ON THE DENSITY OF MINIMAL FREE SUBFLOWS OF
 GENERAL SYMBOLIC FLOWS

Brandon Micheal Seward, B.S.

Thesis Prepared for the Degree of
MASTER OF ARTS

UNIVERSITY OF NORTH TEXAS

August 2009

APPROVED:

Su Gao, Major Professor
Douglas Brozovic, Committee Member
Bunyamin Sari, Committe Member
J. Matthew Douglass, Chair of the Department of Mathematics
Michael Monticino, Dean of the Robert B.
Toulouse School of Graduate Studies

Seward, Brandon Michael. On the density of minimal free subflows of general symbolic flows. Master of Arts (Mathematics), August 2009, 29 pp., references, 5 titles.

This paper studies symbolic dynamical systems $\{0,1\}^{G}$, where G is a countably infinite group, $\{0,1\}^{G}$ has the product topology, and G acts on $\{0,1\}^{G}$ by shifts. It is proven that for every countably infinite group G the union of the minimal free subflows of $\{0,1\}^{G}$ is dense. In fact, a stronger result is obtained which states that if G is a countably infinite group and U is an open subset of $\{0,1\}^{G}$, then there is a collection of size continuum consisting of pairwise disjoint minimal free subflows intersecting U.

Copyright 2009
by
Brandon Micheal Seward

ACKNOWLEDGEMENTS

I would like to thank Su Gao and Steve Jackson for the substantial role they played in the creation of this thesis. It is unfortunate that due to certain circumstances Steve Jackson was not able to serve on the committee. I thank Su Gao, Steve Jackson, and Anne Shepler for their continual support, advice, encouragement, motivation, and sincere interest in my development. I must also thank my parents, for without their unending support the attainment of this degree would not have been possible. Finally, I would like to acknowledge the support of the NSF through the research grant DMS-0501039.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iii
Chapters

1. BACKGROUND 1
2. PRELIMINARIES 3
3. FINDING STRUCTURE WITHIN COUNTABLE GROUPS 7
4. CONSTRUCTION OF SUBFLOWS 18
BIBLIOGRAPHY 29

CHAPTER 1

BACKGROUND

In topological dynamics, a dynamical system (X, G) consists of a Hausdorff space X together with a group G of homeomorphisms of X. The dynamical system is called free if $g(x) \neq x$ for every $x \in X$ and every non-identity $g \in G$, and it is called minimal if $\overline{\{g(x) \mid g \in G\}}=X$ for every $x \in X$. In 1938, G. A. Hedlund and M. Morse began a movement to better understand a tool known as symbolic dynamics and to furthermore view this tool as an object of study in its own right ([5]). As a tool, symbolic dynamics arises through the following process. Take a dynamical system (X, G) with G countable, and choose a partition of X consisting of finitely many sets $A_{0}, A_{1}, \ldots, A_{n}$. We define $\phi: X \rightarrow$ $\{0,1, \ldots, n\}^{G}$ by setting $\phi(x)(g)=k$ if k is the unique number for which $g(x) \in A_{k}$. One can define an action of G on $\{0,1, \ldots, n\}^{G}$ which makes $\left(\{0,1, \ldots, n\}^{G}, G\right)$ into a dynamical system (with the product topology) and which also makes the action of G commute with the function ϕ. With this action $\{0,1, \ldots, n\}^{G}$ is called a symbolic flow, and $\phi(X)$ is called a subflow. The purpose of this method is to study $\phi(X)$ in order to reveal properties of the original dynamical system.

Traditionally, emphasis in symbolic dynamics has been placed on subflows of symbolic flows of the form $\{1,2, \ldots, n\}^{\mathbb{Z}}$. This has left much to be unknown about subflows of more general symbolic flows. In particular, the existence and properties of free subflows and free minimal subflows, which are central notions in dynamics, had not been investigated until only the last few years.

In 2007, E. Glasner and V. Uspenskij investigated which countable groups G had the property that $\{0,1\}^{G}$ contained a free subflow ([4]). They concluded that abelian groups, residually finite groups, and a few other groups have this property, but they could not draw any conclusions for more general groups. Similarly, in 2007 A. Dranishnikov and V. Schroeder also did work on this problem. They were only able to conclude that torsion free hyperbolic groups have the property ([1]). Around the same time, a complete solution to this
problem was found by S. Gao, S. Jackson, and the author ([2]). They proved that $\{0,1\}^{G}$ contains continuum-many pairwise disjoint free subflows whenever G is a countably infinite group. With Zorn's Lemma it is true that every free subflow contains a minimal free subflow. Therefore their result reveals that $\{0,1\}^{G}$ contains continuum-many pairwise disjoint free minimal subflows when G is countably infinite.

The purpose of this paper is to strengthen this last result. The main theorem is that for countably infinite groups G the union of the free minimal subflows of $\{0,1\}^{G}$ is dense. Actually, a stronger result is obtained which states that if G is a countably infinite group and $U \subseteq\{0,1\}^{G}$ is open, then there is a collection of size continuum consisting of pairwise disjoint free minimal subflows intersecting U. The methods here are self-contained, however they constitute an abstraction and strengthening of the methods found in [2]. In section 2, notation is developed and combinatorial equivalents for dynamical properties are presented. In section 3, general countable groups are studied and useful properties they posses are found. Finally, in the last section it is shown how to construct free minimal subflows intersecting a given open set. A much more in-depth study of symbolic flows using these methods will be available in [3].

CHAPTER 2

PRELIMINARIES

We first give a more detailed description of general symbolic flows. We will work only with $\{0,1\}^{G}$, however all of our methods and results can be effortlessly modified to work for $\{0,1, \ldots, n\}^{G}$. We let 2^{G} denote $\{0,1\}^{G}$ and

$$
2^{<G}=\bigcup_{H \subseteq G}\{0,1\}^{H}
$$

Fix a countably infinite group G, and let G be enumerated without repetition as $1_{G}=$ $g_{0}, g_{1}, g_{2}, \ldots$ Define a metric on 2^{G} by

$$
d(x, y)= \begin{cases}2^{-n}, & \text { if } x \neq y \text { and } n \in \mathbb{N} \text { is the least such that } x\left(g_{n}\right) \neq y\left(g_{n}\right) \\ 0, & \text { if } x=y\end{cases}
$$

The metric d is an ultrametric on 2^{G} compatible with the compact product topology on 2^{G}.
The action of G on 2^{G} is given by

$$
(g \cdot x)(h)=x\left(g^{-1} h\right)
$$

One can easily check that each map $x \mapsto g \cdot x$ is a homeomorphism of 2^{G}. For each $x \in 2^{G}$ let $[x]$ denote the orbit of x, i.e., $[x]=\{g \cdot x \mid g \in G\}$.

REmARK 2.1. The action defined above is the left shift action of G on 2^{G}. The action referred to in the previous section was the right shift action of G on 2^{G}, which is defined by

$$
(g \cdot x)(h)=x(h g)
$$

Using the left shift action is not a problem because as dynamical systems 2^{G} with the left shift action is isomorphic to 2^{G} with the right shift action.

Definition 2.2. Let G be a countable group. A subflow A of 2^{G} is a closed subset of 2^{G} which is invariant under the action of G, meaning $g \cdot A=A$ for each $g \in G$.

Definition 2.3. Let G be a countable group. A subflow A of 2^{G} is free if $g \cdot x \neq x$ for every $x \in A$ and every non-identity $g \in G$.

Definition 2.4. Let G be a countable group. A subflow A of 2^{G} is minimal if $\overline{[x]}=A$ for every $x \in A$.

The previous three definitions come from the general context of dynamical systems. The useful thing about symbolic dynamics is that it brings combinatorics into dynamical systems. The next three definitions are combinatorial in nature, and we will soon see that they are very important.

Definition 2.5. For a countable group G, a 2-coloring on G is a function $c: G \rightarrow\{0,1\}$ such that for any $s \in G$ with $s \neq 1_{G}$ there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T c(g t) \neq c(g s t)
$$

Definition 2.6. For a countable group $G, c \in 2^{G}$ is called minimal if for every finite $A \subseteq G$ there exists a finite $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T \forall a \in A x(g t a)=x(a)
$$

Definition 2.7. Let G be a countable group and let $c_{0}, c_{1} \in 2^{G}$. We say that c_{0} and c_{1} are orthogonal if there is a finite set $T \subseteq G$ such that

$$
\forall g_{0}, g_{1} \in G \exists t \in T c_{0}\left(g_{0} t\right) \neq c_{1}\left(g_{1} t\right)
$$

The following lemma appears in [2], but was also independently discovered by Vladimir Pestov.

Lemma 2.8. If G is a countable group and $x \in 2^{G}$, then $\overline{[x]}$ is free if and only if x is a 2 -coloring on G.

Proof. (\Rightarrow) Assume $\overline{[x]}$ is free. Denote $C=\overline{[x]}$. Fix any $s \in G$ with $s \neq 1_{G}$. Then for any $y \in C, s^{-1} \cdot y \neq y$, and hence there is $t \in G$ with $\left(s^{-1} \cdot y\right)(t) \neq y(t)$. Define a function $\tau: C \rightarrow G$ by letting $\tau(y)=g_{n}$ where n is the least so that $\left(s^{-1} \cdot y\right)\left(g_{n}\right) \neq y\left(g_{n}\right)$. Then τ is
a continuous function. Since C is compact we get that $\tau(C) \subseteq G$ is finite. Let $T=\tau(C)$. Then for any $g \in G$, there is $t \in T$ with $x(g t)=\left(g^{-1} \cdot x\right)(t) \neq\left(s^{-1} g^{-1} \cdot x\right)(t)=x(g s t)$. This proves that x is a 2 -coloring.
(\Leftarrow) Assume that x is a 2-coloring on G. Suppose $z \in \overline{[x]}$, that is, there are $h_{m} \in G$ with $h_{m} \cdot x \rightarrow z$ as $m \rightarrow \infty$. We must show $g \cdot z \neq z$ for $1_{G} \neq g \in G$. Towards a contradiction suppose $s \cdot z=z$ for $s \neq 1_{G}$. Then by the continuity of the action we have that $s^{-1} h_{m} \cdot x \rightarrow s^{-1} \cdot z=z$. Let $T \subseteq G$ be a finite set such that for any $g \in G$ there is $t \in T$ with $x(g t) \neq x(g s t)$. Let n be large enough so that $T \subseteq\left\{g_{0}, \ldots, g_{n}\right\}$ and let $m \geq n$ be such that $d\left(h_{m} \cdot x, z\right), d\left(s^{-1} h_{m} \cdot x, z\right)<2^{-n}$. Now fix $t \in T$ with $\left(h_{m} \cdot x\right)(t)=x\left(h_{m}^{-1} t\right) \neq x\left(h_{m}^{-1} s t\right)=$ $\left(s^{-1} h_{m} \cdot x\right)(t)$. Then $z(t)=\left(h_{m} \cdot x\right)(t) \neq\left(s^{-1} h_{m} \cdot x\right)(t)=z(t)$, a contradiction.

This next lemma is a simple generalization of a well known fact for \mathbb{Z}.
Lemma 2.9. If G is a countable group and $c \in 2^{G}$, then $\overline{[c]}$ is minimal if and only if c is minimal.

Proof. (\Rightarrow) Assume $\overline{[c]}$ is minimal. Let $A \subseteq G$ be finite, and let $k \in \mathbb{N}$ be such that $A \subseteq$ $\left\{g_{0}, g_{1}, \ldots, g_{k}\right\}$. Since $\overline{[c]}$ is minimal, for every $y \in \overline{[c]}$ there exists $h \in G$ with $d(h \cdot y, c)<2^{-k}$. Define $\phi(y)$ to be the least $m \in \mathbb{N}$ such that $d\left(g_{m} \cdot y, c\right)<2^{-k}$. Then ϕ is continuous and $\overline{[c]}$ is compact so $\phi(\overline{[c]}) \subseteq \mathbb{N}$ is finite. Let $M \in \mathbb{N}$ bound $\phi(\overline{[c]})$ and set $T=\left\{g_{0}, g_{1}, \ldots, g_{M}\right\}$. It follows that for any $g \in G$ there is $t \in T$ with $d\left(t \cdot g^{-1} \cdot c, c\right)<2^{-k}$. Therefore, for all $a \in A$ we have $c\left(g t^{-1} a\right)=t \cdot g^{-1} \cdot c(a)=c(a)$. Thus, T^{-1} is the desired finite subset of G.
(\Leftarrow) Now assume c is minimal. Fix $y \in \overline{[c]}$ and let $\epsilon>0$ be arbitrary. Let $k \in \mathbb{N}$ be such that $2^{-k}<\epsilon$, and set $A=\left\{g_{0}, g_{1}, \ldots, g_{k}\right\}$. By our assumption, we may let $T \subseteq G$ be finite such that for all $g \in G$ there is $t \in T$ with $c(g t a)=c(a)$ for all $a \in A$. Let h_{m} be a sequence in G with $h_{m} \cdot c \rightarrow y$ as $m \rightarrow \infty$. Let $r \in \mathbb{N}$ be such that $T A \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$, and fix $m \in \mathbb{N}$ with $d\left(h_{m} \cdot c, y\right)<2^{-r}$. Then we have for some $t \in T, c\left(h_{m}^{-1} t a\right)=c(a)$ for all $a \in A$. But since $d\left(h_{m} \cdot c, y\right)<2^{-r}, y(t a)=h_{m} \cdot c(t a)=c\left(h_{m}^{-1} t a\right)=c(a)$ for all $a \in A$. It follows $d\left(t^{-1} \cdot y, c\right)<2^{-k}$ and therefore $d(\overline{[y]}, c)<2^{-k}<\epsilon$. But ϵ was arbitrary and $\overline{[y]}$ is closed so
$c \in \overline{[y]}$. Additionally, $\overline{[y]}$ is G-invariant so $[c] \subseteq \overline{[y]}$ and therefore $\overline{[c]} \subseteq \overline{[y]}$. Similarly, $\overline{[c]}$ is G-invariant and $y \in \overline{[c]}$ so $\overline{[y]} \subseteq \overline{[c]}$. We conclude $\overline{[c]}$ is minimal.

The following lemma appears in [2].

Lemma 2.10. Let G be a countable group and let $c_{0}, c_{1} \in 2^{G}$. Then $\overline{\left[c_{0}\right]}$ and $\overline{\left[c_{1}\right]}$ are disjoint if and only if c_{0} and c_{1} are orthogonal.

Proof. (\Rightarrow) Conversely, suppose $\overline{\left[c_{0}\right]} \cap \overline{\left.c_{1}\right]}=\emptyset$. Since they are both compact it follows that there is some $\delta>0$ such that for any $y_{0} \in \overline{\left[c_{0}\right]}$ and $y_{1} \in \overline{\left[c_{1}\right]}, d\left(y_{0}, y_{1}\right) \geq \delta$. Let n be large enough such that $\delta \geq 2^{-n}$. Then in particular for any $x_{0} \in\left[c_{0}\right]$ and $x_{1} \in\left[c_{1}\right], d\left(x_{0}, x_{1}\right) \geq 2^{-n}$. This implies that there is $t \in\left\{g_{0}, \ldots, g_{n}\right\}$ such that $x_{0}(t) \neq x_{1}(t)$.
(\Leftarrow) Let n be large enough such that $T \subseteq\left\{g_{0}, \ldots, g_{n}\right\}$. Then for any $x_{0} \in\left[c_{0}\right]$ and $x_{1} \in\left[c_{1}\right]$, there is $t \in T$ such that $x_{0}(t) \neq x_{1}(t)$, and thus $d\left(x_{0}, x_{1}\right) \geq 2^{-n}$. It follows that $d\left(y_{0}, y_{1}\right) \geq 2^{-n}$ for any $y_{0} \in \overline{\left[c_{0}\right]}$ and $y_{1} \in \overline{\left[c_{1}\right]}$, and therefore $\overline{\left[c_{0}\right]} \cap \overline{\left[c_{1}\right]}=\emptyset$.

CHAPTER 3

FINDING STRUCTURE WITHIN COUNTABLE GROUPS

The sole purpose of this section is to study countable groups in their full generality and develop the tools which we will use in the next section to prove the main theorem. Thus, no mention of 2^{G} will be made in this section. Our first definition will be central to our studies for the rest of the paper.

Definition 3.1. Let G be a group and let $A, B, \Delta \subseteq G$. We say that the Δ-translates of A are maximally disjoint within B if the following properties hold:
(i) for all $\gamma, \psi \in \Delta$, if $\gamma \neq \psi$ then $\gamma A \cap \psi A=\varnothing$;
(ii) for every $g \in G$, if $g A \subseteq B$ then there exists $\gamma \in \Delta$ with $g A \cap \gamma A \neq \varnothing$.

When property (i) holds we say that the Δ-translates of A are disjoint. Furthermore, we say that the Δ-translates of A are contained and maximally disjoint within B if the Δ-translates of A are maximally disjoint within B and $\Delta A \subseteq B$.

Notice that in the definition above we were referring to the left translates of A by Δ but never explicitly used the term left translates. Throughout this paper when we use the word translate(s) it will be understood that we are referring to left translate(s). Additionally, note that in the definition above there is no restriction on Δ being nonempty. So at times it may be that the \varnothing-translates of A are contained and maximally disjoint within B.

Let G be a group and let $A, B \subseteq G$ be finite with $1_{G} \in A$. Define

$$
\rho(B ; A)=\min \{|D| \mid D \subseteq B \text { and } \forall g \in B(g A \subseteq B \Rightarrow g A \cap D A \neq \varnothing)\}
$$

This is well defined since B is finite. The definition of ρ was tailored so that the following two statements hold:
(i) If $\Delta \subseteq B$ and the Δ-translates of A are maximally disjoint within B, then $|\Delta| \geq$ $\rho(B ; A) ;$
(ii) If $A^{\prime} \subseteq A$ then $\rho\left(B ; A^{\prime}\right) \geq \rho(B ; A)$.

The reader should verify the truth of these two statements.

Lemma 3.2. Let G be an infinite group and let $A, B \subseteq G$ be finite with $1_{G} \in A$. For any $\epsilon>0$ there exists a finite $C \subseteq G$ containing B such that $\rho(C ; A)>\frac{|C|}{|A|}(1-\epsilon)$.

Proof. Let $\Delta \subseteq G$ be countably infinite and such that the Δ-translates of $A A^{-1}$ are disjoint and $\Delta A A^{-1} A \cap B=\varnothing$. Let $\lambda_{1}, \lambda_{2}, \ldots$ be an enumeration of Δ. For each $n \geq 1$, define

$$
B_{n}=B \cup\left(\bigcup_{1 \leq k \leq n} \lambda_{k} A\right)
$$

Fix $n \geq 1$ and let $D \subseteq B_{n}$ be such that $g A \cap D A \neq \varnothing$ whenever $g \in B_{n}$ with $g A \subseteq B_{n}$. It follows that for each $1 \leq i \leq n$ there is $d_{i} \in D$ with $d_{i} A \cap \lambda_{i} A \neq \varnothing$. Then

$$
d_{i} \in \lambda_{i} A A^{-1}
$$

Since the Δ-translates of $A A^{-1}$ are disjoint, the d_{i} 's are all distinct. Additionally, $d_{i} A \cap B \subseteq$ $\Delta A A^{-1} A \cap B=\varnothing$ so that $\rho\left(B_{n} ; A\right)-n \geq \rho(B ; A)$. Therefore we have

$$
\rho\left(B_{n} ; A\right) \frac{|A|}{\left|B_{n}\right|} \geq \frac{n|A|+\rho(B ; A)|A|}{n|A|+|B|} .
$$

Clearly as n goes to infinity the fraction on the right goes to 1 . So there is $n \geq 1$ with $\rho\left(B_{n} ; A\right) \frac{|A|}{\left|B_{n}\right|}>1-\epsilon$ and $\rho\left(B_{n} ; A\right)>\frac{\left|B_{n}\right|}{|A|}(1-\epsilon)$. Setting $C=B_{n}$ completes the proof.

Definition 3.3. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to have subexponential growth if for every $u>1$ there is $N \in \mathbb{N}$ so that $f(n)<u^{n}$ for all $n \geq N$.

Lemma 3.4. Let G be an infinite group and let $A, B \subseteq G$ be finite with $1_{G} \in A$. If f : $\mathbb{N} \rightarrow \mathbb{N}$ has subexponential growth then there exists a finite $C \subseteq G$ containing B such that $2^{\rho(C ; A)}>f(|C|)$.

Proof. Let $N \in \mathbb{N}$ be such that $2^{\frac{n}{2|A|}}>f(n)$ for all $n \geq N$. Let $B^{\prime} \subseteq G$ be a finite set containing B with $\left|B^{\prime}\right| \geq N$. By Lemma 3.2 there exists a finite $C \subseteq G$ containing B^{\prime} with $\rho(C ; A)>\frac{1}{2} \frac{|C|}{|A|}$. Then $C \supseteq B$ and as $|C|$ is at least N,

$$
2^{\rho(C ; A)}>2^{\frac{|C|}{2|A|}}>f(|C|) .
$$

The following proposition is the key result of this section. Unfortunately, at this time it is difficult both to express the importance of this proposition and to explain where it fits in the overall proof of the main theorem.

Proposition 3.5. Let G be a countably infinite group and let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of finite subsets of G with $1_{G} \in H_{0}, \bigcup_{n \in \mathbb{N}} H_{n}=G$, and

$$
H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right) \subseteq H_{n}
$$

for $n \geq 1$. Then there exists an increasing sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ of subsets of G and a decreasing sequence $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ of subsets of G such that
(i) $F_{0}=H_{0}$;
(ii) $1_{G} \in F_{n} \subseteq H_{n}$ for all $n \geq 1$;
(iii) $1_{G} \in \Delta_{n}$ for all $n \in \mathbb{N}$;
(iv) for all $n \in \mathbb{N}$ the Δ_{n}-translates of F_{n} are maximally disjoint within G;
(v) for all $n \geq 1$ the $\Delta_{n-1} \cap F_{n}$-translates of F_{n-1} are contained and maximally disjoint within H_{n};
(vi) for all $n>0$ and $0 \leq k \leq n$ the $\Delta_{k} \cap F_{n}$-translates of F_{k} are maximally disjoint within H_{n-1};
(vii) for every $k \in \mathbb{N}$ and $\gamma \in \Delta_{k}$, there is $n \geq k$ with $\gamma F_{k} \subseteq F_{n}$;
(viii) $\gamma F_{n} \cap \Delta_{k} f=\gamma\left(F_{n} \cap \Delta_{k}\right) f$ for all $n \geq k, \gamma \in \Delta_{n}$, and $f \in F_{k}$.

Proof. Set $F_{0}=H_{0}$ so (i) is satisfied. We will construct $\left(F_{n}\right)_{n \in \mathbb{N}}$. Choose $\delta_{0}^{1} \subseteq H_{1}$ so that $1_{G} \in \delta_{0}^{1}$ and the δ_{0}^{1}-translates of F_{0} are contained and maximally disjoint within H_{1}. We then define $F_{1}=\bigcup_{\gamma \in \delta_{0}^{1}} \gamma F_{0}$. Note $F_{1} \subseteq H_{1}$.

We will continue the construction inductively. Assume F_{0} through F_{n-1} have been defined with $F_{m} \subseteq H_{m}$ for $m<n$. Again we choose $\delta_{n-1}^{n} \subseteq H_{n}$ so that $1_{G} \in \delta_{n-1}^{n}$ and the $\delta_{n-1^{-}}^{n}$ translates of F_{n-1} are contained and maximally disjoint within H_{n}. Once δ_{n-1}^{n} through δ_{n-k+1}^{n} have been defined with $1<k \leq n$, choose δ_{n-k}^{n} so that the δ_{n-k}^{n}-translates of F_{n-k}
are contained and maximally disjoint within

$$
B_{n-k}^{n}-\bigcup_{1 \leq m<k} \bigcup_{\gamma \in \delta_{n-m}^{n}} \gamma F_{n-m}=B_{n-k}^{n}-\bigcup_{1 \leq m<k} \delta_{n-m}^{n} F_{n-m}
$$

where for $r, s \in \mathbb{N}$ with $r<s$

$$
B_{r}^{s}=\left\{g \in G \mid\{g\}\left(F_{r+1}^{-1} F_{r+1}\right)\left(F_{r+2}^{-1} F_{r+2}\right) \cdots\left(F_{s-1}^{-1} F_{s-1}\right) \subseteq H_{s}\right\}
$$

Note $H_{s-1} \subseteq B_{r}^{s}$ so $B_{r}^{s} \neq \varnothing$.
Finally, we define

$$
F_{n}=\bigcup_{0 \leq m<n} \bigcup_{\gamma \in \delta_{m}^{n}} \gamma F_{m}=\bigcup_{0 \leq m<n} \delta_{m}^{n} F_{m}
$$

Note $F_{n} \subseteq H_{n}$ since $B_{k}^{n} \subseteq H_{n}$ for all $0 \leq k<n-1$. The construction of $\left(F_{n}\right)_{n \in \mathbb{N}}$ is now complete and satisfies (i) and (ii).

The use of the B_{k}^{n} 's plays a vital role in this proof. Their main function is to achieve conclusion (iv). Let us reveal the important property of the B_{k}^{n}, s. Fix $n, k \in \mathbb{N}$ with $n>k$. Suppose $g \in G$ satisfies $g F_{k} \cap F_{n} \neq \varnothing$. Then $g F_{k} \cap \delta_{m}^{n} F_{m} \neq \varnothing$ for some $k \leq m<n$ (this may be true for several values of m, some of which may be less than k). Let us show why this is true. Suppose $g F_{k} \cap \delta_{m}^{n} F_{m}=\varnothing$ for all $k<m<n$. It will suffice to show $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$. As $F_{n}=\bigcup_{0 \leq t<n} \delta_{t}^{n} F_{t}$, there is $0 \leq t \leq k$ with $g F_{k} \cap \delta_{t}^{n} F_{t} \neq \varnothing$. If $t=k$, then we are done. So suppose $t<k$. We have

$$
g F_{k} \subseteq \delta_{t}^{n} F_{t} F_{k}^{-1} F_{k} \subseteq \delta_{t}^{n} F_{t}\left(F_{t+1}^{-1} F_{t+1}\right)\left(F_{t+2}^{-1} F_{t+2}\right) \cdots\left(F_{k}^{-1} F_{k}\right)
$$

and hence

$$
g F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq \delta_{t}^{n} F_{t}\left(F_{t+1}^{-1} F_{t+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right)
$$

However, by definition $\delta_{t}^{n} F_{t} \subseteq B_{t}^{n}$. So the right hand side of the expression above is contained within H_{n}, and therefore $g F_{k} \subseteq B_{k}^{n}$. Thus

$$
g F_{k} \subseteq B_{k}^{n}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m} .
$$

It now follows from the definition of δ_{k}^{n} that $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$. This substantiates our claim.

The collection $\left(\delta_{k}^{n}\right)_{k<n}$ was useful in constructing $\left(F_{n}\right)_{n \in \mathbb{N}}$ but is inadequate for our further needs. For $k \leq n$ we wish to recognize exactly how translates of F_{k} were both explicitly and implicitly used in constructing F_{n}. For example, for $k<m<n$ we have $\delta_{k}^{m} F_{k} \subseteq F_{m}$ and $\delta_{m}^{n} F_{m} \subseteq F_{n}$ so $\delta_{m}^{n} \delta_{k}^{m} F_{k} \subseteq F_{n}$. Thus informally we would say the $\delta_{m}^{n} \delta_{k}^{m}$-translates of F_{k} were implicitly used in constructing F_{n}. However if for $g \in F_{n}$ we only have $g F_{k} \subseteq F_{n}$ we would not necessarily want to say the g-translate of F_{k} was used in constructing F_{n}. Hopefully we have made the point that we only wish to consider translates which, in some sense, were either explicitly or implicitly used. Informally, we wish to define D_{k}^{n} to be the set of all γ 's in F_{n} such that the γ-translate of F_{k} was used in constructing F_{n}. We now give the formal definition for this. For $k \in \mathbb{N}$ define $D_{k}^{k}=\left\{1_{G}\right\}, D_{k}^{k+1}=\delta_{k}^{k+1}$, and in general for $n>k$

$$
D_{k}^{n}=\delta_{n-1}^{n} D_{k}^{n-1} \cup \delta_{n-2}^{n} D_{k}^{n-2} \cup \cdots \cup \delta_{k+1}^{n} D_{k}^{k+1} \cup \delta_{k}^{n}=\bigcup_{k \leq m<n} \delta_{m}^{n} D_{k}^{m}
$$

The D_{k}^{n} 's are a discrete version of the Δ_{n} 's which we will soon construct. First we must spend the next few paragraphs proving that the D_{k}^{n} 's possess the following properties for all $k, m, n \in \mathbb{N}$ with $k \leq m \leq n:$
(1) $D_{k}^{n} F_{k} \subseteq F_{n}$;
(2) $D_{m}^{n} D_{k}^{m} \subseteq D_{k}^{n}$;
(3) the D_{k}^{n}-translates of F_{k} are disjoint;
(4) the D_{k}^{n}-translates of F_{k} are maximally disjoint with B_{k}^{n}.
(Proof of 1) Clearly $D_{k}^{k} F_{k}=F_{k}$. If we assume $D_{k}^{i} F_{k} \subseteq F_{i}$ for all $k \leq i<n$, then

$$
D_{k}^{n} F_{k}=\bigcup_{k \leq i<n} \delta_{i}^{n} D_{k}^{i} F_{k} \subseteq \bigcup_{k \leq i<n} \delta_{i}^{n} F_{i} \subseteq F_{n}
$$

The claim now immediately follows from induction.
(Proof of 2) Clearly when $n=m$ we have $D_{m}^{n} D_{k}^{m}=D_{n}^{n} D_{k}^{n}=D_{k}^{n}$. If we assume $D_{m}^{i} D_{k}^{m} \subseteq D_{k}^{i}$ for all $m \leq i<n$, then

$$
D_{m}^{n} D_{k}^{m}=\bigcup_{m \leq i<n} \delta_{i}^{n} D_{m}^{i} D_{k}^{m} \subseteq \bigcup_{m \leq i<n} \delta_{i}^{n} D_{k}^{i} \subseteq \bigcup_{k \leq i<n} \delta_{i}^{n} D_{k}^{i}=D_{k}^{n}
$$

The claim now immediately follows from induction.
(Proof of 3) The D_{k}^{n}-translates of F_{k} are disjoint when $n=k$ and when $n=k+1$. Assume the D_{k}^{i} translates of F_{k} are disjoint for all $k \leq i<n$. Recall $D_{k}^{n}=\bigcup_{k \leq i<n} \delta_{i}^{n} D_{k}^{i}$. If $k \leq r<s<n$, then by the definition of δ_{r}^{n} we have $\delta_{r}^{n} F_{r} \cap \delta_{s}^{n} F_{s}=\varnothing$. It then follows from (1) that $\delta_{r}^{n} D_{k}^{r} F_{k} \cap \delta_{s}^{n} D_{k}^{s} F_{k}=\varnothing$. Additionally, if $k \leq i<n$ and $\gamma, \psi \in \delta_{i}^{n}$ are distinct, then $\gamma F_{i} \cap \psi F_{i}=\varnothing$ because the δ_{i}^{n}-translates of F_{i} are disjoint by definition. Again by (1) we have $\gamma D_{k}^{i} F_{k} \cap \psi D_{k}^{i} F_{k}=\varnothing$. Finally, by assumption the D_{k}^{i}-translates of F_{k} are disjoint for every $k \leq i<n$. It follows that the D_{k}^{n}-translates of F_{k} must be disjoint. The claim now follows from induction.
(Proof of 4) Here one will see exactly why the B_{k}^{n} 's were defined. When $n=k$ and $n=k+1$ claim is guaranteed by definition (we take $B_{n}^{n}=B_{n-1}^{n}=H_{n}$). So fix $k \in \mathbb{N}$ and towards a contradiction suppose $n>k+1$ is such that the D_{k}^{n}-translates of F_{k} are not maximally disjoint within B_{k}^{n}. Fix $g \in B_{k}^{n}$ such that $g F_{k} \subseteq B_{k}^{n}$ and $g F_{k} \cap D_{k}^{n} F_{k}=\varnothing$. Our argument will rely on inductively creating a finite sequence of natural numbers. We first detail how the starting number v_{0} is determined. Recall that in the construction of F_{n} we defined δ_{n-1}^{n} through δ_{k+1}^{n} first and then chose δ_{k}^{n} so that its translates of F_{k} would be maximally disjoint within $B_{k}^{n}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$. However, $\delta_{k}^{n}=\delta_{k}^{n} D_{k}^{k} \subseteq D_{k}^{n}$ so $g F_{k} \cap \delta_{k}^{n} F_{k}=\varnothing$. So we cannot have $g F_{k} \subseteq B_{k}^{n}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$ as this would violate the definition of δ_{k}^{n}. Since $g F_{k} \subseteq B_{k}^{n}$, we must have $g F_{k} \cap\left(\bigcup_{k<m<n} \delta_{m}^{n} F_{m}\right) \neq \varnothing$. Therefore there exists $v_{0} \in \mathbb{N}$ with $k<v_{0}<n$ and $\gamma_{0} \in \delta_{v_{0}}^{n}$ such that $g F_{k} \cap \gamma_{0} F_{v_{0}} \neq \varnothing$. Note that $\gamma_{0} D_{k}^{v_{0}} \subseteq \delta_{v_{0}}^{n} D_{k}^{v_{0}} \subseteq D_{k}^{n}$ so $\gamma_{0}^{-1} g F_{k} \cap D_{k}^{v_{0}} F_{k}=\gamma_{0}^{-1}\left(g F_{k} \cap \gamma_{0} D_{k}^{v_{0}} F_{k}\right)=\varnothing$. For notational convenience, we will set $v_{-1}=n$. Now assume v_{0} through v_{i-1} have been defined and $\gamma_{j} \in \delta_{v_{j}}^{v_{j-1}}$ has been fixed for each $0 \leq j \leq i-1$ such that
(a) $n>v_{0}>v_{1}>\cdots>v_{i-1}>k$,
(b) $\left(\gamma_{0} \gamma_{1} \cdots \gamma_{i-1}\right)^{-1} g F_{k} \cap F_{v_{i-1}} \neq \varnothing$, and
(c) $\left(\gamma_{0} \gamma_{1} \cdots \gamma_{i-1}\right)^{-1} g F_{k} \cap D_{k}^{v_{i-1}} F_{k}=\varnothing$.

We will find a new number v_{i} and from here the sequence may either terminate or continue further. By (b) and our earlier comment on the B_{r}^{s} 's, we have that there is $k \leq v_{i}<v_{i-1}$
and $\gamma_{i} \in \delta_{v_{i}}^{v_{i-1}}$ with

$$
\left(\gamma_{0} \gamma_{1} \cdots \gamma_{i-1}\right)^{-1} g F_{k} \cap \gamma_{i} F_{v_{i}} \neq \varnothing
$$

If $v_{i}>k$ then $\gamma_{i} D_{k}^{v_{i}} F_{k} \subseteq \delta_{v_{i}}^{v_{i-1}} D_{k}^{v_{i}} F_{k} \subseteq D_{k}^{v_{i-1}} F_{k}$ which, together with the induction hypothesis (c), shows that (c) is again satisfied. Therefore if $v_{i}>k$ then (a), (b), and (c) are satisfied and we can continue this construction further. As we are constructing a strictly decreasing sequence with initial term $k<v_{0}<n$, we will eventually have $v_{i}=k$. But if $v_{i}=k$ then we would have $\gamma_{i} F_{v_{i}} \subseteq \delta_{k}^{v_{i-1}} F_{k}=\delta_{k}^{v_{i-1}} D_{k}^{k} F_{k} \subseteq D_{k}^{v_{i-1}} F_{k}$ which contradicts (c) of the induction hypothesis. This completes the proof of (4).

Considering (4), in particular we have for all $n>k$ the D_{k}^{n}-translates of F_{k} are maximally disjoint within H_{n-1} since $H_{n-1} \subseteq B_{k}^{n}$. We remark that $D_{k}^{n} \subseteq D_{k}^{n+1}$ since $\delta_{n}^{n+1} D_{k}^{n} \subseteq D_{k}^{n+1}$ and $1_{G} \in \delta_{n}^{n+1}$. For $k \in \mathbb{N}$ we define $\Delta_{k}=\bigcup_{n \geq k} D_{k}^{n}$. As $\bigcup_{n \in \mathbb{N}} H_{n}=G$, we have for each $k \in \mathbb{N}$ the Δ_{k}-translates of F_{k} are maximally disjoint within G. Properties (iii) and (iv) are immediately satisfied.

To finish the proof we will show that $\Delta_{k} f \cap \gamma F_{n}=\gamma D_{k}^{n} f$ for $n \geq k, \gamma \in \Delta_{n}$, and $f \in F_{k}$. Since $1_{G} \in \Delta_{n}$ and $1_{G} \in F_{k}$, this will give $F_{n} \cap \Delta_{k}=1_{G} F_{n} \cap \Delta_{k} 1_{G}=D_{k}^{n}$. Conclusion (viii) will then be clear. Conclusion (v) will follow from the definition of $\delta_{n-1}^{n}=D_{n-1}^{n}$, and conclusion (vi) will follow from (4) together with the fact that $H_{n-1} \subseteq B_{k}^{n}$. For (vii) just note that if $\gamma \in \Delta_{k}$ then $\gamma \in D_{k}^{n}$ for some $n \geq k$ and hence $\gamma F_{k} \subseteq F_{n}$ by (1).

Fix $k \leq n, f \in F_{k}$, and $\gamma \in \Delta_{n}$. Then $\gamma \in D_{n}^{s}$ for some $s \geq n$. So

$$
\gamma D_{k}^{n} f \subseteq D_{n}^{s} D_{k}^{n} f \subseteq D_{k}^{s} f \subseteq \Delta_{k} f
$$

and $\gamma D_{k}^{n} f \subseteq \gamma D_{k}^{n} F_{k} \subseteq \gamma F_{n}$. Therefore $\gamma D_{k}^{n} f \subseteq \Delta_{k} f \cap \gamma F_{n}$.
For the opposite inclusion, let $\psi \in \Delta_{k}$ with $\psi f \in \gamma F_{n}$. Let $s \geq n$ be large enough so that $\psi \in D_{k}^{s}$ and $\gamma \in D_{n}^{s}$. We will prove $\psi f \in \gamma D_{k}^{n} f$ by induction on s. Clearly, if $s=n$ then $\gamma=1_{G}$ and $\psi f \in D_{k}^{n} f=\gamma D_{k}^{n} f$. Now suppose the claim is true for all $n \leq r<s$. By the definition of D_{k}^{s} and D_{n}^{s}, there are $k \leq i<s$ and $n \leq t<s$ with $\psi \in \delta_{i}^{s} D_{k}^{i}$ and $\gamma \in \delta_{t}^{s} D_{n}^{t}$. However, if $i \neq t$ then by the definition of δ_{i}^{s} and δ_{t}^{s} we have

$$
\{\psi f\} \cap \gamma F_{n} \subseteq \delta_{i}^{s} D_{k}^{i} f \cap \delta_{t}^{s} D_{n}^{t} F_{n} \subseteq \delta_{i}^{s} F_{i} \cap \delta_{t}^{s} F_{t}=\varnothing
$$

So it must be that $i=t$. Let $\lambda, \sigma \in \delta_{t}^{s}$ be such that $\psi \in \lambda D_{k}^{t}$ and $\gamma \in \sigma D_{n}^{t}$. If $\lambda \neq \sigma$ then we would have

$$
\{\psi f\} \cap \gamma F_{n} \subseteq \lambda D_{k}^{t} f \cap \sigma D_{n}^{t} F_{n} \subseteq \lambda F_{t} \cap \sigma F_{t}=\varnothing
$$

So we must have $\lambda=\sigma$. Then $\lambda^{-1} \psi \in D_{k}^{t} \subseteq \Delta_{k}, \lambda^{-1} \gamma \in D_{n}^{t} \subseteq \Delta_{n}$, and $\lambda^{-1} \psi f \in \lambda^{-1} \gamma F_{n}$. By the induction hypothesis we conclude $\lambda^{-1} \psi f \in \lambda^{-1} \gamma D_{k}^{n} f$ and hence $\psi f \in \gamma D_{k}^{n} f$. This completes the proof.

Definition 3.6. Let G be a countably infinite group and $\left(H_{n}\right)_{n \in \mathbb{N}}$ an increasing sequence of finite sets with $1_{G} \in H_{0}, \bigcup_{n \in \mathbb{N}} H_{n}=G$, and

$$
H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right) \subseteq H_{n}
$$

for $n \geq 1$. Let $\left(F_{n}\right)_{n \in \mathbb{N}}$ and $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ be respectively increasing and decreasing sequences of subsets of G satisfying the conclusions of Proposition 3.5. Set $\alpha_{0}=\beta_{0}=1_{G}$. If for each $n \geq 1$ there are distinct non-identity $\alpha_{n}, \beta_{n} \in \Delta_{n-1} \cap F_{n}$, then we call $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ a blueprint.

Remark 3.7. Whenever we have a blueprint $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$, the following symbols will have a fixed meaning:

$$
\begin{gathered}
\Lambda_{n}=\left(\Delta_{n-1} \cap F_{n}\right)-\left\{1_{G}, \alpha_{n}, \beta_{n}\right\}(\text { for } n \geq 1) ; \\
a_{n}=\alpha_{n} \alpha_{n-1} \cdots \alpha_{0}(\text { for } n \in \mathbb{N}) ; \\
b_{n}=\beta_{n} \beta_{n-1} \cdots \beta_{0}(\text { for } n \in \mathbb{N}) .
\end{gathered}
$$

The following lemma consists of a collection of facts which are easily derived from Proposition 3.5. These facts are frequently needed in the next section. This lemma serves the purpose of collecting these statements together for easy reference for those times when one's intuition or memory is faltering.

Lemma 3.8. Let G be a countably infinite group and let $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ be a blueprint. Then
(i) $\lambda F_{n-1} \subseteq F_{n}$ for all $n \geq 1$ and all $\lambda \in \Delta_{n-1} \cap F_{n}$;
(ii) $\lambda_{1} F_{n-1} \cap \lambda_{2} F_{n-1}=\varnothing$ for all $n \geq 1$ and distinct $\lambda_{1}, \lambda_{2} \in \Delta_{n-1} \cap F_{n}$;
(iii) $\Delta_{n} \lambda \subseteq \Delta_{n-1}$ for all $n \geq 1$ and all $\lambda \in \Delta_{n-1} \cap F_{n}$;
(iv) both $\Delta_{n} a_{n}$ and $\Delta_{n} b_{n}$ are decreasing sequences;
(v) $a_{n}, b_{n} \in F_{n}$ for all $n \in \mathbb{N}$;
(vi) $a_{n} \neq b_{n}$ for all $n \geq 1$;
(vii) $\Delta_{n} a_{n} \cap \Delta_{k} b_{k}=\varnothing$ for all $n, k>0$;
(viii) for $n>k \in \mathbb{N}$

$$
\Delta_{n}\left(\Delta_{n-1} \cap F_{n}\right) a_{n-1} \cap \Delta_{k} F_{k} \subseteq \Delta_{k} a_{k}
$$

and

$$
\Delta_{n}\left(\Delta_{n-1} \cap F_{n}\right) b_{n-1} \cap \Delta_{k} F_{k} \subseteq \Delta_{k} b_{k}
$$

(ix) for $n>k \in \mathbb{N}$

$$
\begin{gathered}
\Delta_{n}\left(\Delta_{n-1} \cap F_{n}\right) a_{n-1} \cap \Delta_{k}\left(\Delta_{k-1} \cap F_{k}\right) a_{k-1} \\
\subseteq \Delta_{k} \alpha_{k} a_{k-1}=\Delta_{k} a_{k}
\end{gathered}
$$

and

$$
\begin{gathered}
\Delta_{n}\left(\Delta_{n-1} \cap F_{n}\right) b_{n-1} \cap \Delta_{k}\left(\Delta_{k-1} \cap F_{k}\right) b_{k-1} \\
\subseteq \Delta_{k} \beta_{k} b_{k-1}=\Delta_{k} b_{k}
\end{gathered}
$$

(x) $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$.

Proof. (i). By conclusion (viii) of Proposition 3.5

$$
\lambda F_{n-1} \subseteq\left(\Delta_{n-1} \cap F_{n}\right) F_{n-1}=\Delta_{n-1} F_{n-1} \cap F_{n} \subseteq F_{n}
$$

(ii). λ_{1} and λ_{2} are in Δ_{n-1}, and the Δ_{n-1}-translates of F_{n-1} are disjoint.
(iii). By conclusion (viii) of Proposition 3.5,

$$
\Delta_{n} \lambda \subseteq \Delta_{n}\left(\Delta_{n-1} \cap F_{n}\right)=\Delta_{n-1} \cap \Delta_{n} F_{n} \subseteq \Delta_{n-1}
$$

(iv). By (iii), $\Delta_{n} a_{n}=\Delta_{n} \alpha_{n} a_{n-1} \subseteq \Delta_{n-1} a_{n-1}$. The same argument applies to $\Delta_{n} b_{n}$.
(v). Clearly $a_{0} \in F_{0}$. If we assume $a_{n-1} \in F_{n-1}$, then by (i)

$$
a_{n}=\alpha_{n} a_{n-1} \in \alpha_{n} F_{n-1} \subseteq F_{n} .
$$

By induction, and by a similar argument, we have $a_{n}, b_{n} \in F_{n}$ for all $n \in \mathbb{N}$.
(vi). From (v) we have that $a_{n}=\alpha_{n} a_{n-1} \in \alpha_{n} F_{n-1}$. Similarly, $b_{n} \in \beta_{n} F_{n-1}$. Since $1_{G} \in F_{n-1}$, the claim follows from (ii).
(vii). Suppose $0<k \leq n$. Since $a_{k} \neq b_{k} \in F_{k}$, and since the Δ_{k}-translates of F_{k} are disjoint, from (iv) and (vi) we have

$$
\Delta_{n} a_{n} \cap \Delta_{k} b_{k} \subseteq \Delta_{k} a_{k} \cap \Delta_{k} b_{k}=\varnothing .
$$

The case $0<n \leq k$ is identical.
(viii). Let $n, k \in \mathbb{N}$ with $n>k$. Suppose $\gamma \in \Delta_{n}, \psi \in \Delta_{k}, \lambda \in \Delta_{n-1} \cap F_{n}$, and $f \in F_{k}$ satisfy

$$
\gamma \lambda a_{n-1}=\psi f
$$

Then by repeated application of (iii),

$$
g=\gamma \lambda \alpha_{n-1} \alpha_{n-2} \ldots \alpha_{k+1} \in \Delta_{k}
$$

Since $g a_{k}=\gamma \lambda a_{n-1}=\psi f$, we have $g F_{k} \cap \psi F_{k} \neq \varnothing$. As the Δ_{k}-translates of F_{k} are disjoint, we must have $g=\psi$. Thus

$$
\psi a_{k}=g a_{k}=\gamma \lambda a_{n-1}=\psi f \Longrightarrow a_{k}=f
$$

With b_{n} in place of a_{n} the argument is essentially identical.
(ix). This follows immediately from (v), (i), (viii), and the definition of a_{k} and b_{k}.
(x). The Δ_{n}-translates of F_{n} are disjoint and $F_{n-1} \subseteq F_{n}$, so by (v)

$$
\Delta_{n} a_{n} \cap F_{n-1} \subseteq \Delta_{n} a_{n} \cap F_{n}=\left\{a_{n}\right\} .
$$

From (ii) and (v) we have $a_{n}=\alpha_{n} a_{n-1} \notin F_{n-1}$ since $1_{G} \in \Delta_{n-1} \cap F_{n}$. Therefore $\Delta_{n} a_{n} \cap F_{n-1}=$ \varnothing. Now choose any $g \in \Delta_{0} a_{0}$. Then $g \in \Delta_{0}$ since $a_{0}=1_{G}$. By conclusion (vii) of Proposition 3.5, there is $n \in \mathbb{N}$ with $g F_{0} \subseteq F_{n}$. In particular, $g \in F_{n}$ since $1_{G} \in F_{0}$. As
$\Delta_{n+1} a_{n+1} \cap F_{n}=\varnothing$, we must have $g \notin \Delta_{n+1} a_{n+1}$. It follows $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\varnothing$. By an identical argument $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ as well.

CHAPTER 4

CONSTRUCTION OF SUBFLOWS

This section primarily consists of two long proofs. The first of these is Proposition 4.5 below. This proposition presents a rather general method for constructing elements of 2^{G} with desirable properties. Definitions 4.1 and 4.4 below play a significant role in deriving the main theorem from Proposition 4.5.

Definition 4.1. Let G be a group, let $1_{G} \in A \subseteq G$ with A finite, and let $R: A \rightarrow\{0,1\}$. We call R locally recognizable if for every $x \in 2^{G}$ with $\left.x\right|_{A}=R$

$$
\forall a \in A\left(\forall b \in A x(a b)=x(b) \Longrightarrow a=1_{G}\right)
$$

R is called trivial if $\left|\left\{a \in A \mid R(a)=R\left(1_{G}\right)\right\}\right|=1$.

Definition 4.2. Let G be a countably infinite group and let $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ be a blueprint. If $R: A \rightarrow\{0,1\}$ is locally recognizable, then we say $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ is compatible with R if $H_{0}=A$. If $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth, then we say $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ is compatible with $\left(p_{n}\right)_{n \geq 1}$ if $\rho\left(H_{n} ; H_{n-1}\right)>$ $3+\log _{2} p_{n}\left(\left|H_{n}\right|\right)$ for each $n \geq 1$.

Lemma 4.3. If G is a countably infinite group, $R: A \rightarrow\{0,1\}$ is locally recognizable, and $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth, then there exists a blueprint compatible with R and $\left(p_{n}\right)_{n \geq 1}$.

Proof. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite subsets of G with $A_{0}=A$ and $G=\bigcup_{n \in \mathbb{N}} A_{n}$. Set $H_{0}=A_{0}$. Once H_{0} through H_{n-1} have been defined, apply Lemma 3.4 to find a finite $H_{n} \subseteq G$ satisfying

$$
H_{n} \supseteq H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right)
$$

and $\rho\left(H_{n} ; H_{n-1}\right)>\log _{2}\left(8 p_{n}\left(\left|H_{n}\right|\right)\right)$. The sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ will then be compatible with R and $\left(p_{n}\right)_{n \geq 1}$.

Definition 4.4. Let G be a group, $c \in 2^{<G} \cup 2^{G}$, and $\Delta \subseteq G$. We say c admits an extension invariant Δ membership test if there is a finite $V \subseteq G$ with $\Delta V \subseteq \operatorname{dom}(c)$ such that for all $x \in 2^{G}$ with $x \supseteq c$ and all $\gamma \in \Delta$

$$
\{g \in G \mid \forall v \in V x(g v)=x(\gamma v)\}=\Delta
$$

Such a set V is called a test region.

Proposition 4.5. Let G be a countably infinite group, let $R: A \rightarrow\{0,1\}$ be a non-trivial locally recognizable function, let $\left(p_{n}\right)_{n \geq 1}$ be a collection of functions of subexponential growth, and let $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ be a blueprint compatible with R and $\left(p_{n}\right)_{n \geq 1}$. Then there exists $c \in 2^{<G}$ with the following properties:
(i) $\left.\left(\gamma^{-1} \cdot c\right)\right|_{A}=R$ for all $\gamma \in \Delta_{1}$;
(ii) c admits an extension invariant Δ_{n} membership test with test region a subset of $F_{n-1} \cap \operatorname{dom}(c)$ for each $n \in \mathbb{N}$;
(iii) $G-\operatorname{dom}(c)$ is the disjoint union $\bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1}$;
(iv) $\left|\Lambda_{n}\right|>\log _{2} p_{n}\left(\left|H_{n}\right|\right)$ for all $n \geq 1$;
(v) $c(g)=1-R\left(1_{G}\right)$ for all $g \in G-\Delta_{1} F_{1}$;
(vi) $c(f)=c(\gamma f)$ for all $n \geq 1, \gamma \in \Delta_{n}$, and

$$
f \in F_{n}-\left\{a_{n}, b_{n}\right\}-\bigcup_{1 \leq k \leq n} \Delta_{k} \Lambda_{k} b_{k-1}=\left(F_{n}-\left\{a_{n}, b_{n}\right\}\right) \cap \operatorname{dom}(c) ;
$$

Proof. By (v) of Proposition 3.5, the $\Delta_{n-1} \cap F_{n}$-translates of F_{n-1} are contained and maximally disjoint within H_{n}. So

$$
\left|\Lambda_{n}\right|+3=\left|\Delta_{n-1} \cap F_{n}\right| \geq \rho\left(H_{n} ; F_{n-1}\right) \geq \rho\left(H_{n} ; H_{n-1}\right)>\log _{2} p_{n}\left(\left|H_{n}\right|\right)+3
$$

as $F_{n-1} \subseteq H_{n-1}$. Thus property (iv) is satisfied.
We wish to construct a sequence of functions $\left(c_{n}\right)_{n \geq 1}$ satisfying for each $n \geq 1$:
(1) $\operatorname{dom}\left(c_{n}\right)=G-\Delta_{n} a_{n}-\Delta_{n} b_{n}-\bigcup_{1 \leq k \leq n} \Delta_{k} \Lambda_{k} b_{k-1}$
(2) $c_{n+1} \supseteq c_{n}$;
(3) c_{n} admits an extension invariant Δ_{n} membership test with test region a subset of $F_{n-1} \cap \operatorname{dom}\left(c_{n}\right)$.

Let us first dwell for a moment on (1). Condition (1) is consistent with condition (2) because $\Delta_{n} a_{n}$ and $\Delta_{n} b_{n}$ are decreasing sequences and $\Delta_{n+1} \Lambda_{n+1} b_{n} \subseteq \Delta_{n} b_{n}$ by conclusion (iii) of Lemma 3.8. After considering conclusions (vii) and (viii) of Lemma 3.8, we see that for $n>1$ we desire $\operatorname{dom}\left(c_{n}\right)$ to be

$$
\operatorname{dom}\left(c_{n-1}\right) \cup\left(\Delta_{n-1} a_{n-1}-\Delta_{n} a_{n}\right) \cup\left(\Delta_{n-1} b_{n-1}-\Delta_{n}\left[\Lambda_{n} \cup\left\{\beta_{n}\right\}\right] b_{n-1}\right)
$$

It is important to note that these unions are disjoint. This tells us that given c_{n-1}, we can define $c_{n} \supseteq c_{n-1}$ to have whichever values on $\Delta_{n-1} a_{n-1}-\Delta_{n} a_{n}$ and $\Delta_{n-1} b_{n-1}-\Delta_{n}\left[\Lambda_{n} \cup\right.$ $\left.\left\{\beta_{n}\right\}\right] b_{n-1}$ without worry of a contradiction between the two or with c_{n-1}.

Define

$$
c_{1}:\left(G-\Delta_{1} a_{1}-\Delta_{1} b_{1}-\Delta_{1} \Lambda_{1}\right) \rightarrow\{0,1\}
$$

by

$$
c_{1}(g)= \begin{cases}R(f) & \text { if } g=\gamma f \text { where } \gamma \in \Delta_{1} \text { and } f \in A \\ 1-R\left(1_{G}\right) & \text { otherwise }\end{cases}
$$

for $g \in \operatorname{dom}\left(c_{1}\right)$. Note that c_{1} satisfies (1) since $b_{0}=1_{G}$.
We claim c_{1} satisfies (3) with test region A. Since $\Delta_{1}, \Delta_{1} a_{1}, \Delta_{1} b_{1}$, and $\Delta_{1} \Lambda_{1}$ are pairwise disjoint subsets of Δ_{0}, we have that $\Delta_{1} A$ is disjoint from $\Delta_{1} a_{1} \cup \Delta_{1} b_{1} \cup \Delta_{1} \Lambda_{1}$ (since $1_{G} \in$ $A=F_{0}$). Thus $\Delta_{1} A \subseteq \operatorname{dom}\left(c_{1}\right)$ and $A \subseteq F_{0} \cap \operatorname{dom}\left(c_{1}\right)$ as required.

To finish verifying condition (3), we let $c \in 2^{G}$ be an arbitrary extension of c_{1}. Since $1_{G} \in \Delta_{1}$, it is enough to show $g \in \Delta_{1}$ if and only if $c(g a)=c(a)$ for all $a \in A$. If $\gamma \in \Delta_{1}$, then $\gamma A \subseteq \operatorname{dom}\left(c_{1}\right)$ (see previous paragraph) and hence $c(\gamma a)=R(a)=c(a)$ for all $a \in A$. Now suppose $g \in G$ satisfies $c(g a)=c(a)$ for all $a \in A$. This implies $\left.\left(g^{-1} \cdot c\right)\right|_{A}=R$. Note that $c(h)=c_{1}(h)=1-R\left(1_{G}\right)$ for all $h \in \operatorname{dom}\left(c_{1}\right)-\Delta_{1} A$. As $c(g)=c\left(1_{G}\right)=c_{1}\left(1_{G}\right)=R\left(1_{G}\right)$, either $g \in \Delta_{1} A$ or $g \notin \operatorname{dom}\left(c_{1}\right)$. But g cannot be in $G-\operatorname{dom}\left(c_{1}\right) \subseteq \Delta_{0}$, for then since the
Δ_{0}-translates of F_{0} are disjoint we would have

$$
g A-\{g\}=g F_{0}-\{g\} \subseteq \operatorname{dom}\left(c_{1}\right)-\Delta_{1} F_{0}=\operatorname{dom}\left(c_{1}\right)-\Delta_{1} A .
$$

Then $c(g a)=c_{1}(g a)=1-R\left(1_{G}\right)$ for all $1_{G} \neq a \in A$ and $R=\left.\left(g^{-1} \cdot c\right)\right|_{A}$ would be trivial, a contradiction. So $g \in \Delta_{1} A$. Let $\gamma \in \Delta_{1}$ and $a \in A$ be such that $g=\gamma a$. By construction, $\left.\left(\gamma^{-1} \cdot c\right)\right|_{A}=\left.\left(\gamma^{-1} \cdot c_{1}\right)\right|_{A}=R$, and we have that for all $b \in A$

$$
\left(\gamma^{-1} \cdot c\right)(a b)=c(\gamma a b)=c(g b)=c(b)=R(b) .
$$

Therefore, it follows from the definition of a locally recognizable function that $a=1_{G}$ and $g \in \Delta_{1}$.

Now suppose that $c_{1}, c_{2}, \ldots c_{k-1}$ have been constructed and satisfy (1) through (3). We pointed out earlier that we desire c_{k} to have domain

$$
\operatorname{dom}\left(c_{k-1}\right) \cup\left(\Delta_{k-1} a_{k-1}-\Delta_{k} a_{k}\right) \cup\left(\Delta_{k-1} b_{k-1}-\Delta_{k}\left[\Lambda_{k} \cup\left\{\beta_{k}\right\}\right] b_{k-1}\right)
$$

We define c_{k} to satisfy $c_{k} \supseteq c_{k-1}$ and:

$$
\begin{gathered}
c_{k}\left(\Delta_{k-1} a_{k-1}-\Delta_{k}\left\{1_{G}, \alpha_{k}\right\} a_{k-1}\right)=\{0\} \\
c_{k}\left(\Delta_{k} a_{k-1}\right)=\{1\} \\
c_{k}\left(\Delta_{k} b_{k-1}\right)=\{1\} \\
c_{k}\left(\Delta_{k} \alpha_{k} b_{k-1}\right)=\{0\} \\
c_{k}\left(\Delta_{k-1} b_{k-1}-\Delta_{k}\left[\Delta_{k-1} \cap F_{k}\right] b_{k-1}\right)=\{0\} .
\end{gathered}
$$

From our earlier remarks on (1), we know c_{k} is well defined. It is easily checked that c_{k} satisfies (1) and (2) (recall that $\Delta_{k} a_{k}=\Delta_{k} \alpha_{k} a_{k-1}$).

Let $V \subseteq F_{k-2} \cap \operatorname{dom}\left(c_{k-1}\right)$ be the test region referred to in (3) for $n=k-1$. We claim that c_{k} satisfies (3) with test region $W=V \cup\left\{a_{k-1}, b_{k-1}\right\}$. Clearly $W \subseteq F_{k-1} \cap \operatorname{dom}\left(c_{k}\right)$. Also, $\Delta_{k} V \subseteq \Delta_{k-1} V \subseteq \operatorname{dom}\left(c_{k-1}\right) \subseteq \operatorname{dom}\left(c_{k}\right)$, and clearly $\Delta_{k}\left\{a_{k-1}, b_{k-1}\right\} \subseteq \operatorname{dom}\left(c_{k}\right)$. Thus $\Delta_{k} W \subseteq \operatorname{dom}\left(c_{k}\right)$ as required.

Let $c \in 2^{G}$ be an arbitrary extension of c_{k}. Since $1_{G} \in \Delta_{k}$, it suffices to show that for all $g \in G$,

$$
g \in \Delta_{k} \Longleftrightarrow \forall w \in W c(g w)=c(w)
$$

Suppose $g \in G$ satisfies the condition on the right. Then for all $w \in V$ we have $c(g w)=c(w)$, and since $1_{G} \in \Delta_{k-1}$ we must have $g \in \Delta_{k-1}$. Now $c\left(g a_{k-1}\right)=c\left(a_{k-1}\right)=c_{k}\left(a_{k-1}\right)=1$, and $g a_{k-1} \in \Delta_{k-1} a_{k-1} \subseteq G-\operatorname{dom}\left(c_{k-1}\right)$. From how we defined c_{k}, we have for $h \in G$

$$
h \in \Delta_{k-1} \text { and } c\left(h a_{k-1}\right)=1 \Longrightarrow h \in \Delta_{k} \text { or } h \in \Delta_{k} \alpha_{k}
$$

However, $g \notin \Delta_{k} \alpha_{k}$, for then $c\left(g b_{k-1}\right)=c_{k}\left(g b_{k-1}\right)=0 \neq 1=c\left(b_{k-1}\right)$. We conclude $g \in \Delta_{k}$. The converse, that each $\gamma \in \Delta_{k}$ satisfies $c(\gamma w)=c(w)$ for all $w \in W$, is easy to check (recall $\Delta_{k} \subseteq \Delta_{k-1}$). Thus c_{k} satisfies (3).

Finally, define $c=\bigcup_{n \geq 1} c_{n}$. Properties (i) and (v) clearly hold due to how c_{1} was defined. Property (iv) was verified near the beginning of the proof. Property (ii) holds since $c \supseteq c_{n}$ for each $n \geq 1$, and property (iii) follows from (1) and conclusions (ix) and (x) of Lemma 3.8. We proceed to verify property (vi).

The second equality in (vi) is easy to verify since $F_{n}-\left\{b_{n}\right\}$ is disjoint from $\Delta_{k} \Lambda_{k} b_{k-1}$ for $k>n$ (use conclusion (viii) of Lemma 3.8). Fix $n \geq 1, \gamma \in \Delta_{n}$, and $f \in\left(F_{n}-\left\{a_{n}, b_{n}\right\}\right) \cap$ $\operatorname{dom}(c)$. Then $f \notin\left\{a_{n}, b_{n}\right\}$ and hence $f, \gamma f \notin \Delta_{n}\left\{a_{n}, b_{n}\right\}$ since the Δ_{n}-translates of F_{n} are disjoint. However, $\operatorname{dom}\left(c_{m}\right)-\operatorname{dom}\left(c_{n}\right) \subseteq \Delta_{n}\left\{a_{n}, b_{n}\right\}$ for $m>n$, and since $f, \gamma f \in \operatorname{dom}(c)$ there must be a $m \leq n$ with $f, \gamma f \in \operatorname{dom}\left(c_{m}\right)$. Let $k \leq n$ be minimal with either f or γf in $\operatorname{dom}\left(c_{k}\right)$. We proceed by cases.

Case 1: $k=1$. Let B be a subset of F_{1}. From conclusion (viii) of Proposition 3.5, we have

$$
\begin{gathered}
f \in \Delta_{1} B \Longleftrightarrow f \in \Delta_{1} B \cap F_{n} \Longleftrightarrow \gamma f \in \gamma\left(\Delta_{1} B \cap F_{n}\right) \\
\Longleftrightarrow \gamma f \in \Delta_{1} B \cap \gamma F_{n} \Longleftrightarrow \gamma f \in \Delta_{1} B_{1} .
\end{gathered}
$$

By looking back at the definition of c_{1} and using the above result for different choices of $B \subseteq F_{0}$, we concluded that both f and γf are in $\operatorname{dom}\left(c_{1}\right)$. More importantly, $c(\gamma f)=$ $c_{1}(\gamma f)=c_{1}(f)=c(f)$.

Case 2: $1<k \leq n$. By the same computation as above, for each $i \leq n$ and each $B \subseteq F_{i}$ we have that $f \in \Delta_{i} B$ if and only if $\gamma f \in \Delta_{i} B$. It follows that both $f, \gamma f \in \operatorname{dom}\left(c_{k}\right)$. After considering the five equations defining c_{k} and using the above note, we conclude $c(\gamma f)=$ $c_{k}(\gamma f)=c_{k}(f)=c(f)$.

We are now ready to prove the main theorem. Just as the proof of Proposition 4.5 relied heavily on Proposition 3.5, the proof of this theorem will rely heavily on Proposition 4.5. Conclusion (i) is used for density. Conclusions (ii), (iii), and (iv) are used to get 2-colorings. While conclusions (v) and (vi) aid in achieving minimality, minimality is actually quite tedious to get, and it is the requirement of minimality which makes this proof so long.

THEOREM 4.6. Let G be a countably infinite group, $x \in 2^{G}$, and $\epsilon>0$. Then there is a perfect set of pairwise orthogonal minimal 2-colorings in the ϵ-ball about x.

Proof. Let $r \in \mathbb{N}$ be such that $2^{-r}<\epsilon$ and let $B_{1}=\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$ where g_{0}, g_{1}, \ldots is the fixed enumeration of G used in defining the metric d on 2^{G}. Choose any $a \neq b \in G-B_{1}$ and set $B_{2}=B_{1} \cup\{a, b\}$. Next chose any $c \in G-\left(B_{2} B_{2} \cup B_{2} B_{2}^{-1}\right)$ and set $B_{3}=B_{2} \cup\{c\}=$ $B_{1} \cup\{a, b, c\}$. Let $A=B_{3} B_{3}$ and define $R: A \rightarrow\{0,1\}$ by

$$
R(g)= \begin{cases}x(g) & \text { if } g \in B_{1} \\ x\left(1_{G}\right) & \text { if } g \in\{a, b, c\} \\ 1-x\left(1_{G}\right) & \text { if } g \in A-B_{3}\end{cases}
$$

We claim R is a locally recognizable function (it is clearly non-trivial). Towards a contradiction suppose there is $y \in 2^{G}$ extending R and $1_{G} \neq g \in A$ with $y(g h)=y(h)$ for all $h \in A$. In particular, $y(g)=y\left(1_{G}\right)=R\left(1_{G}\right)$ so $g \in B_{3}$. We first point out that at least one of a, b, or c is not an element of $g B_{3}$. We prove this by cases. Case $1: g \in B_{2}$. Then $c \notin g B_{2} \subseteq B_{2} B_{2}$ and $c \neq g c$ since $g \neq 1_{G}$. Thus $c \notin g B_{3}$. Case 2: $g \in B_{3}-B_{2}=\{c\}$. Then $g=c$. Since $c \notin B_{2} B_{2}^{-1}$, it must be that $a, b \notin c B_{2}$. If $a, b \in c B_{3}$ then we must have $a=c^{2}=b$, contradicting $a \neq b$. We conclude $\{a, b\} \not \subset c B_{3}=g B_{3}$.

The key point now is that $\{a, b, c\} \subseteq\left\{h \in A \mid y(h)=y\left(1_{G}\right)\right\} \subseteq B_{3}$ but $\{a, b, c\} \nsubseteq g B_{3} \subseteq$ A. Therefore

$$
\begin{aligned}
& \left|\left\{h \in B_{3} \mid y(g h)=y\left(1_{G}\right)\right\}\right|<\left|\left\{h \in A \mid y(h)=y\left(1_{G}\right)\right\}\right| \\
= & \left|\left\{h \in B_{3} \mid y(h)=y\left(1_{G}\right)\right\}\right|=\left|\left\{h \in B_{3} \mid y(g h)=y\left(1_{G}\right)\right\}\right| .
\end{aligned}
$$

This is clearly a contradiction.
For $n \geq 1$ and $k \in \mathbb{N}$ define $p_{n}(k)=4 k^{5}$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. Apply Lemma 4.3 to get a blueprint $\left(H_{n}, F_{n}, \Delta_{n}, \alpha_{n}, \beta_{n}\right)_{n \in \mathbb{N}}$ compatible with R and $\left(p_{n}\right)_{n \geq 1}$, and let $c \in 2^{<G}$ be as in the conclusion of Proposition 4.5.

For each $n \geq 1$ let Γ_{n} be the graph with vertex set Δ_{n} and edge relation given by

$$
(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow \gamma^{-1} \psi \in H_{n} H_{n}^{-1} H_{n}^{2} H_{n}^{-1} \text { or } \psi^{-1} \gamma \in H_{n} H_{n}^{-1} H_{n}^{2} H_{n}^{-1} .
$$

This graph is not to have loops, so $(\gamma, \gamma) \notin E\left(\Gamma_{n}\right)$.
We proceed to reveal an important property the graphs $\left(\Gamma_{n}\right)_{n \geq 1}$. Recalling that the sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ satisfied certain conditions, we calculate

$$
\begin{gathered}
H_{n} H_{n}^{-1} H_{n}^{2} H_{n}^{-1}=H_{n} H_{n}^{-1} H_{n} H_{n} H_{n}^{-1} \subseteq H_{n+1} H_{n} H_{n}^{-1} \\
\subseteq H_{n+1} H_{n+1} \subseteq H_{n+2} \subseteq H_{n+3}
\end{gathered}
$$

and

$$
\begin{aligned}
\left(H_{n} H_{n}^{-1} H_{n}^{2} H_{n}^{-1}\right)^{-1}= & H_{n} H_{n}^{-1} H_{n}^{-1} H_{n} H_{n}^{-1} \subseteq H_{n+1} H_{n}^{-1} H_{n+1}^{-1} H_{n} H_{n+1}^{-1} \\
& \subseteq H_{n+2} H_{n} H_{n+1}^{-1} \subseteq H_{n+3}
\end{aligned}
$$

Therefore if $(\gamma, \psi) \in E\left(\Gamma_{n}\right)$, then either $\gamma \in \psi H_{n+3}$ or $\psi \in \gamma H_{n+3}$. Since $H_{n+3} \cup H_{n+3}^{-1} \subseteq$ H_{n+4}, we have $(\gamma, \psi) \in E\left(\Gamma_{n}\right)$ implies $\gamma \in \psi H_{n+4}$ and $\psi \in \gamma H_{n+4}$.

Let $i \in \mathbb{N}, \sigma \in \Delta_{n+7+i}, \gamma \in \sigma F_{n+4+i}$, and suppose $(\gamma, \psi) \in E\left(\Gamma_{n}\right)$. Then

$$
\psi \in \Delta_{n} \cap \gamma H_{n+4} \subseteq \Delta_{n} \cap \sigma H_{n+4+i} H_{n+4} \subseteq \Delta_{n} \cap \sigma H_{n+5+i}
$$

and

$$
\psi F_{n} \subseteq \sigma H_{n+5+i} F_{n} \subseteq \sigma H_{n+5+i} H_{n} \subseteq \sigma H_{n+6+i}
$$

By conclusions (vi) and (viii) of Proposition 3.5 the ($\Delta_{n} \cap \sigma F_{n+7+i}$)-translates of F_{n} are maximally disjoint within σH_{n+6+i}. So $\psi F_{n} \cap\left(\Delta_{n} \cap \sigma F_{n+7+i}\right) F_{n} \neq \varnothing$. However, $\psi \in \Delta_{n}$ and the Δ_{n}-translates of F_{n} are disjoint. So we must have $\psi \in \sigma F_{n+7+i}$. We have demonstrated the following fact:

$$
\forall i \in \mathbb{N} \forall \sigma \in \Delta_{n+7+i}\left[(\gamma, \psi) \in E\left(\Gamma_{n}\right) \text { and } \gamma \in \sigma F_{n+4+i} \Longrightarrow \psi \in \sigma F_{n+7+i}\right]
$$

In particular, one important aspect of this conclusion is that if $\lambda \neq \sigma \in \Delta_{n+7+i}, \gamma \in \lambda F_{n+4+i}$, and $\psi \in \sigma F_{n+4+i}$ then $(\gamma, \psi) \notin E\left(\Gamma_{n}\right)$.

Fix $n \geq 1$. Define $m_{n}(k)=n+4+3 k$ for $k \in \mathbb{N}$. We will construct a sequence of functions $\left(\mu_{i}^{n}\right)_{i \geq 1}$ mapping into $\left\{0,1, \ldots, 2\left|H_{n}\right|^{5}\right\}$ satisfying for each $i \geq 1$:
(1) $\mu_{i+1}^{n} \supseteq \mu_{i}^{n}$;
(2) $\operatorname{dom}\left(\mu_{i}^{n}\right)=\Delta_{n} \cap\left(\bigcup_{0 \leq t<i} \Delta_{m(t+1)} F_{m(t)}\right)$;
(3) $(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Rightarrow \mu_{i}^{n}(\gamma) \neq \mu_{i}^{n}(\psi)$ whenever $\gamma, \psi \in \operatorname{dom}\left(\mu_{i}^{n}\right)$;
(4) $\mu_{i+1}^{n}(\gamma)=\mu_{i+1}^{n}(\sigma \gamma)$ for all $\sigma \in \Delta_{m(i+1)}$ and all $\gamma \in F_{m(i)} \cap \Delta_{n}$.

We begin by constructing μ_{1}^{n}. Since every vertex of Γ_{n} has degree at most $2\left|H_{n}\right|^{5}$, we can find a labeling of $F_{n+4} \cap \Delta_{n}$ using only the labels $\left\{0,1, \ldots, 2\left|H_{n}\right|^{5}\right\}$ such that two members are labeled differently if they are $E\left(\Gamma_{n}\right)$-adjacent. Note that it is a simple consequence of conclusion (viii) of Proposition 3.5 that for $\gamma, \psi \in F_{n+4} \cap \Delta_{n}$ and $\sigma \in \Delta_{n+7}$

$$
(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow(\sigma \gamma, \sigma \psi) \in E\left(\Gamma_{n}\right)
$$

We can therefore copy this labeling to every Δ_{n+7}-translate of $\Delta_{n} \cap F_{n+4}$ to get the function μ_{1}^{n}. Clearly properties (2) and (4) are satisfied. Property (3) also holds due to our earlier comment.

Now suppose μ_{i}^{n} has been constructed. Again we note that for $\sigma \in \Delta_{m(i+1)}$ and $\gamma, \psi \in$ $\Delta_{n} \cap F_{m(i)}$, conclusion (viii) of Proposition 3.5 gives $\sigma \gamma, \sigma \psi \in \Delta_{n}$. Therefore for every $\sigma \in \Delta_{m(i+1)}$

$$
(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow(\sigma \gamma, \sigma \psi) \in E\left(\Gamma_{n}\right)
$$

Let $\gamma \in \Delta_{n} \cap F_{m(i)}$ and let $\sigma \in \Delta_{m(i+1)}$. Then for every $0 \leq t<i$ we have

$$
\begin{aligned}
& \gamma \in \Delta_{m(t+1)} F_{m(t)} \Longleftrightarrow \gamma \in \Delta_{m(t+1)} F_{m(t)} \cap F_{m(i)} \\
& \Longleftrightarrow \sigma \gamma \in \sigma\left(\Delta_{m(t+1)} F_{m(t)} \cap F_{m(i)}\right) \\
& \Longleftrightarrow \sigma \gamma \in \Delta_{m(t+1)} F_{m(t)} \cap \sigma F_{m(i)} \Longleftrightarrow \sigma \gamma \in \Delta_{m(t+1)} F_{m(t)} .
\end{aligned}
$$

By (2) we conclude that $\gamma \in \operatorname{dom}\left(\mu_{i}^{n}\right)$ if and only if $\sigma \gamma \in \operatorname{dom}\left(\mu_{i}^{n}\right)$. Suppose it is the case that $\gamma \in \operatorname{dom}\left(\mu_{i}^{n}\right)$. Let $t<i$ and $\lambda \in \Delta_{m(t+1)}$ be such that $\gamma \in \lambda F_{m(t)}$. By conclusion (viii) of Proposition 3.5, there is $\psi \in \Delta_{n} \cap F_{m(t)}$ with $\gamma=\lambda \psi$. Since $\mu_{i}^{n} \supseteq \mu_{t+1}^{n}$, we have $\mu_{i}^{n}(\gamma)=\mu_{i}^{n}(\psi)$ by (4). By conclusion (viii) of Proposition 3.5, $\sigma \lambda \in \Delta_{m(t+1)}$. Therefore by (4) we have

$$
\mu_{i}^{n}(\sigma \gamma)=\mu_{i}^{n}(\sigma \lambda \psi)=\mu_{i}^{n}(\psi)=\mu_{i}^{n}(\lambda \psi)=\mu_{i}^{n}(\gamma)
$$

We have verified the three following facts for $\gamma, \psi \in F_{m(i)} \cap \Delta_{n}$:

$$
\begin{gathered}
(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow \forall \sigma \in \Delta_{m(i+1)}(\sigma \gamma, \sigma \psi) \in E\left(\Gamma_{n}\right) ; \\
\gamma \in \operatorname{dom}\left(\mu_{i}^{n}\right) \Longleftrightarrow \forall \sigma \in \Delta_{m(i+1)} \sigma \gamma \in \operatorname{dom}\left(\mu_{i}^{n}\right) ; \\
\gamma \in \operatorname{dom}\left(\mu_{i}^{n}\right) \Longrightarrow \forall \sigma \in \Delta_{m(i+1)} \mu_{i}^{n}(\sigma \gamma)=\mu_{i}^{n}(\gamma) .
\end{gathered}
$$

By (4) we can find a $\left\{0,1, \ldots, 2\left|H_{n}\right|^{5}\right\}$-labeling of $\Delta_{n} \cap F_{m(i)}$ which extends μ_{i}^{n} on $\operatorname{dom}\left(\mu_{i}^{n}\right) \cap F_{m(i)}$ with the property that if $(\gamma, \psi) \in E\left(\Gamma_{n}\right)$ then γ and ψ are labeled differently. We then copy this labeling to all $\Delta_{m(i+1)}$-translates of $F_{m(i)}$ and then union with μ_{i}^{n} to get μ_{i+1}^{n}. Properties (1) through (4) are then satisfied.

For $n \geq 1$ define $\mu^{n}=\bigcup_{i \geq 1} \mu_{i}^{n}$ and let $\left\{\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{s(n)}^{n}\right\}$ be an enumeration for Λ_{n}. Note that by (2) and conclusion (vii) of Proposition 3.5 we have $\operatorname{dom}\left(\mu^{n}\right)=\Delta_{n}$. For $i \geq 1$ define $B_{i}: \mathbb{N} \rightarrow\{0,1\}$ to be such that $B_{i}(k)$ is the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geq 2^{i-1}$ and $B_{i}(k)=0$ when $k<2^{i-1}$. Now for $\tau \in 2^{\omega}$ (Cantor space) we let $c_{\tau} \in 2^{G}$ be such that $c_{\tau} \supseteq c$ and satisfies

$$
\begin{gathered}
c_{\tau}\left(\gamma \lambda_{i}^{n} b_{n-1}\right)=B_{i}\left(\mu^{n}(\gamma)\right) \text { and } \\
c_{\tau}\left(\gamma \lambda_{s(n)}^{n} b_{n-1}\right)=\tau(n-1)
\end{gathered}
$$

for $n \geq 1, \gamma \in \Delta_{n}$, and $1 \leq i<s(n)$. As each $c_{\tau} \supseteq c$, it follows from conclusion (i) of Proposition 4.5 and our choice of R that $d\left(c_{\tau}, x\right)<2^{-r}<\epsilon$. Also, since the map $\tau \mapsto c_{\tau}$ is continuous and one-to-one $\left\{c_{\tau} \mid \tau \in 2^{\omega}\right\}$ is a perfect subset of 2^{G}.

Fix $\tau \in 2^{\omega}$. We will first show c_{τ} is a 2 -coloring. Note that since $\left|\Lambda_{n}\right|>\log _{2} p_{n}\left(\left|H_{n}\right|\right)$ we have

$$
s(n)>\log _{2}\left(4\left|H_{n}\right|^{5}\right)
$$

So all numbers 0 through $2\left|H_{n}\right|^{5}$ can be represented in binary using $s(n)-1$ digits. Therefore if $\mu^{n}(\gamma) \neq \mu^{n}(\psi)$ then there is $1 \leq i<s(n)$ with $c_{\tau}\left(\gamma \lambda_{i}^{n} b_{n-1}\right) \neq c_{\tau}\left(\psi \lambda_{i}^{n} b_{n-1}\right)$.

Let $1_{G} \neq s \in G$. Since $\bigcup_{n \geq 1} H_{n}=G$, we may let $n \geq 1$ be least such that $s \in H_{n}$. Set $T=F_{n} F_{n}^{-1} F_{n}$, and let $g \in G$ be arbitrary. Since the Δ_{n}-translates of F_{n} are maximally disjoint within G, there is $\gamma \in \Delta_{n}$ with $\gamma F_{n} \cap g F_{n} \neq \varnothing$. So there is $f \in F_{n} F_{n}^{-1}$ with $g f=\gamma \in \Delta_{n}$. We proceed by cases.

Case 1: gsf $\notin \Delta_{n}$. Let $V \subseteq F_{n-1} \cap \operatorname{dom}(c)$ be the test region for the extension invariant Δ_{n} membership test admitted by c. Since $c_{\tau} \supseteq c, g f \in \Delta_{n}$, and $g s f \notin \Delta_{n}$, there is $v \in V$ such that $c_{\tau}(g f v) \neq c_{\tau}(g s f v)$. This completes this case since $f v \in T$.

Case 2: $g s f \in \Delta_{n}$. Then

$$
(g f)^{-1}(g s f)=f^{-1} s f \in F_{n} F_{n}^{-1} H_{n} F_{n} F_{n}^{-1} \subseteq H_{n} H_{n}^{-1} H_{n}^{2} H_{n}^{-1}
$$

since $F_{n} \subseteq H_{n}$. Thus $(g f, g s f) \in E\left(\Gamma_{n}\right)$ so $\mu^{n}(g f) \neq \mu^{n}(g s f)$. Consequently, there is $1 \leq$ $i<s(n)$ with $c_{\tau}\left(g f \lambda_{i}^{n} b_{n-1}\right) \neq c_{\tau}\left(g s f \lambda_{i}^{n} b_{n-1}\right)$. This completes this case since $f \lambda_{i}^{n} b_{n-1} \in T$. We conclude c_{τ} is a 2 -coloring.

Now suppose $\tau \neq \sigma \in 2^{G}$, and let $n \geq 1$ satisfy $\tau(n-1) \neq \sigma(n-1)$. We will show c_{τ} and c_{σ} are orthogonal. Let $T=F_{n} F_{n}^{-1} F_{n}$ and let $g_{1}, g_{2} \in G$ be arbitrary. Then there is $f \in F_{n} F_{n}^{-1}$ with $g_{1} f \in \Delta_{n}$. We proceed by cases.

Case 1: $g_{2} f \notin \Delta_{n}$. Let $V \subseteq F_{n-1}$ be the test region for the extension invariant Δ_{n} membership test admitted by c. Since $g_{1} f \in \Delta_{n}$ and $g_{2} f \notin \Delta_{n}$, there is $v \in V$ with $c_{\tau}\left(g_{1} f v\right) \neq c_{\sigma}\left(g_{2} f v\right)$.

Case 2: $g_{2} f \in \Delta_{n}$. Then $c_{\tau}\left(g_{1} f \lambda_{s(n)}^{n} b_{n-1}\right)=\tau(n-1) \neq \sigma(n-1)=c_{\sigma}\left(g_{2} f \lambda_{s(n)}^{n} b_{n-1}\right)$. We conclude c_{τ} and c_{σ} are orthogonal.

Fix $\tau \in 2^{\omega}$. All that is left is to show that c_{τ} is minimal. Fix $n \geq 1$. We will show that $c_{\tau}(\gamma h)=c(h)$ for all $\gamma \in \Delta_{n+13}$ and all $h \in H_{n}$. Let $1 \leq k \leq n$ and let $\psi \in \Delta_{k} \cap F_{n+3}$. Then there is $m \in \mathbb{N}$ with $n+7 \leq k+4+3 m<n+10$, and we know that $\mu^{k}(\psi)=\mu^{k}(\sigma \psi)$ for all $\sigma \in \Delta_{k+4+3 m+3} \supseteq \Delta_{n+13}$. Therefore we have

$$
g \in(G-\operatorname{dom}(c)) \cap F_{n+3} \text { and } \sigma \in \Delta_{n+13} \Longrightarrow c_{\tau}(g)=c_{\tau}(\sigma g) .
$$

When we combine this with conclusion (vi) of Proposition 4.5 we find that $c_{\tau}(g)=c_{\tau}(\sigma g)$ for all $g \in F_{n+3}-\left\{a_{n+3}, b_{n+3}\right\}$ and all $\sigma \in \Delta_{n+13}$. Since $F_{n+2} \subseteq F_{n+3}-\left\{a_{n+3}, b_{n+3}\right\}$, we have $c_{\tau}(g)=c_{\tau}(\sigma g)$ for all $g \in F_{n+2}$ and all $\sigma \in \Delta_{n+13}$.

Let $h \in H_{n}-F_{n+2}$. It is enough to show that $\Delta_{n+13} h \cap \Delta_{1} F_{1}=\varnothing$. It will follow from conclusion (v) of Proposition 4.5 that $c(h)=c(\sigma h)$ for all $\sigma \in \Delta_{n+13}$. Towards a contradiction suppose $\sigma h \in \Delta_{1} F_{1}$ for some $\sigma \in \Delta_{n+13}$. Let $\psi \in \Delta_{1}$ be such that $\sigma h \in \psi F_{1}$. Note $\psi F_{1} \subseteq \sigma h F_{1}^{-1} F_{1} \subseteq \sigma H_{n} H_{2} \subseteq \sigma H_{n+1}$. By conclusions (vi) and (viii) of Proposition 3.5 , the $\Delta_{1} \cap \sigma F_{n+2}$-translates of F_{1} are maximally disjoint within σH_{n+1}. So $\psi F_{1} \cap\left(\Delta_{1} \cap\right.$ $\left.\sigma F_{n+2}\right) F_{1} \neq \varnothing$. Since $\psi \in \Delta_{1}$ and the Δ_{1}-translates of F_{1} are disjoint, we must have $\psi \in \Delta_{1} \cap \sigma F_{n+2}$. Consequently,

$$
\sigma h \in \psi F_{1} \subseteq\left(\Delta_{1} \cap \sigma F_{n+2}\right) F_{1}=\Delta_{1} F_{1} \cap \sigma F_{n+2} \subseteq \sigma F_{n+2}
$$

This implies $h \in F_{n+2}$, a contradiction. Thus $\Delta_{n+13} h \cap \Delta_{1} F_{1}=\varnothing$. We conclude $c_{\tau}(\sigma h)=$ $c_{\tau}(h)$ for all $h \in H_{n}$ and all $\sigma \in \Delta_{n+13}$.

Now let $B \subseteq G$ be finite. Let $n \geq 1$ be such that $B \subseteq H_{n}$. Set $T=F_{n+13} F_{n+13}^{-1}$, and let $g \in G$ be arbitrary. Clearly there is $t \in T$ with $g t \in \Delta_{n+13}$ and hence $c_{\tau}(g t b)=c_{\tau}(b)$ for all $b \in B$. We conclude c_{τ} is minimal.

The interested reader should consult [3] for an extensive generalization of these methods and for further study of 2^{G}. In particular, each of the methods used in this last proof are isolated and presented in a more abstract setting in [3].

BIBLIOGRAPHY

[1] A. Dranishnikov and V. Schroeder, Aperiodic colorings and tilings of Coxeter groups, Groups Geom. Dyn. 1 (2007), 311-328.
[2] Su Gao, Steve Jackson, and Brandon Seward, A coloring property for countable groups, Math. Proc. Cambridge Philos. Soc., to appear.
[3] _--------, Group colorings and Bernoulli subflows, tentative title, in preparation, http://www.math.unt.edu/~sgao.
[4] Eli Glasner and Vladimir Uspenskij, Effective minimal subflows of Bernoulli flows, Proc. Amer. Math. Soc., to appear.
[5] Gustav A. Hedlund and Marston Morse, Symbolic dynamics, Amer. J. Math. 60 (1938), no. 42, 815-866.

