (H−1

n−1Hn−1)

and ρ(Hn;Hn−1) > log2 (8pn(|Hn|)). The sequence (Hn)n∈N will then be compatible with R

and (pn)n≥1. �
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Definition 4.4. Let G be a group, c ∈ 2<G∪2G, and ∆ ⊆ G. We say c admits an extension

invariant ∆ membership test if there is a finite V ⊆ G with ∆V ⊆ dom(c) such that for all

x ∈ 2G with x ⊇ c and all γ ∈ ∆

{g ∈ G | ∀v ∈ V x(gv) = x(γv)} = ∆.

Such a set V is called a test region.

Proposition 4.5. Let G be a countably infinite group, let R : A → {0, 1} be a non-trivial

locally recognizable function, let (pn)n≥1 be a collection of functions of subexponential growth,

and let (Hn, Fn,∆n, αn, βn)n∈N be a blueprint compatible with R and (pn)n≥1. Then there

exists c ∈ 2<G with the following properties:

(i) (γ−1 · c)|A = R for all γ ∈ ∆1;

(ii) c admits an extension invariant ∆n membership test with test region a subset of

Fn−1 ∩ dom(c) for each n ∈ N;

(iii) G− dom(c) is the disjoint union
⋃
n≥1 ∆nΛnbn−1;

(iv) |Λn| > log2 pn(|Hn|) for all n ≥ 1;

(v) c(g) = 1−R(1G) for all g ∈ G−∆1F1;

(vi) c(f) = c(γf) for all n ≥ 1, γ ∈ ∆n, and

f ∈ Fn − {an, bn} −
⋃

1≤k≤n

∆kΛkbk−1 = (Fn − {an, bn}) ∩ dom(c);

Proof. By (v) of Proposition 3.5, the ∆n−1 ∩ Fn-translates of Fn−1 are contained and

maximally disjoint within Hn. So

|Λn|+ 3 = |∆n−1 ∩ Fn| ≥ ρ(Hn;Fn−1) ≥ ρ(Hn;Hn−1) > log2 pn(|Hn|) + 3

as Fn−1 ⊆ Hn−1. Thus property (iv) is satisfied.

We wish to construct a sequence of functions (cn)n≥1 satisfying for each n ≥ 1:

(1) dom(cn) = G−∆nan −∆nbn −
⋃

1≤k≤n ∆kΛkbk−1

(2) cn+1 ⊇ cn;
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(3) cn admits an extension invariant ∆n membership test with test region a subset of

Fn−1 ∩ dom(cn).

Let us first dwell for a moment on (1). Condition (1) is consistent with condition (2)

because ∆nan and ∆nbn are decreasing sequences and ∆n+1Λn+1bn ⊆ ∆nbn by conclusion

(iii) of Lemma 3.8. After considering conclusions (vii) and (viii) of Lemma 3.8, we see that

for n > 1 we desire dom(cn) to be

dom(cn−1) ∪ (∆n−1an−1 −∆nan) ∪ (∆n−1bn−1 −∆n[Λn ∪ {βn}]bn−1).

It is important to note that these unions are disjoint. This tells us that given cn−1, we can

define cn ⊇ cn−1 to have whichever values on ∆n−1an−1 − ∆nan and ∆n−1bn−1 − ∆n[Λn ∪

{βn}]bn−1 without worry of a contradiction between the two or with cn−1.

Define

c1 : (G−∆1a1 −∆1b1 −∆1Λ1)→ {0, 1}

by

c1(g) =


R(f) if g = γf where γ ∈ ∆1 and f ∈ A

1−R(1G) otherwise

for g ∈ dom(c1). Note that c1 satisfies (1) since b0 = 1G.

We claim c1 satisfies (3) with test region A. Since ∆1, ∆1a1, ∆1b1, and ∆1Λ1 are pairwise

disjoint subsets of ∆0, we have that ∆1A is disjoint from ∆1a1 ∪ ∆1b1 ∪ ∆1Λ1 (since 1G ∈

A = F0). Thus ∆1A ⊆ dom(c1) and A ⊆ F0 ∩ dom(c1) as required.

To finish verifying condition (3), we let c ∈ 2G be an arbitrary extension of c1. Since

1G ∈ ∆1, it is enough to show g ∈ ∆1 if and only if c(ga) = c(a) for all a ∈ A. If γ ∈ ∆1, then

γA ⊆ dom(c1) (see previous paragraph) and hence c(γa) = R(a) = c(a) for all a ∈ A. Now

suppose g ∈ G satisfies c(ga) = c(a) for all a ∈ A. This implies (g−1 · c)|A = R. Note that

c(h) = c1(h) = 1 − R(1G) for all h ∈ dom(c1) − ∆1A. As c(g) = c(1G) = c1(1G) = R(1G),

either g ∈ ∆1A or g 6∈ dom(c1). But g cannot be in G − dom(c1) ⊆ ∆0, for then since the
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∆0-translates of F0 are disjoint we would have

gA− {g} = gF0 − {g} ⊆ dom(c1)−∆1F0 = dom(c1)−∆1A.

Then c(ga) = c1(ga) = 1− R(1G) for all 1G 6= a ∈ A and R = (g−1 · c)|A would be trivial, a

contradiction. So g ∈ ∆1A. Let γ ∈ ∆1 and a ∈ A be such that g = γa. By construction,

(γ−1 · c)|A = (γ−1 · c1)|A = R, and we have that for all b ∈ A

(γ−1 · c)(ab) = c(γab) = c(gb) = c(b) = R(b).

Therefore, it follows from the definition of a locally recognizable function that a = 1G and

g ∈ ∆1.

Now suppose that c1, c2, . . . ck−1 have been constructed and satisfy (1) through (3). We

pointed out earlier that we desire ck to have domain

dom(ck−1) ∪ (∆k−1ak−1 −∆kak) ∪ (∆k−1bk−1 −∆k[Λk ∪ {βk}]bk−1).

We define ck to satisfy ck ⊇ ck−1 and:

ck(∆k−1ak−1 −∆k{1G, αk}ak−1) = {0};

ck(∆kak−1) = {1};

ck(∆kbk−1) = {1};

ck(∆kαkbk−1) = {0};

ck(∆k−1bk−1 −∆k[∆k−1 ∩ Fk]bk−1) = {0}.

From our earlier remarks on (1), we know ck is well defined. It is easily checked that ck

satisfies (1) and (2) (recall that ∆kak = ∆kαkak−1).

Let V ⊆ Fk−2 ∩ dom(ck−1) be the test region referred to in (3) for n = k − 1. We claim

that ck satisfies (3) with test region W = V ∪ {ak−1, bk−1}. Clearly W ⊆ Fk−1 ∩ dom(ck).

Also, ∆kV ⊆ ∆k−1V ⊆ dom(ck−1) ⊆ dom(ck), and clearly ∆k{ak−1, bk−1} ⊆ dom(ck). Thus

∆kW ⊆ dom(ck) as required.
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Let c ∈ 2G be an arbitrary extension of ck. Since 1G ∈ ∆k, it suffices to show that for all

g ∈ G,

g ∈ ∆k ⇐⇒ ∀w ∈ W c(gw) = c(w).

Suppose g ∈ G satisfies the condition on the right. Then for all w ∈ V we have c(gw) = c(w),

and since 1G ∈ ∆k−1 we must have g ∈ ∆k−1. Now c(gak−1) = c(ak−1) = ck(ak−1) = 1, and

gak−1 ∈ ∆k−1ak−1 ⊆ G− dom(ck−1). From how we defined ck, we have for h ∈ G

h ∈ ∆k−1 and c(hak−1) = 1 =⇒ h ∈ ∆k or h ∈ ∆kαk.

However, g 6∈ ∆kαk, for then c(gbk−1) = ck(gbk−1) = 0 6= 1 = c(bk−1). We conclude g ∈ ∆k.

The converse, that each γ ∈ ∆k satisfies c(γw) = c(w) for all w ∈ W , is easy to check (recall

∆k ⊆ ∆k−1). Thus ck satisfies (3).

Finally, define c =
⋃
n≥1 cn. Properties (i) and (v) clearly hold due to how c1 was defined.

Property (iv) was verified near the beginning of the proof. Property (ii) holds since c ⊇ cn

for each n ≥ 1, and property (iii) follows from (1) and conclusions (ix) and (x) of Lemma

3.8. We proceed to verify property (vi).

The second equality in (vi) is easy to verify since Fn−{bn} is disjoint from ∆kΛkbk−1 for

k > n (use conclusion (viii) of Lemma 3.8). Fix n ≥ 1, γ ∈ ∆n, and f ∈ (Fn − {an, bn}) ∩

dom(c). Then f 6∈ {an, bn} and hence f, γf 6∈ ∆n{an, bn} since the ∆n-translates of Fn are

disjoint. However, dom(cm) − dom(cn) ⊆ ∆n{an, bn} for m > n, and since f, γf ∈ dom(c)

there must be a m ≤ n with f, γf ∈ dom(cm). Let k ≤ n be minimal with either f or γf in

dom(ck). We proceed by cases.

Case 1: k = 1. Let B be a subset of F1. From conclusion (viii) of Proposition 3.5, we

have

f ∈ ∆1B ⇐⇒ f ∈ ∆1B ∩ Fn ⇐⇒ γf ∈ γ(∆1B ∩ Fn)

⇐⇒ γf ∈ ∆1B ∩ γFn ⇐⇒ γf ∈ ∆1B1.

By looking back at the definition of c1 and using the above result for different choices of

B ⊆ F0, we concluded that both f and γf are in dom(c1). More importantly, c(γf) =

c1(γf) = c1(f) = c(f).
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Case 2: 1 < k ≤ n. By the same computation as above, for each i ≤ n and each B ⊆ Fi

we have that f ∈ ∆iB if and only if γf ∈ ∆iB. It follows that both f, γf ∈ dom(ck). After

considering the five equations defining ck and using the above note, we conclude c(γf) =

ck(γf) = ck(f) = c(f). �

We are now ready to prove the main theorem. Just as the proof of Proposition 4.5 relied

heavily on Proposition 3.5, the proof of this theorem will rely heavily on Proposition 4.5.

Conclusion (i) is used for density. Conclusions (ii), (iii), and (iv) are used to get 2-colorings.

While conclusions (v) and (vi) aid in achieving minimality, minimality is actually quite

tedious to get, and it is the requirement of minimality which makes this proof so long.

Theorem 4.6. Let G be a countably infinite group, x ∈ 2G, and ε > 0. Then there is a

perfect set of pairwise orthogonal minimal 2-colorings in the ε-ball about x.

Proof. Let r ∈ N be such that 2−r < ε and let B1 = {g0, g1, . . . , gr} where g0, g1, . . . is the

fixed enumeration of G used in defining the metric d on 2G. Choose any a 6= b ∈ G − B1

and set B2 = B1 ∪ {a, b}. Next chose any c ∈ G− (B2B2 ∪B2B
−1
2 ) and set B3 = B2 ∪ {c} =

B1 ∪ {a, b, c}. Let A = B3B3 and define R : A→ {0, 1} by

R(g) =


x(g) if g ∈ B1

x(1G) if g ∈ {a, b, c}

1− x(1G) if g ∈ A−B3

We claim R is a locally recognizable function (it is clearly non-trivial). Towards a con-

tradiction suppose there is y ∈ 2G extending R and 1G 6= g ∈ A with y(gh) = y(h) for all

h ∈ A. In particular, y(g) = y(1G) = R(1G) so g ∈ B3. We first point out that at least

one of a, b, or c is not an element of gB3. We prove this by cases. Case 1: g ∈ B2. Then

c 6∈ gB2 ⊆ B2B2 and c 6= gc since g 6= 1G. Thus c 6∈ gB3. Case 2: g ∈ B3 − B2 = {c}.

Then g = c. Since c 6∈ B2B
−1
2 , it must be that a, b 6∈ cB2. If a, b ∈ cB3 then we must have

a = c2 = b, contradicting a 6= b. We conclude {a, b} 6⊂ cB3 = gB3.
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The key point now is that {a, b, c} ⊆ {h ∈ A | y(h) = y(1G)} ⊆ B3 but {a, b, c} 6⊆ gB3 ⊆

A. Therefore

|{h ∈ B3 | y(gh) = y(1G)}| < |{h ∈ A | y(h) = y(1G)}|

= |{h ∈ B3 | y(h) = y(1G)}| = |{h ∈ B3 | y(gh) = y(1G)}|.

This is clearly a contradiction.

For n ≥ 1 and k ∈ N define pn(k) = 4k5. Then (pn)n≥1 is a sequence of functions of subex-

ponential growth. Apply Lemma 4.3 to get a blueprint (Hn, Fn,∆n, αn, βn)n∈N compatible

with R and (pn)n≥1, and let c ∈ 2<G be as in the conclusion of Proposition 4.5.

For each n ≥ 1 let Γn be the graph with vertex set ∆n and edge relation given by

(γ, ψ) ∈ E(Γn)⇐⇒ γ−1ψ ∈ HnH
−1
n H2

nH
−1
n or ψ−1γ ∈ HnH

−1
n H2

nH
−1
n .

This graph is not to have loops, so (γ, γ) 6∈ E(Γn).

We proceed to reveal an important property the graphs (Γn)n≥1. Recalling that the

sequence (Hn)n∈N satisfied certain conditions, we calculate

HnH
−1
n H2

nH
−1
n = HnH

−1
n HnHnH

−1
n ⊆ Hn+1HnH

−1
n

⊆ Hn+1Hn+1 ⊆ Hn+2 ⊆ Hn+3,

and

(HnH
−1
n H2

nH
−1
n )−1 = HnH

−1
n H−1

n HnH
−1
n ⊆ Hn+1H

−1
n H−1

n+1HnH
−1
n+1

⊆ Hn+2HnH
−1
n+1 ⊆ Hn+3.

Therefore if (γ, ψ) ∈ E(Γn), then either γ ∈ ψHn+3 or ψ ∈ γHn+3. Since Hn+3 ∪ H−1
n+3 ⊆

Hn+4, we have (γ, ψ) ∈ E(Γn) implies γ ∈ ψHn+4 and ψ ∈ γHn+4.

Let i ∈ N, σ ∈ ∆n+7+i, γ ∈ σFn+4+i, and suppose (γ, ψ) ∈ E(Γn). Then

ψ ∈ ∆n ∩ γHn+4 ⊆ ∆n ∩ σHn+4+iHn+4 ⊆ ∆n ∩ σHn+5+i

and

ψFn ⊆ σHn+5+iFn ⊆ σHn+5+iHn ⊆ σHn+6+i.
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By conclusions (vi) and (viii) of Proposition 3.5 the (∆n ∩ σFn+7+i)-translates of Fn are

maximally disjoint within σHn+6+i. So ψFn∩ (∆n∩σFn+7+i)Fn 6= ∅. However, ψ ∈ ∆n and

the ∆n-translates of Fn are disjoint. So we must have ψ ∈ σFn+7+i. We have demonstrated

the following fact:

∀i ∈ N ∀σ ∈ ∆n+7+i [(γ, ψ) ∈ E(Γn) and γ ∈ σFn+4+i =⇒ ψ ∈ σFn+7+i].

In particular, one important aspect of this conclusion is that if λ 6= σ ∈ ∆n+7+i, γ ∈ λFn+4+i,

and ψ ∈ σFn+4+i then (γ, ψ) 6∈ E(Γn).

Fix n ≥ 1. Define mn(k) = n + 4 + 3k for k ∈ N. We will construct a sequence of

functions (µni )i≥1 mapping into {0, 1, . . . , 2|Hn|5} satisfying for each i ≥ 1:

(1) µni+1 ⊇ µni ;

(2) dom(µni ) = ∆n ∩ (
⋃

0≤t<i ∆m(t+1)Fm(t));

(3) (γ, ψ) ∈ E(Γn)⇒ µni (γ) 6= µni (ψ) whenever γ, ψ ∈ dom(µni );

(4) µni+1(γ) = µni+1(σγ) for all σ ∈ ∆m(i+1) and all γ ∈ Fm(i) ∩∆n.

We begin by constructing µn1 . Since every vertex of Γn has degree at most 2|Hn|5, we can

find a labeling of Fn+4 ∩∆n using only the labels {0, 1, . . . , 2|Hn|5} such that two members

are labeled differently if they are E(Γn)-adjacent. Note that it is a simple consequence of

conclusion (viii) of Proposition 3.5 that for γ, ψ ∈ Fn+4 ∩∆n and σ ∈ ∆n+7

(γ, ψ) ∈ E(Γn)⇐⇒ (σγ, σψ) ∈ E(Γn).

We can therefore copy this labeling to every ∆n+7-translate of ∆n∩Fn+4 to get the function

µn1 . Clearly properties (2) and (4) are satisfied. Property (3) also holds due to our earlier

comment.

Now suppose µni has been constructed. Again we note that for σ ∈ ∆m(i+1) and γ, ψ ∈

∆n ∩ Fm(i), conclusion (viii) of Proposition 3.5 gives σγ, σψ ∈ ∆n. Therefore for every

σ ∈ ∆m(i+1)

(γ, ψ) ∈ E(Γn)⇐⇒ (σγ, σψ) ∈ E(Γn).
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Let γ ∈ ∆n ∩ Fm(i) and let σ ∈ ∆m(i+1). Then for every 0 ≤ t < i we have

γ ∈ ∆m(t+1)Fm(t) ⇐⇒ γ ∈ ∆m(t+1)Fm(t) ∩ Fm(i) ⇐⇒ σγ ∈ σ(∆m(t+1)Fm(t) ∩ Fm(i))

⇐⇒ σγ ∈ ∆m(t+1)Fm(t) ∩ σFm(i) ⇐⇒ σγ ∈ ∆m(t+1)Fm(t).

By (2) we conclude that γ ∈ dom(µni ) if and only if σγ ∈ dom(µni ). Suppose it is the case

that γ ∈ dom(µni ). Let t < i and λ ∈ ∆m(t+1) be such that γ ∈ λFm(t). By conclusion

(viii) of Proposition 3.5, there is ψ ∈ ∆n ∩ Fm(t) with γ = λψ. Since µni ⊇ µnt+1, we have

µni (γ) = µni (ψ) by (4). By conclusion (viii) of Proposition 3.5, σλ ∈ ∆m(t+1). Therefore by

(4) we have

µni (σγ) = µni (σλψ) = µni (ψ) = µni (λψ) = µni (γ).

We have verified the three following facts for γ, ψ ∈ Fm(i) ∩∆n:

(γ, ψ) ∈ E(Γn)⇐⇒ ∀σ ∈ ∆m(i+1) (σγ, σψ) ∈ E(Γn);

γ ∈ dom(µni )⇐⇒ ∀σ ∈ ∆m(i+1) σγ ∈ dom(µni );

γ ∈ dom(µni ) =⇒ ∀σ ∈ ∆m(i+1) µ
n
i (σγ) = µni (γ).

By (4) we can find a {0, 1, . . . , 2|Hn|5}-labeling of ∆n ∩ Fm(i) which extends µni on

dom(µni ) ∩ Fm(i) with the property that if (γ, ψ) ∈ E(Γn) then γ and ψ are labeled dif-

ferently. We then copy this labeling to all ∆m(i+1)-translates of Fm(i) and then union with

µni to get µni+1. Properties (1) through (4) are then satisfied.

For n ≥ 1 define µn =
⋃
i≥1 µ

n
i and let {λn1 , λn2 , . . . , λns(n)} be an enumeration for Λn. Note

that by (2) and conclusion (vii) of Proposition 3.5 we have dom(µn) = ∆n. For i ≥ 1 define

Bi : N → {0, 1} to be such that Bi(k) is the ith digit from least to most significant in the

binary representation of k when k ≥ 2i−1 and Bi(k) = 0 when k < 2i−1. Now for τ ∈ 2ω

(Cantor space) we let cτ ∈ 2G be such that cτ ⊇ c and satisfies

cτ (γλ
n
i bn−1) = Bi(µ

n(γ)) and

cτ (γλ
n
s(n)bn−1) = τ(n− 1)
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for n ≥ 1, γ ∈ ∆n, and 1 ≤ i < s(n). As each cτ ⊇ c, it follows from conclusion (i) of

Proposition 4.5 and our choice of R that d(cτ , x) < 2−r < ε. Also, since the map τ 7→ cτ is

continuous and one-to-one {cτ | τ ∈ 2ω} is a perfect subset of 2G.

Fix τ ∈ 2ω. We will first show cτ is a 2-coloring. Note that since |Λn| > log2 pn(|Hn|)

we have

s(n) > log2 (4|Hn|5).

So all numbers 0 through 2|Hn|5 can be represented in binary using s(n)−1 digits. Therefore

if µn(γ) 6= µn(ψ) then there is 1 ≤ i < s(n) with cτ (γλ
n
i bn−1) 6= cτ (ψλ

n
i bn−1).

Let 1G 6= s ∈ G. Since
⋃
n≥1Hn = G, we may let n ≥ 1 be least such that s ∈ Hn. Set

T = FnF
−1
n Fn, and let g ∈ G be arbitrary. Since the ∆n-translates of Fn are maximally

disjoint within G, there is γ ∈ ∆n with γFn ∩ gFn 6= ∅. So there is f ∈ FnF
−1
n with

gf = γ ∈ ∆n. We proceed by cases.

Case 1: gsf 6∈ ∆n. Let V ⊆ Fn−1 ∩ dom(c) be the test region for the extension invariant

∆n membership test admitted by c. Since cτ ⊇ c, gf ∈ ∆n, and gsf 6∈ ∆n, there is v ∈ V

such that cτ (gfv) 6= cτ (gsfv). This completes this case since fv ∈ T .

Case 2: gsf ∈ ∆n. Then

(gf)−1(gsf) = f−1sf ∈ FnF−1
n HnFnF

−1
n ⊆ HnH

−1
n H2

nH
−1
n

since Fn ⊆ Hn. Thus (gf, gsf) ∈ E(Γn) so µn(gf) 6= µn(gsf). Consequently, there is 1 ≤

i < s(n) with cτ (gfλ
n
i bn−1) 6= cτ (gsfλ

n
i bn−1). This completes this case since fλni bn−1 ∈ T .

We conclude cτ is a 2-coloring.

Now suppose τ 6= σ ∈ 2G, and let n ≥ 1 satisfy τ(n − 1) 6= σ(n − 1). We will show cτ

and cσ are orthogonal. Let T = FnF
−1
n Fn and let g1, g2 ∈ G be arbitrary. Then there is

f ∈ FnF−1
n with g1f ∈ ∆n. We proceed by cases.

Case 1: g2f 6∈ ∆n. Let V ⊆ Fn−1 be the test region for the extension invariant ∆n

membership test admitted by c. Since g1f ∈ ∆n and g2f 6∈ ∆n, there is v ∈ V with

cτ (g1fv) 6= cσ(g2fv).
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Case 2: g2f ∈ ∆n. Then cτ (g1fλ
n
s(n)bn−1) = τ(n− 1) 6= σ(n− 1) = cσ(g2fλ

n
s(n)bn−1). We

conclude cτ and cσ are orthogonal.

Fix τ ∈ 2ω. All that is left is to show that cτ is minimal. Fix n ≥ 1. We will show that

cτ (γh) = c(h) for all γ ∈ ∆n+13 and all h ∈ Hn. Let 1 ≤ k ≤ n and let ψ ∈ ∆k ∩Fn+3. Then

there is m ∈ N with n+ 7 ≤ k+ 4 + 3m < n+ 10, and we know that µk(ψ) = µk(σψ) for all

σ ∈ ∆k+4+3m+3 ⊇ ∆n+13. Therefore we have

g ∈ (G− dom(c)) ∩ Fn+3 and σ ∈ ∆n+13 =⇒ cτ (g) = cτ (σg).

When we combine this with conclusion (vi) of Proposition 4.5 we find that cτ (g) = cτ (σg)

for all g ∈ Fn+3−{an+3, bn+3} and all σ ∈ ∆n+13. Since Fn+2 ⊆ Fn+3−{an+3, bn+3}, we have

cτ (g) = cτ (σg) for all g ∈ Fn+2 and all σ ∈ ∆n+13.

Let h ∈ Hn − Fn+2. It is enough to show that ∆n+13h ∩ ∆1F1 = ∅. It will follow

from conclusion (v) of Proposition 4.5 that c(h) = c(σh) for all σ ∈ ∆n+13. Towards a

contradiction suppose σh ∈ ∆1F1 for some σ ∈ ∆n+13. Let ψ ∈ ∆1 be such that σh ∈ ψF1.

Note ψF1 ⊆ σhF−1
1 F1 ⊆ σHnH2 ⊆ σHn+1. By conclusions (vi) and (viii) of Proposition

3.5, the ∆1 ∩ σFn+2-translates of F1 are maximally disjoint within σHn+1. So ψF1 ∩ (∆1 ∩

σFn+2)F1 6= ∅. Since ψ ∈ ∆1 and the ∆1-translates of F1 are disjoint, we must have

ψ ∈ ∆1 ∩ σFn+2. Consequently,

σh ∈ ψF1 ⊆ (∆1 ∩ σFn+2)F1 = ∆1F1 ∩ σFn+2 ⊆ σFn+2.

This implies h ∈ Fn+2, a contradiction. Thus ∆n+13h ∩ ∆1F1 = ∅. We conclude cτ (σh) =

cτ (h) for all h ∈ Hn and all σ ∈ ∆n+13.

Now let B ⊆ G be finite. Let n ≥ 1 be such that B ⊆ Hn. Set T = Fn+13F
−1
n+13, and let

g ∈ G be arbitrary. Clearly there is t ∈ T with gt ∈ ∆n+13 and hence cτ (gtb) = cτ (b) for all

b ∈ B. We conclude cτ is minimal. �

The interested reader should consult [3] for an extensive generalization of these methods

and for further study of 2G. In particular, each of the methods used in this last proof are

isolated and presented in a more abstract setting in [3].
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