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MESON IC EFFECTS IN NUCLEAR PHYSICS

by

Mikkcl Johnson
University of California

Los Alamos Scientific Laboratory

I. INTRODUCTION

The theme of this series of five lectures will be the relationship between

mesons and nucleons and the properties of nuclear matter, as we understand these

things today. The lectures unfortunately cannot be comprehensive because of the

limitations of time and the great body of literature falling within this general

subject area. Although the topic is difficult because of the enormity of its

scope, nuclear physics becomes simpler by virtue of the unification afforded by

the description in terms of mesons. One thus naturally finds a few ideas domi-

nating many different phenomena. For example, the A,, pion-nucleon resonance

plays a prominent role not only in pion-nucleon scattering but also in the theo-

retical description of the nucleon-nucleon interaction; these two fundamental

interactions in turn play a decisive role in all aspects of the physics of nucle-

ar matter at low density, i.e., normal nuclei, and at high density, e.g., neutron

stars. L i kcv.1 i c c, there ere o few mathematical tools which are useful tlii'ougiiou L

nuclear physics for developing physical intuition into definite predictions. The

computer is one trivial example, familiar to everybody, but another which should

be equally as familiar, but unfortunately isn't, is a knowledge of Feynman dia-

grams. In this series of lectures I shall try to emphasize the common ideas and

methods rather than the diversity inherent in this topic.

I should begin by saying that the fundamental strongly interacting fields

are believed to be quarks and gluons', described by the theory quantum chromo-

dynamics, 0.CD. Thus, I will not be discussing a truly fundamental theory. How-

ever, for low and intermediate energy physics the mesons and baryons are presum-

ably more useful than quarks, because quarks like to lump together into the meson

and nucleon "collective coordinates." The low-lying meson and baryon states of

relevance to this set of lectures are shown in Table I, along with their spins

1
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and parities. The MIT bag mode) does a fairly good job in reproducing these re-

sults from the point of view of QCD, except the IT meson. The working hypothesis

is that the meson and baryon states observed in isolation are also the relevant

coordinates inside nuclei and, thus, what nuclear physics needs in order to pro-

ceed is a table such as the one below of the properties of the mesons and baryons

in isolation, and in addition a table showing how these mesons and baryons inter-

act. A partial list of interactions is presented in Table II. The general form

of the coupling for a given rneson-baryon interaction may be deduced from the

spin, isospin, and parity of the particles involved, the requirement being that

the interaction be a scalar. Sometimes several types of coupling may be involved,

for example, the vector mesons have a so-called vector and tensor coupling

allowed, and two independent coupling constants must be specified. The theory

of quarks provides a scheme for relating the couplings of the mesons and baryons

in terms of just a few numbers, and one uses this theory when the relevant ex-

perimental d.jta are not available. Often it is necessary to introduce a form

factor, or high momentum cutoff, into the theory in order to get finite answers;

if one were able to work entirely within the framework of QCD this would be un-

necessary, however, because Q.CD is renormal izable.

From the point of view of these lectures, we shall assume that mesons and

nucleons are the fundamental degrees of freedom and that the interaction shown

in Table II is the fundamental interaction. From the point of view of modern

particle physics, mesons and nucleons span a model space in the full quantum mech-

anical Hilbert space, and their interaction expressed in Table II is an effective

interaction (or at least a piece of the effective interaction) in this model

space. One goal of theory is to make rigorous the connection between the des-

cription in terms of quarks and gluons on the one hand and mesons and baryons on

the other, or at least to define the shortcomings of the latter description.

Traditional nuclear physics has not developed within the framework of meson

physics; after all the pion wasn't discovered unf.il 19^7, many years after nucle-

ar physics had become an established discipline. We find, rather, that nuclear

physics has developed (rather successfully) from static, phenomenological poten-

tial models. The large measure of success of this approach is presumably due to

the fact that the energy required to create a meson or heavy baryon is so much

greater than typical nuclear excitation energies, that these particles have only
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TABLE I COUPLINGS OF r.LSCNS AtO N U C L E I ('iO:i-R£LAT IVI

A PARTIAL LIST OF THE LICHT HESONS AND 8ARY0NS f iU l tUs toujij.ic2_rorn Cow II™

A. HtMas Wats (HeV) Spin Isospin Parity

»*,"°.«" t*(H0) *°U35) 0 I
TI° $kS 0 0 * "

u 783 1 0 -

I . Baryons

n.p 940 1/2 1/2 •>

A I:16 1/2 0 *

I*.!0,!" 1193 1/2 1 •

A**.A<1,AO,A" 1232 3/2 3/2 •

a short "virtual" existence in low energy nuclear physics. The time At that

these objects exist is limited by the uncertainty principle. For example, if a

meson of mass m is created by a nucleon in the nuclear ground state, it will stay

around for a time

which is exceedingly short. For a 'rr-meson

A I = 6 . 6 x l 0 - 2 2 M e V - s = i < - 7 x l 0 - 2 S

71 "V 1.4 x 102 MeV

The 7r-meson can't do much in this time; it may influence another nucleon within

a distance

At • c « 1.4 fm (3)

but this distance is not especially large considering that the average spacing

between nucleons in the nucleus is

1/3

= 1.8 fm (4)

The conclusion is that the space-time dependence of the meson fields is so re-

stricted that these fields do not need to be given explicit roles in theories of

nuclear structure. This observation gives support to the idea that potential

theory is an adequate framework for describing low-energy nuclear physics. How-

ever, one should not be satisfied with a purely phenomenological approach through

potentials; one should strive to build the potential theory as much as possible

on the ideas of more fundamental approaches. Later in this first lecture I shall

indicate how to build systematically a potential theory equivalent to a more



fundamental meson exchange description. In this sense, a potential theory will

include not only two-body potentials but also three- and higher-body contributions

One hopes not only to learn how to explain the properties of complex nuclear

systems in terms of fundamental theories but also to learn about fundamental the-

ories from measurements on nuclei. However, the success of the potential descrip-

tion in nuclear physics means that it is hard to learn about meson-baryon inter-

actions by studying low-energy nuclear physics. Nevertheless, this is an impor-

tant and active area of nuclear physics today. The approach which one must take

is the following (a) a good potential must be chosen; it must reproduce the prop-

erties of the deuteron and nucleon-nucleon scattering phase shifts up to an

energy comparable to the meson production threshold; (b) the many-body theory of

A interacting nucleons must be solved using this interaction; (c) discrepancies

between theory and experiment must be sought. If a discrepancy is found it may

be related to an inadequacy in the theory which can be remedied by more careful

attention to the underlying meson-baryon interaction. This is the nature of much

theoretical work today. Clearly, this procedure is most likely to pay dividends

first in the two- and three-body systems where the nuclear many-body physics is

essentially exactly solvable. Here there is an enormous accumulation of evidence,

mostly dealing with exchange current corrections, i.e., corrections to transition

operators for example, in the reaction

n + p -* d + y (5)

which can not be explained without the assumption of intermediate mesonic and

heavy baryonic states. The situation here has been recently reviewed in Ref. k.

Low energy properties of heavy nuclei will begin to teach about meson de-

grees of freedom when reliable many-body theories become available. In the

study of large nuclear systems, the most important theoretical problem presently

is to understand the interplay between the nucleon-nucleon interaction and the

bulk properties of nuclear matter. The finite size of nuclei is actually a com-

plication, and the most popular system to study is the idealization of nuclear

matte.. Used in this context, nuclear matter is an infinite, uniform system of

neutrons and protons of densities p and p which interact in some prescribed way.

The Coulomb interaction must of course be turned off. The properties of such a

system may be deduced from experiments on ordinary nuclei. Some of these proper-

ties are shown in Table III. The central density of nuclei can be determined



from electron scattering; as is well-known, nuclear matter saturates, i.e., the

maximum density in a nucleus is roughly the same in all heavy nuclei. The

binding energy per nucleon of 15.68 MeV may be deduced from the semi-empirical

mass formula,

E = (M-ZM - NM )c 2

P n

= - 15.68A + 18.56A2/3 + 0.717 z V 1 / 3 (1 - i'.69A~2/3)

+ 28.1 (N - Z) 2 A"1 (1 - 1.18A' I / 3 )

+ paring + shel l e f f ec t s , (6)

which separates the bulk propert ies o f the nucleus from the surface, Coulomb,

s h e l l , and pa i r ing e f f ec t s . The symmetry energy of 28.1 MeV is also shown in

the tab le ; i t is repulsive which means the lowest energy s ta ts contains equal

numbers of neutrons and protons. I f nuclear matter is subje-ted to pressure the

energy per pa r t i c l e changes, g iv ing a curve which presumably looks l i k e F ig . 1.

The propert ies shown in Table M l are propert ies at the minimum of the curve.

There is an addi t ional important parameter of th is minimum, namely the curvature,

related to the incompressibi1ity K,

v - L- 2dk2
( f 7T2 k3) (7)

The incompressibi1ity is related to a collective mode of the nucleus, the so-

called giant monopole "breathing mode," and recently, after years of searching,

this mode has been seen experimentally. One deduces the value of 210 MeV from

these experiments.

T A B L E I I I

EMPIRICAL PROPERTIES OF NUCLEAR HATTER, Pn - Pp

Central Density 0.17 fin Electron Scattering

E/A -15.68 HeV i Semi-emplrica!

Symmetry energy 28.) HeV 'mass formula

Incompressibility 210*30 HeV Breathing mode

_ o
>

tu
-15.68-

0.17

Fig. 1. Equation of state of nuclear
matter, pn = pp. The equation
of state at high density is
not well understood and is
therefore dashed.



There are two principal theories for studying the properties of nuclear

matter: the Bruecknei—Bethe method and the variational method. The Brueckner-

Bethe theory has met with some successes and is presumably the best method of

dealing with the properties of nuclear matter at and near normal nuclear density,

but recently this position has been challenged by the proponents of the varia-

tional theory. The situation is in a state of flux today, and one may expect

that before long improved methods and a deeper understanding of the interaction

among nucleons embedded in a medium will emerge. I have great hopes that the

resolution of the present mysteries will greatly enhance the appreciation of the

role of mesonic degrees of freedom in nuclei. I will, therefore, devote several

lectures to the current status of nuclear matter theory. A third approach should

also be mentioned, the so-called exp S method. This method has so far been

applied only to finite nuclei, but it is a powerful many-body method. I shall

not discuss this in these lectures.

Beyond nuclear matter lies finite nuclei, and nuclear matter methods have

been applied quite successfully to develop theories of the.structure of finite

nuclei in a semi-phenomenological manner. Predictions for finite nuclei would

of course provide a much more stringent test of the underlying ideas than the

predictions for infinite nuclear matter. This aspect of the physics will be

covered by Don Sprung in his lectures. Nuclear matter methods have also been
o

applied to determine nucleon-nucleus optical potentials, with interesting

results.

Another way to learn about the meson-baryon interactions is to study nuclear

matter under unusual conditions. For example, neutron stars hold out the pos-

sibility for learning about nuclear matter at high density. Unfortunately, it

is difficult to study the properties of neutron stars, but there is a slow

accumulation of data and the emerging profile may be seen in Table IV. Heavy ion

collisions also provide a means of studying nuclear matter under unusual condi-

tions, high temperature and density. Theoretical studies of high density systems

have led to the unexpected possibility of pion condensation and the Lee-Wick

abnormal state. Some of the conjectured phases of high density nuclear matter

are listed in Table V. I will have more to say about some aspects of high den-

sity matter in the last lecture.



TABLE V
TABLE IV

NEUTRON STARS P H A S E S 0 F N U C L E A R

Densi ty ffm 3 ) Phase Const i tuents System

, * A * « ,. , u »>« „ „ • „ i ° ' * ' = Prt l i qu id neutrons, protons Isolated nuclei
Mass 1.3 ± 0.2 Solar Masses (G) Her X - l , Vela °

LA 2 'P r t l iqu id nucleons, v neutron stars
I 8.6 x 10 gm-cm Crab °
* heavy Ions

R 7-7 J 2 km Flares from var ie ty of
compact x-ray sources 5 p

o
 1 ' c ' u l d nucleons, A neutron stars

(sol Id) hyperons, v

Gordon Baym, pr i vate conmuntcat ion. quark matter

There have been many attempts to study nuclear systems di rectly in terms of

meson theory. This approach is notoriously difficult, but within the last few

years there have been several moderately successful explanations of nucleon-

nucleon scattering in terms of meson theory. ' There have also been some

attempts to describe large nuclear systems directly in terms of mesons and nucle-

ons in the mean field approximation. ' These theories have been remarkably

successful in reproducing properties of nuclei and nuclear matter where the coup-

ling constants and/or masses of the mesons are suitably adjusted. However, it is

yet to be demonstrated that a meson theoretical model which reproduces the nucle-

ar properties in the mean field approximation is also capable of reproducing

nucleon-nucleon scattering. Experience with potentials has shown that the meson-

nucleon couplings necessary to reproduce nucleon-nucleon scattering induce strong

correlations among nucleons, which are neglected in the mean field approximation.

It is my own feeling that a quantitative theory of nuclear structure would be too

awkward formulated directly in terms of the meson and nucleon fields; practical

considerations seem to force one to a potential theory description.

Meson factories clearly provide a rich source of information about the prop-

erties of meson degrees of freedom in nuclei. At these laboratories, energies

and intensities of beams are sufficient to study in detail the production of

pions and A resonances. As these channels open, the justification of treating

the interaction between nucleons as potentials begins to break down, and the

availability of this data will force theoretical descriptions which take the

meson and baryon degrees of freedom more explicitly into account. Here we stand

to learn an enormous amount about mesonic degrees of freedom in nuclear systems.

The availability of pion beams provides the possibility of examining in detail

how the pion interacts in a nuclear environment. There are a great deal of new

and poorly understood effects which come into play in these experiments. These



reactions not only hold intrinsic interest, but an understanding of them will

help pave the way for using pion beams as a tool to study the structure of a

nuclei.

I I . FEYNMAN DIAGRAMS

The most convenient language for expressing nuclear physics with mesons

and nucleons is the language of Feynman diagrams. I will use this language

throughout these lectures and it is therefore appropriate to review it. I don't

want to derive rules because everybody here has seen this before, but rather to

state the results which will be used time and again. An excellent introduction

can be found in Ref. 16.

Let me begin by pointing out that a Feynman diagram is a term in the matrix

element of the time-evolution operator U(t,t'), which takes the solution of

the time-dependent Schroedinger equation |ijj(t)> from time t1 to time t, i.e.,

|*(t)> = U(t.t') |ip(t')> (8)

where

f = H |«Ht)> O)

We may be describing by H a particle interacting with a potential, a collection

of nucleons interacting through nucieon-nucleon potentials, or a collection of

nucleons emitting and absorbing mesons. In all these cases H will have a kinetic

energy and interaction energy piece

H = T + H, (10)

It is convenient to express T and H. in terms of creation and annihilation opera-

tors. A collection of nonrelativistic nucleons will have kinetic energy

where a, and a respectively destroy and create nucleons of momentum k. The
K K

nucleon-nucleon potential is expressed as

-I 2 a,, a,, < k' k' |V|k_k > a a,
k'k1 1 9 ~\ ~*2 ^1~Z k« J5]

k,ko



where k's stand for a complete set of quantum numbers (momentum, spin, isospin)

We may represent the matrix elements of potentials as pictures

<kjk^|v|k]k2> = \ / ; (13)

potentials may be thought of as inducing a transition from state (k.,k2) to

state (k!, k') . In a meson-nucleon system we have

where now b creates a meson. Here A may be represented as

(15)

~2

Non-relativistic limits for the quantities A were given in Table II.

Now, the point is that the amplitude for a system to make a transition from

state |k.,k ...k.> at time t to state |kj,k'...k'> at time t 1, i.e.,

<kj,k2 k^|U (t'.t) |k,.k2,...,kA> (16)

is the coherent sum of all possible histories, where a history is illustrated in

Fig. 2. Each nucleon gets its own line, with an arrow going up (the direction

of flow of time) and a label to designate the single particle energy and quantum

numbers. Each interaction is labeled by the time at which it occurs. This is a

Feynman diagram; it represents an algebraic expression and is evaluated as fol-

lows:

(1) each dashed line gets a matrix element of the potential, as (17a)

described above,

(2) each solid line segment gets the value

t1

a = e"
iEaAt e(t'-t) • (17b)

t



where E is the energy of a nucleon in state a and At is the time-difference

at the ends of the line evaluated in the direction of the arrow. All possible

diagrams consisting of A nucleon lines connected in all possible ways by poten-

tial interactions are allowed. Each distinct topology is counted once and only

once. One then sums over intermediate energies and integrates over times with

(-i) dt. Since each propagator carries a 8-function to maintain proper time-

ordering, the limit on the t ime- i ntegrat ions is + °°, - °°.

The sum over all topologies gives the matrix element in Eq. (16). In addi-

tion, one must multiply by a factor (-) , where A is the number of exchanges

necessary to bring the initial or final state to some standard order; this takes

care of the antisymmetrization of the nuclear states. As long as the initial

(or final) state is antisymmetrized, it is unnecessary to pay explicit attention

to the Pauli principle in intermediate states.

One may easily check that diagrams which violate the exclusion principle

cancel in pairs when the initial or final state is antisymmetrized. For example,

suppose k" = k, in Fig. 2. This term then violates the Pauli exclusion prin-

ciple. To find the term which cancels it, simply "cross" the lines which carry

the same label, as in Fig. 3- When the lines are straightened out it is clear

that the result is a simple permutation of the initial state lines labeled k_,

k, and k, ; otherwise Fig. 3 has the same value as Fig. 2. Since 3 exchanges are

necessary to bring the labels to standard order this diagram has a factor

- = (-) and cancels the Pauli violating piece of Fig. 3.

Essentially the same rules apply if the system consists of nucleons inter-

acting with a meson field. (Let's not worry about anti-nucleons for now.) An

example is shown in Fig. k. In this description each meson is treated as a

separate particle with a propagator of its own.

e(t'2-t2) (17c)

where the factor (2^) is a wave-function normalization for bosons and is

convenient to include in the propagator. Now we have also to consider anti-
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mesons and so each meson a also occurs with its line propagating backwards in

time as wel1,

e-!(-u k)At
0(t.'-tJ. (17d)

2u, ' 2 2

At is still counted in the direction of the arrow, but now its energy in the

propagator is -w, : this is Feynman's interpretation of antiparticles as particles

traveling backward in time with negative energy.

It is a simple exercise to show that these rules give the more usual expres-

sion for a Feynman propagator for a TT meson. First note that

which may be verified by contour integration. Thus

k

= 2? J
-oo

d wJ Vrr
-oo (j -q -y +i

The complete relativistic Feynman propagator for a IT meson is, in more standard

notat ion

-f h ip-Ax

"H VT~ (20)
(2TT) p -y +in

where now p is a ^-momentum. In the rules described we have already integrated

over the positions of the nucleons x; this gave rise to the conservation of mo-

mentum delta functions which have been included explicitly in the expressions for

and (21)

11



Fig. 2. A Feynman diagram for a six-
particle system.

k'.i. k'
-1'

• t

Fig. h. Interacting mesons and nucle-
ons.

k ' k' k'

M'

k3 k4 k5 k6

Fig. 3. Illustrating the Pauli exclusion principle for intermediate states.
When k£ = k^ in Fig. 2, the diagram shown here cancels against the
diagram in Fig. 2.

12



Now a set of definite rules has been given for calculating the time-evolu-

tion operator U(t,t'). Of what value is this? As one example, the scattering

amplitude of two particles is given by a matrix element of

<4>f (+<*>) |U(+
o:>,-00) |<j>. (-•»)> (22)

where |<|>(t)> = e ' ° |k. k«> is the initial and final unperturbed state of the sys-

tem. Thus, scattering problems may be studied in this formulation. Also, ground

state properties of nuclei and nuclear matter may be studied in terms of the

time-evolution operator, as we shall see below in Chapter VI.

III. MESON THEORETICAL NUCLEON-NUCLEON INTERACTIONS

A. What is a Potential?

As I have remarked, nuclear physics has been carried out traditionally in

terms of potentials. One reason for this is that the language of potentials is

very convenient for discussing nuclear systems. As I will use this language

throughout these lectures, it is necessary to explain what a potential is, and

to try to dispel any preconception you may have that the potential description

is intrinsically incompatible with an underlying meson theory description.

A potential is an instantaneous interaction, meaning that it acts at a time

t. In a time-independent description, this means that potentials do not depend

on the total incident energy of the system. Furthermore, potentials are Hermi-

tian operators if they are to describe elastic scattering below meson production

threshold. Nonlocality is different from energy-dependence, and is acceptable

for potentials; a nonlocal potential depends on both the coordinates and momenta

of the interacting nucleons. If a potential theory is to be equivalent to a meson

theory then the potential must necessarily have components of n-body character.

Basic observables, such as r, p, etc., must also be modified. (Modifications of

observables are often called exchange currents.)

Meson exchange interactions, on the other hand, are retarded interactions,

because the mesons are exchanged over an extended interval of time. In Fig. 5

we see the meson being emitted at time t, and absorbed at a later time t_. How

can a quantity which occurs at one time possibly account for time-delayed meson

exchanges? The answer is that if the mesons are emitted and absorbed over a

sufficiently narrow interval of time, AT, then the potential may be reasonably

equated to the time-average over AT of the meson exchange it is to represent.

13



If AT is sufficiently small, then the

difference between the time-averaged

interaction and the fully retarded in-

teraction will be small and can be tak-

en into account as a perturbation in

higher order. A systematic way of

replacing time-delayed interactions by

instantaneous interactions was first

worked out in the theory of effective

interactions for bound states; it is
19

Fig. 5- Illustrating the difference
between a potential and a mes-
on exchange interaction.

known as the method of folded Feynman diagrams.

I next want to show how the method of folded diagrams applies to the one-

meson exchange contribution in the potential. The theory is worked out in de-

tail for the two-meson exchange contribution and for corrections to other ob-

servables in Ref. 20. This application will serve two purposes. For one, it

will illustrate an application of the Feynman diagram rules given in the pre-

ceeding discussion; secondly it will lay a solid foundation for the discussion

of the nucleon-nucleon interaction which comes next.

Consider the meson exchanges shown in Fig. 6. The left-hand side shows a

contribution to the scattering amplitude for two nucleons in a meson theory des-

cription. To sum together all the relevant contributions requires a solution of

the Bethe-Salpeter equation, which is an exceedingly difficult task. The

right hand side shows a contribution to the same process in a potential theory

description. To sum together all relevant contributions in this theory requires

a solution of the Schroedinger equation, which is, by comparison, a trivial task.

When three nucleons interact, there is no known equation of which I am aware to

account for the meson theory, but in potential theory there is the Faddeev

approach, which is now standard. The point is that potentials are not only a

convenient language for discussion, but are also of eminent practical value.

The discussion in Terms of Fig. 6 helps to motivate a definition for the

contribution to the potential from the exchange of a single meson; we would like

to define this contribution so that each diagram in the meson exchange descrip-

tion is equal to a term in the potential description, and vice versa. If such a

procedure is to make sense, then it must not only be true for the entire diagram

but also for the individual pieces. We thus isolate the pieces of Fig. 6 and



Fig. 6. A process contributing to the
scattering of two nucleons,
drawn in terms of meson theory
and potential theory.

P2 p; p;

ft\

Fig. 7. Definition of contribution (i)
to the one-meson exchange po-
tential. The complete poten-
tial is a sum over all contri
butions (i). Each relative
time difference tj-t£ is
counted as a separate contri-
but ion.

equate the meson exchange and potential pieces, as in Fig. 7. To solve this

equation for the potential, we have to come to grips with an ambiguity associated

with when the equivalent potential is to act with respect to times

us leave this arbitrary for now and set

and t,,. Let

(23)

For example, when X=0 the time t is located midway between the vertices and

when X= ±1 it passes through one or the other. We want now to remove the

nucleon propagators from the right-hand side; what is left is the potential. To

remove the nucleon propagator in the upper right-hand side, e 2 ' ° , simply

divide the right-hand side by this factor. To preserve the equality the left-

hand side must also be divided by the same factor. But

-IE' U,-t o) -IEJ (to-t,)
1/e = e (24)

which may be represented diagrammatically as a line pointing from tj to t Q. All

propagators may be treated in this fashion. Thus, the result of dividing out the

nucleon propagators on the right-hand side may be represented diagrammatically as

Fig. 8a. But this figure may be simplified, because equal length segments of

lines with oppositly directed arrows and the same state labels cancel, e.g.,

15



(a)

/p.

(b)

Fig. 8. The result of removing the nucleon propagators from the right-hand side
of Fig. 7. When equal segments of lines are canceled as in (a) as dis-
cussed in the text, the result is (b) .

a

= e x e (25)

The result is shown in Fig. 8b. This equation gives the potential corresponding

to the meson exchange shown. However, for t (A) given by Eq. (23), many dif-

ferent time extensions of duration T,

T E t,-t2 (26)

are possible, each of which may contribute to the potential. To get the com-

plete potential we must sum over all contributions which means integrating over T.

Let us now evaluate Fig. 8b. For the moment we omit the contributions of

the vertices. The propagators for the external legs contribute,

iE'(t -t.) -?E,(to-t.J -lEi(t-tJ-»E,<t,-to)
e e (27)

and the propagator for the meson contributes

2TT J

-iu(tj-t2)

dli)
2 2 2
-q -y

(28)

Expressing the time-differences in terms of T we find

t,-tQ = (l-X)T/2

t2-tQ = (1+XJT/2 (29)

16



Furthermore, defining AE = E - E. , so

AE, = Ej-E,

AE 2 = E^-E2 (30)

we find for the propagator contribution

X» , -iT[w-AE.(l-X)/2+AE,(l+A)k]

W I ^ 2 2 2 . e (31)

-•fc OJ -q -y +in
Now, integrating this by -idT we clearly get a delta-function from

/ d T e" i T A = 2TT6(A) (32)

which then permits the integral over u> to be done at once, to give

V * ]- = =—r- (33)

Now, we see that the potential depends explicitly on the parameter A! What do

we do? Well, the simplest thing is to average over A, so

/ /
/ -1

V % J dA f(A) ' 5 x — ^ / / dA f(A) (34)
-1 [AE,(l-A)-AE2(l+X)]

Z/4- qZ-yZ /

How do we choose f(A)? There is nothing to tell us how to choose f(A) . The

physics here should be clear from the way the problem was set up. The under-

lying interaction is time-delayed and therefore the potential, which is instan-

taneous, can be specified only up to an arbitrary average over the time-exten-

sion of the diagram. Clearly, we want V to be Hermitian, so in this case we

merely require

f(A) = f(-A). (35)

Different choices for f(A) correspond to performing a unitary transforma-

tion on the system. Although different choices of f(A) give quite different

looking potentials in lowest order, Eq. (3*0 , higher order terms in the expan-

sion, which also depend on f(A), are needed in order to assure that the scatter-

ing phase shifts are independent of f(A). Likewise the corrections to observ-

ables (exchange current corrections) depend on the choice of f(A), and these are

17



also needed to assure the unitary equivalence of the various averaging proce-

dures. It turns out that one choice of f(A) corresponds to a uniquely simple
20expansion in higher order; it corresponds to

f(A) = 6(X), (36)

or

v * - -J-g- (37)
q +]J

from Eq. (3^) . This is the familiar Yukawa potential which, in coordinate space

leads to

-yr
V(r) ̂ ^ - 7- (38)

As a final remark, it should be pointed out that the description in terms

of energy-independent potentials is not the only possible effective interaction

description. Often one defines an effective energy-dependent interaction, one
O I L

example of which is the Blankenbecker-Sugar method, which was applied by

Partovi and Lomon. C Also, methods ba:'ed on dispersion theory lead to energy-

dependent effective interaction. Generally, it is found that the energy-

dependence is awkward for practical calculations and a transformation is applied

which replaces the energy-dependence by a nonlocality. One cannot say that one

approach is more fundamental than the other; the folded diagram approach is a

generalization of Raleigh-Schroedinger perturbation theory.

B. One-Boson Exchange Potentials (OBEP)

I. Theory

Whether one conceives of the nucleon-nucleon interaction as being energy-

dependent or energy-independent, the physical idea underlying the method of con-

struction is that the range R of the interaction is, according to the uncertainty

principle, proportional to the mass AM of the mesonic system exchanged.

R *

22
This fact was first discussed by Wick and later formalized into a systematic

23
method of study of Taketani. J The longest range part of the interaction is

thus expected to arise from one-pion exchange; the midrange interaction would

then come from two-pion exchange, and the core from three- and more pion exchange.
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In the one-boson exchange philosophy, the assumption is made that the n-pion

exchanges are given predominently by the correlated piece of the n-pion exchange,

i.e., the single exchange of the observed meson spectrum. In practice this

philosophy has met with mixed success, because the attraction in the nucleon-

nucleon potential requires a scalar isoscalar meson of mass ~ ^00-700 MeV (and

in some cases a scalar isovector meson), the existence of which is and has been

the subject of considerable debate. In the modern treatments the philosophy of

nucleon-nucleon potentials improves on the one-boson exchange model in ways that

I sha11 discuss.

Let me now develop the one-bof.on exchange model. This will bring together

the ideas just discussed with the phenomenolog ,"cal aspects of the nucleon-nucleon

interaction and will serve as a bridge to the more modern developments.

a. Tr-Meson

I want to begin with a discussion of the pion, which is the longest

range and least ambiguous contribution to the nucleon-nucleon potential. The

expression for the one-pion exchange potential is given diagramatically in

Fig. 8b. Equation (37) gives the contribution of everything but the pion-

nucleon vertices, which for the pion are (see Table II)

= < p ' k | A | p > = -~ <V b U > - q T'C
,1T

q = p-p1

where \t> is a nuclear spinor, T the nucleon isospin, <J> the pion isospin wave-

function and k the pion momentum. The coupling constant is taken to be the re-

normalized value given in Table II.

Now, the complete contribution to the potential is

(2TT)36 (P.1-P.) VTr(g
l

f2 g,.g Q 9
V^p'-p) = -^ '2 / ZT,.f(f) T2.*(i),

f2 a..q a -q

m_ q HL



where PJ and P_ are the final and initial total center-of-mass momenta and where

p1 and p are the final and initial relative momenta. We have used the prescrip-

tion for the potential which associates the potential with the average time of

emission and absorption of the corresponding meson exchange.

In order to express Eq. (̂ flb) in terms of familiar operators write

where

S (q,a , a j = 3g. g g q -a a q2 (42b)

i s the tensor ope ra to r expressed in coo rd i na te space. Thus V ( p ' - p ) becomes

2
S (q,a,,a
'V ' "., 22 2 2 C ~\ ~I

5m \ -q ~ir ~q "m J

To f ind the coordinate space p o t e n t i a l , take the Fourier- transform of Eq.

•dV /•-i3_, Ai3P r ^

, iP_-R i p - r
x (2ir) ' 6 ( P ' - P ) V ( p ' - p ) e ~ ~ e ~ ~

o r - - i q - r
e " ~V(q) ( M b )

where R1 and R are the initial and final center-of-mass variables and r and r1

are the initial and final relative coordinate variables. The delta function

6(R'-R) means simply that the center-of-mass is not changed by the interaction,

and the S(r'-r) means that the relative variable is not changed by the inter-

action. The latter condition also means the potential is local, which is a con-

sequence of V depending only on p'-p. Relativistic corrections to meson ex-

change potentials often depend in a more complicated way on p1 and p and as a

result the coordinate space potential will contain terms depending on the momen'-

tum operator p = -iV.

To Fourier transform the second term in Eq. (k3), note
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2 -m2

and therefore

,j -1 q • r 2 „d q

The Fourier transform of the second term is given in Appendix A,

('47a)

where
3a r o -r

2

P u t t i n g e v e r y t h i n g t o g e t h e r , vie f i n d

+ o.-°2^-7- I
-̂-i ~ z ni^ r j

Equation 48 is the familiar one-pion exchange potential (OPEP). It

ists of a tensor force V

force V Ti. To °i.ao» where

(48)

consists of a tensor force V S ^ T . T . and a spin-isospin dependent central

/ \ IT m r / TT

TT
and

( U t l " " r ) 1 ^ 7 - <4Sb)

Note that both pieces of the OPEP have singular behavior at the origin. This is

a typical difficulty of meson mediated interactions and some mechanism is
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necessary to regularize the interaction before Schroedinger's equation can be

solved. Often a form factor or cutoff function is included as part of the pion-

nucleon interaction; this smears out the singularities and allows a solution.

However, in practice this problem may not be as bad as it seems. This is be-

cause there is a strong repulsion coming from other components in the nucleon-

nucleon interaction which presumably does not allow the nucleons to come close

enough together to experience the 6(r) in V . The second reason, which is in
c

some sense accidental, is that the p-meson has a tensor interaction similar to

that of the ir-meson but of the opposite sign. Thus the p and ir-meson exchange

tensor forces tend to regulate each other and the difficulties are confined to

very short distances.

Let me next make a few observations about the properties of the central and

tensor forces. First, let me remind you that a state of two nucleons may be

specified by an orbital angular momentum quantum number L (L = 0, 1 , 2 , . . . ) ,

a spin quantum number S (S = 0, 1) and an isospin quantum number T (T = 0, 1 ) .

Because nucleons are identical fermions the wave function mu t be antisymmetric

upon exchange of particles. As you know, the orbital wave function behaves as

(-) , and the spin and isospin wave functions as (-) and (-) , respectively,

under exchange of nucleon labels. Thus, L+S+T must be odd for a properly anti-

symmetrized wave function. Now, I shall leave it as an exercise to show that

the operator o, a T , T . has the values shown in Table VI, where the correspond-

ing values of L even or odd are assigned according to the principle that the

wave function must be antisymmetric. Thus, it is clear that the O,o~ T . . T .

interaction in a given spin or isospin channel acts differently in even or odd

partial waves. In the case of the neutron-neutron (or proton-proton) interac-

tion the scattering is determined by the T = 1 component of the potential

recal1 ing

1NN> = IT = 1, MT = -1>

1PP> = 1T = 1, M = +!>

1NP> = — (IT = 1, M = 0> -IT = 0, M = 0>) (50)

Therefore the CT]'a2
Ti>T2 0PEP "exchange" interaction for two neutrons is attrac-

tive in even partial waves and repulsive in odd partial waves. Do we find a simi-

lar even-odd effect in the experimental data? The answer is yes. Consider for

example, the T = 1 channel. Figure 9 shows the S Q phase shifts (notation is
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2S+1

VALUES OF

TABLE VI

T,-T 2 CT,-r2 = -3 for T=0, +1 for T=0)

S = 0 5 = 1

L.). You see that there is a

T -

T «

0

J

9

-3

U

(L

= odd)

» even)

-3

1

(L

(L

= even)

- odd)

I I I I 1 1 I ' I I I I I I I 1 I — I — 1

Fig. 9- Nucleon-nucleon phase shifts
for the T=l Reid potential,
even L.

strong attraction, almost giving rise

to a bound state as evidenced by the

phase shift approaching r a t zero
1 3

energy. In Fig. 10 you see the P

phase shifts. These are split in J

due to the tensor and spin-orbit com-

ponents in the interaction. However,

we may get an idea of the central

interaction by averaging over J

av i 6( 3V (50

the result of which is the dashed line.

You see that there is very little net

interaction in P-states. However, in

the D9 state we again find attraction,

although less than in S . One finds

an even-odd difference also in T = 0

states. This is shown in Fig. 11.

Qualitatively, at least, the spin-isospin dependence of the one pion exchange

central interaction is consistent with the data; in both cases there is greater

attraction in even states than odd states. Furthermore, the P state shows more

repulsion than the P both experimentally and according to OPEP.

The tensor force has the structure of the interaction between two dipoles.

In contrast to the central interaction, L is not a good quantum number. The

tensor operator matrix element between states of S = 0 vanishes. For S = 1 its

matrix elements are shown in Table VII. Note that for a given L the average of

S._ over J as in Eq. (51) vanishes.

Is there evidence for a tensor force in the nucleon-nucleon interaction? It

is well known that the deuteron has a quadrupole moment, and this is direct evi-

dence for the tensor force. But the existence for a tensor force can also be

seen by looking at the P-wave phase shifts. According to Table VII the matrix
3 3 3elements of S 1 2 in
 JP , J?1 and P 2 states are respectively -h, 2 and -2/5. The

P, state has the least attraction experimentally, as it would if tensor force
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Fig. 10. Nucleon-nucleon phase shifts
for the T=l Reid potential,
odd L.

TABLE VI I

MATRIX ELEMENTS OF THE TENSOR OPERATOR

L

J-l

J

J+l

J-l

L'

J-l

J

J + l

J+l

-2L/(2L+3)

2

/(2L+3)

Fig. 11. Nucleon-nucleon phase shifts
for the T=0 Reid potential.

components were present. At low ener-

gy the Pn is more attractive than the

P , as it should be also with the ten-

sor force.

So far, I haven't discussed hard

evidence for the one-pion exchange po-

tential. The one-pion exchange poten-

tial is now routinely used to constrain

phase shift analyses of the data; OPEP

is assumed generally for L > ̂ -max
 = *>•

When f2 , is searched on as a variable

parameter, it assumes the value determined from pion nucleon scattering, and the

phase shifts approach the one-pion exchange contribution as L approaches Lmax

from below. This is strong evidence for the correctness of the pionic contribu-

tion in the nucleon-nucleon potential. Furthermore, as discussed in the book by

Brink2** the quadrupole moment of the deuteron is determined almost completely by

the one-pion exchange potential and is nearly independent of the interaction at

short distances.

b. The Vector Mesons, p and 0)

The main difference between the p and co mesons is that the p-meson is

an isovector meson and the u isoscalar. The isospin comes in just as in the case

of the pion, i.e., T,'T- for the isovector, 1 for the isoscalar. Ignoring iso-

spin, we have the following expression for the potential of a vector meson
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(52a)

V V(P!P)-
-1

V K > K / 2 2 7
~ ~ q +m J \ vv

\ v

- l / g T \ / g f
2 2 V m 3 m S x2l J i m m

q +m \ v v / \ v v
v

\2 /f f 1
v' \ v/ J

(52b)

where e is the polarization of the vector meson. The second term of the last

line in Eq. (52b) has the same form as OPEP, Eq. (Alb), and it is therefore

easily written down in coordinate space. The first term of the last line in Eq.

(52b) may be Fourier transformed with the help of Eq. (A6). Thus, the coordinate

space interaction for the vector meson is

„, v -m r-. -

V (r)=m f-
v VHTT m r

v

-m rv

m r
v

1 * 2
-m

3 ?1 ~2 m rv
(53)

As in the case of the IT meson, the delta functions must be either smeared out by

form factors or dropped. Kisslinger has recently argued that the delta func-

tions cannot be dropped for the case of vector mesons.

In the case of the to meson f « 0 and g is large according to Table II. The

omega exchange potential is therefore

(5*0

0)

m ra;

Is there any evidence for a term of this form in the nucJeon-nucleon potential?

It is clear from the experimental phase shifts (Figs. 9 and 11) that the phase

shifts change from attractive to repulsive at E w 250-350 MeV. This has been



taken to be evidence of a strong repulsive component in the nucleon-nucleon inter-

action, and the w-meson is the most likely candidate for the effect.

The p meson is isovector, and f>g. The potential corresponding to this meson

is therefore

(55)

Note that the sign of the central, spin-isospin dependent potentia' is the same

as that of the pion. However, the central force also consists of a purely iso-

spin-dependent contribution now. Referring to Table VI, we see that this term is

attractive for T=0 and repulsive for T=l. Note that the tensor force has the

opposite sign from the case of the IT meson; this is the source of cancellation

between TT and p tensor forces of which I spoke in the discussion of OPEP.

So far we have considered only one piece of the interaction due to vector

mesons. A more careful treatment of the non-relativistic reduction of the vector

meson coupling shows that in addition to the potentials discussed above there is
26also a strong, short-ranged spin-orbit interaction

-m r

VLS~ t-5-T^F ^ (56a)

What is the evidence for vector mesons in the nucleon-nucleon interaction?

Evidence for the co meson has been discussed already. Perhaps the strongest argu-

ment is the fact that a strong spin-orbit component is necessary to explain

the experimental phase shifts. First note that the L-S matrix elements have the

value

2<JLS|L-S|JLS> = J(J+1)-L(L+1)-S(S+1) (56b)

Thus, for a given L and S the splitting is in ascending (or descending) order in

J. Looking once more at Fig. 10 we see that the phases are tending to line up

in this order, with 3P.> being the most repulsive. The fact that the 3P and 3P

are reversed from what one expects from a pure spin-orb ft force presumably means

that there is a tensor force competing with the spin-orbit force. In order to
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explain this the a) meson contribution is needed, with a large coupling constant.

It is an interesting historical fact that the necessity of a strong, short-range

spin-orbit force was taken to be strong evidence for the existence of a neutral

vector meson of about the correct mass before one was actually produced in a high
26energy experiment.

c. Scalar Mesons

So far we have accounted for every major feature of the nucleon-nucleon
1 3interaction except for the attraction evident in the S and S phase shifts in

Figs. 9 and 11. Scalar mesons are capable of providing a central, attractive in-

teraction,

2 "V

- h s-r-
This result follows immediately following arguments given already, noting that

the coupling of a scalar meson to a nucleon is simply g in the non-relativisitc

limit. Tables of particle properties list several scalar mesons as established

resonances (Table XI).

d. Summary

_ A more complete derivation of OBE potentials including corrections to

order *-=• has been made elsewhere. Table VIII summarizes the interaction

Lagrangian and resulting OBE potentials. Note that the coupling constants re-

quired here are defined differently from those in Table II.

2. Results, OBEP

I have discussed the one-boson exchange potentials and given qualitative

evidence for the existence of many of the effects they produce. There have been

several attempts to fit these models to phase shift analyses of nucleon-nucleon

scattering data, and I would now like to summarize these results.

The OBE models always include the well-established mesons IT, n, p, and to.

The masses of these mesons are held fixed, and their coupling constants are re-

garded as free parameters. In addition to these mesons, two or three scalar mes-

ons are included; the properties of these mesons are not well established, and

the masses and coupling constants of these are almost always varied. The OBE

models generally give surprisingly good fits of the phase shifts, but not perfect

fits. Fits are usually made to S(LSJ) for J ^ k.
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The masses and coupling constants

of the IT, n, P and w are shown in Table
21

IX. The column headed Partovi gives

the values of the couplings deduced

from theoretical and experimental parti-

cal physics. The coupling constants

are those which appear in the interac-

tion Lagrangian in Table VIII. How

reasonable are these results? The

coupling constant for the pion comes

out very close to the expected value.

The n coupling constant is not well

established and is not far from the

guess based on SU(3). The coupling

constant for the p meson was, until

recently, considered as rather well-

determined from experiment to be the

values listed under the Partovi column.

However, a recent analysis by Hohler
28

and Pietarinen give a slightly smaller
2

vector coupling (g = 0.55) and sub-

stantially larger tensor coupling (f =

2k) . The a) coupling is not well estab-

lished from particle physics; one char-

acteristic feature of most potentials

which fit the nucleon-nucleon phase

shifts is that the repulsive core of the nucleon-nucleon interaction is stronger
2

than can be explained by w-meson exchange alone, with the value of g which is

determined by particle physics estimates. As Bethe points out in his review arti~

cle, the actual to coupling constant obtained from OBE analysis is several times

larger than the one shown, because of the way form factors are used to remove the

singular behavior at small r. Results of various groups differ because different

assumptions were made regarding the scalar mesons.

The masses and coupling constants of the scalar mesons are shown in Table X.

Shown for purposes of comparison are the scalar mesons which appear in the table

TABLE IX

PSEUOOSCALAR AND VECTOR MESONS, OBE FITS

Meson

TT

n
2

p.g
f 2

U)» 9

W, f 9

...v'neV)

137.3

549

765

765

783

783

Dist r ibuted mass.

PL2'

14.'i

1.0

0.53

7-09

6.36
-0.38

UG

14

2

0

17
8

0

27b

.0

.7

.78

.5

.02

S R G 2 7 C

14.6

5.6

1.20

32.0

21.5

0

BS2 7 a

12.6

2.6

1.81

2.3

17.3
0

URG 2 7 "

13.94

6.(.9

0.357*
20.02*

M.S6
0
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m(MeV)

600

550

...

92

1.65

8.19

...
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V .
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n
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TABLE

SCALAR MESONS,

m(MeV)

1016

1070

X

OBE

g 2 SRG27c

I). II

1.19

i*.l*>*

t

e

FITS

m(HeV)

963

782

g2

I..70

1*5.0

r(HeV)

—

>300

URG 2 7 d

6

TIJt

m(MeV)

963

*

2

10

g

.51

.8£
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of particle properties. The important point to notice is that there is not a

very good correspondence. The BS and UG models show rather convincingly that the

range of attraction in the nucleon-nucleon potential is longer than can be ex-

plained by t' simple scalar meson exchange. The SRG model was an attempt to

make more realistic choices of scalar meson masses and to incorporate the broad

width of the e meson. In order to get a fit, the e needs an enormous coupling

constant, but at the same time the w-coupling constant takes on an enormous value;

this seems to be an unsatisfactory situation. In Ref. 27d the model of Ref. 27c

was improved by taking the interaction in the TTTT £ = 0 isoscalar channel directly

from the experimental TTTT s-wave phase shifts rather than matching just a mass

and width in the vicinity of the & meson. (A similar fit was made in Ref. 27d

in the case of the rrrr I = 1 isovector p-meson channel.) The theory seems to im-

prove in the sense that the w-meson coupling constant assumes a more reasonable

value, but it is still too large in comparison to particle physics determinations.

The model of Ref. 27d goes beyond the original OBE hypothesis and resembles more

ciosely the philosophy embodied in the more modern approaches discussed below.

In summary, the OBE potentials are surprisingly successful in reproducing

the qualitative behavior of the nucleon-nucleon phase shifts, but the quantita-

tive results continue to have puzzling aspects. Unanswered questions concerning

the source of the large central repulsion and attraction remain.

TABLE XI

SCALAR MESONS, PARTICLE PHYSICS

Meson m(MeV) T(MeV) Isospin

$ 980 50+10 1

S" 980 M)±10 0

e 1300 200-ifOO 0
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C. Semi-Phenomenological Nucleon-Nucleon Potentials

Although the one-boson exchange potentials fit the experimental nucleon-

nucleon phase shift data well, the fits are not perfect. For purposes of doing

nuclear calculations, better fits are required and a variety of purely phenomeno-

logical potentials have been constructed to fulfill the need. The potentials

generally differ in some particular feature, i.e., some have infinite "hard"

cores at a radius TS 0.4-0.5 fm (examples are the Hamada-Johnson and Reid hard

core potentials) whereas others have soft cores, e.g., cores with Yukawa radial

form (the Reid soft core). Other potentials emphasize velocity-dependence, such
32 33 3^

as that of Tabakin and Rouben, Riihimaki and Zipse. Bethe discusses the

various potentials in more detail.

It should be clear from the above remarks that potentials are not uniquely

determined from the experimental data. One reason for this is that the nucleon-

nucleon phase shifts are known only over a limited energy region and hence the

potentials are guaranteed to fit the data only at low energy. There is presum-

ably considerable ambiguity, particularly in the repulsive core region (r$0.5fm),

arising from the absence of these data. Even if the data did exist, it is not

clear how one would construct a potential from it due to the existence of meson

production channels, which begin to become important above E. « 400 MeV.

However, there is another more fundamental ambiguity associated with the po-

tentials, as emphasized by Coester. He shows how to generate an entire class

of potentials from a given one by performing a unitary transformation which, in

coordinate space, only affects the potential for r^ potential range. Unitary

transformations applied to the two-nucleon potential will not change the phase

shifts, but the different two-body potentials will in general give different prop-

erties for many-nucleon systems. For this reason it is not a completely trivial

problem to construct a potential which simultaneously reproduces the nucleon-

nucleon phc:5>- shifts below meson production threshold and also serves as a suit-

able basis for nuclear structure physics. So far nobody has succeeded in,finding

a purely two-body interaction which succeeds in both problems.

Let me end the discussion of phenomenological potentials with a description

of Reid's soft core potential. He takes the potential to be different in each

state of given L, S, and J
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nyr
v(LSJ,r) = Xa S (58)

n r

where y is the reciprocal compton wave length of the pi on and a are empirical

constants, determined so as to fit the phase shifts. Only a. is fixed a priori;

it is taken from the one-pion exchange potential, Eq. (A8). For the tensor force

Reid assumes a form

.T(D --3.M7.

b S.

y r
-nyr

n=2 n r

The counter term with kyr ensures that the tensor force diverges only as — for

small r. The form chosen is clearly motivated by meson theory, but Reid made no

attempt to choose the coefficients for different LSJ to be consistent with meson

theory, except in the case of the pion.

Reid's potential fits the phase shifts of Arndt and MacGregor generally

within experimental error, except for the coupling between S and D., which is

very poorly known. Reid also gets the correct binding energy and quadrupole

moment for the deuteron. It is interesting to note that the repulsion in the S-.

state is

6484 (MeV) ^ _ _ (60)

corresponding to an effective mass and coupling constant

g »7

2
The large value for g is yet another example of the difficulty of interpreting

the repulsion as coming entirely from real w-meson exchange.

D. Modern Models of Attraction in Nucleon-Nucleon Interaction

The phenomenological models show that the range of the intermediate attrac-

tion is KS 0.7-1.0 fm, suggesting that the attraction is associated with the ex-

change of two pions. There are numerous aspects of the physics of two-pion ex-

change, and next I want to consider several models which emphasize different

aspects of this process. 31



21
1. Model of Partovi and Lomon

Partovi and Lomon revived a model which was earlier investigated by many

others. The idea is that the attraction comes from the simplest two-pion exchange

mechanism, i.e., the perturbation correction of order g . The terms in this or-

der are shown in Fig. 12. The method they used to convert these to potentials
7 1 h 20

was the Blankenbecker-Sugar method, but the method of folded diagrams pro-

vides a more systematic method of eliminating the energy-dependence than that em-
21ployed by Partovi and Lomon. In converting the terms of Fig. )2 to potentials,

one must keep in mind that some piece of Fig. 12a is included already in an itera-

tion of the one-meson exchange potential, and it is actually the difference be-

tween Fig. 12a and the iterated potential which should be considered. The method

of folded diagrams shows that this difference may be represented as a diagram,

evaluated according to the usual Feynman diagram rules.

Partovi and Lomon thus constructed their potential from exchanges of TT, r), p

and w mesons and the two-pion exchange of Fig. 12. No scalar mesons were included.

They showed that their final result closely resembles the radial dependence of

Hamada-Johnston hard core phenomenological potential for r ^ 0.6 fm. However, as

Bethe has pointed out, the Partovi and Lomon potential compares favorably to

the Reid potential only for r i 1.3 fm; at smaller distances there is too little

repulsion. This is yet another example of meson theoretical potentials predicting

less repulsion than that required by experimental nucleon-nucleon scattering.

The work of Partovi and Lomon is subject to criticism on the point of the

nucleon-anti-nucleon pair terms (Fig. 12c, d)> It is well known in iT-nucleon

scattering that these terms, evaluated with the NN Lagrangian given in Table

Villa, give anomalously large S-wave scattering and therefore that some other

effect is also present which cancels the pair terms. The scalar mesons are pre-

sumably these agents. In two later papers F. Partovi and Lomon and late'r

Lomon investigated the corrections to the original H. Partovi and Lomon poten-

tial coming from the scalar meson, taking into account the width through dis-

association into TT-TT intermediate states. In Ref. 38 it was shown that this

effect resulted in a worsening of the comparison of the new potential to the

Hamada-Johnston result. As might be expected, there resulted an excessive attrac-

tion in S-waves.
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2. Isobars in the Nucleon-Nucleon Interaction

Before continuing the discussion on the nuclcon-nucleon interaction, It

is necessary to say a few words about isobars. These objects, although discov-

ered more than twenty years ago, have only recently begun to play a prominent

role in theoretical explanations of nuclear phenomena.

The isobars are excited states of nucleons which are prominent as bumps in

TT-nucleon total cross sections. Figure 13 shows the total cross section from

E = 0.9 to E = 2.5 GeV. The most prominent is resonance of mass M = 1232-57cm cm
MeV (i.e., width of ]\$ MeV), called the A,, resonance. The designation 33 means

2T, 2J so the spin and isospin are each 3/2. Table XII lists the low mass non-
29

strange isobars and their quantum numbers. The numbers in parentheses are the

masses of the resonances in MeV, and the angular momentum L is the TTN partial

wave in which the resonance is seen. The notation for a partial wave is L ? T .,

so that the ir-nucleon partial wave containing the A,, resonance is the P,, wave.

The behavior of the P., partial wave for energies up to the position of the
39A_ resonance was first successfully described by the theory of Chew and Low.

They assumed that the interaction between a pion and a fixed, or infinitely heavy

nucleon could be described by the HamMtonian

" • w . + ~40)\ • »k0>+v »i0)- "wf'-^'vf) (62)

/ 2 2"
where a, is an annihilation operator for a meson, OJ. = /k +m is the pion energy,

(0)
and where the interaction V, is the same as the interaction shown in Table II.

The form factor v(|<) is the Fourier transform of the matter distribution of the

nucleon which couples to the pion; it is generally believed that the rms radius

of this distribution is comparable to or smaller than the radius of the charge

distribution of a nucleon r - 0.8 fm.
rms

Chew and Low attempted to solve this theory for the P-wave pion-nucleon

phase shifts. They found that the theory naturally predicted a resonance in the

3-3 state, whose position could be adjusted to coincide with the experimental

result by picking the range of the form factor appropriately. The form factor

was

v2(P) - e" p / i t 9 (63)
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Fig. 12. Various possibilities for two
mesons exchanged between two
nucleons. The lines running
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(d) are anti-nucleons.

150

E 100

D.
I

50

A(I236>

N'(I5I8). \ y "P

; \' At 1922)
N'(2200)

900 1300 1700 2100

MASS OF ir-p SYSTEM (MeV)
2500

Fig . 1 •**. The Chew-Low in te rp re ta t ion
of the A33 as a resonance in
the ir-nucleon system.

THE LOW MASS

Particle

A(1232)

A(165O)

A(167O)

N'(H70)

N1(1520)

N1(1535)

N'(1670)

N1(1688)

N1(1700)

TABLE XI 1

NON-STRANGE ISOBARS

1

3/2

3/2

3/2

1/2

1/2

1/2

1/2

1/2

1/2

JP

3/2+

1/2'

3/2"

l/2+

3/2"

1/2"

5/2"

5/2+

1/2"

L_

P

S

D

P

D

S

D

F

S

Fig . 13- Total cross sections for 7r p
and 7r~p sca t te r ing .



However, the theory did not predict the phase shift accurately above resonance.

Dave Ernst and M. Johnson have recently shown that if the inelastic (multi-meson

production) channels are taken into account, the Chew-Low theory reproduces

accurately the phase shifts up to p. = 1.2 GeV/c with

2
v2(p) = e'

P /15 (6*0

The Chew-Low theory gives a diagrammatic interpretation of the A resonance,

shown in Fig. 14; the main point here is that when a pion scatters from a nucleon

the interaction is sufficiently strong that the pion will rescatter as much as it

can; at and below resonance the most important intermediate states are those

shown in Fig. ]h. Because of this it is often said that the source of the attrac-

tion is nucleon exchange. Even at threshold, the rescattering accounts for half

of the TT-nucleon P,, scattering volume. These observations about the 3~3 reso-

nance have led to the feeling that the resonance should play an important role in

many aspects of low energy nuclear physics, even as a virtual state, and in most

aspects of intermediate energy physics when energies are close to the energy re-

quired to excite the resonance. Part of my goal in the next lecture is to review

some of the theoretical ideas surrounding the subject of A's in nuclei and some

of the experiments that support these ideas. First, however, let me return to

the subject being discussed, isobars in the nucleon-nucleon interaction.

Sugawara and Von Hippie (SH) and later Riska and Brown (RB) showed that

intermediate A resonances deserve consideration as a possible source of the inter-

mediate range attraction in the nucleon-nucleon interaction. Various possibili-

ties contributing to the two pion exchange potential are shown in Fig. 15. In

the calculations of Ref. 41 the processes in Figs. 15c and 15d were regarded as

small corrections and neglected. The calculation was simplified by constructing

a transition potential, defined in such a way so that certain time-order ings of

Figs. 15a and b are reproduced for zero incident energy of the two nucleons.

Figure 16 shows what the transition potentials look like graphically. When these

authors evaluated the potential they^a-ssumed that terms of order (M.-m)/(M.+m)

could be neglected. When evaluating Figs. 15a and b, the intermediate A is

assumed to behave like an elementary particle of mass M.. No width was assumed

for the A because Sugawara and Von Hippie were interested only in scattering below

threshold for meson production. Both SH and RB made a closure approximation when
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evaluating their respective theories of Fig. 15, i.e., they replaced certain

intermediate state energies by averages.

It should now be clear that the contribution of Figs. 15a and b are attrac-

tive for energies less than threshold for producing real A or IT, as these are

second order processes and it is well known that such corrections are attractive.

Incidentally, one advantage of having the transition potentials is that one can

solve Schroedinger's equation, regarded now as determining a wave function

^ " I V + ' V + I*M> (65)

Such an equation was written down by Sugawara and Von Hippie. Since the writing

of their paper, such procedures have become popular, and now is an appropriate

time to examine the structure of this wave function in some detail.

Note that the NA and AA states must be antisymmetric under interchange of

particles. The reason is that the nucleon-nucleon state is antisymmetric

(Paul! principle) and because the interaction which induces NN -*• NA or NN •+ AA

is symmetric. This theorem may seem surprising at first, because nucleons and A

are distinguishable particles. As we stated earlier, the symmetry of the two-

particle wave function is

(-)L+S+T (66)

Now, (-) must be the same for the NN and NA (AA) intermediate state because

parity is preserved. T must be the same for both the initial and intermediate

state, because isospin is conserved in the strong interactions (presumably!).

Thus, by the theorem stated above (-) must be the same for the NN and NA (AA)

intermediate state. These considerations permit us to see how the most general

transition potentials can couple states. The results for NN -* NA are shown in

Table XIII, and for NN -> AA in Table XIV. One point to be made here is that for

a given value of J the isobar configurations can mix in many different orbital

angular momentum states. The extent of mixing for a particular state depends of

course on the details of the force, but the transition potentials have a strong

tensorial character leading to appreciable mixtures of configurations with large

AL. The case of S.(NN) is especially simple because there is only one NA and
3 3

one AA state to which it couples. Note that the deuteron ( S.- D,) is compli-

cated; not only is there no NA component but the AA component may have L=2 or
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Fig. 15- Various ways that the A33
resonance may contribute to
the two-pion exchange inter-
action.
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Fig. 16. Graphical representation of
transition potentials.

TABLE XIII

N4 STATES WHICH COUPLE TO GIVEN NN STATE

NN State (T-1 only) Nfl States Which Couple

SNN J* LNN Examples

0 even 's
0.'l>2

1 even 3 P ( ,

odd \.\.\.

Except ions

2 J+2,J,|J-2|

1 J

I J*l, |J"1|

TABLE XIV

4A STATES WHICH COUPLE TO GIVEN NM STATE

NH Sntc (T- l or T-0) M S u t e ; Which Couple

0

• 1

1

J HNN

even

tven

odd

Examples

\.\

sii

2

0

3

1

1

1

Li4

J*2,J.|J-J|

J

J«.J.|J-2|

J

J*3.J*1,|J-I|

J*I.|J-I|

.|J-3|

Exceptions

Jrt;J-l-lM-3

L=4. The reason that NN couples to NA

only in T=l is that an N (t =1/2) and

a A (tA=3/2) can add up to T=l but not

to T=0.

Sugawara and Von Hippie showed

that the corrections of Figs. 15a and

b simulated the exchange of scalar

mesons. We have already shown from a

simple argument that the contributions

are attractive; Riska and Brown gave a

simple argument to show what the cor-

responding mixture of isovector and

isoscalar bosons would be. They noted

that because Fig. 15a operates only in

T=l its isospin dependence must be

PT=1 = { (3 + T,.T2) (67)

i.e., 3 A isoscalar, \/h isovector.
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Although Sugawara and Von Hippie and Riska and Brown were able to show the

qualitative importance of Figs. 15a and b, they were unable to make a successful

quantitative theory; Bethe pointed out that the range of the attraction in the

work of RB was too short and could be taken into account merely by reducing the

coupling constant of the <o meson! Part of the problem is that these theories are

very sensitive to cutoffs; essentially any answer could be obtained merely by

changing the Tr-nucleon form factor.

a. Model of Green and Haapakoski

Green and Haapakoski (GH) made two improvements in the work of Brown

and Riska: (l) they avoided making the closure approximation in their evaluation

of Fig. 15 and (2) they calculated the nucleon-nucleon phase shifts in the S_

channel and showed that the theory gave sensible results.

GH avoided the closure approximation by introducing the A as an explicit

degree of freedom in much the same way as advocated originally by SH before they

made their series of approximations. This required solving a coupled equation

[Eq. (70)]; the solution gave the separate nucleon and A components of the wave

function. GH confined their attention to the Sn(nn) state to simplify the

numerical problem; this state is of course very interesting because it has Z=0

and hence the attraction is a conspicuous feature of the partial wave. GH

assumed, as did RB and SH, that the AA intermediate state could be neglected;

according to Table XIII this means that the states S (nn) can couple only to
5D Q(nA).

The GH potential consisted of three components, V,, V and V_ depicted in

Figs. 16a, b and c. Because GH do not consider AA intermediate states, Figs.

I6d, f were not considered. Likewise, no exchange interaction (Fig. 16c) was

considered. The potential V. consisted of ir, ri and w exchange. The interaction

V. is discussed in some detail below. Very little is known about the potential
5V,, and GH simply set V_ in the DQ channel equal to \l. .

b. The Transition Potential

The concept of an instantaneous potential is meaningless for the transi-

tion interaction, Fig. 16c and the interactions in Figs. I6d, e. These inter-

actions depend very strongly on the incident energy because the transition

A -> ntr is energetically allowed; consequently the method of folded diagrams may
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not be used to calculate a potential for them. Instead, the transition interac-

tion must be evaluated as a true Feynman diagram and carry an explicit dependence

on the total energy of the system. The importance of the energy dependence has

been emphasized in the recent work of Ref. kS• However, the energy-dependence

of the NN -*- NN, AA -> AA and NA •*• NA transitions is sufficiently smooth to allow

a description in terms of instantaneous potentials.

In the early work of SH, RB and GH the energy dependence of the effective

interaction was ignored; this was consistent with their taking the difference

(M-M.)/(M+M.) = 0. However, the importance of these early works lies not in the

details of the numerical work but in the demonstration of the relevance of the A

resonances in this problem. Consequently, I shall :gnore the details of energy

dependence and M-M. corrections and explain the theory as developed by 6H. In

this case the transition potential consists of a propagator for the exchanged

meson (a i\ meson for GH)

and vertex, functions for NTTA, with coupling constant f*. f* is determined from

the quark model or from the width of the 3"3 resonance, but in practice these two

methods lead to slightly different values for f«. The calculation is then paral-

lel to the derivation of the OPEP, Eq. (41).

(27T)36(P_'-P,) V2(p'-p) (69)

- in ~ra h'i
V2 " 2 2 2 Tl'T2

A convenient representation of the transition spin and isospin operators S, T is

given in Ref. h]. Because these operators do not depend on momentum, a coordinate

space representation for V? may be found following the steps of Appendix A and B.

The projection of V., V and V_ onto the relevant states is given in Table

XV. It may be seen that GH chose to regularize the potential V? by a cutoff of

range B, a parameter to be varied. They also let the strength of the w-meson

coupling be set by a free parameter, A.
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To obtain the scattering, GH solve Schroedinger's equation,

(T + V)ip = k2^ (70)

where now ip is a two component wave function having an nn and an nA component

U n n ) (71)

and where T and V are matrices

*(HA-«cV (72)

(73)
w /

2

The term —=• in the kinetic energy is the angular momentum barrier for the L=2

partial wave. The boundary conditions are that u have an incoming plane wave and

an outgoing spherical wave in £=0, and that w have no component at r = ». (The A

exists only virtually when the nucleons are close together.)

Green and Haapakoski chose three different values of A and then varied B to

give the best fits to the SQ phase shift for E. ̂  350 MeV. The results are

shown in Table XVI. The calculated phase shifts are in qualitative agreement with

experiment, but tend to be too attractive at high energy, the discrepancy being

lesc for the larger values of A. Note that potential 1 gives a very satisfactory
2 2

value of g , to be compared to the value g = 6.36 of Table IX.

Green and Haapakoski also give an interpretation of their cutoff B in Table

XVI. They point out that the p meson may also excite the transition from n -*• A

and that just as in the nucleon-nucleon potential the TT and p contributions to

the exchange potential have opposite signs. They point out that although B ap-

pears to modify the potential at moderately large distances, the long range piece

merely mocks up the p meson exchange and that with p and ir exchange the transition

potential is much less sensitive to the pion form factor.

Thus, for the first time, we have an example of a potential which gives rea-

sonable repulsion (although perhaps still underestimating it somewhat) and suffi-
2

cient attraction. The significance of the relatively small value for g was dis-46c u s s e d by D u r s o , e t a l . I will c o m e b a c k to this p o i n t l a t e r .



The successes of the GH approach are significant, but the specific calcula-

tion has met with some criticisms. Durso, et al have criticized the neglect of

(M-M.)/(M+M.) corrections. They also point out that the crossed pion diagrams

are important and, based on this observation, they question the utility of the
47coupled channel approach. Pandharipande and Smith show that cancellations occur

among the crossed box diagrams, so that the sum of crossed plus uncrossed box

diagrams of Fig. 15 is closely approximated by the iteration of the transition

potential. However, Durso, et al. point out that the extent of cancellation is

model-dependent, e.g., depending upon whether the f" . coupling constant was

determined by the quark model or from the width of the A. We have already re-

marked on the importance of the energy-dependence, as pointed out in Ref. 45.

Much more careful theoretical work needs to be done before quantitative assess-

ments of the importance of the A in the nuclear physics can be confidently made.

Calculations within the coupled channel framework are continuing, and there is

some hope that this method will prove to be a useful framework for including im-

portant physical effects both into the nucleon-nucleon interaction problem and

other physically interesting problems as well. I shall return to this subject

later to examine implications for other problems in nuclear physics.

3. Stony Brook and Paris Potentials

The situation that has emerged is that three models of the intermediate

range attraction exist, each of which has been shown capable of supplying suffi-

cient attraction: (1) scalar meson ex-

change, (2) uncorrelated two-pion ex-

change and (3) intermediate isobars.

It should be clear that no theory can

be correct which relies entirely on one

or two of these effects. However, no-

body has made a successful calculation

by explicitly combining these effects.

The method of dispersion relations

has provided some valuable insight into

this problem and first demonstrated the

extent to which an approach, which re-

lies on these three two-pion exchange
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mechanisms, may succeed. The essential points were discussed by Brown and
48

Durso. The two-pion exchange potential may be represented as in Fig. 17. where

the blobs represent everything which connects the two pions to the nucleons; the

antinucleon intermediate states, the A states and the interactions between the

two pions which build up the scalar mesons and the p meson. Now, the point is

that if the diagram is cut as shown in Fig. 17, each half represents the pion-

nucleon scattering amplitude (evaluated possibly at some kinematically inacces-

sible point). Thus, there is an intimate connection between the two-pion ex-

change nucleon-nucleon amplitude and the pion-nucleon scattering amplitude. Dis-

persion relation theory is the mathematical relation for connecting these two

quantities. A two-pion exchange potential can then be constructed provided one

knows how to extrapolate off mass shell (this is mostly an art at the present

time) and provided one subtracts out the iterated one-pion exchange potential,

for reasons discussed in conjunction with Fig. 12.

Because the dispersion relations relate pion-nucleon and nucleon-nucleon

scattering, this method makes possible a more stringent restriction on the terms

which are included and therefore gives a greater chance that the various pieces

are combined correctly. So far the approach has been largely phenomenological ,

i.e., the experimental TTN amplitude has been fed in or else certain phenomenolo-

gical constraints have been imposed, for example the soft pion condition that the

pion-nucleon amplitude extrapolate smoothly off mass shell near zero energy. One

hopes that eventually this approach will teach how to calculate more confidently

with the individual terms that have been discussed and that are depicted in

Fig. 18.

Two modern potentials have been constructed based on dispersion relations,
12 11

often referred to as the Paris potential and the Stony Brook potential. In

addition to this model of two-pion exchange, the potential consists of single IT

and single w exchange. In Ref. 11 the cutoff form factors are^calculated in a

model. In the most recent work of Ref. 12 the short range part of the potential

is parametrized and very reasonable fits to the data are obtained for nucleon-

nucleon partial wave states of J s k. These two potentials represent a departure

from their predecessors in that they contain an explicit energy dependence; this

is presumably a drawback for practical calculations and in Ref. 12 it is recom-

mended that the energy dependence be replaced by a momentum dependence.



Fig . 17. Relationship between the 2IT
exchange NN potent ia l and
the TT-nucleon scatter ing am-
p i i tude.

(e)

Fig. 18. Contributions to ir-nucleon
scattering. The diagram (a)
and (b) are intended to in-
clude anti-nucleon as well as
nucleon intermediate states.

The values of the OJ coupling con-

stants are shown in Table XVII. One

should note that the couplings needed

here are somewhat smaller than those

appearing in Table IX, especially for

the Stony Brook potential. This is

presumably the result of the energy and

momentum dependence in the potential,

which is different from that appearing

in the simple OBE model's, but it is

also due, at least in the Stony Brook

potential, to imposing an artificial

cutoff on intermediate momentum inte-

grals appearing in the expression for

Fig. 17 to take account of the omission

of the 3TT (e.g., simultaneous pir ex-

change shown in Fig. 19) exchange be-

tween the two nucleons. (Recall that

the p-meson effect opposes the TT-meson

exchange.) The cutoff reduces the

attraction and makes possible a smaller

short range repulsion.

TABLE XVI I

COUPLING CONSTANTS FOR w MESON IN PARIS

AND STONY BROOK POTENTIALS

2
Potential

Paris

Stony Brook

0)

9 - 5
7-0



k. Three Pion Exchange

The fact that GH were able to reproduce the S Q phases with a relatively

small value for g suggests that their model contains a repulsive term which is
to

normally not taken into account in one-boson exchange interactions. As I have

repeatedly emphasized, the TT and p exchanges have tensor components of opposite

sign, so if we regard the attraction in the nucleon-nucleon interaction as coming

from the two-pion exchange diagram in Fig. 15a, the exchange of a TT and a p meson

as shown in Fig. 19 must be repulsive and it is the candidate for the additional

repulsion in the theory of GH.

Durso, et al. examined this possibility in some detail and showed that the

irp exchange has the spin-isospin structure of the exchange of a vector, isovector

meson, i.e., like the w meson. Although the strength of this term depends sensi-

tively on the form factor cutoff, Durso, et al. estimate the effect and find that
2

the effect can be simulated by an increase of g from a (>.k (Table IX) to « 12.

This, they point out, may well explain why OBE models require w mesons with

coupling constants larger than those obtained from elementary particle considera-

tions.

IV. MESON IC COMPONENTS IN NUCLEAR WAVE FUNCTIONS

We have seen that models of the nucleon-nucleon interaction have been con-

structed which are moderately successful and which rely on a description in tens

of mesons, nuc]eons and nucleon resonances. One would like to find experiments

other than elastic nucleon-nucleon scattering in which sensitivity to these ele-

mentary constituents is manifest.

The complete wave function for a two-nucleon system |I/J> would have a multi-

tude of components:

|^a> = Z |i><i|1;a> ilk)

where |i> = {lNN>, |NNTT>, |NNp>, . . . ,|NNNN>, . . .} and the sum extends over a

complete set of the individual components. If it is possible to devise experi-

ments sensitive to the individual terms, or different linear combinations of the

terms than that which enters the nucleon-nucleon interaction, then one could be

more confident of the mesonic models.

Unfortunately, it is very difficult to write down dynamical equations which

can be solved explicitly for the various components in Eq. (7*0. However, as an



alternative to calculating the complete wave function, one might consider calcu-

lating observables, e.g., the magnetic moment, directly. The observable would

be associated with an effective operator 0. which would have the property
i

<* a |0,|*3>= < * o |0,U,p> . (75)

Here |I{J > is a wave-function having only nucleon components, generated from some

potential model Hamiltonian,

l ^ = ZlNNXNNl^ , (76)

\\p > is the exact wave function [Eq. (7*01, and 0. is the fundamental observable.

The way to construct such operators 0. is the subject of effective interaction

theory and the theory of exchange currents. The method of folded diagrams gives

a method for calculating at energies below meson production threshold corrections

corresponding to the instantaneous potentials (energy-independent interactions)

discussed in the first lecture. In these methods, the operator 0. is expanded

perturbatively to make corrections for the mesonic and N components in Eq. (74).

These calculation? are tractable and many have been done. Jim Friar will discuss

exchange currents more extensively but I will show some results later as they

bear on physics considerations already raised.

The method involving nucleon-nucleon potentials and exchange currents is

generally believed to be satisfactory for examining mesonic effects at low ener-

gy. The dynamics, at iaast in the two-nuc'^^n problem, is the solution of

Schroedinger's equation, and exchange currents are calculated perturbatively.

This simplicity is the attractive feature of this method. The drawback is that

it is incapable of describing meson production channels which open at higher

energies.

The actual wave function is presumably not either Eq. (7^) or Eq. (75) but

rather a wave function written in terms of quarks and gluons. Part of the task

of theory is to show how all these descriptions are related and to provide rules

according to which the same answer to physical questions will result, independent

of the particular mode of description.

Let me begin by giving some examples of low energy properties of the deuter-

on.



A. Exchange Currents

I. Magnetic and Quadrupole Moment of the Deuteron

The magnetic moment of the deuteron is measured to have the value

y = 0.857*t nuclear magnetrons (77)
D ? expt

If the deuteron were simply a neutron and proton, then y(D) would be given by the

express ion

u(D) = y(p) + y(n) - |[y(p) + u(n) - ~] P(D) (78)

where P(D) is the deuteron d-state probability. Most nucleon-nucleon potentials

give P(D) to lie in the range 0.0** to 0.065. If P(D) were as small as 0.04 then

Eqs. (77) and (78) would agree; however if P(D) were O.O65 then Eq. (78) would

underestimate the experimental value in Eq. (77).

In order to resolve this question, it is necessary to look at the calcula-

tion of the deuteron magnetic moment from a more fundamental point of view, i.e.,

from a meson exchange model point of view. As in all such studies one should

consider potentials which are compatible with the effective magnetic moment

operator 0 , i.e., the wave function <p and the operator 0 in Eq. (76) should be

consistently derived from the same underlying meson theory.

Figure 20 shows some of the "meson exchange" contributions to 0 . It is

important to point out that there is a folded diagram contribution to the meson
on

exchange current which should be used in place of Fig. 20c if the state |̂  >

is the eigenstate of an energy-independent Hamiltonian. Actually all calcula-

tions which have been made are based on energy-independent interactions and

therefore there is some inconsistency regarding the treatment of this term.

Sometimes heavy mesons are considered in Fig. 20a and b.

Figure 21 shows some of the isobar contributions to the exchange current

0 . In order to make use of Fig. 21c one needs to know the AA and NN1 compo-

nents in the deuteron wave function (see below). Calculations are particularly

uncertain due to the poorly known coupling constants and magnetic moments asso-

ciated with the A and N 1.

Results of some published calculations are shown in Table XVII. The calcu-

lation of Ref. 51 utilized an underlying one-boson exchange model; one would



Fig. 19- A 3ir exchange contribution.
This contributes a dominent-
ly repulsive effect for rea-
sons discussed in the text.

(b) (c)

Fig. 20. Contributions to meson ex-
change currents. The wavy
line represents the coupling
to the electromagnetic field.
Diagram (1) is called the
pair term; (2) the mesonic
term; (3) the recoil plus
wave function renorma1ization
term.

(a)

Fig. 21.

(b) (c)

Isobar contributions to the
exchange current. The double
solid line stands for N1 or A.

TABLE XVIII

NUMERICAL RESULTS FOR CORRECTIONS TO

DEUTERON MAGNETIC MOMENT

Terms Au(D) '"'

NN'(1688) (2%)

AA

+2

+5

+2

-5

+2

(+0 .2)

K50a

FAM5Ob

HFY51

JLR52

G

(FAM5Ob)
i

Relativity

like to see all exchange current calcu-

lations proceed consistently from a

meson theory both in the underlying

potential model and in the calculation

of the exchange current. In addition

to these results there is a recent cal-

culation by Hadjimichael, in which

the sensitivity of the deuteron magnet-

ic moment and quadrupole exchange cur-

rents to various phenomenological po-

tential models was considered. The re-

sults in the table indicate that the

exchange current correction is Ay(D) =

+ 6%. A P(D) of + 0.065 requires a

+ 2% correction, and so these results

have the correct sign but overestimate

the correction by a factor of 3- Hadj i-

michael has shown that the tendency to

overestimate the magnetic moment is

characteristic of many potential models

having a range of values of Pn.

It is somewhat worrisome that all

the corrections in Table XVIII are

approximately the same size. One would



like to see a tendency for the corrections to get smaller in a systematic expan-

sion procedure. It would be interesting to see what uncorrelated 2TT exchange

wou d add to the magnetic moment. As it now stands, the exchange current correc-

tions to the magnetic moment tend to be too large. This is not the only place

that exchange current calculations tend to give too large results. Holstein,

et al./'9b have analyzed the reactions y~ + '60 ->• 'V"(0~) + V and 'V'Co") •* 0

+ e + v and find that experiments do not require appreciable exchange current
6

corrections contrary to the results of explicit theoretical calculations.
/lQg

Hadjimichael has also considered exchange current corrections to the

deuteron quadrupole moment in various potential models. The corrections to the

quadrupole moment are smaller than the corrections to the magnetic moment, but

the tendency is for the calculated corrections to be too large.

2. Radiative N-P Capture (N+P ->• D+y) of Thermal Neutrons

The experimental cross section is a = 33^-2 ± 0.5 mb. Calculations

without mesonic effects give a = 302.5 ± ** mb; this is accurately known from

knowledge of just the nudeon-nucleon phase shifts. The 10% discrepancy between

these two numbers is interesting because it indicates that this reaction actually

needs a substantial correction from mesonic effects. At low energy the transi-

tion is magnetic dipole, S •* S and S ->• D.

Again Figs. 20 and 21 show some of the terms that have been considered in

trying to understand the discrepancy. The isobar terms are shown in Fig. 21.

The piece in Fig. 21c appears to be quite small.

Results of two calculations are shown in Table XIX. Note that the pair plus

pion current contributes somewhat more than the A effect. The A terms have not

been calculated with IT + p exchange nor have these calculations taken into

account the effects of NN' and AA components in the deuteron; the latter effect

has an important indirect effect, of affecting the deuteron wave function normali-

zation, through Fig. 21c. Green has pointed out that when these effects are

taken into account the A effect will be significantly reduced.

The results seem to indicate a significant need for mesonic effects. Better

calculations are needed before we can say what the actual balance between mesonic

and non-mesonic effects is.

3. Other Experiments

There have also been calculations of the following reactions to inves-

tigate the contributions of the various mesonic effects.
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e+d -> e+d

e+d -v e'+n+p

u +d •+ n+n+V (79)

ir +d -> n+n+Y
i

These are discussed in the review arti- i

cle by Green.

The need for mesonic exchange current corrections is especially dramatic in

e+d •> e'+n+p; a calculation is shown in Fig. 22. The dominant effect comes

from processes other than isobars.
B. Isobars in Nuclei

Pair c

's-3s
1.77

1.90

TABLE XIX

ENHANCEMENTS OF SINGLE PARTICLE

AND CROSS SECTION FOR n+p » d+Y

Plon Current

's-30

I.U

1.38

A Effect

•s-3s 's-3o
2A
1.88

AMPLITUDE

IN PERCENT

Cross Section
(*)

11.5

9-7

An alternative approach to calculating mesonic effects in nuclear systems

is the coupled channel approach, discussed already in connection with the Green-

Haapakoski description of the nucleon-nucleon interaction. This description is

in some sense intermediate between those represented by Eqs. (7^) snd (76) > In

this approach the wave function would be taken (for a two-nucleon system) as

|ijj> = I |7> < T \ty > (80a)

|T> = {|NN>, |NA>, INN'>, . . .} (80b)

Since nucleons like to interact with mesons to form resonances, it is supposed

that a wave function of the form in Eq. (80a) is "closer" to the true wave func-

tion of Eq. (7A) than is Eq. (76). Since more is being put into the wave func-

tion, one can expect simpler exchange current corrections. At higher energies,

the coupled equations take into account some of the inelastic channels, i.e.,

those that are fed through the N1 and A states. Again one hopes that the wave-

function is sufficiently close to the actual wave function that the corrections

necessary for describing meson production will be small enough to handle in some

tractable fashion. However, so far nobody has carefully worked out the theory

of the equivalence between the descriptions in Eqs. (74) and (80), and it is

therefore too early to say for sure how quantative the coupled channel approach

can be.



1. Isobar Components in the Deuteron

This problem predates the work of GH on the nucleon-nucleon interac-

tion, but the theory is reaMy just an extension of the ideas discussed earlier

in that connection. Basically, the idea is to extend the number of coupled chan-

nels in Eqs. (70) to (73) to include more of the isobars shown in Table XII. In

addition to the A(1232), the isobars which have been included in these calcula-

tions are shown in Table XX.

A description of the wave function containing the A(1232) and nucleon was

described in detail earlier in conjunction with Table XIV; with the higher spin

resonances of Table XII, the wave functions are even more complicated. One dif-

ference between the T = 3/2 and T = 1/2 resonances is that isospin considerations

do not forbid |NN'> components in the deuteron, whereas |NA> components cannot

occur, as discussed earlier in conjunction with Table XIV. For this reason, the

N1 components will be as important as, or more important than, the A component

even though the N1 are more massive.

TnD.c vv The description in terms of cou-

pled channels introduces new theoreti-
SOME OF THE T=l/2 NUCLEON RESONANCES . .... - , . ,

cal quantities many of which are un-

known in detail. One of these Is the

transition interaction NN -»• NN '. It

is generally assumed that these tran-

sitions are induced by the pion and

that the resonance width is determined

by its decay into a pion and a nucleon.

Under these circumstances a coupling

of the appropriate tensorial character

., ...., ,. , is written down and the known width of
g is the TTNN1 coupling constant, de-
termined from the resonance width the resonance used to determine the

•*'' coupling constant. See Ref. ^3 for

more details. Some couplings determined in this way are shown in Table XX. Di-

agonal matrix elements, e.g., ^|AJV|NA> are also needed but virtually unknown;

often these are equated to the diagonal matrix element for nucleons, or a quark

model is used for an estimate.

Once the interactions are written down, the coupled equations are solved

exactly or approximately to find the wave function components. One interesting
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N'(1520)

N1(1535)

N'(1670)

N'(1688)

N'(l700)
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5/2
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1/2

T(MeV)
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12.5

60.6

7^7
104.9

g

3.*+

16.32

0.36

10.08

26.88

0.96



quantity which may then be calculated is the probability with which a certain

isobar configuration occurs in the deuteron wave function. Some of the numerical

results for AA and NN1 probabilities are shown in Table XXI.

At first, the calculation of the AA component of the deuteron was very un-

certain due to a strong cutoff dependence (analogous to the parameter B in Table

XV) in the transition interaction <NN|v|AA>, i.e., the AA probability could

change by a factor of 2 depending upon the cutoff at the TTNA vertex. In the

more recent calculations of Refs. 62 and 58 the transition potential includes the

IT plus p meson exchange and the sensitivity to cutoff is vastly reduced. The

calculations A and HS of Table XXI both incorporate the p meson and the

differences are indicative of other sources of uncertainty, e.g., A incorporates

a diagonal interaction in the AA channel whereas HS do not, and HS use a TTNA

coupling taken from the quark model whereas A takes his from the width of the

A(1232). The errors on the HS result show the sensitivity to the very short

range regularization of the transition potentials, i.e., the result of varying

the hard core cutoff from 0.2 to O.h fm.

Table XXIb shows some of the other calculations of isobar components in the

deuteron. We see that the total estimated probability is about 1.5%. Estimates

for the AA component range from 0.25 to \%. Because these probabilities are

small, the isobar components are going to be very difficult to detect. After all,

the D-state probability of the deuteron has proved difficult to pin down to

within 2%. However, as emphasized by Kisslinger, the isobar configurations are

apt to dominate the momentum distribution of the deuteron for sufficiently high

momentum. The large spin of some of these resonances implies that rather large

orbital angular momentum will be found in the deuteron ground state. Because

momentum distributions of orbital angular momentum L are expected to peak at Q

Q » L/R (81)

where R is the deuteron radius, it is possible that the large momentum component

will be more significant than the small overall probabilities. Similar consider-

ations apply to larger nuclei. It has been hoped that this fact could be used

to get an experimental handle on the A and N1 probability but so far nothing has

come from these attempts.
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TABLE XXI a

ESTIMATES FOR PROBABILITY OF AA

COMPONENT IN THE DEUTERON"

State (AA) AfZ. Mi!!
0.17 0.16 * 0.06

0.05 0.026 ! °;«J|

Sum

0.51

0.05

0.78

0.25

0.02

+ 0.01
- 0.02

0.1 - 0.07

Probabilities are quoted in percent.

TABU XXI b

ESTIMATES TOR PROBABILITY (*) OF AA AND NN' COMPONENTS IN THE OEUTERON

Sl»t»
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1.2
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0.20
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0.08
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Fig. 22. Double differential cross
section for the reaction
e+d-+e'+n+p for backward scat-
tering at fixed neutron-pro-
ton energy EQM = 3 MeV.55
Solid and dashed curves are
theoretical results with and
without exchange currents,
respectively; solid curve A
contains only the OPEP cur-
rents, while curve B contains
the isobar current.

2. Tests of Isobar Components in the Deuteron

a. (P,D) Elastic Backward Scattering

The subject of isobar components in the deuteron was launched by the

work of Kerman and Kisslinger (KK), who were interested in explaining the back-

ward peak in the P,D elastic differential cross section. KK emphasized that an

exchange (transfer) mechanism such as that shown in Fig. 23a required less momen-

tum transfer than a "bounce" mechanism shown in Fig. 23b, and hence would presum-

ably dominate the transfer at high energy. However, the elementary nucleon trans-

fer, depicted as a Feynman diagram in Fig. 23c, was too small to explain the back-

scattering peak; the deuteron wave function did not have a sufficiently large

component for the momentum transfer involved. However, KK constructed a model in
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(b)

N
N1 (1688)

N'(2220)

(O (d)

Fig. 23- Representations of (d,p)
backward scattering, (a) and
(b) are pictorial representa-
tions of transfer and bounce
scatterings, respectively,
in the lab frame, (c) and
(d) are Feynman diagrams for
the transfer of a nucleon or
t=l/2 isobar, respectively.

which the deuteron ground state con-

tained a sufficiently large admixture

of N1 components that the exchange of

a resonance as in Fig. 23d could pro-

vide the needed momentum. They esti-

mated the amount of NN'(1688) in the

wave function to be from 1/2 to \% and

showed that if the percentage were as

large as ]% then the backscattering

could be completely explained. Since

that time there have been a number of

other proposals for explaining the

backscattering, proposals which do not

rely on N1 components. Incidentally,

the A must occur in pairs in the

deuteron.

b. A Knock Out (p+d->p+A++A°)

In these experiments one

hopes to obtain directly evidence of A

components in the deuteron by quasi-

elastically scattering a A from the deuteron by a high energy pion or kaon. In

such a collision, when the incident meson strikes one of the A in the deuteron,

the spectator A can decay to give a number of TTN events in the backward direction

in the laboratory. A backward peak was found and initially was interpreted as

evidence for A in the deuteron. Different experiments have been analyzed as

giving less than 0.k% for the percentage AA and up to 3% for this probabil-

ity. Recently A. Goldhaber has made a critical study of the effects which

could impugn these, analyses and has found many sources of ambiguity, including

final state interactions and the form factor for the virtual A-real A transition.

Some of the effects he considered could suppress the breakup by an order of

magnitude, and he concludes that the reported experiments did not have the nec-

essary sensitivity to detect AA breakup.
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3. Mesonic Degrees of Freedom in the Ground State of Large (A>2) Nuclei

a. A Components

This problem may be approached from the point of view of exchange

currents or by explicit calculation of A and N' components just as in the case

of the deuteron. However, for a large nucleus there is a new possibility, namely

that a pion condensate might exist. I want to reserve the last lecture for a

discussion of pion condensates.

Rather tK^n discuss details of calculations of A and N1 components and ex-

change currents in heavy nuclei, I want to mention two qualitative ideas, both

due to Kisslinger and collaborators, on experimental consequences of isobars in

the ground state of nuclei.

The first point is that in many cases the A and N1 have large spin S. Thus,

for a given single particle orbital of total angular momentum J these objects

can occupy states of relatively large orbital angular momentum. For example, in

a J = 3/2 state the A(123O) wi 1 1 occupy L = -| + y = 0,1,2,3. Thus, in

the absence of As the odd parity single partTcle~orbital of J = 3/2 is

*3/2 = P3/2 (N)

i.e., an L = 1 state. However, with both N and A(1232) components, this state is

* = a P3/2 (N) + 3 P3/2 (A) + Y F3/2 (A) (82b)

The hope is that the states of large L (in this case the F ^ 2 or L = 3 state)

would be a dominant source of large momentum components which could be easily

detected in certain nuclear reactions. The (P,D) reaction (i.e., neutron pickup)

on a light nucleus such as carbon was expected to be sensitive to these A com-
66ponents.

Although the (P,D) reaction was initially quite attractive, the experimental

results could be entirely explained without the A effect. Rost, et al. showed

that by taking into account the D state of the deuteron, all the necessary high

momentum needed to explain the data could be found. Later calculations by
68

Schaeffer, Kisslinger and Rost showed that the A and N' components were not

effective yet for 800 MeV protons.

The second proposal was one by Kisslinger and Miller, the (p,TT ) reaction

on a nucleus. The process is illustrated in Fig. 2k. A (P,ir ) experiment on



Mg at 180 MeV was reported in Ref.
77"

70, but very poor agreement with theory

,. was obtained. There is some worry,
A

however, that the distorting optical

_ .. ~ ~ ~ J potential was not sufficiently realis-

++ _ tic in the theoretical estimates of
Fig. 2k. The A mechanism for pir

reactions. Ref. 69, and the calculations should

be redone investigating this point.

In any case we can say at this time there is no direct experimental evidence for

A components in nuclei.

b. Mesons in Nuclei: Meson Propagator

Another very important subject is to know how a meson, once created

in a nucleus, propagates. One might ask, for example, what the amplitude is to

insert a pion of momentum k in a medium at time T and remove it at time T 1

< ^ | a + (T'> a k(T)|^> (83)

where jpn is the exact nuclear ground state wave function, 3^(T) = e a, e

and H is the full Hamiltonian including the pion. The matrix element shown in

Eq • (83) is the pion Green's function, and is a fundamental quantity which

specifies the way the pion propagates. It is essentially this matrix element

which is examined in investigations of meson scattering, investigations of meson

currents in the nuclear wave function, and pion condensation. This is an exceed-

ingly important aspect to the work at the meson factories and to nuclear physics

in general. I will not have time to talk about this in any generality, but I

will illustrate the subject in my last lecture when I discuss pion condensation.

c< Mesons and Isobars in the1 Nuclear Ground State, Summary

There is a well-established "need" for mesonic effects in the ground

state of nuclear systems, showing up especially in interactions with the electro-

magnetic field in exchange current corrections involving the deuteron. However,

how much of this correction is due to the individual mechanisms shown in Figs.

20 and 21 is still not unambiguously answered by the experiments. Because the

theoretical numbers depend on many terms with several sources of theoretical

uncertainties, agreement between theory and any one experiment does not necessari-

ly mean that the theory is completely correct.
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Some of the outstanding theoretical questions include (l) How does one prop-

erly describe a A or N1 embedded in a medium? Can one describe a virtual N1 or A

by a simple propagator characterized by its free mass? Does the coupling change

at all for a virtual A or N1,

(84)

meson?

(2) What is the magnetic moment for N1 and A?

(3) What are the diagonal couplings:

A,N'

(85)
meson?

A,N'

In addition to seeking answers to these questions, one should look closely at

certain relativistic corrections to the exchange currents. One interesting term

is the correction which arises from the use of instantaneous potentials in cal-

culating the wave functions in the initial and final state. These corrections are
20calculable within the folded diagram framework.

One of the difficulties of trying to learn about mesonic effects in the

ground state of nuclei is that the mesons and resonances are not seen directly;

their existence must be inferred by doing very accurate calculations with and

without a conjectured mesonic effect and then looking for a systematic improve-

ment with an experimental result.

In many respects the more satisfactory way to study mesonic effects is to

raise the energy sufficient to produce the mesons. If the states of interest can

be produced and studied directly, then many of the questions raised in these

lectures may be subjected to a direct test. I therefore want to turn now to some

of the questions that can be addressed by experiments above meson production

threshold.
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V. DIRECT OBSERVATION OF MESONIC COMPONENTS-NN SCATTERING ABOVE TT PRODUCTION

THRESHOLD

The importance of pinning down the two-pion exchange interaction highlights

the importance of nucleon-nucleon scattering experiments above threshold for pion

production. Here there is an intimate connection between the two-pion exchange

interaction in elastic scattering and the reaction in which a pion is actually

produced as for example

P+P .> P+N+7T + (86a)

+ (86b)

The point is that one of the pions in the two-pion exchange of Fig. 25a, rather

than attaching to the second nucleon, is actually produced as a free particle.

Thus the pionic piece of the black box, pieces of which are shown in Fig. 25b,

can be studied in some detail, for example, by varying the kinematics of the

final state.

It is important to learn the extent to which the A (and other resonances)

contribute to this process, because such would give an indication of the validity

of models which are used to estimate the NA and AA components in nuclear systems.

It is also important to measure the production channels to get an idea of

how the inelasticity is distributed among the various nucleon-nucleon partial

waves. This is an area of great importance, not only to learn about the nucleon-

nucleon potentials but to help arrive at unique nucleon-nucleon phase shift analy-

ses above meson production threshold. Usually it is assumed that the inelasticity

appears first in the D, nucleon-nucleon phase shift, but coupled channel calcu-
kk / 71 72

lations such as that of Green and Haapakoski (see Green, et al. who made

some modifications, e.g., including a width for the A(1232) above IT production

threshold) give the results shown in Fig. 26. The point here is that in Ref. 73

it was assumed that the inelasticity occurred first in the D_ channel because

here the NA may be in an S state. However, the detailed calculation shows an

appreciable imaginary phase shift in the S Q states, casting doubt on the phase

shift analysis above threshold. Ambiguities such as this would be brought under

control by a direct measure of the inelastic channel.

Green and Niskanen have also calculated the reaction in Eq. (86b). They

point out that this is dominated by ;the A_, and hence a sensitive test of the
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coupled channel approach to calculating A components in nucleon-nucleon and nucle-

on-nucleus systems. They seem to be able to reproduce the broad resonance peak

in the absorption cross section at a proton lab energy of about 600 MeV and they

take this to be evidence of the qualitative correctness of their coupled channel

theory.

Lastly, I should mention the polarized proton total cross section measure-

ments recently carried out at Argonne around 1 GeV. Measurements of

Aa T = a(M-) - a(-H) (87)

7Z1
for spin alignments transverse to the beam and

AaL = o(t) - a(t) (88)

for longitudinal alignment have been made. A dramatic variation in Acr. was ob-

served near T. .a - 750 MeV, which appears to be a resonance in the F_ (NN) par-
76 3

tial wave. '77 From Table XIV we see that this would couple to the F (NA)
7R

partial wave. Earle Lomon has shown in a very schematic model that a suffi-

ciently strong transition interaction NN ->- NA could give rise to a resonance

close to the threshold for the production of the A. Kloet, et al. have

tried to make a more detailed calculation using a coupled channel approach which

has three-body unitarity imposed. They do not reproduce the dramatic structure

in Aa. , but this could be due to the fact that their model lacks realistic shori

ranged nucleon-nucleon forces. If Lomon's arguments turn out to be the correct

explanation, there is some hope that extending the spin-dependent calculations

to higher energy and a more detailed study of the reactions in the vicinity of

the resonance could greatly help in understanding the same NA and NN' interac-

tions at high energy needed for the low energy studies of N1 and A components in

nuclei.
81

Riska, et al. have given some reason to believe that the cross section in
Eq. (87) can teach about the role of the p meson in the nucleon-nucleon intei—

action.

VI . NUCLEAR MATTER THEORY

A. Brueckner-Bethe Method

Let me now skip from properties of few-body systems to large systems. Not

as much can be said here because of the additional complexity of knowing how to
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Fig. 25.
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A contribution to the two-
pion exchange potential stud-
ied in pion production exper-
iments.
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Fig. 26. Imaginary parts of the nucle-
on-nucleon phase shifts.^
The solid curves are calcula-
tions of Ref. 71- A, for the
'SQ channel; B for the 'D2
channel with a small NNp

coupling constant; C, for the
'D2 channel with a large NND

coupling constant of Ref. 2

solve the many-body problem. Roughly

half of the next two lectures will be

devoted to developing aspects of many-

body nuclear physics, and thus not di-

rectly dealing with the topic of mesons

in nuclei. However, in order to appre-

ciate the connection between the prop-

erties of a large part of the periodic

table and the fundamental considerations

we have just discussed, it is necessary

to understand the theoretical methods

being employed.

For the preparation of these lec-

tures on the Brueckner-Bethe theory, I

have relied heavily on the lectures by

M. Baranger, the review article by H.
?L On Oo

Bethe, and the reviews by B. Day. '

Reference 82 is an especially readable

introduction to the methods.

The premise of the following dis-

cussion is that a collection of inter-

acting nucleons can be described by a

Hami1tonian

H = T + V (89)

where T and V have representations given

in Eqs. (11) and (12) in terms of crea-

tion and annihilation operators. We

are thus supposing that the nuclear sys-

wu K >, ,,a w..= um.L ». ™, . — b d e s c r i b e d by a two-body po-
The points show the 'D2 phase y y y

shifts from Ref. 73- tential. in the calculations that have

been done, V is a nucleon-nucleon potential which fits the two-body data, i.e.,

the nucleon-nucleon phase shifts and the deuteron properties. Later we shall re-

investigate the validity of this representation from the point of view of meson

theory (e.g., considering 3"body forces).
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The system we shall try to describe is infinite nuclear matter. The reasons

for studying this fictitious system were given in the first lecture.

). Feynman-Goldstone Diagrams

We have already discussed the meaning of a Feynman diagram; our study of

the properties of nuclear matter will strongly draw on this framework. However,

the usual Feynman diagrams are not very convenient for the description of a large

nuclear system because in this notation each nucleon must be represented by its

own line: this would clearly be out of the question for a large system. Conse-

quently, the Feynman-Goldstone notation for a Feynman diagram is commonly used.

In this notation one draws the difference between the states in the Feynman dia-

gram and some reference state, called the unperturbed ground state. This saves

having to draw lots of unnecessary lines. The following discussion, through the

description of Goldstone's theorem, comes from the lecture notes of M. Baranger.

The reference state l^^ is taken to be an antisymmetrized product of orthog-

onal single-particle wave functions, which are plane waves for the case we are

considering. All states of momentum k< kF = Fermi momentum are occupied in ]<!>(<>'

We shall use capital letters A, B, C. . . to designate the single particle states

which are occupied (i.e., A, B, . . denote the states k < kp) and lower case

letters a, b, . . . for those that are empty. For instance, Fig. 27a shows the

propagation of the reference state, Fig. 27b is a Feynman diagram containing one

interaction. The Feynman-Goldstone representation of Fig. 27b is shown in Fig.

27c; it has the same value as Fig. 27b but is drawn to give the difference be-

tween Figs. 27a and b The states that are missing from the reference state are

given an arrow pointing downward and are called holes; those that are there in

addition to the reference state are given an arrow pointing up and are called

particles.

Now, it is convenient to define the basis states more carefully than we have

already. Rather than use the kinetic energy in Eq. (89) it is convenient to add

and subtract a potential energy term

H = HQ + V - U 2 (90)

fe] Z(V
U = £ U(k ) a+ a (92)

A A A A
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and to use the energies e(k) as the unperturbed energies. Because the system is

infinite we may take the eigenstates of H-. still to be plane waves. The choice of

U is to be made self-consistently later; for now we consider it to be arbitrary.

Let us now calculate the value of Fig. 27b or 27c They both have the same

value since they are different notations for the same physical process. Let

EQ = e(A) + e(B) + . . + e(Z) (93)

Now, the value of Fig. 27b is, using the rules for Feynman diagrams discussed in

the first lecture

/""(-Idt ) e-'[e(A)+E(b)+e(C)+e(0)+...+e(Z)](t
l-to)

«\b|V|aB> e ' £ e ( a ) + £ ( B ) + E ( c ) + . . .+e(Z) ] ( t Q - t )

x 0 ( t ' - t o ) 9 ( t o - t ) (94a)

= / " ( - I d t ) e - [ E o - e ( B ) + e ( b ) ] ( f - t Q ) <Ab , v ) a B > fi-i [Eo-e(A)+e(a) ] ( t Q - t )
-to

ett'-to)e(to-tj (94b)

Now, let us define the zero of energy so that E = 0 . Then, Eq. (94b) becomes

tf-ldt ) e-It£(b)-£(B)](tl"to)<Ab|V|aB> ^ l e M - e M H ^ - t )
4» °

x 8(t'-to)e(to-t). (94c)

In order to decide what rules to assign the lines and vertices in the Feynman-

Goldstone diagram, one has to return to the original Feynman diagram. Comparing

Eq. (94c) to Fig. 27c we see that the matrix element of the potential enters

always as, with the help of the arrows,

< left out, right out |v| left in, right in > (95)

Furthermore, the propagator for a hole is

-le.(t-t')
= -e e(t'-t) (96)
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The overall minus sign is introduced for convenience later.

The transition from Feynman (F) to Feynman-Goldstone (FG) diagrams is not

always unambiguous. There are two (and only two) types of F diagrams for which

the FG equivalent is not obvious. They are shown in Fig. 28. Conversely, there

are two types of FG diagrams which have no F equivalent. They are shown in Fig.

29. Diagrams of the type shown in Fig. 29, although they have no F equivalent,

are convenient to retain. These terms always occur in pairs, one the exchange of

the other, and signs are assigned to make these pairs cancel.

In the present lectures we are interested only in Feynman diagrams which

begin and end with the unperturbed configuration. The reason for this will be

clear shortly. In this case no FG diagrams have linss which extend from t or

extend to t1, e.g., they look as in Fig. 30. The rules for signs and coefficients

are qu i te s imple:

(1) All possible diagrams are drawn.

(2) Each distinct physical process should be counted once and only once.

(3) Each closed loop gets a (-) sign.

Otherwise the rules are as stated earlier. Diagrams which violate the Pauli prin-

ciple can be shown to cancel.

2. Goldstone's Theorem

Golds tone's theorem for the energy of the ground state E is an expansion

of this quantity in terms of e(k) and V. The theorem says

E-EQ = I aL (97)

where the sum extends over all linked diagrams, i.e., over all diagrams which

have no external lines and which are in one piece. To clarify the statement of

the theorem, I shall indicate how it is derived.

To prove Goldstone's theorem, we must assume that the interaction V is turned

on very slowly at negative times, so that the unperturbed wave function \<t>n>

evolves adiabatically into the exact ground state wave function |ipfi> upon'appli-

cation of the time evolution operator U. We assume that the interaction has

reached its full strength at time t = 0. The details of the turning on process

are not important, but it must be sufficiently slow not to produce any transition

to any exact state. The adiabatic theorem states

|^0> = u(o, -°°)|<j>0> (98)
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Now, if we let the system continue to evolve we get

|<j> ( t ) > = U ( t , -°°) \ty >= e \\j) > (99)

where

AE = E - E (100)
o

is the well-known time-dependence of an exact eigenfunction of H. Taking matrix

elements of Eq. (99) we find

_ ; A F t-
|(})> = e <<p | U (, 0, ~c°) \ <p > \ \ 01;

Each matrix element in this formula is equal to a sum of diagrams, each of which

consists of a set of disconnected clusters. Schematically, we can write Eq. (101)

as shown in Fig. 31 where every blob stands for a linked cluster. Now, to get

the value of a diagram which consists of several individual linked clusters, we

need only to multiply together the contributions "rom the individual clusters.

This means that some time orderings of the separate clusters will violate the

Pauli principle, but as we have said, Pauli violating terms always occur in pairs

which cancel. Thus no harm is done. Thus the terms which contribute to the left-

hand side of Eq. (101) factor into a piece which consists of all diagrams having

their last interaction between times t=0 and t and a piece which is identical to

the factor «j> | U (0—«s) (ef» >. We therefore write

e =£ II [all possible clusters having their last interaction

in (0,t)] (102)

Now, to arrive at the theorem of Eq. (97) we must perform the operation £11 in

Eq. (102). First, consider n identical clusters. The top times t_., t 0 ?,. . .,

t. oF these clusters are in general all different. Then, if we let each t_.

vary from 0 to t, we are obviously including each history n! times, while accord-

ing to our fundamental rule about counting it should be included only once.

Therefore, we must divide by n! So, if a' is the contribution of a particular

cluster c, a1 = f (~i)dtna
 = -ita , the contribution of any number, including

C O 0 C C
0, of such clusters is

a '
1 + a1 + a|2/2! + al3/3! +. . . = e C (103)
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a
T h e r e remains only to m u l t i p l y t o g e t h e r the q u a n t i t i e s e c a r i s i n g from all p o s -
si b l e d i f f e r e n t c l u s t e r s , w h i c h g i v e s

Ea
e c = e

c

Ea
c = e C (104)

Thus, comparing Eqs. (102) and (104) we see

AE = E a
L L

thus proving the desired result.

Goldstone's theorem provides a systematic approximation scheme in which the

energy per particle E may be calculated. Examples of linked clusters are shown

in Fig. 32. Figures 32h and i give examples of terms which contain the inter-

action -U of Eq. (90), denoted by x.

I should end this section by illustrating how to calculate a cluster. Re-

call [Eq. (103)] that we have already integrated the last (topmost) time in a

cluster. Therefore we have to integrate all except for the last time.

Figure 32a is the easiest. Since there is only one interaction, no time

integrations remain to be done. The value of the term is

I I E <AB|V|AB> (105)
1 A B

where the sums (actually integrals) over A and B run over single particle-hole

states only, i.e., A, B < e ( k p ) . The factor of — is needed according to rule 2

of this section to avoid counting the same contribution twice. The sign is +

because the number of hole lines = number of closed loops.

Figure 32b requires one time integration. This term is redrawn in Fig. 33

with labels. The value of this diagram is

-i(e +e,-e -e )(t -t.)
e a b A B U 1 < A B | V | a b > < a b | V | A B > (106)

Integrating over time, -i/ dt, > summing over states and including the sign

(again + because there are two hole lines and two closed loops).

Fig. 32b = | 2 2 <AB|V|ab> \ <ab[VJAB> (107)
1 AB ab a eb eA eB

> e(kp)
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A B C Z
(a)

B C 0
(b) A a

V
Fig. 29. Feynman-Goldstone diagrams

with no Feynman equivalent.

a A

(c)

Fig. 27. Illustrating the difference
between Feynman and Feynman
Goldstone diagrams. .ii\r

A B C Z

— O A
t

Fig. 30. A Feynman-Goldstone diagram
which begins and ends in the
unperturbed configuration.

A /b

© ̂ -^
-iAEt

Fig. 28. Special cases of Feynman and p|q ,j ^
corresponding Feynman-Gold- ' ' j
stone diagrams.

representation
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(a) (W M

e e o:>
(d) (e> C«

°" X ' ' ' '""* Fig. 33. Figure 32b redrawn with
labels,

(h) (i)

Fig. 32. Examples of linked clusters.

We may ignore the contribution from the limit -°° because the interaction was

assumed to be slowly turned off at these times.

One result useful to note is that each time-ordering of a diagram (a time-

ordering is a constraint which specifies the order in time in which the various

interactions may occur. Figures 32a to f have only one possible time-ordering

but Fig. 32g has two, depending upon the order in which the two intermediate

interactions occur) can be written as a product of matrix elements of potentials

and energy denominators

Time-ordered diagram - < | V l > E n e r g y D e n . < M > E n e r g y D e n . " ' ^ ^ ( 1 0 8 )

where

Energy Den. =
part.

+ ]T
holes

e
i

The order of potentials in Eq. (108) is the order in time as they occur in the

diagram, and the sums in Eq. (109) run over the particles and holes that exist

during the time interval between the two interactions in Eq. (108). This result

is easy to prove and one may consult Ref. 16 for details.

3. Energy of Nuclear Matter - Lowest Order

a. Theory-The Brueckner G-Matrix

Each of the linked clusters contains matrix elements of the poten-

tial V. But V has a very strong repulsion at short distances, as has been em-

phasized in ear)ier lectures. Therefore we expect that the expansion in Eq. (97)

will not give meaningful results in its present form.
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The idea of Brueckner was to sum together all similar diagrams so that in-

stead of the matrix elements of V entering in each linked cluster, one would find

the matrix element of a new object, the G-matrix. The sequence of terms that are

to be summed together to form the G-matrix is shown in Fig. 34. From our discus-

sion of how to evaluate diagrams, we see that this sequence has the value

G(UJ) = V + V - 3 7 — V + V -~T— V -—- V +

(110)

where the operator Q ensures that no intermediate states occur which are below

the Fermi surface. The operator h Q is the single particle energy operator for

the pair of nucleons that are interacting in Eq. (110). Because the sequence

shown in Fig. 3*» occurs within some larger cluster, the energy, w, called the

starting energy, may be determined from the other energies in the diagram in the

same time interval.

The point is that the G matrix is a finite and well-behaved quantity even

for an infinitely hard core potential V. Thus, the perturbation expansion for

the energy is much better behaved when written in terms of G rather than V. The

rearranged expansion in terms of G is often called the Goldstone expansion. The

rules for it are very similar to the rules for the expansion in terms of V. The

differences are: (>) the interactions are now G matrices everywhere instead of

potentials (G-matrices are often denoted by wiggly lines, potentials by dashed

lines); (2) to avoid double counting, two (or more) G matrices should never occur

in succession between the same two particles.

It is generally believed that the single G matrix contribution to the energy,

shown in Fig. 35 is the dominant contribution to the potential energy at normal

nuclear matter density. To get the corrections to this it is necessary, however,

to sum a large number of other terms according to a well-defined prescription,

which I shall come back to later. Next I want to study in some detail the con-

tribution of the terms in Fig. 35.

Let me begin by writing out the explicit expressions. Figure 35 speci-

fies that the potential energy W is given approximately by
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W = \ T, <AB|G(e.+eJ |AB>
AB

- i - E <AB|G(e.+eB)|BA>
2 AB A B

- K A|U|A> (111)
A

The minus sign in the second term of Eq. (ill) arises because the corresponding

diagram has two hole lines and cne closed loop, hence receiving an overall factor

(-)2+1.

The discussion of the contribution of Fig. 35 is facilitated by working with

wave functions rather than G-matrices. Consequently, we introduce the two-body

wave function i/> defined as

( 1 1 2 )

where <|> is an unperturbed (plane wave) stare

i k . * r ikR - rR

*AB ~ = e e

e is the energy denominator in Eq. (HO)

e = u-ho

and G is the Brueckner G-matrix. ip is useful because if we know ip then we may

calculate G according to the relationship

015)

which follows from multiplying Eq. (112) by V and using the definition of G.

Another useful definition is of the defect wave function t,

Several methods have been proposed for solving Eq. (112) for I[J. I want to

mention only one, called the reference spectrum method. See Refs. 82 and 3k for

more detaiIs.

To begin, I must discuss in some detail the energy denominator in Eq. (113),

in particular the operator h . The eigenvalues of h are the energies e(k)

defined in Eqs. (30) to (92).
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Fig. 34. The Brueckner G-matrix. A H
intermediate states are above
the Fermi surface.

^ * — • * - * - " ^

O

Fig. 35. Leading contributions to the
potential energy term in the
energy of nuclear matter.
The wiggly lines are G-matrf-
ces; the dashed line x is
the quantity -U of Eq. (90) .

h 0 * a b + £ ( k b ) ] (116b)

(117)

Because Eq.(112) contains the Paul? operator Q, h will act only on states having

no components below the Fermi sea, and therefore to solve Eq. (112) it is only

necessary to specify U(k) for k > k_. The choice of energy for particles excited

out of the Fermi sea is a moderately long story, about which I'll have more to

say later. Suffice it to say here that setting the potential energy equal to zero

for these states is believed to be at least an approximately correct procedure.

The energy variable w in Eq. (11*0 assumes the values

u = e + e (118)

according to Eq. (ill). These are the energies of particles below the Fermi sur-

face which are bound; hence, the potential energy for these states cannot be taken

to be zero. (The potential felt by these particles must be chosen self-consist-

ently.) Consequently, the energy denominator is

'ab (119)

.2 .2
a bNote that u> - -rrr " «r is a negative number. It is convenient to rewrite e inZn Zn

terms of the relative and center of mass momenta, since the center-of-mass momen-

tum P is conserved. Then we have



eR = M
(120)

where V acts on the relative variable r. The second approximation of the refer-

ence spectrum method (the first was setting U(k) = 0 for particles) is to ignore

the Pauli operator Q. This is not a bad approximation but it does require a

correction, which is always made in realistic calculations.

Thus, the reference spectrum method approximation to the G-matrix consists

of the following equations

< A B | G ( E A +C B)|AB > = < AB|GR(eA + Eg)]AB >

where

(121a)

(121b)

It is easiest to solve Eq, (121c) by converting it to a differential equa-

(122a)

tion. Multiplying through by eD we get
K

(-Y2 + V2) 5JB(r) = - ^B

using Eq. (120) the definition in Eq. (116 ) and setting

? 2
V P
M /,M

P2

We have already explained that w - j-rr is a negative number. It is easiest to

study Eq. (122 ) for S-waves. In this case we have

r) = - MV(r) uQ(r)

where x Q
 is the s" w a ve component of p and uQ the s-wave component of

because V vanishes for large r we have

d2 2
—"2 V r ) = Y X0 ( r ) 1arge
dr

(123)

Now,
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or

X()(r) * e"
Y r = u(r) - ^ ( r ) (125)

In other words, u (r) -> 4>n(
r) at large r and the wave function ijj differs from a

plane wave only when the two particles are close together. This is due to the
2

fact that Y is a positive number. If the scattering had occurred in free space

then Y would be negative and the wave function would be changed at large r.

This "healing" of the wave function is a very important phenomenon. (The Pauli

effect would give rise to healing also, because it does not allow particles to

scatter into occupied states, but here the healing has occurred because of the

spectrum of single particle energies.) It provides a physical explanation for

why the shell model works so well, i.e., why nuclei are described so well by

particles moving in well-defined single particle levels.

An important quantity is the defect integral K

K = /|P A B|
2dT (126)

where the bar indicates an average over states in the Fermi sea. This quantity

may be thought of as a correlation volume, since as we have seen T, -> 0 for large

separations of the two nucleons. One might expect intuitively that the Goldstone

expansion would converge if this quantity were much smaller than the volume per

particle, p . One often defines a "smallness parameter" K

< 2 Kp (127)

and the condition for convergence is that K < < 1 . Most calculations give < = 0.1^

for densities near normal nuclear matter density. I shall return to the question

of convergence later.

Let me end the discussion on the calculation of the G-matrix here. I have

intended only to make you familiar with some of the ideas and you should refer to

the reviews for further details. Now let me turn to a presentation of results of

full calculations of nuclear matter energies with realistic potentials.

b. Results-Reid Potential

Results for the Reid hard and soft core potentials are shown in

Table XXII. This table shows the contributions for the various partial waves

to the potential energy and to the parameter K at normal nuclear matter density

(pn = 0.17 fm ) . The table also shows the sum of the potential energy



contributions, the kinetic energy and finally the binding energy. Recall from

the first lecture that the accepted experimental value is

E/A = - 16 MeV at kp = 1.36 frrf1 (128)

One result to be learned from this table is that hard core interactions give less

finding than soft cores; the soft core result seems to be giving a result closer

to the experimental point than the hard core and this is taken as evidence

strongly in favor of soft core potentials such as the Reid soft core over hard

core potentials such as the Hamada-Johnston potential.

Table XXIII shows the contributions to the binding energy as a function of

density. Note that for p ~ p n the main contributions come from the S states;
3

their sum is nearly equal to the total potential energy. The sum of the P con-

tributions is almost zero, which is closely related to the fact discussed earlier

that there is essentially zero central interaction in the P states. On the

other hand, there is considerable repulsion in the P state. The D and sum of

D states are attractive. At the higher densities in this table the S states

are no longer dominant; the attractive contribution of the D states begins to

become important, but the sum of P contributions remains small: as the density

is increased, the average momentum of the particles becomes larger and hence the

higher angular momentum states are more likely.

If the E/A vs k_ in Table XXIII is fit by a polynomial it is possible to

perform the differentiations in Eq. (7) to find the incornpressabi1ity K. One

finds
K = I3*» MeV ' (129)

This is a bit low in comparison to the experimental value in Table III deduced

from observations of the giant monopole resonances.

The contributions to K from the various states are also shown in Table XXII.

Note that the largest contribution comes from the S state. This in turn is

largely due to the strong tensor force rather than the repulsive core.

h. Saturation of Nuclear Forces

It is a well-known fact of nuclear physics that nuclear forces saturate,

i.e., the energy as a function of density has a minimum. One manifestation of

this is that the nuclear radius is proportional to A , showing that the average

density in nuclei is roughly constant as a function of A. One of the requirements
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of a successful theory of nuclear matter is that the saturation be predicted and

be predicted to occur at the correct density.

If the nuclear force were purely central attractive nuclear forces, then the

potential energy per particle would be proportional to the density. The contri-

bution in S states would not increase as fast as p, but this would be compensated

by increasing contributions coming from higher orbital angular momentum states.

Figure 36 shows the contributions from the relative S and S states as a

function of k . At small k_ the contribution of S is numerically greater than
1 3

that due to S. This is to be expected because the attraction in S leads to a

bound state, the deuteron, while the S state just fails to be bound. But at

higher density, about kr = 1.3 fm the two curves cross, and beyond this S is

less bound than S. This crossing is due to the tensor force, which contributes

the major part of the binding in S. Although the tensor force averages to zero

for a pure S state, if the tensor force is allowed to mix the D and S state

together in a second order process shown in Fig. 36, then it can contribute to

the energy. At Tow density the contribution is greater than at higher density

because the Pauli exclusion principle forbids intermediate states in Fiq. 36 for

k < kF; at higher density k_ is greater and more of the D contribution is lost.

A second effect for reducing the contribution in Fig. 37 is that the difference

in potential energy between intermediate and initial states also increases with

density. This effect is the most important cause for saturation.

The second cause for saturation is the partial exchange character of nuclear

forces. Figure 38 gives the total contribution to the potential energy from S,

P and D states. The S states have been discussed already. The P states give a

repulsive contribution. This is made up mostly from the P state as discussed

earlier. If we had ordinary forces then the P curve would lie between the S and

D curves. Because the central force in D states is less than in the S state,

the contribution of the D states is not as attractive as it would be for ordi-

nary central forces. Note that the contributions from P and D states tend to

cancel, leaving the dominant contribution in S states. Finally there is the

short range repulsion. This is less important for saturation than the preced-

ing effects near normal nuclear density.

5. Three- and Four-Body Clusters

So far we have considered only the lowest order term in the Goldstone

expansion. The calculations with the Reid potential in this approximation show
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saturation at about the correct density but they do not come close to the ex-

perimental point. In order to understand whether this is a weakness of the

interaction, one must evaluate higher order terms in the Goldstone expansion.

In order to calculate the next correction in the Goldstone expansion it is

necessary to evaluate many terms together. The important terms are those that
Or

contain three independent hole lines; Rajaraman showed that all these terms

are of the same order of magnitude regardless of the number of interactions they
nr

contain, due to the hard core. Bethe was able to sum the latter graphs using

the method of Faddeev. Some of these contributions are shown in Fig. 39. The

calculations are very difficult, but the initial work discussed in Ref. 3k gave

a net attractive contribution of « 1.8 MeV at k = 1.36 fm . This result is

very small compared to the two-body potential energy of about 33 MeV, in line

with the expectations about convergence.

It is believed that the convergence of the Goldstone expansion is governed

by the "small parameter" K defined in Eq. (127). The two-body terms (two-hole

line terms) contain one power of K, the three-hole line terms two powers, four-

hole line terms three powers, etc; It becomes progressively more difficult to
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calculate the higher order contributions, but Day has managed to estimate the

four-hole line cluster and found them to be ^ -0.24 MeV. In addition to the

"true" four-hole line diagrams there are also other four-body correlations, which

give a net contribution ss - 1.09 - 0.5 MeV.

Day has recently made more^accurate calculations of the three- and four-

hole line diagrams and finds the result shown in Fig. bO. The curve PW1 is the

latest variational calculation result Wiringa and Pandharipande discussed in

greater detail later. The remark worth making at this point is that the varia-

tional result lies above the Brueckner result which is consistent with the theo-

retical result that a variational calculation gives an upper bound on the energy.

It is a bit disturbing, h?-/ever, that the variational result saturates at such a

larger density than the Brueckner result.

Further theoretical work is needed in order to firmly establish Brueckner-

Bethe theory as a microscopic approach for studying nuclei. Day has suggested

tests for the consistency of Brueckner theory. Clearly, agreement with experi-

ment is not a sufficient test of the many-body theory; a discrepancy could indi-

cate either a breakdown of the many-body theory o_r_ a deficiency of the underlying

interaction. Comparisons to results of alternative methods, e.g., the variation-

al method discussed below, with the same interaction, is one way to assess the

validity of the method, and such comparisons have stimulated improvements in

Brueckner-Bethe theory calculations.

6. Calculations with Different Nucleon-Nucleon Interactions

Two-hole line results using a variety of potentials are shown in Fig. Al

as circles. Shown is the minimum in the energy vs. density curve for each

interaction. The box is the experimental value and its associated uncertainty.

Note that the circles define a band, called the Coester band. The band does not

intersect the experimental box, however. In all cases where the potentials are

carefully matched to the experimental nucleon-nucleon phase shifts the location

of a point in this band depends upon the value of K : potentials with smaller K

tend to saturate at higher density and with greater E/A. The dependence on K

is not unreasonable, based on the discussion of saturation: a larger K means a

stronger short range repulsion and/or a stronger tensor force, both of which

enhance saturation.

One of the very interesting questions is: why does this band not include

the experimental point? This failure is one of the most intriguing questions
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in nuclear physics today. As we have said, there are two possible answers. One

is that the Brueckner-Bethe theory has not been solved sufficiently well, and the

other is that the underlying interaction is not correct. (A third possibility is

that both the theory and interaction require improvements.)

The calculations in Fig. 41 are due to Wong and Sawada. They also esti-

mated the contributions of higher order terms in the Brueckner-Goldstone expan-

sion. The arrows in Fig. ^1 point to the two- plus three- plus four-hole line

result. The result of Day discussed in connection with Fig. hO is shown as the

dashed line in Fig. ^ 1 . (The discrepancy between the WS and the Day results

reflects recent progress in calculating the higher order terms.) Table XXIV

shows the same results in tabular form along with the incompressibi1ity coeffi-

cient K.

There are two interesting conclusions which can be drawn from Table XXIV and

Fig. k]. The first is that for all the potentials, the higher order corrections

are of about the same size and relatively small. The second conclusion is that

different potentials which give roughly comparable reproductions of the nucleon-

nucleon phase shifts may give substantially different results in nuclear matter.

Much of this difference is related to the strength of the tensor force. These

results should give some encouragement to the hope that a careful study of nucle-

ar matter properties using the best many-body theories will eventually tell us

about properties of the underlying nucleon-nucleon interaction which cannot be

learned from the nucleon-nucleon phase shifts alone.

7- Meson Physics Corrections (Three-Body Forces, Etc.)

The energy per particle shown in Fig. h] comes close to the experimen-

tal box but doesn't actually lie within it. Until very recently the calculation

was not nearly as close to the experimental box and this has prompted searches

for interaction-related effects which might move the theoretical saturation

point.

The types of corrections to the potential which have been considered are

generally of two types: (a) corrections to OBEP due to the nuclear matter back-

ground potential and (b) three-body force effects. The Bonn group has con-

sidered the first type recently within an energy-dependent effective interaction

formalism, and many groups have considered corrections of type (b). In both

cases one needs an underlying meson exchange model in order to provide a theo-

retical basis for making the correction, i.e., a description purely in terms of

phenomenological potentials would not permit such a question to be answered

! ' 11



Let me first consider three-body forces. The need for three-body forces

arises from the fact that some interactions cannot be described as the repeated

action of a two-body potential. Figure 42 shows one such term. Figure 42a

contains just the A intermediate state; Fig. 42b contains the entire pion-nucle-

on amplitude, which must be corrected because the nucleon pole piece, shown in

Fig. 42c is included in part by the iterated one-pion exchange potential. As
20

might be expected, the theory of folded diagrams specifies how to express this

correction diagrammatically.

The three-body force is a complicated operator which nobody has yet suc-

ceeded in using as an interaction in Schroedinger's equation. Instead, several

levels of approximation have been involved. One important piece of the three-

body force is the A contribution shown in Fig. 42a If lines 3 and 4 are the

same states then the three-body force is the exchange diagram of the term shown

in Fig. 43a. Both Fig. 43a and b violate the exclusion principle and the sign

rule is such that they identically cancel. Hence in an actual calculation one

should include both or neither. If one uses a two-body potential which repro-

duces the nucleon-nucleon scattering phase shifts, then the term in Fig. 43a is

naturally included in V and the three-body force in Fig. 43b should be added in

to cancel this piece of V. Alternatively, if one has a model of V with Fig. 43a

given explicitly as a piece of it, then one may simply restrict the intermediate

momenta so as to exclude the intermediate momenta (see Fig. 43a) below the

Fermi surface and omit the exchange term in Fig. 43b. A calculation of the
no

latter type was done by Day and Coester (CD). Actually these authors did their

calculation in a coupled-channels framework with As and solved for the Brueckner

G-matrix with the Pauli operator Q on all intermediate states. Their result was,

not too surprisingly, that the exclusion of the intermediate states in Fig. 43a

was a repulsive effect (it cuts out a

piece of the AN intermediate state

through which the nucleons obtain a
• INDINC ENEMY, EQUILIBRIUM FERMI MOMENTUM k p AND

large measure of t he i r a t t r a c t i o n ) and WCOMPRESSHIUTV * ACCORDING TO UQKC AND SAVADA89

grew more r e p u l s i v e as the d e n s i t y i n - t\uT^<,, clTi ,• i7~ * ~~, • —
-* r ' First order calculation (Two-body correlation* only)

creased. However, the curve E/A vs kp ^ i , ^ "^ ^ '^ '« '»

in the lowest order approximation to the *'""" 's "° "° 17° :3° "°
Including higher order corrections

the Goldstone expansion still traced ''""I '•' l20 "•» n.t u.e !2.j
kf'f" > ••» I.M l.*6 I.ft |.(.. i,|,

out the Coester band, i.e., the experi- K (K*V) 70 IS0 '•» '*> 3«o j«o

mental point was still not reproduced!
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1.2 1.4 1.6 1.8 2.0

Fig. kO. Nuclear matter calculations
according to Day.^3 The no-
tation BB(2) , BB(2+3) and BB
(2+3+A) means Brueckner-Bethe
calculations with 2-, 2- snd
3- , ar̂ d 2-, 3" and A-hole
line contributions, respec-
tively.

Fig. k) . Results of two-hole line cal
culations with a variety of
nucleon-nucleon potentials.
The notation is the same as
found in Table XXIV.

2

(0) (b)

I

(a)
(c)

2

(b)

Fig. Feynman diagrams which cannot
be represented as an itera-
tion of a two-body potential.
The blob in (b) is the com-
plete 7TN scattering amplitude,
which must be corrected be-
cause it contains the nucleon
pole, Fig. hZc.

Fig. Contributions to the 3"body
force when state 3 = state h
in Fig. h2a.
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Day and Coester argued that if an additional attractive contribution with a

dependence on ( k p )
n , n < 4.2 could be found, this in combination with their

repulsive term which goes like 1.3 k ' (MeV, if k,. is in fm ) could move the

calculations off the Coester band. One should note that this piece of the intei—

action constitutes a saturation mechanism in addition to those discussed earlier.

However, one should bear In mind that the extent of saturation depends upon the

extent to which the As couple to nucleons, i.e., the magnitudes of the transition

potentials for NN > NA, and that since the CD paper these potentials have been

getting weaker. The matter is still not settled.

What about the remaining contributions to the three-body force? These cal-

culations have a long history, but the modern calculations begin with Brown,
93Green and Gerace. The direct three-body force by itself, i.e., that of Fig.

42a with 1 = 4, 2 = 5 and 3 = 6 is small, because there is no momentum trans-

ferred by the pion. However, the contribution becomes much larger, if the three-

body force is followed by another interaction, as in Fig. 44. One of the most
94careful calculations of this term was done recently by Coon, et al. They use

the full three-body amplitude rather than just the A and make a correction for

the iterated one-pion exchange. They find a contribution of the three-nucleon

potential to the energy of symmetric nuclear matter to be -1.90 ± 0.2 MeV at

normal density. They did not investigate the density-dependence.
95

Kouki, Smulter and Green have recently considered three-body forces inclu-

ding exchange diagrams. They find an even smaller result, -1.1 MeV at kF = 1.4

fm , but they estimate some additional three-body forces including 3 As and

find these terms large. More work needs to be done In order to settle the sizes

of the three-body forces. KSG offer some hope that the three-body force in com-

bination with the CD effect will be a mechanism to move results off the Coester

band.
91

Finally, let me remark on the work of Anastasio, et at. who use an energy-

dependent OBE potential. They do a Brueckner calculation in a light finite

nucleus and find that the energy dependence can improve the theory, but their

effect is small in nuclear matter near normal density.
B. Variational Method

The variational principle says that if H is the Hamiltonian for a system and

ty a wave function, the energy E
— var'
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var ~ <]t\!t >

is an upper bound for the true ground state energy E_, i.e.,

E > En (130
var 0

By improving the choice of ̂  one can come closer to estimating the actual ground

state energy. In principle, the variational method is very easy to implement:

one guesses |IJJ> and then one evaluates an integral, Eq. (130). However, for a

realistic choice of \ty> a direct numerical integration is very difficult for a

many-body system. Consequently, some systematic approximation scheme is needed,

and the challenge of the theory is to invent such schemes for forces as complica-

ted as the nucleon-nucleon interaction.

The simplest choice of wave function would be

tj, = 4 = A II * (r ) . (132a)
— P P

P'Pp

where

W =^i7ll5>|f> (132b)

In this expression A antisymmetrizes the wave function, |s> and |t> are respec-

tively spin and isospin wave functions. The wave functions are normalized in a

box of volume Q. However, this simple wave function would not be adequate for

several reasons. The most serious difficulty is the strong, short-ranged repul-

sion present in realistic nucleon-nucleon interactions; with the wave function

in Eq. (132) the repulsion would be allowed to dominate E
var

To make a better estimate of the contribution of the repulsion, one could

multiply $ by a function F(r.,. . ., r.) which vanishes when any pair of nucleons

come sufficiently close together. A simple function having this property is

F = ,J. f<r(j> (133a)

where f(r..) might resemble the function in Fig. k$. With this prescription

± = F $ - ] (133b)
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In order to make reliable estimates of the ground state energy of nuclear

matter it is necessary that f be spin, isospin and momentum dependent. I will

have more to say about this later.

Now, write

E =< T> + < V > (134a)
var

V2
034b)

The kinetic energy may be simplified by substituting Eq. (133b) into Eq. (134b)

to get

< T > = J: < \b, - ̂ r [F V 2$ + 2V.4>-V.F + W ? F ] > /< ip.ij; > (135a)
j- 2M i *" i *• i l — —

I

= z IFF" IM z *^> 2!i*"~iF + * 7 ? F > / < i » i > • (?35b)

I. What is a Cluster Expansion? Example: Interacting Boson Gas

In order to introduce the idea of the cluster expansion in many-body

variational theory, let us consider a simpler problem than nuclear matter, namely
Z,

the atomic system, liquid He. This is a Bose system, and all atoms may there-

fore be assumed to occupy the lowest energy orbitals, plane waves with zero momen-

tum. In this case the ground state wave function becomes

If
The potential acting between two He atoms has a strong short-ranged repulsion,

and hence the factor F is needed as in the nuclear case. The only difference is

that F is now of atomic rather than nuclear dimensions.

Because * is constant for bosons the first term of Eq. (135b) does not ex-

ist, and we write

/h2\rd3f. /-d3r. ,
<T> = ̂  -mil-fr1--fir"7'**••$-* (I37a)

ii ..
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Here and in the remainder of the discussion we associate the normalization

volume Q with the volume elements d r . . Each of the A particles has the same

kinetic energy and hence Eq. (137a) may be written

,3.

(137b)

The potential energy < V > of Eq. (\3hc) may be simplified, noting that

each pair of particles (there are A(A-l)/2 pairs) contributes the same amount

and hence

'12 (138)

This result is conveniently written in terms of the two-body distribution func-

tion g, defined by

g(r-r') = ^ Z < 6(r-r.)5(r'-r.)> (139)

T h e p h y s i c a l i n t e r p r e t a t i o n o f g ( r ) i s t h e p r o b a b i l i t y o f f i n d i n g a p a r t i c l e i n

the volume element dx at a distance r1 from r = 0, given that there is a particle

at r = 0. In terms of g, Eq. (138) becomes

V/A = 1 p/d3r V(r) g(r) (HO)

2 Cluster Expansion for the Two-Body Distribution Function g(r)

The purpose of a cluster expansion is to give a systematic approximation

scheme for evaluating the multi-dimentional integrals such as that appearing in

Eq. (134c). As an example of the method, let me consider the cluster expansion

for g(r) .

Because f differs from unity only when the two particles are close together,

it makes sense to introduce the function h(r)

h(r) H fZ(r) - 1,
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which vanishes when r > d. The idea is now to express g(r) as a power series in

h(r); if d is sufficiently small, then the series presumably converges rapidly

since the likelihood that n particles will be close enough together for h(r) to

be non-zero gets smaller as n increases.

Consider first the normalization < IJJ|'JJ >

3

(1*2)
..

The power series in h is obtained by expanding the product

[h(r. .) + 1] = 1 + E h(r..) + .. .
'J i>j "

It is convenient to express the various terms as diagrams. Imagine A points on

the page, one for each atom. Then h(r..) is denoted by a line connecting points

i and j. We may then state the general rule for a general term in Eq. (1*2):

the points may be connected in any way as long as no more than one line connects

any two points. Two examples are shown in Fig. 46 • The value of Fig. kda is

i y ftlLf
2 4-L J si J

d3r

There are also integrations over the points not shown explicitly, but these each

contribute / -j=p = 1. The factor of — is necessary because of the particular

symmetry of the diagram: if the line is rotated by 180° about its midpoint, the

topology is unchanged. This means that the unrestricted summation in Eq.

counts each distinct diagram twice.

The value of Fig. 46b is

'i-r.ftls.fti
2 A,m,n

R,

si si

(1*5)



where R, and R. represent restrictions on the summation and S. and S are factors

necessary because of the symmetry of the individual terms. The restriction R.

is that p/t (q,£,m,n), q / (£,m,n); S. = — as discussed in conjunct ion wi th

Eq. (lM) . The restriction R, is that £ ^ (m,n,p,q) , m / (n,p,q) , n / (p,q) ;

S- = -TJ- because there are 3' = 6 orientations of a triangle on three points, so

the unrestricted summation would count the same term six times. We may thus

write the value of Fig. ^ b as

f

J pq

fd3r h(r )h(r )h(r
Imj mn pm mn

p fdr h(r )h(r )h(r
-2 J Imj mn pm mn np

Note that the diagram factorizes into a number of terms equal to the number of

linked clusters which constitute the diagram. Also note that when A -• °° the

factors in front of the integrals become independent of the rest of the diagram,

i.e., Eq. (1^6) becomes""'

] [l P2Ar h(r)

General ly, the value of a cluster in *:he 1 imi t A ->• °° is

Cluster = £ W

where W is independent of A and contains a factor p n where n is the number of

points in the diagram.

There is only one other consideration. Suppose that a diagram has v^ iden-

tical linked clusters T. Then the independent summation over coordinates will

count the terms Vyl too many times.

"Terms of 0(A) cannot actually be neglected. These are "factorizabie terms"
and are needed to cancel factorizabie terms in W (i*]2)» Eq. (15*0- Our final
result in Eq. (156) is correct because of the trick explained above Eq. (156).
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Putting these ideas together, we have

D Clusters T V' \ SD.
in D

For larap. A we may exchange the sum and product to get

(150)

Now consider the expansion for

..)] (,50

Diagrams are again constructed as in the example of <i^|i^>. However, now there

are two types of terms to be distinguished: those diagrams W (r._) containing

the points 1 and 2, which are not integrated, and those which do not contain the

points 1 and 2. Some examples are shown in Fig. kl. In the limit A -»• °° the

value of any cluster is completely independent of the remainder of the diagram.

Consider all diagrams containing the particular linked cluster W (r,,). This

sum may be facLut ized in the A •+ °° limit into the factor W (r,,) times the sum of

all possible linked clusters. But we have just evaluated the sum over all pos-

sible linked clusters. It is

(152)

>. Therefore

3r rd
3r

JT3••:/—.!;. f +h(r..)] = <i:|i> f2(r]2) EWc(r|2) (153)

*d,2)
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Fig. hb. A large contribution involv-
ing the 3-body force.

(a) (b)

Fig. 46. Examples of diagrams contri-
buting to < ̂ j\^_ >. Points
not connected by factors of
h are not drawn.

from which we find (A -* <»)

f(r)

Fig. k5. A possible choice for f(r) in
Eq. (133a). Beyond r=d f(r)

p i

/A
(o) (b)

F i g . k~]. Two c o n t r i b u t i o n s to Eq.
(151). The dashed line rep-
resents f2(r,?).

(b) (c)

Fig. 48. Linked diagrams for W (r._)
having factorizable c

pieces.

g(r,2) -f'(r, 2) H J r ^ ) (154)

2
The result is that g(r) is equal to f (r.-) times the sum of all linked diagrams

connected to the points 1 and 2: all unlinked diagrams (i.e., linked clusters not

connected to points 1 and 2) cancelled with the normalization <t[/J^>.

There is one further simplification before the final result. There are

many diagrams in W which contain factorizable pieces, i.e., pieces which connect

at a single point. Examples of factorizable diagrams are shown in Fig. If
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any diagram can be split into two or more completely separate pieces by cutting

through a vertex on a diagram, the pieces which can be separated are factorizable,

i.e., have values independent of the rest of the diagram.

Now, the further simplification is that the diagrams which contribute to

g(r) should not have any factorizable pieces. The reason is, briefly, that the

cluster expansion for the density p

p(r) = < Z 6(r-r.)> / <i|>|r|i > (155)
j J

is the sum of all factorizable diagrams attached to a single point [this can be

easily proved; it follows immediately after noting that the unlinked clusters in

the numerator of Eq. (155) cancel, for the same reasons they cancelled in the

calculation of g(r)]. Thus, it is entirely consistent to omit the factorizable

pieces, provided the correct density factor is used at each vertex (when the f

depend on spin and isospin the "factorizable" pieces may no longer be dropped).

The final result is

9<r]2) = f
2(r]2) I W^(r,2) (156)

where W' is a diagram containing the points 1 and 2, containing no factorizable

pieces.

The leading diagrams VT are shown in Fig. k$. The leading correction,

Fig. 49a, is obtained by setting g(r) = f2(r). The first correction comes from

the three-body term in Fig. k$b. To get an idea of its size, put r = 0 and find

C3(0) = pf(f
2(r) - I) 2 dx (I57)

If this is small compared to 1, then the three-body term is small compared to

the two-body term. We then expect terms involving four particles to be even

smaller, and so on. This requires that f(r) differ appreciably from 1 over a

volume small compared to the volume per particle. Thus, the criterion for con-

vergence of the cluster expansion is similar to that of Brueckner theory, K < < 1,

[see Eq. (127)].

A great deal of effort has gone into calculating corrections to the simple

approximations for bosons and Fermions, and the investigations for Fermions have

seriously challenged the validity of the Brueckner-Bethe theory. If I have time

I'll come back to this later.



C. Lowest Order Variationai Theory for Fermions

Let me now jump to the problem of determining the equation of state of dense
96 97 98nuclear matter. '• >J I will assume that the usual meson and baryon states are

the relevent degrees of freedom and apply considerations developed in previous

lectures. In this lecture I shall assume that real pions are not a constituent

of dense nuclear matter, but will rather consider this possibility separately in

the discussion of pion condensation.

The advantage of the variational method over the Brueckner theory is that

in the former theory one has the possibility of keeping the correlation distance

small and thereby increasing the chances that the lowest order variational result

will give an accurate answer for the chosen correlation function. One pays for

this simplification in that the trial wave function may not be optimal and hence

the energy E may be too large by some amount.
97Pandharipande proposed a theory based on the lowest order variational

result. He proposes that f(r) be chosen so that

f(r) = 1 r > d (158)

and for r < d he chooses f to minimize the lowest order cluster contributions to

the energy of the system, d is defined as the radius of the volume which con-

tains on the average just one particle. He calls this prescription LOVT (lowest

order variational theory) and has shown that it is an accurate method for

calculating the energy in liquid He and He. The method should also be reliable

for calculating the equation of state of dense nuclear matter, for which the

short-ranged repulsion dominates the remaining components of the interaction.

To begin we need an expression valid to lowest order in the functions

f(r..) = f.. for the potential and the kinetic energy. An expression for the

former follows immediately from Eq. (13*tc); in this expression the only correla-

tions to be considered to lowest order are those between particles i and j.

Therefore

<V> = (* lv ! * >
ik.*r. ik. #r.
~ 1 ~ 1 ~J ~J

ip. . = A f . . |S.>|t.>|S.>|t > (159)
IJ A 2 /fi
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2
where the A antisymmetrizes the wave function (A = A ) . The correlation function
f.. in Eq. (159) is to be state dependent.

The kinetic energy is given in Eq. (135b). The second piece of this may be

rewritten as follows. First note

$ Z V ? F = £ F ^ V 2 f . . + Z$ F - \ V . f . . • V . f . ,
. . . f. . i IJ . ., f. .f.. I ij i l k
i IJ U iJk i j ik

( 1 6 0 )

The second term is of three-body character and will be dropped in accord with

the philosophy of retaining terms involving only two nucleons. Now rewrite the

first term as

i i j . . A . ^ . f . . i i J i J
u u J ij vr^ IJ

 J

" Z , I1 " . [f..vf(j).<{). + 2 7 . f . . • 7.(I).*.:
. j 4> J4»J r . j u i p r j ^ i I J j T r j

F ^ -

Thus

k2

< T > = Z: rrrr -

3r d3r 2 /k? ?

To lowest order put all f's = 1 in ty except f.. to find

k? . f6\.f6\. \ V2 V2 k2 k?
(163)

Combining Eqs. (159) and (163) we find

kT

9



where

ik..-r..
ty.. = f. .*.., <J).. = e U U S.S.t.t. (165)

|J ij ij ij ' J i J

p.. = reduced mass for particles i , j

k.. is the relative momentum for particles i,j.

In the present lecture we shall consider that the state of the neutron star

matter is liquid. It is a possibility that the matter will crystallize due to

the short-range repulsion. The repulsion is, however, now considered too weak

to give rise to a lattice; see, however, the discussion in the next lecture.

Now, we want to choose f to minimize W. However, we want to restrict f to

short enough distances so that the leading term in the cluster expansion suf-

fices. Thus Pandharipande introduces a Lagrange parameter A.., i.e.,

V. . ->- V.. - A. . (166)
U U "J

With this substitution W becomes W , and the idea is to minimize W by varying

A., subject to the condition that f heals at a distance d. The condition that

W be minimum is that

bnty. . = A . .ty. .y 2y.j 2y.j ijy U 2 Fij ij1 ij

wi th

at r = d (167b)f . .
IJ

f i .
IJ

= 1

= 0

[This may be derived by setting SW = 0 upon varying \p. . -> \p. . + Sty... Insisting

that <5W = 0 for arbitrary Sty., leads to Eq. (167) -]

If ty satisfies these conditions we have

h2*u " v u * u r>d V u = V - j r <d (167c)

It thus follows that the minimum in energy (W) is
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1. Equation of State for Dense Nuclear Matter

Now, the idea is to apply this theory to dense nuclear matter. First,

can we get some idea of the accuracy of the theory? Pandharipande has applied it
3 hto He and He and gets close to the experimental energies. Figure 50 shows some

of his early results. We thus expect that the theory is able to make a sensible

estimate for dense nuclear matter.

In order to make an estimate of the equation of state at high densities we

must have an idea of the composition of dense matter. There is no a priori

reason to expect matter to consist only of neutrons and protons; we must allow

the possibility that all strongly interacting particles are constituents. To

decide which are relevant it is necessary to minimize the energy with respect to

the concentrations of the various species. So, to begin with, ai1 hadrons and

leptons are candidates.

Possibly at some very high density the observed particle spectrum becomes

the wrong set of variables, and quarks and gluons become the correct variables;

this possibility has been discussed in Ref. 100 where it is concluded that the

phase transition will not occur for p <, (10-20)p_. We will, therefore, not con-

sider this further.

Neutron star matter at low density consists of ordinary nuclei in a lattice.

As the density is increased the nuclei grow larger and more neutron rich in

order to minimize the energy of the electrons. The electrons become significant

on the nuclear energy scale because of the high densities involved. For example,

suppose neutron star matter at a total density p ~ p n consisted of equal numbers

of neutrons and protons. Then the density of electrons would be

pe = pp = p 0 / 2 ~ °-08 fm~3

Because electrons are Fermicns they fill a Fermi sea up to momentum k_
Fe

kFe = 37f2p

= * k F e = 1.33 fm"1 (,7I)

But an electron of this momentum has a kinetic energy

Te = VkFe + ml ""e * kFe
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(a)

(d) (e)

F i g . ^9 - Leading c o r r e c t i o n s to g ( r )
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; \

\

\ 3He (Pol.)

"He
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Q3 0.4

p (otoms/cr3)

0.5

Fig. 50. Energy per particle vs den-
sity for the atomic systems
3He and ̂ He. The solid circles
indicate the experimental
equi1ibrium points.

In order to have coexisting neutron,

should not cost energy for the reaction

n X p + TT

which is very considerable. In order

to minimize the electron kinetic ener-

gy, it pays for electrons and protons

to combine to form neutrons as the den-

sity increases. The final balance of

concentrations of N, P, and e is a com-

promise between minimizing the nucleon

and electron energies. The mathemati-

cal condition for determining the con-

centrations in this state is

wN - yp + ve (173)

where the u's are the chemical poten-

tials of the particles, i.e., the ener-

gies required to add or remove a par-

ticle from its respective Fermi sea.

Finally, at some density close to the

density of normal nuclear matter, the

nuclei have become so big that they

touch, forming a uniform distribution

of neutron matter with a small admix-

ture of neutrons and protons.

Let us next consider the possi-

bility of having pions in neutron star

matter. The discussion I give now leads

to the wrong conclusion for reasons

discussed in the section on pion conden-

sation, but the exercise is instructive.

Suppose to begin with that the particles

are non-interacting. The question is,

is the pion more efficient than the

electron at neutralizing the charge of

the protons?

proton and ir phases in equilibrium it
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2 .2
k,- k

to go. Because nucleons are Fermions, the energies to add and subtract nucleons

are the energies at the top of the Fermi sea,

£
2M *

Because the pions are bosons, they may a!I be put into the same state; the low-

est energy for a non-interacting pion is of course m . Balancing the energy

gives the condition

+ m (175)
2M 2M IT

 V /Py

Assuming that there is no admixture of protons to begin with (kp = 0 ) , the

threshold occurs where

kpn = /2M m^ = 2.6 fm"1 (176a)

k3

Pp = ~ = 3.71 P Q (PQ = 0.16 fm"
3) (176b)

This is not an extremely high density for neutron stars; p - 10 p is about the

highest density one could expect before the star collapses. The conclusion is,

therefore, that IT" could be a constituent of neutron star matter. This is not

realistic, however, because the nuclear interactions have been ignored. Histori-

cally, the TC~ was ruled out because the TT~ neutron interaction is strongly re-

pulsive in relative S states:

U^- (MeV) =217 Pn (fm~
3) (177)

The addition of this term excludes IT up to very high density as one may easily

verify. However, the story changes when ir-nucleon p-waves are considered; see

next lecture.

In any case, I shall omit the IT meson now. It is necessary to choose an

interaction for the strongly interacting particles, calculate W and minimize

this with respect to the concentrations of N, P, e"» U , A. , E, A,...

The choice of a proper interaction can be made only on the basis of an

educated guess. At high density the repulsive core is the dominant interaction,

and we expect that the choice of core might make a difference in the equation of

state. So, there are basically two questions

Sh



(1) how much latitude is permitted in the strength of the core in the nucle-

on-nucleon interaction if we insist that the interaction fit the nucleon-nucleon

phase shifts?

(2) how much difference do these different potentials make in the descrip-

tion of the equation of state?
98

The idea is to try to choose potentials which combine the best features

of meson theory potentials and the phenomenological potential of Reid. The

most serious shortcoming of Reid's potential for our purposes is that he made

no attempt to select the core to be the same in each partial wave state, as

would be the case if the core were due to a to-meson exchange. However, there

may be some spin-isospin dependence of the core interaction; for example the p

meson ( m a m ) was seen [cf. Eq. (55)] to give a central force ^ cr,"O9 T,•!„.

The sign is such as to make the core V satisfy the relationship

Vc(
]P) > Vc(

3P) > Vc('s) = Vc(
3S) (178)

We fit the potential with the weaker requirement

V (]P) > V (3P) > V (]S) > V (3S) (179)
c c c c

The conditions on the interaction are

(1) It must have a repulsive core in all states.

(2) The core strength must satisfy the inequality in Eq. (179).

(3) The nucleon-nucleon interaction must give the correct experimental

phase shifts for energies up to 350 MeV, and the correct binding energy and quad-

rupole moment of the deuteron, like Ried's.

(k) The nucleon-nucleon interaction must saturate nuclear matter at a rea-

sonable density and energy.

(5) Hyperonic interactions must be consistent with the experimental measure-

ments, especially those on hypernuclei. These indicate that the hyperon-nucleon

interaction is less attractive than the nucleon-nucleon interaction, but not by

much.

(6) It is desirable, but not necessary, that the repulsive core have the

same range in all states.

(7) It is desirable that the repulsive core have a range corresponding to

the exchange of an urmeson. It is possible to find a family of interactions
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consistent with these criteria and one purpose of the calculation in Ref. 98 was

to see whether there was much variation among the different models.

In the calculation, the tensor force coupling between states of different

L was ignored. There are two reasons for this: (a) the density of protons is

relatively small and (b) the high density means that the tensor force coupling

will be largely saturated. (See discussion of tensor force saturation in previ-

ous lecture.) In the actual calculation the details of the interactions were

retained only for L £ 1. For higher partial waves an average was used in all

even states and an (different) average force in odd states. Five interaction

models were considered, consistent with the above criteria. For the interaction

between hyperons and nucleons, A and nucleons, and among the hyperons and A we

took an exchange interaction which is the same as the NN D_ in even states and

the spin-isospin average of the NN P wave potentials in odd states.

The problem is now to solve for all pairs of particles the Eqs. (167a) and

(167b), determining A for a given potential model. In practice it is only nec-

essary to solve the eigenvalue equation, for the lowest two partial waves because

the centrifugal barrier cuts out the contribution of higher partial waves to W

for the small values of d used. Next W is determined from Eq. (168). It can be
98

shown that minimizing W with respect to the concentrations of the various spe-

cies is equivalent to solving the following set of non-linear equations.
va + ma = vn + mn ~ V e (18Oa)

£ q.c. = 0 (charge neutrality) (l80b)

I c =1 (baryon conservation) (180c)
a a

where

a a 7 Icama
] (?8Od)

a

where c = p /p is the concentration of a given species. Typica, results for the

composition of the dense matter are shown in Fig. 51. The heavy Loryor.a ore

energetically favored at high density for two reasons: (l) the energy per par-

ticle becomes very large at high density for a single species (such as neutrons),

for essentially the same reasons discussed in the case of the electron. It



therefore pays energetically at some point to take neutrons off the top of the

neutron Fermi sea and begin filling a Fermi sea of a different species. (2) The

pairs involving the more massive particles have a greater reduced mass and hence

can afford to avoid each other's repulsive cores more easily than two nucleons.

The point is that when the correlation function bends more rapidly, which is

necessary to keep particles apart, there is less kinetic energy associated with

the bend for the heavier pairs.

The energy per particle vs. density is shown in Fig. 52. This result is

parametrized to give

S ince

E = 236 p''5*1 + m MeV/particle, P i n f m (181)

P = p2dE/dp (182)

we find

P = 36*4 p 2 ' 5 k MeV/fm3 (183)

In order to find the properties of neutron stars one must solve the equations

of hydrostatic equilibrium (for example, Ref. 101), which requires P(e) where

E = pE (18*0

One point to note is that the appearance of many species has the effect of

keeping the Fermi momenta of the individual species non-relativistic . Thus,

dense matter is not a relativistic problem, anyway not much more than is nuclear

physics at ordinary nuclear matter densities. Often, simplified approaches are

taken in which the possibility of many species is not considered. This neglect

leads to the artificial difficulty of creating a relativistic problem out of one

which really isn't. (See, e.g., Ref. 15-)

2. Results: Structure of Neutron Stars

The five potential models were used to calculate the mass M., radius R,

moment of inertia I and other quantities characterizing the neutron star. If

P(e) is given, then the equations of hydrostatic equilibrium may be integrated to

give these profiles of the neutron star. Because of the intense gravitational

field, general relativity must be considered, and the equations modified for this

effect are known as the Tolman, Oppenheimer, Volkeff equations. Results for the

gravitational mass, radius and moment of inertia are shown in Figs. 53, 54, and
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55- The properties of the neutron star at its maximum mass is shown in Table

XXV. In Figs. 53 to 55 and Table XXV, the notation for the various models is

the same as that given in Ref. 101.

The neutron stars predicted by these models look all rather similar; vary-

ing the parameters of the potential within limits consistent with the criteria

(1) to (7) really does not give rise to a very large variation in neutron star

properties. Pandharipande calculated the equation of state based on the Reid

potential, which is not consistent with these criteria, as discussed, and sub-

sequent calculations gave maximum mass neutron stars for hyperonic and neutron

matter, respectively, 1 .41© and 1.660 . Thus, using a consistent repulsion

throughout the partial wave contribut'ons to the nucleon-nucleon potential gives

more massive neutron stars by as much as 30%. This is important, as we see from

Table IV, because the experimental determination of neutron star masses is put

at 1.3 i 0 2 0 . At least one model has been decisively ruled out. The theory
102of Leung and Wang predicted the maximum mass of a neutron star before collapse

due to gravitational instability to be 0.50, we 11 below the masses of observed

pulsars in Table IV. One puzzling feature of the results in Table IV is that

the maximum masses and moments of inertia are comfortably below those correspond-

ing to the maximum values (Figs. 53 and 55), whereas the observed radii corres-

pond to the most massive neutron stars allowed. These data are not necessarily

inconsistent because they correspond to measurements on different stars, but it

is puzzling that some of the stars observed have a radius smaller than the mini-

mum allowed by these calculations before gravitational collapse occurs.

VII. PI ON CONDENSATION

In the remainder of the talk I want to address the interesting subject of

pion condensation. I shall take the point of view of nuclear physics, in which

many questions discussed already in these lecutres can be brought to bear on the

problem. There exists another approach which emphasizes some models popular in

particle physics (the sigma model), which Gerry Stephenson will discuss.

A. Model of Sawyer and Scalapino for IT Condensation

Let me now discuss more carefully the question of whether there can be a

pion phase present in the ground state of nuclear matter. I briefly touched on

this subject during the preceding lecture and concluded that no pion phase

should exist in neutron matter such that all pions occupy the state of minimum
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Fig. 51. Typical behavior of partial
densities vs total baryon
dens i ty.

TABLE XXV

PROPERTIES OF THE MAXIMUM MASS MEUTROM STAR MODELS

Model su>

1
III
V
V

H 1(7.
H <i7

H 22

N 22

rcore/u <

7
7
5.5
5.5

1.85

1.73

I.6S
1.76

These columns c!ve the strength and
In the Interaction models,

The maximum

+Th* radius.

i moment

gravitational

of Inertia.

mass of a

p,A

3,
11

10

10

'o
.5
.2

.2

.<>

R

9
8
9
9

range of

stable

.73

.88

.38

.18

the

+ 'fgm-cn

LSI x

1.20 x

1.19 x

1.29 x

repulsive

neutron star.

IO 1* 5

io 4 5

core

10

Fig. 52. Energy per particle (MeV) vs
density (fm"3) for Model I
of Bethe and Johnson98 (B-J) .
Shown for comparison are re-
sults of Pandharipande97(p)
based on the (unmodified)
Reid interaction. H stands
for hyperonic matter, N for
pure neutron matter.
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momentum, p = 0 . This conclusion was

forced because the interaction between

TT and neutrons is repulsive fn relative

irN S-states. The subject of IT conden-

sation becomes interesting when the

interaction between pions and nucleons

in relative TTN states of £ = 1 is con-

s idered.

The subject of pion condensation

was invented independently by Migdal,

Sawyer and Scalapino, and Kogut and

Manassah. By way of introduction, I

want to consider the model of Sawyer

and Scalapino in some detail. It
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log A (g/cm3)
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Fig. 5^. Neutron star radius R, vs cen-
tral baryon density p c. See
Fig. 53 for curve designations.

20

Fig. 53- Gravitational mass
Q

tral baryon density p c = mn

ng c, where mn is the neutron
rest mass and ng is the bary-
on number density, for Model
I H ( • ) , Model III H ( —
— ) , Model V H ( ) , and
Model VN ( ) .

14.6 14.8 15.0
log />, (g /cm3)

16.0

Fig. 55. Moment of inertia, I, vs cen-
tral baryon density p c. See
Fig. 53 for curve designations.
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contains the essential physics of pion condensation; several types of corrections

to their model have been considered, and I shall discuss some of these later in

detail, in the model to be discussed now I consider only IT condensation, but in

a more complete model there will appear an admixture of TT as well.

In this model the coupling of a pion to a nucleon is taken to be the non-

relativist ic coupling shown in Table II, i.e.,

'N

Here ^ is the nucleon and <j> the pion field. It is important to note that the

interaction increases in strength as the pion momentum k is increased. Thus, if

the pionic phase consists of pions occupying a non-zero-momentum mode it may be

possible to overcome the repulsive S-wave interaction and find pions in the

ground state of nuclear matter.

So we now consider matter consisting of neutrons, protons and IT with the

IT all put into a state of momentum k (in Z direction) and we ask what are the

conditions under which the ground state energy is minimized. Because we antici-

pate a state containing many pions it is permissible to treat the pion field as a

classical field and replace

\+S\ (186)

in Eq. (185) where N^ = number of IT in the field. Now the Hamiltonian may be

wri tten

2 2
= l w K (p'a:> V p ' a ) + E 2rT ̂P (p>a)

pa pa

[»Mk ipj(p.a) a 3 i(;p (p-k,a) /fT + h-c +\\\ (187)

where a = ± 1 is the value of a ,

M =-%_> (188)
K m A2w,

7T K
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and Q is the volume of the system. Because we have omitted e lec t rons, charge

neu t ra l i t y requires

N = Nc (189a)

Define x so that if N is the total baryon density

N n = xN = N
P ir

= (l-x)N

(189b)

(189c)

The idea now is to diagonalize the Hamiltonian in Eq. (187) to find the

energy and eigenstates. The important point is that Eq. (187) is quadratic in

the nucleon fields. Thus, it may be diagonalized by changing variables from the

fields ik., t|)p to u, v, defined by the canonical transformation

Upa = v i - 9 * i|)N(p,aJ + 1 0 a ijj, (p -k ,a )

V = i 6oipM(p,a) + V1-6Z i|)L(p-k,a)
pCT N r

S o l v i n g E q . ( 190 ) f o r \p and ipp we f i n d

*N(P ,a) - W e upa - i e a vpa

iL(p-k.a) = i 0 a U - \/l-02 vr pa pa

(190a)

(190b)

Substituting Eq. (190b) into Eq. (187) yields, after some algebra

pa " 2

(eN-ep) i ae / l - e 2 + ia Mk / ^ (1-292) (191)
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where

p - p_ p

N ~ 2M ' P
- (p-k)1

2M (192)

U is diagonalized provided the coefficient of v u - u v is set = 0, or

M,k /xN _ "p V'-
eP"eN

(193)
1-26

It is clear from inspecting Eq. (191) that the system can profit energeti-

cally by filling the N lowest U states. Hence, the ground state is

U |vac> (19*0

where the state |vac> contains the coherent state of TT . The relationship be-

tween 8 and x can be seen by taking the expectation values

1*0 >=] '

= 0

o ~ p

= 0

p K ^ PF

P > Pc

IP + k|

p + k > p.

(195a)

(195b)

The ground state energy E may be found from

pa
eP "

Nx

Simpler expressions are obtained if recoil is neglected, i.e.,

£p " EN

, x l>2 2 .2 . .2(p+k) . p_ = k_ _ £ik k_
2M 2M 2M M ^ 2M

(196)

(197)
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Baym has emphasized that in the exact ground state the currents associated

with conserved quantities (charge and baryon currents in this case) must vanish

locally. Making the approximation in Eq. (197) we find {from Eq. (189b) and

(195b)]

Np = BN xN

or

x = e*

Now Eq. (196) may be rewritten

E = T.. + 92T - 2M. 6
N p k

where

Hence

pa

C/M 3 F 2fk /-;—
E/N = 7- -zrr x /1-x

5 2M m

. . k
/cok k 2M

(198a)

(198b)

(199)

(200a)

(200b)

(201)

Equation (201) is an important result. The first term is just the energy

of a Fermi sea of free nucleons filled to p = p_. The remaining terms are cor-

rections due to the presence of the pions: the second term in Eq. (201) is the

(negative) interaction energy, the third is the rest plus kinetic energy of the

pions and the fourth term is additional kinetic energy of the nucleons acquired

through scattering from the pion field. It is clear from Eq. (201) that there

is some density p at which the second term will dominate the remaining two terms

and hence a density above which the energy will be lowered by the presence of

the condensate.

The model may be worked out more fully than I intend to work it out here,

but let me mention how it can be done. Minimizing E/N in Eq. (201) at a given

density p gives a constraint between k, the pion momentum and x, the fraction of

neutrons which have become converted to protons by the condensate. The other
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condition needed in order that k and x be individually determined is Eq. (193).

which may be written explicitly as

(202)

using Eqs. (188) and (198b). The minimum density p for which these equations

have a solution is the threshold for pion condensation. It occurs approximately

for

k - 1.26 m^ (203)

p - 0.25 fm"3

The model of Sawyer and Scalapino just described leaves out a number of

physical effects which give rise to quantitatively different predictions (see

below). However, the description of the TT condensed state is the same in essen-

tially all theories. The nucleon states which diagonalize the Hamiltonian are

not the individual neutron and proton states but are rather linear combinations

of a neutron hole and a proton particle state. The energy of this collective

state is lowered by the interaction of the pion with the nucleons; likewise the

energy of the pion is lowered by the interaction with the nucleons. Condensation

occurs when equilibrium is established and the excitation energy e(PN ) of the

"particle-hole" state, which carries the quantum numbers of the TT , becomes

equal to the energy of the TT . Such a characterization of the threshold condi-

tion is quite general and permits a formulation of the threshold condition in

terms of the pion Green's function, which I'll have more to say about later.

B. TT Condensation

In IT condensation, equilibrium is established as

N t ir° + N (2Oi()

and we require that the energy of the n be equal to the energy e(nn ) of a neu-

tron (NN ) and proton (PP ) particle-hole excitat ion. Migdal has shown that

this occurs when the pion energy GO = 0 (but of course, k / 0) in contrast to
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the case of IT condensation where w may be closer to m . Because u = 0 , the

pion condensate will correspond to a static field and may be recognized from the

structure of the nuclear particle-hole excitation which accompanies it. Because

the IT couples to the density ^O"_T_I/J [Eq. (185)], the collective nuclear state

will be a state of non-vanishing spin-isospin density.

An interesting model of TT condensation was given by Pandharipande and

Smith. They considered neutron star matter and found that the state of lowest

energy consisted of a simultaneous neutron lattice and Tr condensate. They ob-

serve that because the potential interaction between two neutrons due to IT

exchange is tensor in character [Eq. (̂ 3 )]» an arrangement of neutrons on a

lattice is energetically most favorable. They place the neutrons in the lattice

so that in planes perpendicular to the Z-axis the spins all point in the same

direction. However, the spin direction alternates from one plane to the next

(Fig. 5^a). The tensor force is such that the interaction between a given lattice

point and its eighteen nearest neighbors is attractive. The next fourteen near-

est neighbors have zero interaction with the given site and more distant neigh-

bors give small contributions of varying signs. This describes the collective

state. The pion field can be determined from the IT field equation

(V2 - p2)^ = - i-V • pi \f> (205)
TT

which, when solved with the neutrons as classical point sources at locations R.

arranged as described above gives

(206)

At low density the v field is essentially that due only to the nearest neutron.

At high density the fields overlap significantly, and the <J> is essentially a

standing wave with nodes at the lattice points (Fig. 56b). In other words, there

is a static TT condensate field with a wavelength of twice the lattice constant

with momentum in the Z direction. To make the lattice stable, Pandharipande and

Smith found it necessary to calculate the nuclear energy with explicit A com-

ponents in the nuclear wave function using a coupled channel form of the varia-

tional theory.
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1 f\ J?

C. Improved Estimate of tr Condensation Threshold: The Green's Function

f next want to show how the estimate of Sawyer and Scalapino may be improved.

For this purpose we shall examine the pion Green's function, defined already in

Eq. (83). The importance of the Green's function is threefold: (1) the Green's

function may be calculated, bringing together experience from nuclear matter

many-body theory and meson physics, (2) the poles of the Green's function give

directly the threshold condition for TT condensation, (3) the Green's function is

directly related to pion scattering, and therefore provides a method for unifying

these two areas of physics.

Let me begin by showing the relevance of the Green's function to the deter-

mination of the threshold of TT condensation. Actually, we want to consider a

slightly more general operator than that defined in Eq. (83).

Gk,k(T'-T) = < ^ Q| ak,(T') a*(T) \^Q > O(T'-T) (207)

<(JJO| a* (T) ak,(T')|4)0 > G(T-T')

where a, creates a IT . Substituting the definitions of a, (T), etc., defined

below, Eq. (83), we see

M

Gklk(T'-T) = I <*OI \'K
 >e

(208)

where we have inserted a complete set of eigenstates of the complete Hamiltonian

into the Green's function and where E Q is the energy of the state \p-. The super-

scripts (+) and (-) refer to states of same baryon number but of charge +1 and

-1 relative to \bn. If we now Fourier transform G(T--T'), using the Fourier
0

transforms

-itoT1 Ato
2?J u-

~*co

-iET o,Tv
9(T)

- i f d u e ' +iET Q , T ,
_ = e 9(-T) (209b)
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we find

G k j k ^ - S < ^oK^ (-) **" l< l *o > (210)

In infinite nuclear matter k1 = k and I now want to consider this special

case only. The Green's function may be calculated in terms of Feynman diagrams;

refer to Ref. 103 for a derivation of these rules. The general diagram is com-

pletely connected and consists of everything which begins and ends with a pion

propagator, as in Fig. 57. Generally we may organize diagrams as shown in Fig.

58. If the diagram can be broken into two pieces by cutting a pion line then

this line is shown explicitly in Fig. 58. Thus, by definition, the blobs do not

contain pieces which break into two pieces if one pion line inside the blob is

cut. The blobs are called the "proper self energy" or "proper polarization"

part, and denoted by II (k,w). It is easy to show that when Fourier transformed

from time to energy, each diagram becomes a product of the propagator and proper

self energy parts. For example, the third diagram on the right-hand side of

Fig. 58 is

1 ' x n2(k,w) (211)
2 2 2 .

id) -q -U +m

Thus, the entire sum is a geometric series, and

2 2

-q -VI -II(k,oo) + in

(212)

Referring to Eq. (210), we note that the singularities of G(oi) which lie

below the real axis are equal to A E ^ = E ^ - E g , i.e., the energy which it costs

to create a state with the quantum numbers of the IT". The singularities above

the axis are equal to A E ^ S - C E ^ - E g ) , i.e., the negative of the energy which
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it costs to create a state of the quantum numbers of the TT

ture is depicted in Fig. 59.

The analytic struc-

When &E , -AE „ = 0 then it costs no energy fornI nZ _ ,
the ground state of the system to spontaneously develop a IT - and a IT -like com-

ponent; this is the phenomenon of TT condensation. The point is that this con-

dition can be determined if the Green's function is known. A practical method

of determining the threshold condition for TT condensation is to first calculate

the Green's function and determine its singularities. For a given k, to, one

then searches for the density at which the leftmost singularity below the real

axis just meets the rightmost singularity above the real axis. One then searches

for the values of k, co which give the lowest density; the values of k, w and p at

this minimum define the threshold of TT condensation. In Ref. 110 it was shown

that when the two singularities of the Green's function touch, the expectation

value of the pion number operator diverges in an infinite system.

The various terms which contribute to JI(co) in a realistic calculation are

shown in Table XXVI.

The pion-nucleon S-wave part (Table XXV!B) is calculated from the free pion-

nucleon S-wave scattering lengths; it is large and repulsive, as discussed ear-

lier. Recently the effect of going

off the energy shell in the TTN ampli-

tude has been investigated and this

extrapolation appears to be the source

of additional repulsion.

The piece II corresponds to a

particle-hole excitation, and if the

energy of the nucleons is ignored rela-

tive to the energy of the pions the

result can be shown to be the Sawyer-

Scalapino model, already discussed.

The bubble in Table XXVIB reminds that

the interaction of the neutron and

proton with the nuclear matter back-

ground must be included; such poten-

tials may be calculated from Brueckner-

Bethe theory or estimated from the

variational theory discussed in the

TABLE XXVI

TERMS WHICH ENTER INTO n(k,u) IN A REALISTIC

CALCULATION OF THRESHOLD OF n~ CONDENSATION

• 2w x 217 (MeV) p

.= 2f2kV°>

---/= All meson exchanges except TT exchange

" "OPE = "corr

,-1

E.
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preceding discussion of neutron star matter.

The A contribution is shown in Table XXVIC. One would like to include

effects due to the interaction of the A with the nuclear matter background, but

so far no calculations of these effects have been attempted.

The H R P A effect (IT is the lowest order approximation to II and there-

fore fiese two terms should not both be included) takes account of the possibil-

ity that the excited particles may interact with each other; the dashed lines

are effective interactions I/,..., i.e., g-matrix elements. However, in the calcu-
NN

lation, these were evaluated in the spirit of the lowest order variational

theory [Eq. (
V,(r) = Af2(r) r <d

(213)
VJir) = V(r) r > d

2
where f is the square of the correlation function and A the healing constraint.
This is approximately equal to

V(r) = v(r) f(r) (214)

However, because the pions are taken into account explicitly in the equation for

the Green's function (Fig. 5B) we must subtract the one pion exchange potential

from V , calling the result 1/
NN corr

^corr = ^NN " V0PE (215>

Subtracting VfipE is exceedingly important. Mathematically, it simply avoids

double counting, but physically it accounts for the fact that the short range

nucleon-nucleon repulsion prevents two nucleons from coming close enough together

to experience the 6 function in the one-pion exchange potential seen in Eq. (^8).

Including the RPA sum takes this physical effect into account in a wel1-motivated

formalism; if the RPA series were not summed, i.e., only the H piece of H

were included as in the Sawyer-Scalapino theory, then the S-function piece of

the one-pion exchange connecting the blobs in Fig. 58 acts and contributes a sub-

stantial amount of the attraction which tends to lower the threshold for pion

condensation. The importance of taking the short-range correlations into account

was emphasized by Barshay and Brown in their discussion of ir condensation in

nuclei. (In pion scattering this effect is known as the Lorentz-Lorenz effect.)
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NEUTRON SOLID

(7) <5) M) (5)

<5) m (i) (2)

H) (I) ( I )

(7)

(5)

G(u>) •
VI + •••

t4) F ig . 58. General form of Green's func-
*' t i o n .

(5) (2) (I) (2)

(7) (5)

(a)

(5)

(5)

(7)
C
O

Fig. 56.

7T

(b)

The neutron solid proposed
by Pandharipande and Smith.
The arrows indicate the spin
direction of the neutrons.

W PLANE

E
O

B
O
A

Fig. 59- Singularities of the pion
Green's function. A is the
IT" pole; B is the NP"' cut,
not present in pure neutron
matter; C is the n + pole; D
is the PN"' cut, and E is a

state.

(a)

Fig. 57. Examples of Feynman-Goid-
stone diagrams in the expan
sion of the pion Green's
func t ion .

BOUND N

Fig. 60. The (ir,P) reaction. In this
process the incident pion is
scattered into a pion-con-
densed mode: (denoted by ~ ~ x )
which helps satisfy an other-
wise large momentum mismatch.

Ill



RPAActually II should be extended to include A as well as nucleons; after

all, the nucleons and As presumably interact through one-pion exchange and a

repulsive core, and the delta functions of OPEP in this channel also must be

treated --arefully. The interaction between the nucleon and A was assumed in the

calculation to be proportional to the interaction between two nucleons; such

is true for the pion and p-meson exchange pieces of the interaction in the quark

model.

The results are shown in Table XXVII. As I have stated, II gives the

Sawyer-Scalapino result with the minor difference that in our model TT and ir

condensation is allowed by virtue of using the relativistic pion propagator in

Eq. (1). (The difference is discussed in Ref. 114.) The RPA theory pushes the

threshold up, showing explicitly the repulsive nature of the nucleon-nucleon

correlations. RPA plus second order tensor refers to a prescription for inclu-

ding potential ^energy on the nucleon states in the particle-hole excitation.

If nN S-waves are added, then the condensation threshold is pushed up to very

high density; if the A is added without correlations then condensation again

becomes possible. The last row gives the most realistic calculation, including

correlations among H and A. Depending on our choice of nucleon-nucleon inter-

action, threshold occurred at p = 0.225 fm , or at exceedingly high density.

The lower density corresponds to a modified Reid potential, taken from the cal-
98

culations of dense baryon matter discussed earlier, and the higher density

corresponds to a nucleon-nucleon potential developed at Michigan State for des-

cribing nuclei, i.e., low density nuclear matter. The most we can say is that

pion condensation may occur in dense systems, but a detailed prediction depends

on details of nuclear physics which are somewhat beyond our ability to calculate

at the present time. It would be nice

to have an experimental result to give

some indication; some possible experi-

ments are discussed next.

D. Experimental Implications

Migdal *" has suggested that IT

condensation might occur in finite nu-

clei. Barshay and Brown, however,

pointed out that if the coupling of

the pion to spin-isospin modes in the

THRESHOLD

Mode)

Simple [H

n R P A
+n e

Sir

HNA "STT

See Ref.

OF i

h

108.

TABLE XXVI1

IT" CONDENSATION

Pcrit

0

0

» 0,

0.

> 0.

(fnT3) 0

.17

.22

.8

085

225

IN NEUTRON

^(MeV) K,

uo
152

130

119

MATTER

1

1

1

1.

fm"1)

.0

.2

.44

50
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nucleus were anywhere near the strength to produce pion condensation in nuclear

matter, then there would be strong effects in nuclear spectra, which are not

seen. In particular, there exists a T = 1 0 state in 0 at E(expt) = 12.78

MeV. In a shell model calculation this lies at an unperturbed energy of 12.^2

MeV. If there were a pion condensate this mode, which has the same quantum num-

bers as the TT , would move down in energy, not up. Barshay and Brown then criti-

cize Migdal's calculation, pointing out that he omitted correlations among

nucleons, which, as we have seen, greatly reduces the attraction.

Pirner has tried to put a limit on the amplitude for a IT field by analy-

zing (TT,P) reactions. He points out that such reactions need a large momentum

transfer; if there exists a pion condensed mode in the nucleus then the momentum

transfer is easier to achieve because the incident pion can scatter into the con-

densed mode, which has a momentum % 1 to 1.5 fm • (See Table XXVII.) The

scattering process is indicated in Fig. 60. The experiment involved measuring
11 - 12

the radioactive decay of Be after ir absorption by C. He deduced an ex-

ceedingly small amplitude, corresponding to a pion density of 1/500 of nuclear

density. It would be interesting to see a similar comparison for a heavy nucle-

us, such as lead. Use of a spectrometer such as the High Resolution Spectrom-

eter (HRS) at LAMPF might be able to see this reaction [or rather the closely

related (P,TT) reaction].
Ericson and Wilkin have proposed measuring the TT field in a nucleus by

- + + -
observing reactions TT +TT -> 2y or -> e e , where the incident TT annihilates on

a virtual TT field in the nucleus. Experiments are now under way, with inter-

esting but so far inconclusive results.

If there is no actual TT condensed field in a nucleus it is still of interest

to measure the propagation characteristics of a pion in a nucleus. The poles of

the pion Green's function in Eq. (212) determines the pion energy OJ as a func-

tion of its momentum k in infinite nuclear matter. In the same model that

gave TT condensation in neutron matter the pion dispersion equation was calcula-

ted for symmetric nuclear matter and parametrized to give

w 2 = y2 + ak 2 (216)

The parameter a was found to be 0.35 at normal nuclear density for k < 0.5 fm .

This gives a moderately high density of states which may be observable in reac-

tions such as pion photoproduct ion or (P,TT) reactions.
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At energies above threshold (w > y) the operator II in Eq. (212) may be

identified with the pion optical potential for elastic scattering. For the

scattering problem k is complex, the imaginary part of which gives the attenua-

tion of the pion wave function due to the competing reaction channels. Thus,

low energy elastic pion scattering is another way to test theories of the pion

propagator, and such experiments will hopefully provide some clues as to whether

the physics is being correctly incorporated. Low energy is important because

the nucleus is more transparent to pions than at higher energy and hence pions

are more able to penetrate into the high density central portion of the nucleus.

Next, I want to mention an interesting proposal made by Sawyer and Soni .

They have suggested using neutrino reactions

v + Nucleus -> I + anything (217)

to measure the pion dispersion relation in the medium. The reaction goes

through the process shown in Fig. 61. The point they make is Lhat in symmetric

nuclear matter, (parp ) , the pion dispersion relation u) = w(k) is such that the

pion four-momentum (k,w) may become space-like (i.e., k > w) . They pick a
k

simple model of the dispersion relation and show that this happens for I £ — •£

2.8. If the four-momentum becomes spacelike, then the incident neutrino can

actually decay in the medium into a lopton and a pion. (This is forbidden in

free space.) This gives a distinctive signature, in the cross section for the

produced lepton. Their result for the case of v + Nucleus -> JJ + anything is

shown in Fig. 62 for E = h2Q MeV. The quantity V is
2

A UP d t)
ry cos y

The numbers on the curves refer to cos 9 . Sawyer and Soni point out that these

cross sections are larger than what one would get by considering v+N •*• N+TT +y

on the individual nucleons, with this cross section taken from the free space

scattering. They also estimate background from the quasi-elastic process v •> y

+ proton hole + neutron. They show that the quasi-elastic peak and the peak

from the mechanism they propose are separated in momentum by more than 100 MeV/c,

so that the background may be isolated from the signal if the neutrino energy

spread in the beam is less than 100 MeV/c. The measurement of the location of

the peak gives a direct point-by-point measurement of the pion dispersion



relation, and this is the attractive

and very valuable feature of their idea.

Sawyer and Soni made estimates using

nuclear matter arguments, but it should

be feasible to do the calculation for

a finite nucleus.

Finally, I would like to mention

the possibility of learning about pion

condensation in a neutron star by mea-

suring the cooling rate following a

supernova explosion. Maxwell, et
1 1 8

al. have considered the effect of a

pion condensate on the cooling rate and

found that the rate can increase enor-

mously, due to the [3 decay of the

thermally excited "U particles" [Eq.
119

(190a)]. In a subsequent paper Max-

well considers the cooling in more de-

tail and concludes that the present

temperature limit on the crab pulsar

does not rule out any model of cooling

and in particular doesn't indicate a

need for a pion condensate.

Fig. 62. The cross_section for the+

reaction v + Nucleus ->• u
anything, according to
Sawyer and Soni, Ref. 117-

The reaction neutrino + Nu-
cleus •+ lepton + anything.
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APPENDIX A

Proof of Eq. (47)

In this appendix we want to show that

" "5|2
¥- (A.I)

where S,? is defined in Eq. (47b). The proof goes as follows. Using the addi

tion theorem for spherical harmonics we have

lm (S>

and hence

Hi'S S2-g
Substituting Eq. (A.3) into Eq. (A.l) we find

Yim-

fJ , 21

^ ' S 22-3-2.'22a J = 1 1 2 2

(A-3)

Y. (q) Y ,(q)Y (q)[36(m,m )6(m'mi) -fi(m mj)6(m,ml)J (A.4)
lm2 ~ lm2 *m ~ ' 2 ' 2 ' ' Z 2

This expression may be simplified by noting that the only £-value contributing
120

is £ = 2. To see this, note

From Eq. (A.5) and the properties of 3"j symbols, we see that m = 0 and hence

m« = m'. Thus we write the SL = 0 term of Eq. (A.5) as

(

.3 ig'r
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(2TT)2 q2+y2

m2m2 (A.6)

But

(A-7>

ar,d hence the left-hand side of Eq. (A.6) vanishes as conjectured. But all terms

of % > 2 also vanish in Eq. (A.4), as can be seen from the property of the 3~j

L(qr) = - j ?

p

symbol in Eq. (A.6) . We take advantage of this by setting i L(qr) = -j?(qr) in
. (A.5). with the result

r d3
fl.. e'g-r r3o tq a .q . CT .a q2l = . / M 2 1 _ /" ! ^ i

•^ f 2 T T ^ 3 a 2 + u L ~ ' ~ ~ 2 ~ - 1 - 2 ^ \ 3 / 0 ^ 3 J +(2TT) J q^+y

£\ / I 1 I

1 1 \m -m' m/ \0 0

(?1} Ylm'

But note that

2*+
 1 / 2Y^ / ] U / 1 ^

(
1 1 £ /! 1 £

)( J (A.9)
m? -m' -m/ \0 0 0'
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where the last step utilizes an identity in Appendix IV of Ref. 120. Substitu-

ting Eq. (A.9) into Eq. (A.8) we find

/ M 3 1 3 /" ^ J 2
( q r )

?7T J

q dq j.(qr)

The integral over q is done in Appendix B and we f ind

(2TT)3 q2+y
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APPENDIX B

In this appendix we want to evaluate the integral

,(qr) (B.I)
/"Vdq

I c 2
+

2 J '' 0 q

Use t h e d i f f e r e n t i a l e q u a t i o n s a t i s f i e d by t h e s p h e r i c a l B e s s e l f u n c t i o n j ? ( q r )

(B.2)

to wri te

oo 2

(' , . , , , \ /- q dq j .

2 dr dr 1 ] J 2 :

2 2
0 q +y N . ' ' ~0

I , ^ , , A \2 /* dq j :
/ d i d b \ f —^—
I - —7T — r -— H—— 1 / 2
I 2 d r d r 2 J ^ q +
\ r r / n

But

dq

2 2/

°° dq J 2 (qr ) ] r dq j"2(qr) ] f dq h2^ ' ( q r ) ] C

2 2 = I / 2~1 = ^y 2~2 + T*J
Q ~ —oo ~ —oo ~ —oo ~ ^ t

where h? ~ are spherical Hankel functions. Also, now write

_J L . J L_ . J ! !_
q 2 + y 2 q+iy q-iy q-iy 2iy q+iy 2iy

Close the contour for the integral involving h ? in upper 1/2, and that for

h ? in lower 1/2 plane. This gives

°dq J2
{qr)

 m 1 2TTT_ (+) . , I _1_
0 q +y -i i-i\* c t i i n i.

= I y h 2 + ( l y r ) (B.5)
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Noting that the spherical Bessei and Hankel functions satisfy the same differen-

tia) equation, use of Eq. (B.3) gives

(
q dq J2(qr)

2 2 2y "2 ()ur)
-yr (B.6)
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THE APPLICATION OF NUCLEAR PHYSICS TO OTHER SCIENTIFIC FIELDS"

by

T. A. Tombrello

California Institute of Technology

ABSTRACT

Knowledge of the structure of nuclei, their systematic
properties, and the mechanisms by which they interact pro-
vides us with a powerful tool that may be applied to under-
standing a variety of phenomena. In these five lectures I
shall give a few specific examples that have arisen in the
fields of astrophysics, planetary science, geophysics, and
materials science. Although some of the nuclear physics in-
volved was well known to Rutherford, we shall find that it
continues to generate new ideas for application.

INTRODUCTORY REMARKS

In addition to the serious topics in nuclear physics covered by the other

speakers I was chosen to provide a bit of comic relief. Because my subjects

tend to come from outside the field, the coverage will be relatively more super-

ficial and thereby more in the nature of entertainment. In 1972 I gave a lec-

ture at a summer school for the Indiana Cyclotron; I began that talk with the

classification of my material as a'kind of Kama Sutra for their developing re-

search program -- it would take considerable flexibility to apply my ideas, but

at the very least what I said might whet their appetites. In the same sense i

hope that I can stimulate you into thinking of nuclear physics in a broader con-

text, one in which it is not a separate discipline but one that is well integra-

ted with all of science.

"Supported in part by the National Science Foundation (PHY76-83685), the Nation-
al Aeronautics and Space Administration (NGR 05-002-333), and the Department of
Energy (EX-76-G-03-1305).
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From the beginning, I want to dispel the notion that applications consist

mainly in using the techniques of nuclear physics to manufacture better mouse-

traps. That is certainly a part of the picture, but it is perhaps the least

exciting aspect of applying nuclear physics. To briefly state a suitable philos-

ophy for an applied nuclear physicist it would be that whenever you hear of a

new problem or discovery anywhere in science or society, you should ask yourself

if there is anything you know that is related to that problem or discovery. Most

of us are in science because it's fun — and it's even more fun if you can use

what specialized knowledge you have in a variety of diverse ways. Though all of

us tend to bear the label "nuclear physicist," we should think of ourselves first

as scientists who like Faust are dedicated "to understanding the world in its

innermost part."

I. NUCLEAR PHYSICS AND TESTS OF THE EQUIVALENCE PRINCIPLE

Legend has it that Galileo performed the first test of the equivalence prin-

ciple by dropping iron and wooden balls from the leaning tower of Pisa. Whether

this is true or not, he certainly believed that the acceleration of a body by

gravity was independent of the material from which the body was made. This idea

of the equivalence of gravitational and inertial mass was absorbed without ques-

tion into the mechanics formulated by Newton; though there was, of course, no

obvious reason why it should be strictly true. (One should, however, note that

Newton performed experiments that established the equivalence to 10 .)

Before we continue with this historical progression, let us first be more

specific about what we mean by the Principle of Equivalence:

(1) In its "weak" form the Equivalence Principle involves only the equiva-

lence of inertial and gravitational mass for a local observer — It does not say

that the proportionality of these two masses will be the same everywhere in a

gravitational field.

(2) Einstein used "equivalence" in a much stronger sense when he set forth

the postulates on which his theory of general relativity rests. This "strong"

Equivalence Principle states that all the laws of physics are independent of the

location in a gravitational field. This means that to a local observer in a

freely falling, non-rotating, electromagnetically-shielded laboratory there is no

change in the results of any experiment due to gravity. Obviously, we exclude

tidal effects, i.e., variations of the gravitational potential (())) within the
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laboratory. Thus, al1 particle masses and the coupling constants of al1 fields

cannot depend on <j>.

In this strong form the equivalence principle puts enormous constraints on

the theory of gravity and there are some interesting consequences of this postu-

late. Let us first consider one of the most spectacular of them. A slight re-

wording of the equivalence principle is that mass and al1 forms of energy are

strictly equivalent. Thus, energy "falls" just like matter and all forms of

matter or energy attract one another. Imagine squeezing a mass so that its vol-

ume decreases; eventually the body will be so small that the internal gravita-

tional force will cause it to contract by itself. Ah, but what about repulsive

forces (nuclear, electromagnetic, . .)? It doesn't matter because once gravity

takes over, the energy in even the repulsive forces adds to the mass and con-

tributes to the collapse. The gravitational field around the mass is so strong

that even photons are gravitationally bound and no light can escape -- a black

hole. The strong equivalence principle makes this collapse unavoidable once it

starts.

How does this bear on ideas of elementary particle or nuclear physics? One

finds that once matter has gone into a black hole external measurements can

detect only its mass, charge, and angular momentum. Thus, we lose contact with

many other quantum numbers we hold dear — like baryon number. Penrose calls

this "cosmic censorship," but it was at first thought to be no problem because

though the information is not readily available, it is all still there inside

the singularity. The situation turns out to be somewhat worse than that, how-

ever, and I will make a slight digression to show you why. This digression has

a moral, which I will tell you in advance: take seemingly paradoxical results

seriously.

About nine years ago Roger Penrose made an amusing discovery which was

called the Penrose Paradox. He found theoretically that if one scattered a

particle from the gravitational field of a black hole, for a small range of im-

pact parameters the particle gained energy in the collision. We all had a great

laugh at that. We even joked that if we had a black hole all our problems would

be solved at once; you could not only dump waste into it without fear of pollu-

tion but you could also extract energy from it. (Who needs either reactors or

solar energy?) Well, we were all dumb b e c a m e when you extract al 1 the energy,

the black hole and the singularity are gone and you've really lost the censored
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quantum numbers. But what about quantum mechanics; will it change the outcome?

A graduate student named Steve Hawking was much smarter than the rest of us; he

realized that if we could devise ways of extracting energy from a black hole,

nature could also manage to do it. He proposed the following process: virtual

particle-antiparticle pair formation just outside the SchwartzschiId radius. One

particle has to get captured into the black hole in a negative energy state, the

other gets enough positive energy to escape to infinity. He showed that the

emission spectrum is that of a black body, with higher temperatures and shorter
2

lifetimes for smaller mass black holes. This causes deep philosophical trouble

for the theorists because summing over all the unobserved quantum numbers of the

captured particle of the pair is equivalent to a loss of information. In the

standard jargon: "an S-matrix can't be defined for the process." Hawkiny puts

it another way: "Einstein attacked the uncertainty principle by saying that

God does not play dice; well, not only does he play dice but sometimes he throws

them where they can't be seen.1

Before ending this digression I want to remind you of the moral. We all

laughed at the Penrose Paradox, but Hawking won the Heineman Prize and the Vati-

can Medal and has certainly had the last laugh.

Returning to the equivalence principle we see that one of its consequences

is black holes. And if they exist, then we get some interesting connections to

the fundamental structure of quantum mechanics. Now that I've tried to convince

you that it's important to determine to what extent the strong equivalence prin-

ciple is valid, I want to first deal with tests of its weak form — the equiva-

lence of gravitational and inertial mass.

Over 80 years ago Baron Roland von Eb'tvos began a series of torsion pendu-

lum measurements to look for differences in the gravitational and inertial mass-

es for different materials, a fancier version of the Galileo legend. He used

balls of metal, glass, snakewood — all kinds of exotic materials, Ultimately
-9 khe showed that all the materials behaved the same way to a level of 3 x 10 .

Using modern techniques this same torsion pendulum approach was employed by

Roll, et a!., for gold and aluminum to get a limit of 1.3 ± 1.0 x 10" .

Braginsky and Panov picked up another order of magnitude for platinum and alu-
.1 o C

minum and got -0.3 ± 0.9 x 10

The Braginsky experiment represents an incredibly sensitive test that plati-

num and aluminum behave the same way when their gravitational and inertial
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masses are compared, but what does the result mean at a more fundamental level?

If the aluminum and platinum atoms were made of exactly the same stuff (nucleons,

quarks, cottage cheese, . .) then it would be no real surprise that they "fell"

the same way. We must, therefore, look at the problem in greater detail.

Consider first the atomic properties: the electrostatic potential of the

nucleus seen by the atomic electrons is very much larger for platinum or gold

than for aluminum. Thus, if we consider the virtual positron-electron pairs

created in this field, there are many more pairs for the high-Z elements. Schiff

has shown that if the positrons "fell up" there would be an anomalous contribu-

tion to the weight of the atom that would be quite different for the two materi-

als. For aluminum and platinum there would be a difference of ^3 x 10 ; i.e.,

the Braginsky-Eotvos experiment confirms that matter and antimatter have the

same sign for the mass to a precision of 3 x 10

What about differences in the nuclei? Platinum and aluminum have different

ratios of neutrons to protons,

(N/Z) p t - (N/Z) A ) = 1/5.

— 1 9 Pi

So we see the neutrons and protons fall the same way to ^5 x 10 . But since

neutrons and protons are composed of the same constituents this is not too sur-

prising. If we assume that neutrons and protons are collections of reasonably

heavy quarks, one must ascribe the whole n-p mass difference to differences in

the strong and electromagnetic binding of the quarks. The difference is, how-

ever, only about 1 MeV (out of M GeV), so we lose a factor of 10 . Thus, we

have only verified the equivalence to

'v 5 x 10 x 10-5 - 5 x 10 3

What about the differences in the binding energies of the neutrons and protons

in the two nuclei? We can crudely estimate the differences in electrostatic

binding energy:

(nev) . L

1.2A1/3

Z(Z-l) 1.2 Z(Z-l)
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, Eem „ fern = 1.2 Z(Z-l)
unit mass A .V3

/MeV \
\ amu /

amu

Thus, we have checked the equivalence of electromagnetic energy and mass to

^ l i " 1 0
h x 10 5

« 2 x I0

What about the strong interaction? If we look at the binding energy per

nucleon curve we find that these two nuclei differ by only about 200 keV/amu;

thus, we have checked the equivalence of total binding energy and mass to onJy

However, this is misleading because the two nuclei have different amounts of

nuclear and electromagnetic binding energy. A way to approximately decompose

the contributions is with the semi-empirical mass formula. Almost any version

gives comparable results, but since I'm at LASL I'll use an old form given by
q

Phil Seeger:"'

(0 (?) (3)
Mass excess MeV = 8.3674 £ + 7-58W \ - T T i T

A amu A A

(h)

(20. 65 . itLPJlA / ( N - Z ) 2 + 21N-ZI
A2
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Al

Pt

Pt-Al

(5)
20.21 o

,1/3 °-'

(0
Neutrons

^•338

5.020

0.682

(2)
Protons

3.652

3.03^

-0.618

(6)
f} 0.7636

z
2.29 \

A

Binding Energy

(MeV/amu)

(3)
Vo1ume

-16.11

-16.11 "

0

Asymmetry

0.0191

0.5202

0.5011

(5)
Surface

6.737

3-<t85
-3.252

(6)
"\> Coulomb

0.7090

3.2727

2.564

Thus, though the strong and electromagnetic interactions differ a great deal in

overall strength, since the difference is all that is tested by the Ebtvb's experi-

ment we check each interaction separately to about

I0~12 M x 10" 1 0 .
3 x 10"3

So far we've managed to look at the strong and electromagnetic interactions

as well as possible differences between matter and antimatter. Can we say any-

thing about the other interactions? We know that the weak interaction doesn't

conserve parity; perhaps it also violates the equivalence principle. For many

years it was thought that the weak contribution to nuclear binding was too small

to be tested even by the Braginsky experiment. This isn't really true; nearly

everyone made the same mistake, considering only the parity-non-conserving part

of the weak interaction. Thus, the weak binding would go as the square of the

coupling constant, i.e., one power to mix in the opposite parity and one power to

connect back to the original state.

Z < 0|G'|n > < n|G'|l0 >

(G1 is the parity-non-conserving part of the potential.)

This was stupid, because the weak interaction is half parity conserving

and half parity non-conserving. There is, therefore, a contribution to the
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binding energy that goes as the first power of the coupling constant. Haugen and

Will have calculated the volume part of the weak binding energy. Though they

used a current-current form for the interaction, one could equally well consider

the exchange of intermediate vector bosons. Very schematically:

charged current neutral current

W+

Z° \ etc.

2 2
energy ^ NZ_ N Z
nucleon A2 ft2 ' ̂ 2

It's easy to see where the N, Z, A dependence comes from. The inter-

action is ^ zero range so it depends on the local nucleon densities. For the

charged current case:

1 / N x Z \
A Vol. x Vol. X V o WA \ V o l . V o l .

b u t v o l u m e oc A

A2

The contributions of the charged and neutral currents are roughly comparable but

the charged current piece is somewhat larger.

weak\
A /

Al

Pt

Pt-AI

* 2 x 10"8

NZ/A2

0.25

0.24

* 10"2

NZ

A2
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Thus,

x 10

This implies that the weak interaction obeys the "weak" equivalence principle
-2

to ̂  10 . If one corrects for the difference in the surface energy from the

weak interaction we can get a difference that is perhaps as much as ten times

larger, which would make the test good to ̂  10

Very recently I received a copy of a paper by J. P. Hsu that is soon to

ar in Physical Review. He computes the

nucleus due to the weak interaction and gets

appear in Physical Review. He computes the self energy of the nucleons in the

Eweak\
s^ /^ 10/^ 10 , an enormous effect!

I haven't had the time to go through the calculation in detail. As you

know, self-energy contributions contain divergences and the results can be quite

sensitive to the cut-off parameters used. I have to admit that I'm suspicious,

and I'll have to do some work on it before I'm convinced.

Now I want to discuss an interesting idea to test the validity of the strong

equivalence principle for the weak interaction. The Eotvos experiments have

basically been done at constant <j> so they really don't apply; what we need is an

appreciable change in (J). Obviously, one can consider doing the Braginsky experi-

ment on a space mission, but that is probably not possible for a while. The
12

idea I'll discuss came from P. D. Parker at Yale; although it doesn't work

quite well enough yet, it's so clever that I'll tell you anyway.

In the decay chain for thorium (Fig. l) there is an ambivalent nucleus,
212

Bi. It can decay either by ordinary beta decay or by alpha emission. The

strength of the beta decay depends on the weak interaction coupling constant;

the strength of the alpha decay depends in some complicated way on the strong

and electromagnetic interactions which are pretty well tested by the Eotvos ex-

periments .

One can thus consider a measurement of the branching ratio as a function of

jion a space mission as a way of comparing the weak coupling constant to the
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strong and electromagnetic interactions as a function of <J>. What makes the ex-

periment so clever is that one doesn't have to observe the 3's because the

daughter nucleus after the 6-decay decays only by alpha emission. You just

measure the relative strengths of two alpha lines using a Th source (Fig. 2)

and a solid-state detector. What could be simpler?

Before we go on we should look at another possible complication — the 3"

decay and a-decay are strongly affected by the mass of the decaying nucleus. If

a violation of the equivalence principle changes that mass, will it help or par-

tially cancel the effect to be observed?

For a-decay:

In X, - -3-92 Z/VT + ^ const
decay
const.

So,
, -,.66.4A « E ,

or

A 66-M E *

For 3-decay:

r t •

For ft ^ const.,

t K [ " ' or A «E

Thus, the branching ratio (R) changes as

AR_ ,. Am
R m

This is a reasonable amplification, but since the contribution to m from the weak

interaction is already so small, the change in R due to this change in mass can

be neglected. Thus,' we need only consider the direct change in the branching

ratio due to changes in the weak coupling constant with <f>.

The experiment has been checked by Parker in the laboratory. With some Im-

provements one could probably make measurements of the branching ratio to 10

in a very compact experiment.
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Where :*« the trouble? The change in the gravitational potential in going

from the earth's orbit (1 A.U.) to four solar radii (A Ro) is approximately
]h 2

6 x 10 ergs/gm, i.e., an ̂  JO increase. (This mission is being planned now by

JPL but is not funded. It will require either new technology in the form of an

ion engine or solar sail or for a longer mission a gravitational assist by

Jupiter.)

We don't really have much of an idea how a coupling constant might depend on

h<$>, but one might expect that it will mainly be affected by the change in the

metric (like the gravitational red shift experiment).

9*1+4 '

So

^2- * 10
g

" 6

Thus, the weak interaction would either have to have a much stronger dependence

on g or the experiment will have to be made more sensitive. It looks difficult

to just increase the source strength, because the detector suffers too much radia-

tion damage.

So there's plenty of room for clever ideas to test the strong form of the

equivalence principle, and I expect that a nuclear technique is just what's

needed.

JI2Po(3«!0*Tsec)

(I.SCyrs.)

o2'2Po

'" \6S%

\BI 2

©;

.©

PIT

Fig. 1. The decay scheme for Bi and
its daughters, 2o8Tl and 212Po.

Fig. 2. The portion of the thorium de
cay chain from 228Th to 2o8Pb.
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II. 12C(a,Y)'6O AND STELLAR HELIUM BURNING

When the hydrogen fs exhausted in the core of a main sequence star, the star

gradually contracts, which increases the temperature sufficiently that hydrogen

begins to burn in a shell just outside the core of helium. The increased heat

flux from this source causes a large expansion of the outer regions of the star;

thus, although the total luminosity has increased, the surface of the star be-

comes cooler -- a red giant. When the inward pressure on the core helium finally

exceeds the outward pressure from the highly degenerate electrons, the helium

must begin to burn to resist the inward pressure. At this point the core density

is 'V/ 10 gm/cm at a temperature of 1-2 x 10 °K. (This is to be compared with

our sun's central density of ^ 100 gm/cnr and a temperature of ^ 15 x 10 K.) '

The helium burning reactions that can take place are complicated by the fact
Q

that Be is unbound with respect to decay into two alpha particles. Thus, it is
12

only when 3 alphas can react to form C that a nuclear energy source becomes
Q In

available. In Fig. 1 we see the level diagrams for Be and C. It is an inter-
esting coincidence that at about the same energy where two alphas can form the
o
Be ground state, a third alpha can scatter from this short-lived state at an

+ 12
energy corresponding to the 0 second excited state of C. The occasional

12radiative or pair decay of this state produces C. Whether one can add addi-12tional alpha particles to the C nuclei depends in a very sensitive fashion on
the level structures of the alpha particle nuclei, 0, Ne, . . . There are

also minor (but interesting) effects due to the presence of small amounts of

N left over from the

wait for another time.

N left over from the hydrogen burning CNO cycle, but that story will have to
2

The level structure of 0 is shown in Fig. 2. Determination of the rate
12 16

of the C(OI,Y) 0 reaction under stellar conditions is non-trivial because at

the energy involved (0.3 MeV) the cross section is probably dominated by the tail

of the bound 7.12 MeV, 1 state. A direct measurement of the cross section
~8

(10 nb) at this energy is not now feasible. At higher energies the broad 1

state at 9-6 MeV reaches a maximum capture cross section of about hG nb; it is

the interference of these two 1 states that provides the opportunity to probe

the structure of the 7.12 MeV state. The interpretation of such data is, of

course, complicated by the possible presence of other unresolved, broad states

at higher energies that also contribute a coherent background.
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The only pieces of information that are needed to determine the stellar

reaction rate are the probability to form the 7-12 MeV state (proportional to

its alpha decay width, T ) and the probability of its radiative decay (propor-

tional to its radiative width, T ) . The latter can be determined independently

by resonance fluorescence measurements -- inelastic photon scattering from 0

(g.s.) to its 7.12 MeV state. Thus, we need only one additional parameter, T .

Before going on with our discussion, I shall make a short detour to remind you

of some of the details of the resonance theory of nuclear reactions. Since I

don't plan to get bogged down in theoretical details, I'll present an abbrevia-
12

ted account for the simplest case: spinless particles (ok for a + C) and one

channel open (elastic scattering only; the radiative capture is very small and

we can add it later). I shall leave out most of the algebra, but you can find
h 5

all the details in Preston or Lane and Thomas.

We shall assume that the nuclear potential has a sufficiently short range

that beyond r = a it can be entirely neglected. Thus, for r > a we can write

the wave function in terms of ingoing and outgoing Coulomb waves:

\a0 , ( 2i60

if, = E i* /ir(2A+l) e * i _ | ( r ) + e * O.(r) Y^(6,<(.)
P n Kr f x, x.

?
£=0

where I. = F» + iG., CL = F. = iG», a* is the Coulomb phase shift, 6, is the

nuclear phase shift, and the F* and G« are the Coulomb functions that are regu-

lar and irregular at the origin, respectively.

Inside the range of the potential (r £ a) we'll write the wave function as:

•r. r us?(r) n

We may evaluate the nuclear phase shift (6) by matching the inner and outer

solutions at r = a. We find it useful to define the log derivative, 1/R«:

U £ ( a ) = R £ a \ d ^ / r = a

In a multi-channel case R becomes a matrix — the R matrix. After about a page

of algebra we obtain:



= tan

where

and

dFS

(the penetrability),
•=a

htr (the shift function)
r=a

At this point we've merely traded our lack of knowledge of 5f for a lack of

knowledge of Rp. The only assumption made is that there exists a value of a,

outside of which we may neglect the nuclear potential.

Let us now introduce for each I a complete set of solutions to the nuclear

Hamiltonian in the region r -? a. These solutions differ from the correct solu-

tions in that we shall choose them to satisfy a more convenient (but arbitrary)

boundary condition at r = a. We shall denote these functions by a subscript X

which refers to each discrete eigenfunct ion IL, with eigenvalue

B (a constant).

At r = a,

Since tiiese are eigenfunctions of a rea? Hamiltonian, they are orthogonal and we

shall normalize them so that

, A LL ,, dr = S. , ,
,, A X,, A A , A

Expanding the actual solution at energy E in terms of the LL :



and using Green's theorem (and more algebra) we can evaluate the R,, in terms of

R =

2

X ^Z,X , where

,A 2ya
Uo .(a) . (y is the reduced mass)

The form of the function suggests that resonances may occur in the scattering as

a function of the energy. In many cases we may be able to consider a range of E

sufficiently close to one of the E-\'s that we can neglect all the other terms in

the summation.

.-E/ \ ' + Ea,]

or

tan
-l Yn

A ( S £ " B ) r=a

This is the Breit-Wigner sing1e level formula.
2

In this expression, Yo\ and E^, are independent of the energy, E, P. and S«

are energy dependent and are determined from the Coulomb functions. For a narrow

resonance,

T = 2
£X

\k2



2 12

gives the resonance width in terms of Y m • In the case we're considering (a+ C)

we have £ = 1 for the 9-6 and 7-12 MeV levels. We thus get the following expres-

sions for the scattering phase shift and the E-l capture cross section:

-<j>, + tan

and

6TT
,2

ay

There have been several attempts to parametrize the k = 1 scattering phase shift
1 2 1 ? ] 7 ] fi 7

for C(g,g) C and the E-l cross section for C(g,y) 0 in terms of the Yi,
and E-, ' s so that a reliable extrapolation to stellar energies could be made.

6
These have all had difficulties, which i will discuss later.

Thers have also been attempts to extract information on U ;7 17(a) (and

hence F ) from direct reaction alpha transfer analyses of reactions like
g, /. \ c

C( Li,t) 0. ' The results obtained have considerable scatter, which in some

cases is known to be due to an appreciable compound nucleus contribution to the

reaction cross section. Later, I shall summarize these results along with those
1? 16

from the analysis of C(a,y) 0.

I shall tend to restrict my remarks to the direct measurements of C(g,y) 0

because it now appears that these data have led to a successful extrapolation of

the cross section. The key to this success is entirely due to a beautiful ex-
a

periment done by Peggy Dyer and Charles Barnes that I shall describe briefly.

The main difficulties in performing the measurements were the very small

cross section for the C(g,Y) 0 reaction (down to ^ \/k nb) and the very large

cross section for C(g,n) 0. The first experimental improvement they made was

to separate the neutrons and y rays by time of flight. Though this is an obvious

step, it had to be done efficiently because one loses solid angle for the Nal

detectors as the flight path is increased, and beam intensity is lost in order

to provide a pulsed bsam for the timing. Figure 3 shows the time-of-f1ight spec-
trum. The data points shown as crosses are for a natural carbon target

2
Also shown are the data points using a target that was greatly depleted (by M O )

in C; this was the second improvement that made this experiment possible.
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Though most of the capture cross section is from E-l capture (& = 1 partial

wave), there is enough non-resonant E-2 (£ = 2) contribution to complicate the

analysis. However, measurements of the angular distributions of the y rays

allow the E-2 part to be subtracted. Figure h shows the angular distributions.
2

The E-l gives a pure sin 9 pattern, so it's obvious that there is some E-2 pres-

ent. The derived ratio of the E-2 to the E-l is shown in Fig. 5- The solid line

is theoretical, a direct capture calculation for the E-2 that I made for Peggy.

(The reason for the dip in the curve is not that the E-2 varies, but rather that

the E-l resonates at 2.k MeV -- the 9.6 MeV state.)

Figure 6 shows the total E-l cross section obtained. I'll also define a new

quanti ty, S(E).

V E

ac
where n = — - and E is the center-of-mass energy.

f i k

e"2TTn

The — - — is the Gamov factor; thus, S is the cross section with the effect of

the Coulomb barrier crudely removed. This gives us a curve that doesn't fall

quite so fast with decreasing energy (Fig. 7 ) .

The curves shown are the best fits available using the R-matrix parametriza-

tion.

(a) The dashed curve leaves out the effect of the 7-12 MeV state.

(b) The solid curve is the best fit.

(c) The dotted curve is the largest contribution from the 7-12 state that

is not totally excluded by the data.

In terms of the value of S at 0.3 MeV, they get:

S(E = 0.3 MeV) = 0.14 * jj'jj MeV b.

A slightly different resonance formalism employed by Humblet, Dyer and

Zimmerman (the K-matrix) gives S(0.3) = 0.08 _ Q" MeV b. The reason that the

uncertainty is so large is that many parameters must be determined from the data,

and the greatest unknown concerns the possible presence of broad, unresolved

states at higher energies.



About the same time that Dyer and Barnes were getting their data (1972),

Steve Koonin and I had a new idea about this problem. It is well known that one

runs into trouble if you try to describe the broad resonances of a simple poten-

tial (e.g., a square well) in terms of the single level formula. What happens

is that the convergence of the R-matrix expansion is very slow in such cases and

one must keep quite a few terms. We realized that the 9.6 MeV resonance was just

this sort of resonance and that all the previous R-matrix analyses had tried to

treat this level in terms of one (or at most two) terms in the expansion. Rather

than just add terms, and thereby add more free parameters, we figured out a way

to combine the R-matrix formalism with ordinary scattering from a potential -- a

"hybrid" analysis. I won't go through this in detail; it would take a lot of

time and would appeal only to the experts. What I will do is show how it goes

JSt
11

1 2
for just the elastic scattering; the extension to the case of C(a,y) is in our

paper.

Suppose we describe the 9.6 MeV level by scattering from a potential V(r);

this is just the first approximation, but we have to start somewhere. We choose

the depth of the potential to get the right energy for the resonance, we pick a
1 2

radius appropriate to the scattering of an alpha particle from C, and we adjust

the surface thickness (diffuseness) of the potential to fit the width of the

resonance. What about the 7-12 MeV state? There's no reason to assume that it

should be an eigenstate of V(r) — how do we include it?

Prescription:

1. Use V(r) to calculate 6°(E) .

2. Invert the expression that connects 6 and R to get R (E)

3. Remember the R (E) is just a sum of poles and that the 7-12 state is

just another pole.

k. Add in the pole for the 7-12 state — having chosen E 7 . to put it at

the correct energy.

R(E) = A l | + R0(E)
t7-12

5. Now we can consider 6(E) as a fn of R(E). We vary y and the param-

eters of V(r) to get the best fit to &

You must remember that this is just an example, because 6 turns out to be
2

insensitive to y 7 ,,• Thus, we can approximately fix the parameters of V(r) in
/ • I £• 2

fitting 6, then use the a data to determine y _ .„.
ot,y i. ii.



The results are summarized in Figs. 8 and 9. In Fig. 8 o is given with

the solid curve representing the best fit and the dashed curve leaving out the

effect of the 7-12 MeV level. The same curves are shown for S(E) in Fig. 9-

The "final" result for the hybrid analysis gives:

S(0.3) = 0.08 +_ I'H MeV b

Recently Brad Flanders and I have done a bit more work on the problem to

investigate some of the approximations that underlie the hybrid model. The up-

shot of the new work is

S(0.3) = 0.09 * °0'H MeV b

and we're feeling much more secure that the problem is really solved.

I promised a comparison with the direct reaction analyses. In these I've
2 2

given the ratio of y 7 i •? to Y Q rQ- ' have also changed one of the conven-

tions used by Koonin to make all the numbers directly comparable. (This basi-

cally has to do with a uniform way of choosing the boundary condition, B.)

Method

Theory

6 L i ( I 2 C , d ) l 6 O

12C(7Li,t)l6O

Hybrid analysis

Hybrid analysis

/Ya,7

W,9
0.09

0.07

0.03

0.03

0.1

.12

• 59

± 0

-»• 0

± 0

+ 0

1
• 05

.16

.015

.05

Reference

13

8

7

11

12

Before closing I want to return to a brief discussion of the astrophysics.
12Based on the results of the "hybrid" analysis, we obtain the following C mass

fractions at the end of helium burning. (Note that since O(OI,Y) Ne is non-
1 0 1 c

resonant at these temperatures, helium burning yields predominantly C and 0.)



Core Mass/M-.

2

5

10

20

12c

0

0

0

0

Mass

•72 *

.62 +_

•5* !

.46 +

Fraction

0.20
0.14

0.20
0.14

0.20
0.14

0.20
*v i f

So, one ends up with roughly equal amounts of carbon and oxygen. One should
2

realize that if y -, ,0 were much larger then one would end up with almost pure

0, which would have made it much more difficult to produce a life form based

on carbon.

-O.O9
a+a

7.65

4.44

i

0* 7.37
8Be+o

2+

12

Fig. 1. Abbreviated energy level dia-
grams for °Be and ' 2C that
show the states that are impor-
tant in stellar helium burning.
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Fig. 4. The angular distributions for
'2C(a,y) 0. The dashed curves
are the same distributions as
they would be measured by a
point detector.

Fig. 6. The E-l cross section for
12C(a,y)i60. The solid curve
is the best R-matrix fit.
The dashed curve leaves out
the 7.12 MeV level.

oooi

Fig. 7.
10 IS 20

CM ALPHA ENERGY(MsV)

Fig. 5- The ratio of E-2 to E-l cap-
ture. The solid curve is a
theoretical calculation normal
ized to the data shown.

The S-factor for the E-l part
of 12C(a,y)i60. The solid an
and dashed curves have the
same meanings as in Fig. 6.
The dotted curve is the maxi-
mum contribution from the
7.12-MeV state that is con-
sistent with the data.
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o.oo

Fig. 9. The hybrid model f i t to the
S-factor for the E-l part of
' 2 C ( a , y ) ^ 0 . The curves have
the same meanings as in F ig.

Fig. 8. The hybrid model fit to the E-l
part of the 12C(a,y)'6o cross
section is given by the solid
curve. The dashed curve leaves
out the effect of the 7.12-MeV
level.
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III. RADON MONITORING AND EARTHQUAKE PREDICTION

During the past fifteen years unusual crustal uplifts and downwarping have

been occurring along the San Andreas fault from Cajon to Marlcopa and eastward

into the Mojave Desert and along the base of the San Gabriel mountains. During

1976 and 1977 anomalous swarms of small earthquakes were noted on a section of

the San Andreas fault near Palmdale that had exhibited little seismicity during

the past four decades. At present there is controversy over the interpretation

of these observations. Among the varying interpretations, one finds the follow-

ing possibilities: (l) this is part of the normal mountain building process and

is likely to proceed without significant seismic events, (2) the uplift is

related to strain accumulation along the locked southern portion of the San An-

dreas fault, or (3) the uplift is associated with thrust-type movement on the

north dipping thrust faults along the Transverse Range. There appears to be

little agreement as to whether or not the geodetic and seismic data can be con-

sidered premonitory to an impending major seismic event.

Regardless of the interpretation, it is quite clear that Southern California

is a heavily populated region of high seismic risk. Damaging earthquakes have

occurred in the past in this area, and they certainly will occur in the future.

The presence of the uplift on a part of the San Andreas fault that has been

accumulating strain since the Fort Tejon earthquake of 1857 only underlines the

need for a credible earthquake prediction capability for this region.

The proximity of the uplift region to the heavily populated areas of South-

ern California makes imperative the need for upgraded monitoring of those geo-

physical and geological parameters that could provide a prediction of an impend-

ing major seismic event. At present, the specific models that would lead to a

fundamental understanding of the earthquake risk in the uplift zone need much

additional work. Nevertheless, a growing body of empirical evidence suggests

that a number of geological and geophysical parameters undergo fairly marked

changes before an earthquake. These parameters include seismicity,

acoustical velocity, uplift, tilt, strain, local gravity, resistivity, ground

water levels, radon content of ground water, and radon and thoron emanation. In

addition, before some major earthquakes there have been reports of strange ani-

mal behavior and anomalous atmospheric electrical discharges (earthquake lights

and lightning). ' ' While it is unlikely that any one parameter can be used

to provide definitive predictions of impending earthquakes, it is likely that
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correlated changes in a number of parameters will provide reasonably reliable

predictions.

Radon and Thoron Monitoring and Earthquake Activity

Uranium and thorium are two of the most ubiquitous elements in the earth's

crust. Their daughters, radon and thoron, are radioactive noble gases with half-

lives of 3.83 days and 55 seconds, respectively. These gases migrate through

the earth's crust and emanate into the atmosphere and ground water. Radon,
21h 21h

together with its principal daughter products Pb (T, = 26.8 min), Bi (T,̂  =
210 ^ 2

19.7 min), and Pb (Tj = 22 yr), and thoron together with its principal
219 **daughter product Pb (T^, = 10.8 hr), long have been used as geophysical tracers

of hydrological and atmospheric processes. (See Table I.)

Geological processes prior to

earthquakes that result in a change of

pore volume or a change in the state

of local stress fields are expected to

result in anomalous values for subsur-

face radon concentrations. The dilat-

ancy-diffus ion model makes specific

qualitative predictions for the behav-

ior of this radon anomaly prior to an

earthquake. For at least some of

the observed anoma!ies there appears
3 hto be agreement with the model. '

Increased radon in well water was ob-

served prior to the major I966 Tash-

kent earthquake, the major Liaotung

Peninsula earthquake, ' and the major

Haicheng earthquake, as well as a num-
Ymany ber of small earthquakes. 9' 1 1" 1 3

Earthquake lights or lightning which

may be due to the increased ionization of the lower atmosphere resulting from

increased radon and thoron emanation was also observed in several cases. '

Several of the possible radon anomalies preceding small and moderate earth-

quakes have been observed on the San Jacinto fault in Southern California, and
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at Lake Jocasse in South Carolina. In most of these cases reductions in the

radon levels were noted prior to the events.

Several techniques have been used to monitor radon. In this country, radon
7 8

levels are measured in discrete, small samples of well water, ' in si tu in water
8 9

from continuously flowing wells and springs, in soil gas using track detec-

tors, ' and with continuous and near continuous air monitoring systems. '

Radon concentrations are measured by monitoring the alpha activity of the radon

itself ' ' and by monitoring the gamma activity or beta activity of the

radon decay products. Examination of the available radon data provides the

following information:
(1) Radon anomalies frequently, but not always, precede earthquakes.

The proximity to the epicenter does not always correlate with the size of the
2

precursory signal. Sensitivity appears to be greatest for those events located

on the same fault or fault system as the monitor.

(2) Precursory radon signals may be either increases or decreases from

"normal" levels. One Chinese study suggests that monitors located in zones of

compressional strain record anomalous increases, while those located in dilatant

zones record anomalous decreases.

(3) Data from continuous or almost continuous radon monitors frequently
8 12 1 "̂

show diurnal variations. ' ' ' Some investigators are of the opinion that these
Q

diurnal variations are related to the lunar tides, while in other cases tempera-

ture variations are believed responsible.

(k) Monitors which sample soil gas or groundwater radon close to the sur-

face frequently exhibit a rapid response to short term atmospheric variations
• c i, H,12and to rainfal1.

(5) When the effects listed in (3) and {k) are removed from the data, long
11 12term variations in the radon levels often remain. ' Some of these signals

appear to be correlated with local earthquakes, while others appear to be season-

al variations.

(6) Some radon anomalies have been observed only hours before earthquakes.

Therefore, a complete radon monitoring system must include the capability for

continuous or near continuous monitoring.

The Caltech Monitor

Sub-surface radon and thoron are formed by the decay of uranium and thorium

which are ubiquitous in the earth's crust. Once formed, these radioactive gases
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diffuse to some extent into the pore spaces within rock and into soil voids where

they can become dissolved in pore fluids and soil gases. In order to measure

these sub-surface radon concentrations, the instrument is sited in a tunnel or

mineshaft, or over a borehole.

The radon and thoron within the air space of the tunnel, mineshaft, or bore-

hole decay with half-lives of 3-8 d and 55 s, respectively. The principal decay
222 21 k 2\k

products of Rn (radon) are Pb and Bi with half-lives of 26.8 and 19-8
220 212

min respectively, while the principal decay product of Rn (thoron) is Pb

with a 10.6 hr half-life (Table I ) . These decay products are formed as small

charged ions which are highly reactive. In the free atmosphere they quickly

agglomerate on much larger aerosol particulates. Typical times for agglomeration
l ft

in clean air at sea level are of the order of a minute or two. If adequate

aerosol counts are maintained, similar agglomeration times obtain within the

more confined space of the tunnel or borehole. Once agglomeration has taken

place, the charged aerosol thus formed will carry the radioactive atom for sev-

eral minutes (until decay occurs). Some collisions with surfaces can take place

during this time. With each collision there is a small probability that the

charged aerosol will attach to the wall and be lost from the sampie volume. We

have found that these wall effects depend linearly on temperature, and thus can

be corrected for without difficulty.

To obtain a measurement of the radon and thoron daughter activity, the

instrument draws a measured amount of air from the borehole or tunnel through

Whatman Grade k chroma tography filter paper. This concentrates the aerosols in

a 1.27 cm diameter spot on the filter paper. The 3 activity of the aerosols is

determined with a small pancake type GM tube (Technical Associates PI 2 1 0 ) .

In order to determine background and distinguish between radon daughter and

thoron daughter activity, the following sampling sequence is carried out for

each measurement. First, a fresh segment of the continuous filter paper strip

is positioned over the air intake port and a 60-minute background count is taken.

Aerosol is then injected into the air volume if necessary, and one-half hour is

allowed for agglomeration. Next, the GM tube is moved away from the air intake

location and air is drawn through the filter paper for a short period of time

(typically k min at approximately 0.1 n r / m i n ) . The GM tube is repositioned over

the aerosol spot on the filter paper and a 20-min count is taken. This second

count includes contributions from both radon and thoron daughters. The sample
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is allowed to decay for 220 min, and then a 60-min count is taken. Because of
21 /) 21 k

the short half-lives for the radon daughters, Pb and Bi, the excess above

background in this third count is due almost entirely to the thoron daughter
2 1 2 P b .

The Caltech instruments are controlled by inexpensive on-board microcom-

puters which are able to handle up to eight additional digital or analog inputs

besides the basic monitor operation. These additional input channels will be

used to monitor temperature probes at each site in order to gather data on thei—

moelastic strains in the vicinity of each unit. Each of the field units is

capable of communicating its data to a central location in response to a tele-

phone call from a central computer. (At present, a microcomputer with an auto-

matic dialing system is used to communicate with the field monitors.) This

allows the use of ordinary voice quality telephone lines, thus reducing telem-

etry costs.

In addition to the collection of scientific data, each on-board microcom-

puter monitors the status of all key electronic and mechanical components of the

device. The information also is telemetered to the central computer. This fea-

ture greatly reduces the need for service trips to remotely sited units. Al-

though the Caltech radon-thoron monitor is a highly sophisticated device, its

initial cost is lower than most competitive real-time radon monitoring systems.

Indeed, over the long run the total cost of installation and operation is com-

petitive even with passive monitoring techniques (radon cups and discrete water

samples) owing to the elimination of the need for frequent costly trips to the

field.

The first prototype Caltech radon-thoron monitor has been in field opera-

tion at the Kresge Seismological Laboratory in Pasadena for over one year.

During that time it has proven exceptionally reliable. There have been no fail-

ures of the computer or ancillary electronics, and only a few minor mechanical

problems that were easily diagnosed with data from the on-board microcomputer.

This experience resulted in design changes for succeeding units.

Before I talk about our results, I want to give a bit of background on the

use of radon cups in radon monitoring in the USA.

Radon cups employ solid track detectors to measure alpha-particle radio-

activity from soil-gas radon in the vicinity of the cup. Because they are low

in cost and easy to dep ay, they have been widely used in radon monitoring
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programs in California. Typically, they are sited about 1 m below the surface

and are collected at weekly intervals. The track detectors are etched and

counted under a microscope.

The major drawbacks of the radon cup method are the lack of sensitivity

owing to the small and unconcentrated nature of the sample, and the non-real

time data collection. At the Kresge site we typically find that a radon cup de-

ployed for a two-week period will yield under 100 tracks, while a single cycle

of the Caltech instrument at the same location yields close to 1000 counts (5 min

air sample from borehole — 20 min count). However, since these cups are in

widespread use as in situ moni tors we employ them at each of the instrument

locations for comparison purposes.

At the Kresge site radon and thoron data are obtained from a 2^.38 m deep

borehole which is cased through the overburden. The lower 15.2k m of the bore-

hole is in solid rock. Water fills the hole to within h.55 m of the surface.

Exhaust air from the positive displacement air pump in the radon-thoron monitor

is bubbled through the water in the borehole in order to strip radon and thoron

into the airspace above. The instrument vault housing of the monitor is mounted

directly over the borehole and is sealed from the ambient air.

Initially, strong diurnal variations in the data from borehole operation

were notod. These were found to correlate with the external ambient air tempera-

ture, with morning values of radon levels low and afternoon values high. This

effect was determined to be a result of condensation in the instrument vault at

low temperatures which removes radon daughters from the instrument vault air

space. Insulation of the instrument vault and the installation of a small ther-

mostatically controlled heater eliminated almost all of the diurnal variations

in the data. Small remaining short term temperature-related variations in the

data were found to be nearly a linear function of temperature, so that correc-

tions are easily made.

Figure 1 suggests an annual cycle in the Kresge monitor data. To test this

hypothesis, we have fitted the data with a curve of the form

R(t) = R 1 + A cos
ave (fh-)

Here t is time (in weeks) taking t = 0 to represent the week of maximum average

ambient air temperature, and 8 is a phase delay representing the amount of time
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required for the radon levels to respond to the input temperature wave. Although

only data extending over a period of two or more years can fully establish the

existence of an annual cycle, the reasonably good fits to Fig. 1 strongly suggest

that the long term variations observed in the data are a response to the annual

thermal cycle. Good fits are obtained with A = -O.k and 0 = 20° indicating both

strong and rapid coupling of the radon levels to changing thermoelastic strains

in the rock in the vicinity of the borehole. In this respect, this particular

site appears to be excellent for testing models of radon transport.

During the period of operation since location of the Kresge instrument over,

the 24.38 m borehole and thermal insulation of its vault, there has been only one

felt earthquake within 25 km of the instrument. This was a 3.1~M event near

downtown Los Angeles on December 22, 1977- A positive anomaly of approximately

two weeks duration was noted prior to the event (Fig. 2 ) . The anomaly associated

with this event was a k0% increase in radon level lasting for about 9 days and

terminating about 6 days before the event. The k0% increase is referred to the

data level expected from the annual variation. As can be seen from Fig. 1, the

anomaly is discernable in both the raw data and the data to which the short term

temperature correction has been applied.

The second Caltech instrument recently was installed in a 27-^3 m-long

sealed, horizontal tunnel at Big Dalton Canyon Dam. This site is near the Sierra

Mrdre fault line, and approximately 25"km east of the Kresge instrument. The

tunnel is located quite close to the flood control dam, and should provide some

very interesting comparisons with the Kresge instrument since at this location

one can expect some strain from reservoir loading in addition to the thermoelas-

tic strains. The amount of water impounded behind the flood control dam is

accurately recorded. Reasonably accurate estimates of the mass loading will

therefore be possible.

Depending upon the availability of project funds, we intend to extend the

network of Caltech monitors (with accompanying radon cups and thermal sensors)

along the foothills of the San Gabriel mountains at approximately 10-km inter-

vals. This will allow intercomparison of data from a series of instruments on

interconnected faults.

Recently we received USGS funding for this project and by fall will have

another four units in the field.
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a f te r the December 22, 1977
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A change in radon level of
"̂  hO% on a time scale much
shorter than the seasonal var-
ia t ion is observable between
15 and 6 days before the ear th -
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IV. NUCLEAR TECHNIQUES IN PLANETARY SCIENCE

For those of us who are interested in stellar phenomena, the abundances of

the chemical elements and their isotopes provide many clues about the environ-

ments in which they were created. Figure 1 shows what we think is an approximate

picture of the relative universal abundances of the elements. These data come

mainly from two sources: spectroscopic analyses of the atomic transition lines

from stars and chemical analyses of samples from carbonaceous chondritic meteor-

ites. For the most part terrestrial samples have been so fractionated chemi-

cally by aeons of geological processing that they are of limited value in deter-

mining universal abundances. The carbonaceous chondrites are thought to be the

first condensates from the evolving solar nebula and thus are expected to be an

accurate representation of the abundances of the non-volatile elements at the

time of solsr system formation. It has been demonstrated for many elements that

the correspondence is excellent between the elemental concentration in these

meteorites and in the solar photosphere.

In this talk I shall consider three examples of how nuclear analysis tech-

niques can be used in the determination of elemental abundances in meteorites

and how the extension of these techniques to planetary samples can give us new

perspectives about typical planetary processes.

You should notice in Fig. 1 that there are three elements that lie far

below the curve established by the other elements, lithium, beryllium and boron.

Because these elements have very large (p,a) cross sections, they are easily

destroyed in stars. Thus, we find that they must have been created in non-stel-

lar, astrophysical processes. We now think that Li was produced in the Big

Bang; and the others ( Li, Be, ' B) were made by proton and alpha particle

spallation reactions from cosmic rays striking material in the interstellar

medium.

The abundances of the lithium and beryllium are reasonably well known, but

boron analyses have continued to cause trouble. A few years ago we set out to

correct this situation by developing a technique to measure B and B cortcen-
i,

trations at levels down to "V 0.1 ppm. Until recently I thought that everything

was finally in good shape, but some preliminary data from Curtis and Gladney

here at LASL is giving somewhat lower boron concentrations on one meteorite,

which will probably send us all back to the laboratory for a new round of experi-

ments.
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The B analyses serve as an excellent example of how bits of old-fashioned
11 12

nuclear physics can be used in a completely new context. The B(d,p) B reac-

tion has a large cross section (̂  ̂ b) and an easily distinguished final product

(20 ms half life, 13 MeV end point energy for the 3 's). Nevertheless, the fact

that we must detect the boron in the presence of a million times more other

stuff in the sample, keeps it from being a trivial exercise. Figure 2 indicates

how simple the apparatus is -- a plastic scintillator and some SCA's. Figure 3

shows the bombardment and counting sequence, and an example of the raw and sub-

tracted data. We have a signal to noise of only ^ 1/20 at 1 ppm -- most of the

background coming from the decay of the N produced in the reaction 0(d,a) N.

This reaction has a small cross section, but since the meteoritic material is

^ 50% oxygen, the N becomes a problem. Fortunately, the N lifetime (7-2 s)
12

is so different from that of B, we can easily separate the two decay contribu-

tions.

Table I shows some of our results for six meteorites, which gives what we

think is a good average value for the boron abundance in the solar system. But,

as I indicated earlier, it's not clear that our work is finished on this problem.
19Another element whose abundance was ill-determined was F. Though fluorine

is probably made in stars, its high (p,cx) cross section causes its abundance to

be particularly sensitive to the detailed bookkeeping on its production and

destruction.

Again we have used a nuclear reaction that is well known to all of us with

low-energy accelerators, F(p,ay) 0. At the narrow 872 keV resonance the

reaction cross section is 5^0 mb, and the 6 and 7 MeV Y rays are easily observed

with high efficiency.

The fact that the resonance is isolated and sharp, allows us information

on the depth distribution as well. Figure k shows this schematically. Obvious-

ly one would need to fold in the ef-

fects of the resonance width and the TABLE '
. . . , AVERAGE B0R0II CONCENTRATIONS IN CARBONACEOUS CHONDRITES

proton straggling in any real situa-

tion. (At the surface of the target

the resolution is limited by the reso-

nance width, which is equivalent to

^ 500 8.) Our first use of this tech-

nique was to look at the concentration
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Murray
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No.
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1
1

6
12
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Average B

3.0
1.6

1.4

1.7

1.8

1.5

A torn i c
B/Si
CO"6)

77
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29
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19
of F in meteoritic samples. The depth sensitivity was used to check for the

presence of contaminant fluorine on the sample surfaces. Our results are given

in Table II. The half day's work given in this table is the only accurate deter-

mination of solar system fluorine which clearly shows the power (and selectivity)

of a nuclear technique.

The success of the meteorite work convinced us that we should try to apply

the fluorine analysis to other planetary problems. The most obvious application

involved a controversy about the moon's history; in addition to the obvious ef-

fects of meteorite impact, was there any clear-cut evidence of lunar vulcanism?

Lunar samples are special in many ways, but the lure that has drawn many of

us into their analysis is that the record of over 3 billion years of solar and

solar system history is held in them. With neither atmosphere nor magnetic

field to deflect the solar wind or flare ions, we have the hope that with suf-

ficient cleverness we can unravel that tangled recording. In the process of

studying the solar wind implanted hydrogen (using H( F,ay) 0, naturally), we

TABLE 11

FLUORINE CONCENTRATION DATA FOR CARBONACEOUS CHONDRITE METEORITES*

Sample
ft

Murchison

Murchison 7b

Murchison 7c

Murchison 7d

Murchison 7e

Murchison 7f

Allende Zl-lV1"

Allende Zl-151"

Murchison Ave.

Allende Ave.

So!id Samples
F

pprciF

80

72

73
80

53

93

165

5<t

75.2

129.5

concentration
atoms F/10° atoms Si

910

819

830

910

603

1058

1562

890

855
1226

Crushed Samples

Sample
•!t

Murchison 5
Murchison 6'

Murchison 10

Murchison 11

Mighei"
ft

Essebi
Haripura

Ivuna

Orgueil6

AIIende+

Murchison Ave.

Type 11 Ave.

Type 1 Ave.

Al 1 Crushed Ave.

ppmF

75

60

66

59

66

80

59

70

74

59

65

67
72

67

F concentration
atoms F/IO^ atoms Si

853
682

751
671

751

910

671
981

1037

559

739

762

1009

787

a
Since no samples exhibited surface peaks, concentrations quoted are taken from net average yields
over the resonance. Typical analytic precision is ± 8%. Carbonaceous chondrite type is also
indicated.
Carbonaceous chondrite Type I.

ft
C a r b o n a c e o u s c h o n d r i t e T y p e I I .

C a r b o n a c e o u s c h o n d r i t e T y p e I I I .



came up with what we thought was an unambiguous way to look for evidence of
19lunar vulcanism. "T is virtually non-existent in the solar wind, and the bulk

19concentration of F in lunar rocks is quite low. We knew, however, that the

halogens are frequently a component of terrestrial volcanic gases; thus, we

would look for fluorine surface films on lunar samples.

The data In Fig. 5 was one of our first tries, an embarassment of riches.

There was an enormous amount of fluorine on the outside of several samples, but

only a relatively small amount in the interior. One must, however, be suspi-

cious in this business, so we finally got around to a control experiment. We

prepared several quartz disks, keeping some at home and sending some to Houston

to be treated as if they were lunar samples. Figure 6 shows what happened.

It's clear that the sample that went to Houston, and came back in a teflon bag

had picked up some fluorine. This led us to a more detailed investigation and

we discovered that virtually all the lunar samples came home from the moon in

teflon bags.

Now, the hard work started, we tried to get samples that were never exposed

to fluorine by their handling. We first set out to get SESC samples, the con-

. ttngency sample that was collected in a small stainless steel can just after the

landing. Unfortunately, most of these were collected under the LM, where its

exhaust had contaminated the surface. After almost a year of negotiation with
o

NASA we got two small samples from the SESC from Apollo 15- The dark points in

Fig. 7 show data for the glass sides of the two small pieces of glass-welded

breccia. The distribution of fluorine was uniform; no teflon, but no volcanoes.

Not leaving well enough alone, we turned them over and got the open points,

which created visions of new and even more subtle forms of fluorine contamina-

tion. Then, we took a look at these surfaces under a microscope, and saw collec-

tions of small green giasn spheres. The spheres are ^ 100 ym in diameter; it's

an absolutely unique material; there is nothing like it on the earth. Figure 8

shows a picked sample, done with tweezers, a binocular microscope, and a strong-

eyed graduate studsnt. There is lots of fluorine in a thin layer on the surface.

A fraction of brown glass from the same "soil" clod shows no effect and provides

a control against contamination. (Other investigators have found that the sur-

faces are covered with other volatile materials: zinc, gallium, sulphur, chlo-

rine, etc.) The orange soil from Apollo 17 is similar and has the same sort of

o
surface film.
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Nothing like the green or orange glass occurs on the earth. We think that

it's clear that they were made in a volcanic process 'v- 3 billion years ago.

Figure 9 shows one guess concerning the mechanism, a lava fountain. The absence

of water and an atmosphere makes lunar volcanoes quite different from those on

the earth. It is very likely that these small glass balls represent the most

unusual material that came back from the moon, and we expect to be busy trying

to understand their origin for a long time.

In our concern with lunar volcanoes and the magmas that resulted from the

large impact craters, we tried to identify the gases that produced all the vesi-

culation (bubbles) in lunar rocks. We became convinced that the major contribu-

tion came from carbon monoxide, which led us into the problem of understanding

the lunar abundance of carbon.

The basic difficulty is that there isn't enough carbon on the moon; there

are three sources (the solar wind, meteoritic impacts, and indigenous), each of

which could easily have supplied more than is now there. We needed a way of

separating these contributions, so we turned again to a depth-sensitive nuclear
12 13

reaction, C(d,p) C.

Figure 10 shows the excitation curve for the reaction, and Fig. 11 gives a

schematic description of the technique. We observe the proton spectrum; protons

that originate near the surface have higher ene-gies than those from inside due

to the energy loss of the incident deuterons and the protons.

We immediately found that all the samples had carbon on them. (It wasn't

obviously from our vacuum system. It runs at 10 torr and has no hydrocarbons.)

To make a long story (2 years worth) much shorter, it turns out the carbon mon-

oxide loves to sit on surfaces, and small amounts of carbon monoxide are present
2

in even very clean N (the way all these samples were handled) and in our super

vacuum system.

How do you get the carbon monoxide off without disturbing the stuff that

was there originally? Blind luck and black magic; we discovered that it could

be removed by heavy ion (̂  2 MeV) induced desorption. (We are still trying to

understand how it works because it may be important in molecular formation

processes on interstellar grains.) Figure 12 shows how it works in cleaning the

carbon monoxide from a radiation damaged quartz sample, and the following figure

shows how we can remove carbon monoxide from various lunar samples. After the

carbon monoxide is removed, nothing else changes. (To check this we let the
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carbon monoxide "grow" back and then do it again.)
Lately we've been studying breccias, soil particles welded together by

glass from meteoritic impacts. Figure 13 shows a typical proton spectrum from

such a sample and the contribution of other elements in the region of the carbon

peak. Because the samples are quite rough at a microscopic level, the spectrum

shape is somewhat different from that from a smooth target. Figure 14 shows a

typical decomposition (using the standard line shapes from the previous slide)

into "surface" and volume components.

We are just now beginning to sort out some of the systematics; Fig. 15

shows the surface concentration vs. volume concentration for a variety of samples,

It seems that the surface exposure (probably implanted solar wind carbon) is

pretty much the same, but the volume component is highly variable. What this

may mean is that solar wind (and perhaps meteoritic carbon) are gradually con-

verted into volume carbon as the soil "matures;" the approximately constant sur-
2,

face value representing an equilibrium that is quickly established (̂  10 yrs).

We have decided that soils are also interesting and h-Tve bombarded one soil

sample. Obviously, there are problems when you try to use a very fine powder

as the target for a charged particle beam. Our first spectrum is shown in Fig.

16; it doesn't look much like that from a breccia. The curve shown is just the

surface component form taken from a breccia. It doesn't fit very well and we

have lots more work to do.

167



10

i

is
I ?

-2

He-BURNING

V\ COSiCURNING
i\ * IDON GKOUP

SCHEMATIC
ADUfJDArjCE

CURVE

I i • fl» • f)

WJ' too (Go
ATOMIC V.tlCHT

T& J

Fig. 1. Nuclear abundances. The proc-
esses believed to be mainly
responsible for the synthesis
of nuclei are as fo l lows: hy-
drogen burning, helium burning,
carbon burning, oxygen burning,
s i l i c o n burning, the e q u i l i b -
rium process (e) , neutron cap-
ture on a rapid (r) or slow
(s) time scale, the p-process
for the low abundance proton-
r ich heavy nucl ides, and the f -
process for the low-abundance
h igh ly - react ive l i gh t elements
l i t h i u m , bery l l i um, and boron.

Fig. 2. Schematic experimental arrange-
ment for '2g ac t iva t ion mea-
surement. To maximize count-
ing e f f i c iency the target ho ld-
er is mounted o f f -cen te r and
the p las t i c s c i n t i l l a t o r is
mounted on a re-en t ran t , Pb-
shielded tube in the sca t te r ing
chamber. To minimize back-
ground only the higher energy
por t ion of the beta spectrum
is allowed to pass the single
channel analyzer. The beam is
pulsed and counts measured
sequent ia l ly in each of the
four sealers according to the
counting cycle shown in F ig. 3-
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"B(dp)1?B(d,p)1?8 Counting Cycle
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1 2Fig. 3- (a) Counting cycle for B
pulsed beam activation meas-
urement. The delays between
0-6 and 30-^5 ms are to Insure
that the beam is totally de-
flected. The Y values indi-
cate the number of counts in
the four successive counting
intervals after beam deflec-
tion. The decrease from Y] to
Y^ schematically indicates the
'2B decay. (b) Example of an'
uncorrected decay curve for a
meteorite (ivuna) sample. De-
cay time is measured after the
start of interval Yj. (c)
Background corrected decay
curve of data from Fig. 3b.
The corrected activity follows
the 20 ms decay of ' 2B.

Mefa eorite
Sample

E(x) = Eo -x(dE/dx)

Counting rare £ H(xR)

where xft = depth where E(x) = E=

Ax=AER/(dE/dx) =500 K

Fig. h. Schematic diagram showing the
relation between the proton
beam energy and the '°F concen-
tration versus depth.
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Fig. 5- Top: Fluorine concentration
versus depth for sample 70019,
17, a sealed rock box sample.
Exterior points are from meas-
urements of an inter ior soi l
breccia surface, freshly ex-
posed in our laboratory.
Bottom: Fluorine concentration
versus depth for anorthosite
coarse fine 660^ ,8 , and pat-
inated breccia 75075,2, both
sealed rock box samples.
Shown are data from two sur-
faces of 660^,8 and from an
inter ior surface freshly ex-
posed in our laboratory. The
smooth dashed curve is drawn
through the data points of
75075,2 for c la r i t y in the
f igure.

The depth scale has not
been corrected for electro-
stat ic charging of the samples
but the profi les shown are
consistent with surface F
peaks on a l l samples.
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Fig. 6. Fluorine concentration versus
depth for quartz glass discs.
Soiid points correspond to a
disc packaged in Teflon by the
Lunar Curatorial Facility;
open points are data from a
disc serving as a control.
The. depth of the peak location
of F concentration is probably
caused by electrostatic charg-
ing of the sample during pro-
ton beam bombardment.
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Fig. 7- Depth profiles of fluorine con-
centration for two glass-
coated soil breccia chips from
sample 15012, an Apollo 15
Sealed Environment Surface
container (SESC) sample. The
brown "glassy" surfaces (indi-
cated by solid points) show a
uniform distribution of fluo-
rine consistent with bulk val-
ues of lunar fluorine concen-
trations. The significant sur-
face peaks and distribution of
fluorine with depth for the
soil "breccia" surfaces are
due to the presence of surface
coatings on green glass spheres
which are present in the brec-
cia surface. The dashed line
for the 15012,67 breccia sur-
face profile is an average of
interior data point values.

Fig. 8a. Fluorine depth profiles for
samples from 15^27,39- The
circles are plotted on half
scale so that the interior
fluorine in the "brown frag-
ments" (about 60 ppm) is more
easi ly seen.
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Fig. 8b. Fluorine depth p ro f i l es for
samples from 7^220. The
lines shown merely connect
the po in ts ; for c l a r i t y the
data points corresponding to
the dashed l ine (basalt f rag-
ments) have not been shown.
The surface- and volume-cor-
related concentrations of f
f lu ro ine are c lear l y resolved.
The lest-hand scale (atoms/
cm^) was obtained by in teg ia -
t ion over a depth range cor-
responding to the width of
the surface peak (see t e x t ) .
The absence of a surface peak
for the basalt fragments i n -
sures the absence of Teflon
contamination in the 7^220
samples. I n te r i o r F in basalt
fragments is about 100 ppm.
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Fig. 9- One proposed volcanic process
for producing lunar green and
orange glasses, a lava foun-
tain.
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Schematic drawing of energy
dependence of detected protons
at 6iab=l60° for the reaction
'2c (d ,po )^C. Proton energy
is shown to depend on deuter-
on energy loss, proton energy
loss, and kinematic fac tors .
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F i g . ]k. The points shown correspond
to the background-corrected
(Fig. 13) proton spectrum
from carbon for sample 10068,
23. The two cross-hatched
regions show how th is spec-
trum has been decomposed into
surface and uniform volume
components, each of which has
the d is to r ted shape that is a
consequence of surface rough-
ness. The so l i d curve through
the data is the sum of the
two contr ibut ions and has
X 2 = 1 - 7 .
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The measured surface and vol-
ume concentrations for carbon
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It is clear that there is no
strong correlation between
surface concentration and
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V. NUCLEAR TECHNIQUES IN SPUTTERING

When an energetic particle enters a material, some of its energy is lost in

collisions with nuclei. Usually, these nuclear recoils have energies that are

much lower than that of the primary particle but are much higher than the binding

energy in the material (Fig. 1). Because the recoils are comparable in mass to

the other atoms of the material, they are very efficient in transferring their

energy to other atoms anH generate a cascade of recoils in the material. As you

can see, this process lies somewhere between the simple two body interaction of

the primary with a single nucleus and the level of thermal motion when equilibri-

um is reached. There are similar processes in several parts of physics; the

most familiar to you would probably be the pre-compound nucleus reactions that

occur shortly after a high energy proton or pion comes into the nucleus.

Why are people interested in sputtering? The main reason has to do with the

use of sputtering in the preparation of thin films, but in the past few years

there has been considerable interest from the people working on magnetic confine-

ment fusion reactors. Neutral atoms and neutrons escape the plasma and strike

the walls of the confinement vessel, causing sputtering of the walls. This is

important for two reasons: the rapid erosion of the thin wall (thin for reasons

of thermal cooling and reduced activation) and the build up of higher Z atoms
2

from the wall in the plasma. Since bremsstrahlung losses go as Z , these atoms

cause large losses in reactor efficiency.

My personal interest arose because of the sputtering of the lunar surface by

the solar wind (3 x 10 protons/cm / s , 10 alpha particles/cm / s , . . . ) . This

long-term bombardment of the moon by energetic (1 keV/amu) ions has produced
2

some very strange surface properties that we would like to understand in detail.

We have also discovered that solar wind sputtering of the Martian atmosphere has

been one of the major loss and fractionation mechanisms for atoms in the atmos-

phere .

From what I said at first, it's easy to see that the sputtering yield (de-

fined as the number of atoms leaving the surface of the material per incident

particle) is going to be approximately proportional to the nuclear component of

the stopping power:

f)
dx /nuc.
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Thus, we would expect that S would tend to be higher at low incident energies and

for heavier projectiles. For example, a 10 keV argon beam on a copper target has

S ^ 5> whereas a ]k MeV neutron on copper has S ^ 10

When we got into this business, most people were interested in heavy ion

sputtering. The values of S were so high you could measure 3 by weighing the

collected material. There had been a bit of work using neutron activation of

sputtered gold, but there was no real interest in achieving very high sensitivity.

One of our first experiments was the sputtering of niobium by 12 MeV protons —

a simulation for high energy neutron sputtering, where the few experiments done

(with neutrons and protons) tended to disagree.

Figure 2a shows the setup. The niobium foils were activated separately

using Nb(a,n) Tc (t, = 'i.3 d) with a 17 MeV a beam from our tandem accelerator.
j.

The collected material was deposited on the carbon and aluminum foils, then the

activity of the niobium and collector foils was measured with a Ge(Li) detector.

Figure 2b shows the activity on the niobium target and a carbon collector. The
96peaks at 778, 812, and 850 keV are the principal peaks from the Tc decay. (The

Co and Bi peaks come from activities from (p,n) reactions on Fe and Pb

impurities in the collector foils. Observation of collector foils that were not

adjacent to niobium targets showed that the Tc had not been produced by

Mo(p,n)' Tc on impurities. We could clearly see the difference between back-

ward sputtered atoms ( S D = 1.6 ± 0.1 x 10 ) and forward sputtered atoms (Sr =
-h F

A.7 ± 0.3 x 10 ) .

Because of our interest in astrophysical and solar wind sputtering processes,

we were especially interested in low-energy, light-ion sputtering. Figure 3

shows the apparatus; the key part is the ultra high vacuum system.

Figure k shows an angular distribution of material sputtered from a vanadi-

um target by a 90 keV Ar beam. In this case the activation was by V(p,n)-

Cr; the collector foil was segmented and each piece counted with a Ge(Li) de-

tector. To show that we have plenty of sensitivity, Fig. 5 shows the angular

distribution for the alpha particle sputtering (90 keV) of a molybdenum target

where the sputtering yield is smaller by a factor of 300 than in the case of

A on vanadium.

Figure 6 was our first attempt to observe isotopic effects in sputtering;

we had produced a range of technetium isotopes in a molybdenum target. As you

can see, there was no large effect. (Recently, we have observed isotopic effects
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for the sputtering of calcium isotopes; but here we have used a high precision

mass spectrometer.)

To show that there are some broad-range techniques available, Fig. 7 shows

the spectrum of 0 ions backscattered from an aluminum collector, onto which we

had sputtered vanadium and molybdenum. Because the energy of the scattered ions

at 180° goes

Ei

as

80°
— C (

beam V

MT

,MT

-M.
beam+MLbeam

it is clear that using heavy ions greatly improves the mass resolution for

higher values of M . We have been using backscattering to study the sputtering

of amorphous (splat cooled) alloys, where we are especially interested in changes

of composition that might affect their superconducting properties.

Though the activation techniques have allowed us an improvement in sensitiv-

ity of 'v. 10** over most conventional techniques, we had a few ideas to test where
235we needed much greater sensitivity. An idea that came to mind was to use U

235
as a tracer. We would sputter material that contained U; the collector, which

was made of mica, could then be put in a nuclear reactor. The high fission cross
235

section of the U by thermal neutrons allowed great sensitivity because the

tracks of the fission fragments in the mica could be detected with 100? effi-

ciency and very low background. Figure 8 shows tracks in the mica that are ex-

posed by etching the mica in h$% HF. (The mica is viewed under an ordinary

optical microscope with a moveable calibrated stage.)

We used this technique to look at the sputtering of uranium metal and com-

pounds by various light ions. However, we got a surprise, because occasionally

we saw a small star-shaped pattern of tracks. Since we were using a neutron
o o c _£

fluence that corresponded to an efficiency for fissioning U of 10 , this

star corresponded to a "chunk" of U with ^ 10 atoms. (Obviously, we checked

very carefully to make sure that the collectors had not been contaminated with

small amounts of uranium dust.) Some of the "chunks" emitted were quite large,
O O "3 C

as shown in Fig. 9- (This beauty has > 10 U atoms.)

A few people had thought that they had seen chunks of niobium sputtered by

\k MeV neutrons, but it was a subject of heated argument. Our results showed

that chunks were emitted even when uranium was sputtered by 13 keV protons. Our
o

technique even allowed us to measure the distribution of chunk masses.
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We stil) don't understand this process; obviously a single incident particle

cannot cause the emission of a chunk, because neither energy nor momentum could

be conserved by many orders of magnitude. Our data has, however, provided a

clue; the chunk emission yield turns out to be roughly proportional to the atomic

sputtering yield. By using beams of Ar, He and protons we could vary S
• a tornic

by over 10 , and S , . tracked S ^ . over this range. Thus, we see that the' chunk atomic 3

chunk emission is somehow related to the "damage" per unit volume produced by

the incident beam. There must, however, be some additional collective mechanism

involved, but we haven't found it yet. (It's a most spectacular process -- as

if you dropped a grain of sand onto a large boulder and the boulder shot into

the sky.)
235We have been able to use the sensitivity of the U detection to learn a

bit more about the sputtering process. One other variable that one should
q

measure is the energy spectrum of the sputtered atoms. Figure 10 shows th» sys-

tem we've u^ed. The beam is chopped by parallel electrostatic deflectors so that

the beam pulse passes through the slots in a wheel spinning at 30 000 rpm. The

sputtered atoms then come back through the cold trap which isolates the motor

chamber and the uhv target chamber and are deposited around the rim of the wheel.
235

For U we then segment the wheel, put the pieces between mica sheets, and

expose it to thermal neutrons in a reactor. The resulting time-of-arriva) spec-

trum is shown in Fig. 11 for the Ar sputtering of a U target. Figure 12

shows how the time-of-arrival spectrum becomes an energy spectrum; in this case
235

for the sputtering of a I) metal target. The dashed line is a very simple
theoretical model; the solid line shows a slight modification of the theory.

We've been curious about how chemical effects can modify the sputtering

process; Fig. 13 compares the spectra from uranium metal and U0«. The spectrum

from U0- peaks at a lower energy and the overall distribution is somewhat broad-

er.

We have just received some new motors that run at 120 000 rpm. This will

allow us to shorten the flight path for heavier atoms (and we gain solid angle

as the square of the flight path) or to run much lighter atoms at comparable

resolution. It will not be trivial to use the full capability of these motors,

however, since if we used the same 0.10 m wheels as now, there are no materials

that are strong enough to hold together at that rim speed. (The present rim

speed is 579 km/h; the new motors would have 2317 km/h.)
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Before I close, I'll tell you about one experiment that uses some of the
235sensitivity of the U technique. To believe the results of the previous experi-

235ment we need to know that the U atoms actually stick to the collector. We've

done this by means of a double scattering technique (Fig. 1^).

In this way we found that 98% of the uranium atoms stick to the second tar-

get and have measured the angular distributions of the 2% that rebound. Figures

15a and b show how the angular distribution of the rebounding atoms changes with

the presence of adsorbed gas on the surface of the second target; the more ad-

sorbed material, the flatter the distribution.

We've begun an even harder version in which we are measuring the percent

that stick as a function of their energy.

Obviously, we have an astrophysical axe to grind -- we want to find out

v/hether variations in the sticking properties of atoms that strike interstellar

grains could be responsible for the depletion of certain elements in the inter-

stellar medium.
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Fig. 11. The average number of tracks
per area cm2. N(z)=a<j)p(z) , is
plotted as a function of posi-
tion on the collector, z (mea-
sured in units of the slit
width d=0.M7 cm). The rep-
resentative error bars shown
are statistical.

Fig. 12. The energy spectrum, S(E) in
arbitrary units of sputtered
235u inferred from the data
of Fig. 1. Error bars are
statistical. The smooth curve
is an empirical fit to the
data. The dashed curve is
the function 6.5 E/(E+5.4)
(Ref. 6).. Note that the ver-
tical scale is arbitrary, and
the curves have been normal-
ized to agree near the peak.
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HARTREE FOCK CALCULATIONS OF NUCLEAR STRUCTURE—AN INTRODUCTION

by

D.W.L. Sprung
McMaster University, Hamilton, Ontario, Canada

INTRODUCTION

I was asked to give a set of lectures of pedagogic nature describing Hartree

Fock calculations of nuclear structure. The audience I had in mind consists of

graduate students who have completed courses in quantum mechanics and nuclear

physics. I have tried to concentrate on basics, and perhaps have put too much

emphasis on how some expressions are derived, rather than on how they'are used.

Some of the results are presented but very little of the sweat that went into

obtaining them. By way of personal bias I have discussed work done at McMaster

and Orsay omitting reference to equivalent (or better) work done elsewhere. But

this is meant only to be an introduction, not a complete survey which is nowadays

impossible. For those who wish to read more I can recommend the articles by

Friar and Negele and by Quentin and Flocard. If these lectures serve as a

suitable introduction to these reviews my aim would be fulfilled.

I, Basic Premises

-In nuclear physics, aq a working hypothesis, we generally assume that a

reasonably accurate description of the nuclear wave function can be obtained in

terms of only the nucleonic degrees of freedom: that is, the role of pions and

other virtual bosons is to generate a nuclear force which can be represented by

a potential. After that, it was hoped, we can restrict our attention to the

nucleons alone. Of course, there is now considerable evidence that this view is

incorrect. Even in such a simple process as photo disintegration of the deuter-

on: y + d "*" P + n, or its inverse: radiative capture, n(p,d)y there are believed

to be significant "exchange current" contributions to the observed cross sections.

Nevertheless, a nuclear wave function which ignores the existence of pions may

still be a useful quantity. Some nuclear processes, specifically the bulk prop-

erties (energy, size, shape, . . .) may be well described, and for other process-

es such a wave function may provide a suitable zeroth order approximation.
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From this point of view we will think of a many body Hamiltonian

H = - Z l m - V + I ?. Vij
i ij

Z V
ijk J

(1.1)

where V.
u

V(r.a.T.p.; r.a.x.p.
i i i i J J Si

. .) is a two body potential, V... is likewise
I J K

N N

a three body potential, and there is no reason in principle why more complicated

N-body interactions cannot exist. The pion theory of the nucleon-nucleon force

certainly predicts that a three body force should exist—it corresponds to an

interaction between three particles which is additional to just the three pair-

wise interactions. In a diagrammatic language, one has processes like

where particle two is excited into a

virtual A or (3,3) resonance state in

between exchanging pions with two

neighboring nuclei. This particular

process has been studied by a number

of groups. The best estimate is that

the three-body force might contribute

one to two MeV/A to nuclear bidding

energies. In contrast the two-body

force is reckoned to contribute about

35 MeV/A. The reason for the relative

unimportance of the three-body force is that the nucleus is a low density system,

making it unlikely for three nucleons to be close together at once. Also, the

Pauli principle restricts clustering. More than four-body clusters (n and p with

spins up and down) are unlikely to be very important.

For these reasons, it is assumed in the first instance that the Hamiltonian

can be restricted to two-body forces. In this case, one can study the two-body

force by carrying out N-N scattering experiments. If E. .„ < 350 HcV, the scatter-

ing is mainly elastic, so can be analyzed using nonrelativistic quantum mechanics.

The measured cross sections, polarizations, depolarizations, etc., are used to

determine phase parameters Sn.(E) which characterize the N-N interaction, and

these in turn are used to fit two-body potentials. If these potentials were

weak enough, one could attempt to solve the many body Schroedinger equation di-

rectly, using perturbation theory for example. Since the potentials incorporate

both strong attraction and repulsion, more complicated methods have been
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developed. The most extensive work in this direction has proceeded along the

lines of the Brueckner theory. In one approach, called the Local Density Approxi-

mation or LDA, one first tries to solve the problem of infinite nuclear matter,

and constructs as a function of the density p = (2/3T ) kf a local "effective

interaction" which in first order of perturbation theory will reproduce selected

nuclear matter properties. Since in the infinite system there is only one param-

eter, the density, one produces in this way a "density dependent effective inter-

action."

According to the Local Density Approximation (LDA), introduced by Brueckner,

Gammel and Weitzner, a finite nucleus can be thought of as made up of small ele-

ments of nuclear matter. In each such region the two body effective interaction

is taken to be what it is in infinite nuclear matter at some average value of the

local density. We have often used the arithmetic average [p (1) + p (1) + p (2)

+ P (2)]/^ when a neutron-proton pair at positions r, and r interact. Thep ~ I ~l
validity of the LDA depends partly upon the short range of the NN interaction,

compared to the nuclear radius. But even the heaviest nuclei are more than half

surface, where the density is falling rapidly, so it is not obvious that the LDA

should hold. This makes the success of the theory all the more interesting.
k

The effective interaction of Campi and Sprung, called G-0, was written as

a sum of Gaussians

V(r,kF) = E (a. + b.kp )e ' + (W-WQ)A6(r) 1.2
i

= Va(r) + k F \ ( r ) + Vw.

2

The density dependence is separable [k_ = {—=—p) ] . The saturating prop-

erty of the nuclear force leads to a low power of k_: A = 1/2 for force G-0.

That is, at low density the presence of other particles has a rapidly varying

effect, but at higher densities the density dependence is small. The effective

interaction is designed to be used only in first order. At each density It re-

produces the diagonal elements of the G-matrix in infinite nuclear matter.

2. Hartree Fock Method

Given a Hamiltonian containing only one and two body terms, the total energy

of the system can be expressed in terms of the one body and two body density
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matrices. To see this consider an antisymmetric wave function

i|>0,2,. • -A)

depending on the coordinates of A particles, and normalized

. • .A)dTr . .dTA = 1. (2.1)

The expectation value of the kinetic energy is

- .2 ,
-J ** ( ] . . .A)(E|^ V.Z)^(1. . .A)dT (2.2)

ii

,1
= - A • ̂_ J ^.-(1. . .AjV^iMl. . ,A)dx (2.3)

Since the antisymmetry of ip makes ^'"p a symmetric function of its coordinates,

so each of the terms in the sum contributes equally. By integrating by parts,

one of the gradients can be thrown onto tjj-.

Setting

p(l.l') =AJV--(1. . .A)i|)(l'2. . .A)dx2. . .drA (2.4)

we have

21k L (r)d3r • (2-5)

Here p(l,l') is the off diagonal element of the one body density matrix, and r(r)

is called the kinetic energy density. Similarly

f l
4>*(1. . .A) (T E V..)IJJ(1. . .A)dT,. . .dx.

2 . . i j I A
|J

. . .A)dT,. . .drA

= 1 / p(12,12)V12 dt1dT2 (2.6)

where

p(12,l'2') = A(A-1)JV(1'2'3. . .A) (123- . .A)dx . . .dxA (2.7)
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Here I have assumed that V ] 2 is a local force. In principle then, one does not

require a full knowledge of the many body wave function but only those simpler

objects p (12, 1 ' 2 ' ) . Unfortunately, no one has devised a way to tell whether a

given p is an allowed density matrix corresponding to an allowed many body wave

function; some necessary conditions but no sufficient conditions are known.

It is true that, Mihailovic and coworkers have done calculations of Ne,
28

Si in which the density matrix was treated as a variational quantity, p being

expressed in an oscillator basis. A number of necessary conditions were imposed

on p, and apparently sensible results obtained. However, this method is not well

developed.

According to the variational principle, the ground state of an A-body system

is that completely antisymmetric state i//(I. . .A) which minimizes <I|;|.H|IJJ> subject

to the condition that <ip|<|;> = 1. This can be included in the variational problem

by introducing a Lagrange multiplier E, and demanding a minimum of

<i|j|H|^> - E(<\p\ip> - 1) . (2.8)

Th i s implies

<8ip\ (H-E) \\\)> = 0 for a l l var ia t ions \ty>

together wi th 6E(<IJJ|IJJ> - l ) fo r a rb i t r a r y var ia t ions <5E. (2,9)

Since |6IJJ> is arbitrary, we have (H-E) |I|J> = 0; the variationaJ principle leads to

the Schroedinger equation.

The variational method consists of introducing a trial wave function

<J)(a,a9a . . .) depending on a certain number of parameters (a^.a-.a,, , .) E a.

These parameters are varied until

<i|)|H|*> - E(<ij;|i|>> - 1) = H(a) - E[N(a) - 1] (2.10)

is a minimum. Necessary conditions for a stationary value are

| M _ - E | i _ = 0 ; N ( a ) - 1 . (2.11)

192



The Hartree Fock approximation is an application of the variational method,

which utilizes a large number of variational parameters. Hartree's idea was to

ascribe to each particle a state, or single particle orbital $.(r.), so the total

\l) is a product of these orbitals. Fock introduced antisymmetry by making a Slater

determinant rather than a simple product.

i|»(l,2,. . .A) = — det[<J).(r.)] = — I (-)P*,(r )• . .<i>.(rj . (2.12)
/KT ' J / A T P ] a A 6

An elementary property of determinants is that they change sign when only two rows

(or columns) are interchanged. The symbols (ot|3. . .6) are a permutation P of the

labels 1 2. . .A and (-1) is the signature of the permutation. To ensure that

|I/I> is normalized, the orbitals <j>. (r) form an orthonormal set. For such a \\> the

density i.,atrix takes a very simple form

P(l.l') - £ j - Z Z (
P 0.

(2.13)

Suppose that 1 occurs at position k in P, and at position I in Q. A subset of

(A-l)! of the permutations P (or Q) allow this. But if we fix P, only a single

permutation Q gives a non zero result, due to orthogonality of the <J>'s: it is

Q = P.

' •

Each of the (A-l)! permutations P gives an identical result. Finally, k can be

any one of the 1. . .A, so

A

pd.i1) - z <Mr,Hi>;) (2.14)
k=, K I k I

is just a projector onto the subspace of occupied orbitals <j>,(r). Similarly, the

kinetic energy density is

^T(1) - j Y * ( r ) Y < ^ > (215)
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The two body density matrix is calculated similarly.

(2.16)

If P places 1 at k and 2 at £, there will be two allowed permutations Q.:

Q = P or the "exchange" case with 1 at I and 2 at k. Since this permutation

differs by a single pair interchange, it has opposite signature. Thus,

)p(12') . (2.17)

If i/» were not taken to have the simple Slater determinant form, the two particle

density matrix would not be expressible in terms of the one particle density

natrix. An additional term would appear, which would correspond to "dynamical

correlations" between the two bodies, which are additional to the Pauli correla-

tions contained in the above.

So far, ty is just a trial wave function. The variational method tells us to

vary the orbitaJs cf>. (r) until <H> is minimized; this will give the optimum wave

function within the restricted part of the Hilbert space spanned by all Slater

determinant wave functions. From (2.15), (2.17) we have

<^|H|*> = /H( r ) d 3 r (2.18)

with H(r) = ^ T ( r ) + ~ f p(rr' ,rr ' )V(r-r • )djr'

«HH|I|» =j|^T(r)d3r + 1/J [p(r)P(r')-|p(r,r')|
2]V(r-r')d3r'd3r (2.19)

Since 4>(r) is complex, we can vary its real and imaginary parts independently.

Alternatively we can consider <j>(r) and <f> (r) as independent variational quanti-

ties; this leads to two sets of equations which are hermitian conjugates of each

other.



We consider varying $,(R) at the point r = R, by an amount ScJ>, (R)6(r-R). In

the potential energy term we will get two equal contributions corresponding to

r = R and r' = R, removing the factor 1/2. The result is the Hartree Fock equa-

tions:

2

-/<})k(r
1)p(R,r1)V(R-r1)d3r1

= ek4>k(
R) (2.20)

In arriving at this result, use is made of the freedom to make a unitary

transformation emong the set of occupied states [<j>.(r)J in order that only a

single <j>. appears on the right hand side (see Appendix A ) . The Hartree Fock

equations are a set of integro-d ifferential equations which determine the set <j>.

of states which minimize the total energy in the space of Slater determinants.

The left hand side of Eq. (2.20) is the Hartree Fock one body Hamiltonian

2

consisting of the kinetic energy, the local "direct" interaction and the non

local "exchange" Interaction. The direct term is just the potential energy at r

due to the presence of particles at r1 with probability p(r')d r', summed over

Un(r) = fp(r')V(r-r')d3r' .

This contains a "self interaction" since the state ^ ( r ) is included in the sum

p(r')> however, this is seen to be cancelled out by an equal term contairted in

the exchange field. The exchange field represents the additional energy due to

the possibility of the particle in state 0, exchanging position with any of the

remaining (A-l) particles. If exchange is ignored, \[> reduces to a simple product

wave function and only the direct potential minus the self interaction occurs.

This is the Hartree approximation.
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The Hartree Fock method is also called the self consistent field method.

The one body Hamiltonian determines the orbitals <$>. (r) , but these are required

[to construct p(r,r')] before we know h(r,r'). The usual method of solution is

to start from a trial set of <j>. (r), usually oscillator or Woods Saxon wave func-

tions, then construct h(r,r'), and finally solve for a new set <J>. (r). This
IN

process is continued until the output set <JY(I") are close enough to the input set.

At this point the fields constructed from <j>. are self consistent in that they

reproduce the same set of <f), (r). There is no mathematical demonstration that

this procedure will converge, but considerable numerical experience gives confi-

dence in it. Except for magic nuclei, problems can arise, where successive

iterations oscillate between (say) different configurations. A common remedy in

this situation is to average the field y h ^ + (l-y)h* n +^ = h^ n + 1^ between

successive iterations.

In Eq. (2.20) we may multiply by 4>. (R), sum over k and integrate over all R:

The result is

lp(R)p(r>)-\p(R,r')]2 V(R-r')d3Rd3r• = I e k . (2.21)

This is not the same as <I]JJH|^> because the potential energy is counted twice.

Since the iiartree Fock one body field ultimately is due to the interaction of

state k with all other states Z, when we sum up the potential energies of all

states k we will have counted the k-Z interaction twice, once for state k and

again for state Z.

If we add the total kinetic energy to Eq. (2.21), and divide by 2, we will

reproduce

| /T<r)d
3r)] =}l(e k + t,) (2.22)

K is.

& * 2 " 3where t, = - •=— f (fjTV <f>, d r is the kinetic energy of state k. The Hartrec Fock

eigenvalues e, are approximately equal tc the removal energies for a particle in

state k, but their sum is not equal to the total energy.

At this point we can see that the Hartree Fock approximation with a static

two body force will be in trouble in describing nuclear structure. From experi-

ments such as (e,e'p) or (p,2p) which remove a nucleon from deep inside the
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nucleus, we learn that the removal energy for a Is nucleon is at most of order

50 MeV. From nuclear radii, which are accurately known from electron scattering,

the kinetic energy can be estimated. !n infinite nuclear matter, the average

kinetic energy is •=— -F kp = 23 MeV per particle. Allowing for the fact that it

is slightly less in finite nuclei, we still have an estimated total energy of

only -2 to -h MeV/A according to the Hartree Fock relation (2.22). But real

nuclei are bound by -8 MeV/A. This conundrum was emphasized by Kerman about 10

years ago.

The effective interaction theory allows us to find the additional binding

energy from the density dependence of the effective interaction implied by the

local density approximation. Density dependence means that the Hamiltonian

depends on the solution to the Schroedinger equation. In this case the varia-

tional principle does not hold, but we can appeal to the principle of maximum

self consistency to derive Hartree Fock equations which contain additional "re-

arrangement terms" arising from

9V <Sp +

3P < ( r ) '

In the simplest case the density dependence Is separable and of the form

Vb(r-r'){l[p(r) + p(r')]} a s Vb(r-r',p) . (2.23)

Then the rearrangement term is

<j>k(r)/aVb(r-r',p)-{j[p(r)+ (r -)]}~
] .{p(r)p(r' )-[p(r, r') ]2}d3r . (2.24)

There are both direct and exchange parts of the rearrangement field, but both

are local fields due to our choice of the form of density dependence.

The presence of these additional fields means that the Hartree Fock relation,

Eq. (2.22) will no longer produce the total energy of the nucleus. Rather

In some effective interactions, there is dependence on other local functionals,
such as T(r), V^p(r) and Vp(r). One will then consider variations

9 <Sx(r) ,
.v , for example.6V4>k(r)
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E = E u_ + E where E c is still given by Eq. (2.22) and E is constructedn r KG 3 r nr Res r
from (2.2*t) above. Exploi t ing the symmetry between r , r ' we wr I te

= - ajjvb(r-r',p)tp(r)p(r
1) - p(r,r')|2]d3r'd3r . (2.25)

At thfs point, to make the discussfon more concrete I will describe some HF

calculations for spherical nuclei done by Campi and myself using a force called

G-0 (Eq. 1.2). In addition to the ingredients already listed, this includes two

additional elements. One is a zero range two body spin orbit interaction, V I C =
1 2 5

iB<S(r]2)(a +a )-(k'xk), with a strength constant B = 130 MeV fm . The second is

an "energy dependence" which arises from the fact that in a finite nucleus, while

the density varies from place to place, the energy of a given state is a global

quantity which is fixed. In infinite nuclear matter at a given density, the

average energy of occupied states is a function of that density. In the surface

of a finite nucleus you have matter at low density but a (relatively) large

single particle binding energy. The effective interaction is less attractive

when the particles are well bound, and this can be well represented by a term of
the form [W-Wn(kc)]A (kF)S(r. ) where W (k ) is the average single particle

U r r ~ I i. U r
energy in nuclear matter at density corresponding to the local Fermi momentum
kF; W is the average single particle energy in the finite nucleus excluding

STCoulomb effects; A (kj.) is a strength parameter determined in nuclear matter

calculations and the zero range nature of this force reflects the fact that its

matrix elements are constant. The force acts only in S-states and is much

stronger in the triplet than in the singlet case:

A 1 3 = 1.6*1 (1 + 0.486 k p ) "
3

A 3 1 = 15.60 (1 + 0.87 k p ) ~
3 .

This force contributes an almost constant 0.6 MeV/A to nuclear binding energy.

In Campi and Sprung, spherical Hartree Fock calculations were reported for

doubly closed shell nuclei \ie, i 6 0 , *°Ca, ^ C a , 9°Zr, and 2 0 8Pb. The force G-0

was adjusted so as to give saturation in nuclear matter at E = - 16.5 MeV, k =
-1 s s

1.35 fm • We then found that nuclear binding energies were reproduced to with-

in 250 keV/A and charge radii within 1%. Some of the relevant results are

summarized in Figs. 1 and 2 and Tables I and II from CS.
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The force was also tested on the series of isotopes of He and 0 and gave a

reasonably good account of the trend of binding energies and radii, as in Figs.

3, **, 5 and 6.

3- Skyrme Forces

In place of an effective interaction deduced from nuclear matter calcula-

tions in the local density approximation, considerable work has been done using

purely phenomenological effective interactions designed to produce saturation

in finite nuclei. The first such forces were those of Volkov, and Brink and
8 9

Boeker, which were purely static forces. Brink and Vautherin first carried

out Hartree Fock calculations using the BB force, obtaining good radii for the

magic nuclei but binding energies of only 6 MeV/A. These forces consist of a

repulsive plus an attractive Gaussian, and a suitable exchange mixture to ensure

that most of the attraction comes from even states.

Brink and Vautherin then revived a very simple form of effective interac-

tion, originally suggested by Skyrme, which contains only a small number of

adjustable parameters. It is of the form V? + V, where
1

V2 " ' 0 ° + \PO)&{rn] + r - (1 + x l P a ) C k < 2 6 ( r 1 2 ) + ^ r , 2 ) k 2 ]

+ t , ( l + x ,PJk ' -Sd- .Jk + iW(a1+a2)-[k' x 6 ( r . , )k ] (3.1)

and V, incorporates a suitable density dependence. Originally it was taken to

be a contact three body force

V3 = t36(r12)6(r23) (3.2)

but subsequently it has been found preferable to consider it a density dependent

two body force

(for x, = 1, a = 1, this force makes the same contribution to the Hartree Fock

Note P is the spin exchange operator; k is the operator (-iV) acting to right;
k1 to left.
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energy as does V . However, if one considers excitations of the system, through

RPA vibrations, they are no longer equivalent and the second form leads to

better results).

There are several popular sets of Skyrme force parameters which have been

fitted to reproduce nuclear properties over a wide region of the N,Z diagram.

These have names, S-l, S-IJ, etc. Some of these are listed in Table |||. |n

most cases the exchange parameters s. and s_ are set to zero, s, = 1 and a = 1

corresponding to the above remarks. This leaves six real parameters, tn, x_, t.,

t«, t , and W, the strength of the spin orbit interaction. A value of W = 120 MeV
5fm gives reasonable spin orbit splittings for the eigenvalues near magic nuclei.

The various Skyrme forces can be characterized by the value of t_, the amount of

density dependence. Flocard et al. have found that there is a linear rela-

tionship among the Skyrme parameters, so that any number of acceptable sets can

be found which give good agreement for nuclear binding energies and radii.

These forces differ in how density dependence is traded off against velocity

dependence of the effective interaction. S-lI I is rather similar to force G-0

in that it corresponds to an effective mass of above 0.76 m in the nuclear

interior (G-0 corresponds to about 0.66 m in nuclear matter).

The Skyrme forces not only reproduce a large amount of nuclear data from a

small number of adjustable parameters; they are exceedingly easy to use. The

zero range nature of the force ensures that the Hartree Fock fields are local,

and in fact are simple polynomials of local densities. The most time consuming

part of a HF calculation with a finite range force is constructing the non-local

exchange field; here this is entirely avoided.

In Vautherin and Brink (1972) it is shown that for a Skyrme force, H(r)

(Eq. 2.18) can be expressed as an algebraic functional of just three densities

p (r) , x (r), and a vector density J (r). To be realistic I will not introduce
H q ~q

spin and isospin degrees of freedom, neglected in the discussion so far. Besides

a position r, a particle will have a spin coordinate a = ±1/2 and a charge coor-

dinate q taking values n,p.. We consider an even-even nucleus, and assume that

the subspace of occupied orbitals is invariant under time reversal. (For an

axially symmetric system this implies that states of J = ±m will have equal

occupation.) Since protons and neutrons are distinguishable particles, the

density matrix will be diagonal in the coordinate q. If we sum over both spin

states we can define the following densities:
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p (r) = I k ( r , a , q ) | 2 (3 A)
q ka k ~

T ( r ) = Z |V<J> ( r , a , q ) | 2 ( 3 - 5 )
q k ( j ~ K ~

J ( r ) = - i Z <f>"r(raq)[V<f> ( r a ' q ) x < a | a | a ' > ] (3-6)
~q k a a , K ~ k

The expression for H(r) is

H(r, = | iT ( r ) + l ) (p

+ T6 (t2 - 3 tl )pv2P + h ( 3 t , + ^ X P A + PpV2pp}

+ T6 ( tl " t2 ) (^2 + -Jp) +h3
PnV

+ H ( r ) - | - W n ( p d i v J + p d i v J + p d i v J ) ( 3 - 7 )
c 20 n np p

H ( 0 - I P ( r ) V r ( r ) - | - e 2 ( | ) 1 / 3 p ( r ) * / 3 • (3-8)

wi t h

3 r I • ( 3 - 9 )

The exchange part of the Coulomb interaction is taken in Slater's approximation

(see Bethe and Jackiw for a discussion).

As before, Hartree Fock equations are deduced by minimizing

f{H(r) - E e k[K(r)]|
2 - l}d3r (3.10)

J k k k

by variations of the orbitals ((> (r). Since H(r) is algebraic, this is not diffi-

cult to do. The only complication is that besides <j>, , H depends on derivatives

V(j), , so that in order to produce an expression proportional to 6<j), (r) , an Integra-
~ K K
tion by parts must be done. This will affect the terms involving t. , t... The
result may be expressed as
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2
Actually, by means of integration by parts, the pV p terms can be replaced by

2
(Vp) terms, so the third term in (3-11) is unnecessary. The resulting HF equa-

tions are

2
-4 V ) + U ( r ) + W ( r ) ( - i V x c r ) ] * . ( r ) = tj ( r ) ( 3 . 1 2 )
2m"(r) ~ ' q ~ q ~ ~ K kk

q

where q is the charge of the particle in state k,

tjp(r) + t (t, - t,)P (rj (3.13)
2m*(r) ~ 2m k ' 2 8 2 ' q

q

is called the effective mass term, and

(3t, + t2)V
2
Pq + } (t, + t2)T

q vPq) + jr(t,-t2)jq . (3.1M

g
In the first paper by Vautherin and Brink spherical symmetry was also

assumed, and calculations were carried out for the doubly closed shell nuclei.

In this case the vector density J has only a radial component:

J(r) = r J(r) .

The first term in W leads then to the familiar Blin-Stoyle form

W (-iVxo) = W 1 ^ (p + p ) iff-A (3.15)
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In the spherical case,

A1/2 (3.16)

so

p(r) =

T(r) =

j l)R
a a

(3-17)

(3-18)

J(r) = J +1) > R2(r)
a a -£-1

(3.19)

The Hartree Fock equations (3.12) may now be solved in the usual partial wave

representation as ordinary second order differential equations. A transformation

to remove the first derivative allows the powerful Numerov method to be used.

There are a number of special recipes which have been applied to all Skyrme

calculations which we should note. In Eq. (3.1*0 the term l/8(t,-to)J repre-
I I. ~q

sents a central-force contribution to the spin orbit splitting. This has invar-

iably been omitted, on aesthetic grounds. Correspondingly, the term l/l6(t,-t9)
2 2

(J +J ) has been dropped from the energy density Eq. (3-7)» in order to preserve

the variational principle. Secondly the one body part of the center of mass

motion has been subtracted from the kinetic energy. The Hamiltonian (l.l) is

written in an arbitrary coordinate system, and the calculations have been carried

out using all A particle coordinates. This means that the center of mass of the

nucleus is not at rest. The center of mass momentum P = E p. ought to be a con-
i '

stant of motion. To remove the energy of motion of the center of mass from, the
Hamiltonian one should subtract

1 1
2mA 2mA I pt + 1

2mA

The first term on the right hand side can be combined easily with the kinetic

energy part of (l.l):
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^2
merely reducing the value of ̂ — ̂  20.73 MeV fm by r . The two body part (p.*p.)

is neglected. For nuclei A>*» this leads to an error comparable to the correction

made. However, for Skyrme forces this may be regarded as a prescription which

has gone into fitting of the parameters.

To gain some insight into the meaning of the parameters we consider an N=Z

nucleus and omit Coulomb effects. Then p = — p is the same for both charges:

q 2

pr-sO-B^fe"'!*"*" <3-20)
U(r) = JtQp +fg t^ +1^- (3t, + 5t2)T

+ 3Y (5t2 - S t ^ p - | w Q div J (3.21)

W - f WQVp + jg- (t,-t2)J . (3.22)

The effective mass has the form postulated by Migdal. The combination (3t. + 5t«)

is a measure of "velocity dependence" of the effective interaction. (9t, - 5t9)
2 2

is related to the surface energy, since ft occurs with V p in U(r) and with (Vp)
in H:

H(r) = L ° " A")T + F V 2 + T6:t3p3

+ k <3t, + 5t2)pt + ̂  (t, - t2)J
2

+ ^ (9t] - 5t2)(Vp)
2 - |- WQp d|v J . (3.23)

In the Jtmit of 'infinite nuclear matter (Vp = 0, V'J = 0, T = r k- )

f = ? = 5 TF + F V + K £3p2 + I (3tl + 5t2)pkF2 ' (3'24)



The compre'ssibi 1 i ty modulus

K = k 2 9 ( E ( A ) = | T_ + t t.p + J£ t p2 + J (3t. + 5t,)pk 2 (3.25)
*" 3kp b (• 4 0 8 3 HI z h

at the saturation point kc where

Treating E/A, k,. and K as input quantities one can solve for

jg- (3t, + 5t2)pkF
2 = 2Tp - 15 (•=•) - f- K . (3.26)

It is believed that E/A - -16 MeV, T p - +38 MeV and K = 200 MeV. All Skyrme

forces give K of the least 300 MeV, somewhat greater than other "realistic"

effective interactions.
12In a second paper Vautherin extended his calculations to axially symmetric

deformed nuclei. A basis of deformed oscillator states - essentially the asymp-

totic basis of the Nilsson model, was used. The matrix elements of the one body

hamiltonian have to be calculated between the basis states, then the eigenvalues

and eigenvectors of this matrix are found numerically. In practice, the matrix

elements are calculated by numerical integration using a Gaussian quadrature rule

in the (r,z) plane. There is, then, a shuffling back and forth between real

space - where the HF iiami I tonian [+f /2m (r), U (r) , W (r)] is easily expressed -

and the oscillator space, where the eigenvalue problem for the HF orbitals is

conveniently solved. The calculations are well within the capabilities of present

computers.

Taking the symmetry axis along 0Z, J = fl, is a good quantum number. One

can take orbitals of the form

; *k(r,a,q) = [^(r,Z)e" iA * X + + ̂ ( r , z ) e i A \ Jxq (3-27)
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+ 1
where x+ are spin up/down states and x denotes the charge state. A = Q. ± y .

The distance perpendicular to OZ is r. The expressions for the one body density

1 ead to

p(r,z) = E |cj>*(r,z)|2 + K ( r , z ) | 2 (3-28)
k

T ( r , z ) = E { | V r ^ ( r , z ) | 2 + | V d>+(r ,z) \ 2 + lj\ A V ( r , Z ) | 2 ( - ^ - ) } (3-29)
k r

w h e r e V = •*— , V = -̂ — , V , = — r v i n c y l i n d r i c a l c o o r d i n a t e s . , d i v J has a s i m i -

l a r e x p r e s s i o n .
A 1

The time reversal operator is T = ~ia K = y (a "O+)Kn where K. denotes com-

plex conjugation. If it is applied to the state <j>. (3.29) it has the effect of
+ +

replacing [<(>,, (j>, , ft,] ->- [~<Jv> ̂ k* '"tyJ • However, such an interchange of the

spinor components leaves the densities p, T , div J invariant. Thus, we are

allowed to divide the orbitals (j>, into a set with Q, > 0 and the set of time

reversed states <J>r with 0,- < 0. These make equal contributions to the densities,

so we calculate only the first set and finally double the result. Similarly, the

parity operation changes r ->• -r, or (r,z,cj>) -> (r,-z, (j) + TT) . The densities are

independent of (J), depending only on r,z. If we assume that the states (3-27) are

reflection symmetric - i.e., are even in z, then so are the densities and the HF

equations. These therefore admit reflection symmetric solutions. We need only

then consider z > 0 and may confine calculations to the first quadrant of the

(r,z) plane.

Pairing Correlations:

As one moves away from a closed shell nucleus, the level occupations have a

large effect on the solution of the HF equations. Unless there is a large gap

between the energies of occupied and empty orbitals, it is by no means clear that

the lowest total energy solution will arise from filling of the lowest energy

orbitals, especially since E f E e.. The Hartree-Fock Bogolyubov (HFB) formalism
k K

is an extension of HF which introduces pairing correlations, and amounts to using
a mixture of different configurations in place of a single Slater determinant for

If one were dealing with a fundamental many-body Hamiltonian, one would pro-

ceed to apply the HFB formalism to it. But in dealing with a Skyrme force, or
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other effective interaction which has been simplified with the aim of reproducing

average or bulk properties of the nucleus, one would have to introduce additional

parameters in order to guarantee that sensible pairing matrix elements were ob-
12

tained. Recognizing this, Vautherin proposed to introduce this additional

parameter in a way related to the simple BCS solution.

Each orbital is assigned an occupation

2 2 2
n k = v k ̂  where u k + Vfc = 1

uk " \ (3"3O)

Vk = "V

p(r) = 2 Z' n k (r)| 2 , etc. (3-31)
k k k

(The primed sum implies only Q. > 0 states to be summed, as discussed above.) To

the total energy of the system is added a pairing energy

E p = -G(E' u k V | < ) 2 , (3.32)
K

Following BCS, we might say that only a band of states within (say) 10 MeV of the

Fermi level takes part in the pairing interaction, then outside this band u, v = 0.

The energy E is now a function of both the orbitals <j>. and the occupations n. .
K K

These are additional constraints

X(E 5n . n -Nn) (3.33)
q k q k q k q

ensuring that on average the system contains the correct N,Z. Treating all of

these as variational parameters leads to two sets of equations. First is the

same HF equations (3-12 to 3-1^0 as before, except that now the densities involve

partially occupied levels. Next there are BCS equations

y
K

2(ek - *„ ) u,

with

(3.35)
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whose solution is

nk = 2 1 - (3.36)

A , A are determined so the particle numbers are correct,n p
At each iteration of the HF calculation the occupations are determined using

the HF eigenvalues e, . These occupations are used in constructing the HF fields

for the succeeding iteration. This procedure was also used by Campi, Sprung and

.'lartorell in their study of the tin nuclei. A suitable value for the pairing

force constant is

18/(11 + N ) MeV.
q

(3.37)

This is about 25?; greater than in Nilsson model calculations, because the level

density obtained in HF calculations is too low compared to experiment, in the

vicinity of the Fermi surface.

Vautherin astutely proposed a variation on the BCS method, which treats the

pairing gap A as the fundamental quantity rather than the pairing force strength.

Since A is known experimentally from even-odd mass differences, this may be re-

garded as removing one parameter from the work.

If the pairing energy

E = - A(Z' u v )
f k K K

(3.38)

is added to the total energy, one would not get the same HF-BCS equations as be-

fore (treating now A as fixed). This is because :be variation •»—previously

brought down a factor 2 in Eq. (3-32). The remedy is simply to include 2E in

the quantity to be minimized; this restores the desired equations. However, in

computing the energy of the system, E p is counted only once. In this method,

only the Fermi energy A needs to be determined since A is fixed, so the BCS

equations are even easier to solve. Also, the pairing force may be allowed to

act between all the states included in the HF calculation.

The paper by Beiner, Flocard, Van Giai and Quentin reports a systematic

study of the applicability of Skyrme forces. Some 120 nuclei along the valley

of ^-stability were included in their calculations, and several sets of Skyrme
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parameters were fitted. Among them, S"lll has come to be a preferred choice.

All these calculations were done in a spherical basis. In between closed shells

there are discrepancies of up to 20 MeV (for the nucleus) between calculated and

experimental binding energies; this allows for the nucleus to gain energy by

deformation. Some of these results are summarized in the Figs, 7 to 10 and

Tables IV and V.

In a sequel, Flocard and Quentin did deformed calculations of the (s,d)

shell even-even nuclei and found that S-lll and S-IV gave a good account of their

properties. Campi, Flocard, Kerman and Koonin studied the sodium isotopes and

showed that a shape transition setting in at A=32 could explain an anomaly in the

measured masses. These results are illustrated in the Figs. 11 and 12.

In deformed code calculations some care has to be put into optimizing the

basis. The deformed oscillator is characterized by two frequencies OJ, , OJ or

equivalently

/ my,. , .
b = j -T— , W = w. a) and q = co./w

Also the basis is cut off after N. major shells, where N = 6 or 8 is adequate

for light nuclei but 10 or 12 is necessary for the rare earths and actinides.

This was discussed by Flocard, Quentin and Vautherin.

Potential energy surfaces (binding energy versus quadrupole moment Q and/or

hexadecupole moment h) can be mapped out by constrained Hartree Fock or HF-BCS
in r o

calculations in which a quadratic constraint T? (Q-Qn) is added to the preced-

ing Hamiltonian. When the minimum is reached one has ~rw = ~C(Q-Q_) with Q = <Q>

being the self consistent moment. Q_ is a specified "target" value. To see how
Q varies with 0. we have

This means that a large enough

,4i
d(T

d Q 0 .will ensure that ., is monotonic, so by varying Q_. one can map out the entire

range of Q_ values. If a simple linear constraint were employed this would not

209



be possible. Further, some fundamental objections to calculations using the
I Q

linear constraint have been raised by Fonte and Schiffrer; see also Bassichis
19

et al. (These apply to unbounded operators.)

k. Density Matrix Expansion

The relationship between the successful Skyrme interaction and the finite

range "realistic" effective interactions was elucidated by the Density Matrix

Expansion of Negele and Vautherin. A major reason for the simplicity of Skyrme

calculations is that the exchange field is local; this is due to the <5(r._) func-

tion in the force. A pair of nucleons interacts only when they touch. For a

short range interaction it is interesting to- expand the off-diagonal p(r,r') in

powers of the internucleon separation s: r = R + s/2, r' = R - s/2 .

Formally

s-(V -V )/2 ...

'2 W
f s-(V

p(R+§, R-f)=z|e~ ~'

Thinking of a short range interaction suggests that an average over the angles

between s and R may be a good approximation; this gives

f)- f) sinh[| s-(V - V j ]
p(R. ,RJ (4.2)

In any case one can argue that for a time reversed invariant system, there is no
2

term linear in s, so the approximation begins only in order s .

Rather than simply expanding this in powers of s , Negele and Vautherin

looked for a reordering of the terms such that the leading term is the correct

result for a uniform system (nuclear matter). The desired result is

/ s s\ °°

^ + I-5 ' i) ' Ik nfQ

where k is arbitrary, jn(x) is the spherical Bessel function and

2 (-)n
^n^ Z ^ S iz P2n+l^'z^ "s a L e 9 e n d r e polynomial. We will denote

(2£+l)!!j£(x)/x
£ = JA(x) ~ 1 - 2(2*+3) . . . (k.k)
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The two leading terms of the expansion are then

j3(r,r') - j (sk)p(R) + I s2 j (sk) \l V2p - T + \ k2p + . . . (4.5)

2 3 2

In the nuclear matter limit, V p vanishes and T ( R ) = T ̂ C p(^) so only the lead-

ing term survives, and is the well known Slater approximation to the density

matrix. In this case we see that k ought to be chosen as
1/3

evaluated at the center of mass of the interacting pair. This prescription can
21

be carried over to finite nuclei, though Campi and Bouyssy have recently made

a more astute suggestion.

The approximate form for p(r,r')» Eq. (4.5) can be substituted into Eq.

(2.19) for the expectation value of the total potential energy. In so doing it

is consistent to omit the square of the second term because other terms of order

s are already neglected. Taking account of spin and isospin degrees of freedom,

the like particle and unlike particle components of the effective interaction are

formed: these are functions of r.? = s and of density:

Direct: vj - £ VSE + f V™

V J = 3 V T E + _ I v S 0 + l _ v S E + ! v T 0 {h6)

Exchange: ^ i V
S E - f v T 0

v u = | v T E _ l _ v S 0 + _ > v S E _ 3 v T 0 ( 4 7 )

Then

«HV|K(> = j / d 3 r d 3 r ' | [ p p ( r ) p p ( r ' ) + P n ( r ) p p ( r ' ) ] v j ( s )

+ 2 P p ( r ) p n ( r ' ) V ^ (s)

+ [p-p(R.s) + ^ ( R . s ) ] ^ (s)

(4.8)
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In the last two terms I emphasize that 0 is a function of the variables R,s.

Using (A.5) we expand these two terms as follows

pp(R)pn(R)j](kps)J1(kns)v^(s)

f %{r)[{ V2Pp(R)-rp(R) * | k p V

I pP
(R) [¥ *\M-\W + f # n

+ (p •*-*• n) | (it.9)

In these terms we have introduced Fermi momenta for neutrons and protons:

k
q
 = [3Tr2pq(R)]

1/3 (A. 10)

as wel1 as
2

kp = { ^ - [pn(R) + P p(R)]}
1 / 3 (k. 11)

The point is that in Eq. (4.9) the integral over s may be performed first, defin-

ing certain functionals of the neutron and proton densities p (R), p (R):

VV TP + 5 "P

where

GLE(pa> =

if
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These functions may be calculated once and for all, for a given effective force,

and tabulated on a grid p = [0.0(0.01)0.17]fm , and values interpolated as

required. This form of the energy density is essentially that obtained when

using a Skyrme interaction, except that the constants t-t.t-t,, x. are replaced

by functions of the density which are known numerically. In particular, when we

vary <(|/|v|^>F , in the form (̂ . 12) to derive HF equations, a local HF potential

will result, plus an effective mass just as obtained for Skyrme interactions.

The direct terms in Eq. (̂ .8) already produce a local Hartree or direct potential,

so the DME allows one to avoid the time consuming construction of the non-local

Fock potential. Calculations carried out in this way are called DMEX calcula-

tions, because the DME has been applied to the exchange field. It has been shown
22

by Negele and Vautherin, and Vallieres et al. that the DMEX is an accurate

substitute for a full finite-range HF calculation. The computer codes written

originally for use with Skyrme forces have been adapted for DMEX calculations by

adding in the calculation of the direct terms.

A further approximation can be made, which makes a similar approximation to

the direct part of the potential energy, the initial two terms of Eq. (4.8). The

angle average of Pa(r,)pR(r.) is expressed as

This allows the direct potential energy to be similarly expressed in terms of

(numerical) functions of p ,p . Combining with the exchange terms one has final-

ly for the energy density

: 2 1 f/f.2

p ' V J p I 2m

A( P p,p n)

(4.15)

From this form, HF equations can be deduced that are only very slightly more

complex than those of the Skyrme interaction. The same zero range two body spin
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orbit force may be used as with the finite range effective interaction.

Comparing Eq. (A.15) with (3-7) we can identify the following correspond-

ences

A<pnpp> = I *o\{] + r V - <*0 + I> ^ + #

B(pnpp> " l ( t 1 + t 2 ) p + F ( t 2 " V ^

C ( pn pp ) = 3 2 ( T 1 " t 2 )

D ( pn pp ) - - F ^ " 3 1 ^

The question arises as to what extent the simple density dependence postula-

ted by the Skyrme force can reproduce that of the functions A,B,C,D calculated

from a "realistic" effective interaction. Negele and Vautherin made such a com-
23

parison for Negele's force, in the neighborhood of the nuclear matter situa-

tion p = p = — p. In this case

A + BT + j (C + j D)|Vp|2

T V 3 + T (3t+5t)px + ̂  (9t-5t)|vP|
2+ Te V 3 + T6 (3t1+5t2)px + ̂  (9t,-5t2)|vP|

Also, looking at an expansion of A in powers of Sp = p -p ,

A[j(p+6p), l(p-5p)] = A - | to(xQ + 1) (<Sp)2 - j£

allows one to identify xn> First of all, we see that

3t, + 5t2 = 16 B/p

91, - 5t2 = 32C + 16D

To identify tQ, t and xQ we form

A = 9A _ 3A_
9p " 8p

= tn(xn +|)6p + ft, 6p
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E = 1 (££- + -^-) = t • 3 + ^ [3 2 - (6 )2]
n p

A - T- ASp = a = J- tnp + f r t, p6p .
4 o U 10 j

Solving the last two gives

= JA (P£ ' 2a)
3 " P3 h - (%"

8 i5 { J

t0 _ 2 , ,6p,2
3P 1 - (-)

At the symmetry point 6p = 0,

t -> ̂ (pZ - 2A)
P

- • 8 (3A - pZ)T
3p

At p = p = 0.08 fm , these formulae give

N-V

S-lll

-1248

-1128.75

381

395

1

.1

.0

t

15

-95

2

.1

.0

14

14

"3

Shi
000

X

0.

0.

0

50

45

which compare rather well with the S-lll parameters. Over the range of densi-

ties 0.05 < P < 0.15, tQ, t, and xQ vary by about 301, suggesting suitably chosen

constant values of these parameters might work rather well.

Why does the DME method work? The complete DME approximation is only qual-

itatively correct, but it does provide a justification for the Skyrme-like param-

eterization of the force. It also shows how more parameters could usefully be
24

added to the Skyrme form. Treiner and Krivine for example, made a simple

parameterization of the A, B, C, D functions issuing from the force G-0.
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At the next level of complexity, the DMEX approximation seems to be accurate

to a few percent for most bulk quantities. This success is ascribed to the

short range nature of the effective interaction, which allows the exchange ener-
2

gy density to be parameterized in terms of the local quantities p(R), Vp, V p

and T ( R ) . The exact treatment of the direct terms lends stability to the calcu-

lation. Many applications of DMEX calculations have been made at Los Alamos by
25Negele and Rinker.

21

Recently Campi and Bouyssy have proposed a further simplification of the

DME method. Noting that in Eq. C*.5) the parameter k is arbitrary (except for

its nuclear matter limit) they propose to choose k so that the second term is

always zero:

Then

iMr.r') = j,(sk)p(R)

"2has the simple form of the Slater approximation. The parameter k is called the

Local Fermi Momentum. At a given point in a finite nucleus, one wishes to make

the infinite nuclear matter density matrix fit as well as possible to the actual
A

p(r,r'); this is achieved by the choice k. Suppose for example, returning to

Eq. (4.5)f we wish to calculate the (approximate) local kinetic energy density.

One finds using (2.5) that

T(r) = [| k2p(R) + I V2p] - [I V2p - T(R) + | k2p(R)]

2 2coming from the first and second terms of Eq. (4.5). In the usual DME, k = k_ ,
/\ r

so the role of the correction term in j_ is to restore the correct value of the

local kinetic energy density. In the Campi Bouyssy approximation the first term

is arranged to already equal T ( R ) , by virtue of the choice k -* k, so no correc-

tion is required. Rather than a local density approximation, the LFMA treats

both p(R) and T(R) as quantities characterizing the system. This suggests that

rather than interpreting the effective interaction V(r,o,kr) as a density depend-
/\ I Z r '

ent interaction, one should interpret L + k in a finite nucleus, making it an

LMF-dependent interaction.
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"2 2
Since k is a function of <j>,, V<|>. and V <$>, , the variational principle will

lead to terms of the three types included in (3.11). Hence the Hartree Fock

equations deduced will involve an effective mass in the form

() !

2m " ~V 2m ~' Zm

Most of the rearrangement terms end up in this effective mass. Work on such

calculations is now in progress. It seems likely that significant differences

can arise from previous LDA calculations.

CONCLUSION

I have tried to survey the basic elements of Hartree Fock calculations

applied to nuclear structure. The subject has been developing in many directions.
26

Hoodbhoy and Negele have shown how to carry out deformed HF calculations en-

tirely in coordinate space without the necessity of introducing an oscillator

basis. With a remarkably coarse grid they have obtained good convergence. This

method promises to make more extensive calculations, and large deformations, much

easier. Some authors have sought to reduce computing time by giving prescrip-

tions for good starting fields. Sometimes these are based on Thomas Fermi theory.
27One of the most recent references is Brack; he refers to earlier work. The

hope is that a single HF iteration, or a very few, will give an accurate solution.

A large amount of work has been done on Time Dependent Hartree Fock calculations,

after the pioneering work of Bonche, Koonin and Negele. These promise to give

insight into nuclear reactions. As a means of gaining insight into nuclear col-

lective motions, the adiabatic Time Dependent Hartree Fock theory has been de-

vised, principally by Baranger and Veneroni, and by Viliars. There is also

an interesting development of sum rules related to energy weighted moments of

transition operators on the HF ground state. The paper by Goeke, Lane and

Martorell gives an introduction to this work. Perhaps this is enough by way

of some guideposts for further reading.
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APPENDIX A
o

To Impose the A conditions of orthonormai i ty on the orbitais cf>, (r) we
2

introduce A Lagrange multipliers e, „, and minimize

V: -k

We take £, . = £„, so the sum is real. The variation 6<J) (R) adds to

a sum

which can be transferred to the right hand side. We now argue that the equations

may be simplified by taking linear combinations

£ u
t s<J> s(

r) = <t>t(r) •
s

If U is unitary, the new states $ remain orthonormai

<j>s(r) = Z (U
+)st$t(r) .

Also

p(r.r') = Z <p.(r)\(r<)
k K K

= Z [U'l $ (r)][/(r)U .]
kts Kt z s SK

is invariant. Thus we have, applying U . to Eq. (2.20)

The unitary transformation U, so far arbitrary, may be selected to diagonalize

the hermitian matrix e. 0: (UeU ) = e 6 . Then on the right we have just
^ K/C St S St

e <j> (r) as stated. We can remove the tilde and call these states the new set
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Fig. 1. Energy per particle for dif-
ferent calculations using den-
sity-dependent forces.
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Fig. 2. Contributions to the total
energy per particle as a func-
tion of mass number.
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Fig. 3- Binding energy per particle

for the neutron-rich isotopes
of helium

10

221



I—I I ' • •
10 « " W 18 20 22 24 It 28

A
Fig. 4. Binding energy per particle

for the oxygen isotopes.

Fig. 5. Positions of the single parti-
cle levels in the oxygen iso-
topes .
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200 A 250

Fig. 8. Differences A(B/A) between
spherical HF and experimental
binding energies per particle.

Fig. 10. Differences AS. between spher-
ical HF+BCS and experimental
total binding energies. Ser-
ies of black and white circles
correspond respectively to
successive isotones and iso-
topes. The calculated values
correspond to interaction
SIM.

Fig. 9. Differences AB between spher-
ical HF (calculated with the
force SIM) and experimental
total binding energies. The
squares indicate doubly closed
shell (or subshell) nuclei.
Black (white) circles or
squares correspond to isotone
(isotope) series.
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Fig. 12. Experimental and calculated
mass excesses.

30 A 35

Fig. 11. Experimental and calculated
values of the separation ener-
gies of the last pair of neu-
trons
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G.ANT MULTIPOLE RESONANCES FROM HADRON AND HEAVY-ION INELASTIC SCATTERING

by

D. H. Youngblood

Texas ASM University
College Station, TX

INTRODUCTION

In this talk I will first describe the multipole resonances, then give a

brief summary of the state of experimental knowledge (primarily of the quadrupole

state) 1 to 2 years ago; there is a review article available which describes

this. I will present several specific results regarding the quadrupole which

seem interesting, and discuss recent experimental work on the low energy octupole

resonance. Next I shall present recent convincing evidence for the breathing

mode state in several nuclei and the implications for the nuclear compressibility.

I will conclude with existing evidence for excitation of these modes in heavy-

ion inelastic scattering.

It is useful to describe the basic oscillations of the nucleus which result
2

in the various giant multipole resonances. These modes of oscillation are illus-

trated from the view of the hydrodynamic model in Fig. 1 for electric resonances.

The monopole mode is a spherically symmetric oscillation of the nuclear density;

it is the only mode that is primarily a volume oscillation of the nucleus. Its

energy is directly related to the nuclear compressibility, and its existence has

been conclusively established only very recently. The isovector dipole mode is

an oscillation of the proton and neutron distributions against one another, and

has been studied most extensively of all the modes. The quadrupole and higher

modes are shape oscillations; there have been extensive studies of the isoscalar

quadrupole mode in the last several years, and some interesting features of the

isoscalar octupole mode have been revealed. There is little evidence for multi-

pole resonances of still higher order.

"invited talk given at IV Seminar on Electromagnetic Interactions of Nuclei at
Low and Medium Energies, Moscow, December 13-15, 1977-
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These resonances in the simplest shell model picture are coherent lp-lh

excitations and are illustrated in Fig. 2. The monopole is a 2-nw excitation,

while the dipole is a 1-nw excitation. A quadrupole can be both Ofiu) (within a

shell and responsible for low lying 2 states) and 2fiw. The octupole strength

is split between lfiw and 3+iw excitations. Except for the dipole mode, both iso-

scalar (neutrons and protons in phase) and isovector (neutrons and protons out

of phase) modes can occur; the isoscalar modes will be somewhat below and the

isovector modes somewhat above the nominal energy due to the nature of the

residua/ interaction.

The experimental problem in studying these modes is illustrated in Fig. 3

where the positions of these low-order modes are schematically illustrated. The

EO and E2 isoscalar modes occur In the vicinity of the El mode; all have large

natural widths and overlap so that experiments must be chosen carefully to se-

lect the components of interest. The Ifiui E3 strength lies in a region of high

level density (close to the particle threshold in many nuclei) while the 3fiw E3

strength and isovector EO and E2 strength lie further in the continuum and con-

sequently would be much broader and more difficult to isolate.

Several different reactions are available to study these modes. Photonucle-

ar reactions (and their inverse) have detailed the giant dipole resonance (GDR)

thoroughly, but El excitation dominates all other multipolarities, restricting

their usefulness when studying other modes. Inelastic electron scattering can

be used to study the lower multipolarities nicely, and has the advantage that

the interaction is known, but the disadvantage that isoscalar and isovector modes

are excited with comparable strengths, preventing isolation of certain modes.

Inelastic proton and He scattering may also excite both AT = 0 and AT = 1 modes,

although experimental evidence indicates that the AT = 1 mode is excited at most

very weakly. Inelastic deuteron and alpha scattering excite to first order

AT = 0 modes only, making them very useful tools for studying these modes. Of

the existing hadron data, inelastic alpha scattering has the most easily defined

background and the best peak to continuum ratios. Also DWBA calculations seem

less model dependent and hence more useful for L assignments and strength detei—

minations than for other projectiles.

Inelastic scattering strengths are characterized by the surface deformation

parameter g, obtained by comparing the experimental cross-sections with DWBA

calculations using a deformed optical potential for the form factor. 3 can be

directly related to B(EL) values and if Bm^m = 8ZRZ (m refers to the matter
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distribution and z refers to the charge distribution) the B(EL) values obtained

by inelastic a scattering are directly comparable to electromagnetic values.

Strengths are then generally expressed in terms of the fraction of the energy

weighted sum rule (EWSR) which for L > 2 is given by

S(EL) = Z(E - En) B(EL) =n °
?.

En) B(EL) = 1(1 + 1) -^ ^K
n ° 2mR2 3A2

The techniques for doing calculations for giant resonances have been covered by

;ri
k

3
Satchler, while the relationships between inelastic scattering and electro-

magnetic B(EL) values is discussed thoroughly be Bernstein.

THE GIANT QUADRUPOLE RESONANCE

The giant dipole resonance has been extensively studied in the 30 years

since its discovery, primarily by photonuclear reactions, and I shall not discuss

it. Since the discovery of what has since been proven to be the giant quadrupole

resonance (GQR) in 1971 by inelastic electron scattering and inelastic proton

scattering its properties in many nuclei have been obtained. In addition to

these works the GQR has been studied with inelastic deuteron, He and (very ex-

tensively) a particle scattering. Figure h shows inelastic a particle spectra
7 i U 9 rift

obtained at Texas AsM on 27 nuclei from N to Pb. The arrow marks the posi-
Q

tion where the GQR would be expected to occur, and for all nuclei studied with

A £ 36 a prominent broad peak is apparent residing on the continuum. Angular

distributions obtained are generally best described if the peak is assumed to be

primarily E2 in character. Plots of excitation energy and EWSR strength are

shown in Fig. 5 and it is readily apparent that a large portion of the isoscalar

E2 sum rule strength is located near E ^ 63/A MeV for the heavier nuclei.

The strength decreases for the lighter nuclei and no definite E2 strength was

identified in the Texas ASM work below A ̂  36, however subsequent inelastic a

scattering experiments at higher bombarding energies have identified the GQR in

many light nuclei. The reason the GQR was not seen in the Texas ASM work (done

at E = 96 MeV) is apparent in the spectra shown in Fig. 6 obtained at J'ul ich

at 106, 1^5, and 173 MeV. At the lower energy broad a groups from break-up of

Li and He formed in the (a, Li) and (a, He) reactions are immediately adja-

cent to the GQR, obscuring the peak. Additionally, although the continuum cross-

sections are nearly the same at both energies, the GQR cross-section increases
229



rapidly as the bombarding energy increases, making it much more apparent. This is

illustrated in Fig. 7 where DWBA calculations for the cross-section at the

second maximum in the angular distribution of the GQR and the 1.37 MeV 2 state

in Mg are shown as a function of bombarding energy. The cross-section for the

GQR more than doubles going from 100 to 150 MeV due to the large angular momentum

mismatch, whereas that for the 1.37 MeV state increases only ^ 20%. Thus it is

apparent that higher bombarding energies are desirable for studying the GQR.

Several interesting features of the GQR are apparent. In the heavier nuclei

(A £ 60) it appears to be highly collective with most of the EWSR concentrated in

one state, whereas in the light nuclei the GQR contains considerable structure.
QQ 2k 10

In Fig. 8 the behavior of the GQR as one goes from Zr to Mg is illustrated.
90When viewed with about 150 keV energy resolution the GQR in Zr appears as a

single Gaussian or lorentzian-1ike peak with a width of about 4.5 MeV; in Ca

there are components at ̂  18 MeV (r 'h 3-5 MeV, S % hl%) and "» 14 MeV (r ̂  2 MeV,

S ^ 3%); in Si and Mg it appears as a grouping of discrete almost resolved

states. Spectra obtained at Julich for nitrogen and oxygen isotopes are shown

in Fig. 9. A concentration of E2 strength is apparent in each of the nuclei,

although the relatively poor energy resolution hides much of the structure. I

will now consider several light nuclei for which particularly interesting results

are apparent.

The GQR in 0 has been studied primarily by two groups. At Groningen 104

MeV alpha scattering with 100 keV resolution has defined the structure and iden-

tified kB% of the E2 EWSR in discrete states between 15 to 26 MeV. In Julich-
12Heidelberg collaborations the gross-structure was obtained (Fig. 9) with 300 to

500 keV resolution and the alpha and proton decay of the GQR were measured in

coincidence experiments, both performed at E = 155 MeV. This fractionation into

many states spread over many MeV has been qualitatively explained by Dehesa et

al. as follows. The 0 GQR would have lp-lh configurations involving primari-

ly tne fy/2' ^5/2' p3/2' ancJ pl/2 s'ng'e Pai*t''cle levels. These levels are. well

into the continuum, however, and the theoretical widths for the fr/2» Pa/?'
 and.

p. ,„ resonances are very large; hence they would contribute only to the broad

background. The narrow part of the GQR would mainly be the (f-,/- P,/9" ) config-

uration and the observed broadening and structure would be due to the fragmenta-

tion of the fj/2 resonance.
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This explanation is supported by the 0 GQR decay studies, where decay a

particles and protons were detected in coincidence with inelastically scattered a

particles. Figure 10 shows inelastic a spectra obtained in coincidence with

decay ot's and protons. Essentially no proton decay is observed. The P,/2 ^

ground state could be reached only by decay of the (fq/o Pi/? ) configuration,

while the penetrability severely inhibits f wave proton decay to the 6 MeV
15state in N. It is apparent that there is substantial a decay of the GQR and

the well established 18.4 MeV L = 2 state is quite apparent. However, this pair

of angles is near the peak for quasifree scattering of incoming a particles off

of a clusters in 0 and this process can also contribute broad peaking in the

region corresponding to 15 to kO MeV excitation in 0. The angular correlation

for decay a particles is shown in Fig. 11 and is in agreement with plane wave

L = 2 predictions. The angular correlation for the GQR decay should have a

similar peak 180° from the one observed, but there the quasifree component will be

absent so that the amount of quasifree scattering riesent can be determined by
12completing the correlation. Nevertheless the observed decay to the C ground

1 2state is in rough agreement with the observed C (O.,Y) E2 strength both as to

shape and magnitude, suggesting that inelastic a scattering and (a,y) are in

agreement for the 0 GQR. The large a decay is consistent with the predictions

of Kurath and Towner who show that a lp-lh excitation of the ground state does

not alter the a cluster structure of the state. As the 0 is well known to
12 9>S

have a significant overlap with C the Ip-lh GQR would also be expected to
12 9's

have a large overlap with C + a, as is observed.

2.h 9 10

The GQR in Mg has been investigated by a scattering at Julich, Texas ASM

and Groningen and as is apparent in Fig. 8, the strength is quite fragmented.

Some interesting results are obtained by the Groningen group by a comparison of
2k 20 2h 17 +

the Mg (a,a1) and Ne (a,y) Mg leading to 2 states. The results of both

reactions for the GR region are shown in Fig. 12. While it is clear that all the

states seen in the (a,y) are also seen in (a,a1), the inverse is not true. There

is considerable E2 strength observed in (a,a1) that is not apparent in the capture

work. The EWSR fractions obtained from the inelastic scattering and capture reac-

tion are approximately equal for both the 12.8 and 13-1 MeV 2 states, suggesting
that F /r , for these states is close to unity. Comparing the capture andct* to ta i
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inelastic scattering yields for the other 2 states, however shows that T /̂  * .

varies from 0.15 to 0.5 for states observed in both experiments. It is clear that

one cannot assume that the decay is purely statistical, which predicts at most 0.1
24

for this ratio. Essentially all of the isoscalar E2 strength is now known in Mg;

below 15 MeV about h$% of the E2 EWSR is known in discrete states, and between

15 to 25 MeV Groningen finds (60 ± 152) of the AT = 0 E2 EWSR.
24 24

The Groningen group also compared the Mg (a,a1) to Mg (p.p1) data taken

at Oak Ridge. As can be seen in Fig. 12 all of the structure seen in the GR

region by (p,p') is also seen by (a,a1), implying that it is isoscalar structure.
rt Q I O

Similar results were obtained for Si, although for both cases calculations

indicate that the GDR should contribute significantly in this region, suggesting

that the existing estimates for GDR excitation by inelastic proton scattering

are too large.

40An inelastic a spectrum of the GR region of Ca is shown in Fig. 13 after

subtraction of the continuum. The angular distributions for the 14 and 18 MeV

groups are also shown and are fit well by DWBA calculations for L = 2 transfer.

The 18 MeV group exhausts about 43% of the AT = 0 E2 EWSR whereas the 14 MeV

group contains only about S% of the EWSR strength. Structure is apparent in both

components, and a comparison of peak shapes at different angles suggests some

other multipoles also contribute to the 14 MeV group. The 18 MeV group appears to

consist of 2 or 3 broad components while the 14 MeV group has s'everal narrow com-

ponents .

The a particle and proton decay of the Ca GQR after excitation by inelastic
19alpha scattering has been studied and the results are intriguing. The 14 MeV

and 18 MeV groups have very different decay properties as is illustrated in Fig.

14. The 14 MeV group is apparent in coincidence with decay a particles, but the

18 MeV group is very weak, if present at all. There is a strong proton decay of

the 18 MeV group, however, with only weak proton decay of the 14 MeV group appar-

ent. Angular correlations for proton decay of the 18 MeV group to the ground
39and first excited states of K are shown in Fig. 15, along with DWBA predictions

for the different partial waves expected to contribute. The correlations for

decay to both states are quite consistent with the expected dominant configura-

tions of the GQR [(9j/2
 d3/2 ^ for the 9rouncl state and (dc/2

 si/2~ ̂  for the
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39

first excited state]. The proton branching to higher levels in K is consider-

ably stronger than might be expected from the relatively simple GQR wave function,

suggesting that the GQR frequently decays into more complicated configurations

before particle emission. The angular correlation for the ground state a decay

of the 14 MeV group is also shown in Fig. 16 and is fit excellently by an L = 2

DWBA calculation, further confirming the 2 character of the group. The large

ground state a decay (T /T = 0.9 ± 0.2) suggests its character must be

quite different from the major part of the GQR; this is not at all understood as

far as I know.

2 0 8Pb

The GR region in Pb has been studied extensively by inelastic electron,
1 7 21 22

proton, and alpha ' ' scattering. It is of particular interest because of
23

the large amount of structure present. Additionally Halbert et al. have pre-

dicted considerable contribution from multipolarities other than E2 in the

region of the GQR. The GR peak is now known to consist of at least two broad

components, one centered at about 11 MeV containing predominantly quadrupoJe

strength, and one centered at about 13-7 MeV containing predominantly monopole

strength (I shall discuss this component extensively later). In addition, as is

illustrated in Fig. 16, a broad group at 8.9 MeV and fine structure superimposed

on the 11 MeV group is seen in (e,e') data which has variously been interpreted

as either isoscalar or isovector E2 strength. Also shown is a Pb (a,a')

spectrum taken at 7 » where the E2 and E0 groups are quite weak. Considerable

structure is apparent in this data also and a detailed comparison with (e.e1)

suggests that much of the same structure is being observed. (a,a1) angular dis-

tributions for two of these states are shown in Fig. 17, where it is readily

apparent that they must be negative parity states (either 1 or 3 ) • This is

consistent with the relative strength of the fine structure and the underlying

GQR, as the fine structure is becoming stronger where the GQR is at a minimum.

Thus it is unlikely thtt the structure seen in (a,a') is L = 2; good statistics

data for the small angles where one could easily distinguish L = 1 from L = 3 is

not yet available, however. Thus we have a conflict between inelastic a and

electron scattering at the moment.
2kThe RPA calculations of Speth et al. have suggested the existence of con-

. o f\ Q

siderable k strength in the vicinity of the Pb GQR. DWBA calculations
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utilizing inelastic scattering form factors generated from the RPA wave functions

have predicted that only about half the (a,a1) strength in the region is 2 with

the remainder primarily 0 and 4 . Figure 18 shows two analyses of the 11 MeV

group in Pb with somewhat different background criteria. Superimposed are

DWBA predictions for L = 2 + L = 4 ; it is apparent that the observed distribution

is consistent with a small amount of E4 contribution in the region, although un-

certainties in subtraction of the continuum prevent a definitive determination

of the amount.

THE DEFORMED NUCLEI
7 144 148 154

A comparison of GR peaks for the ' ' Sm isotopes is shown in Fig. 19
and it is immediately apparent that the width increases as one goes from the

144 148 154
spherical Sm to soft Sm and then to deformed Sm. Accounting for the
recently discovered monopole resonance which is unresolved from the GQR, the

144 1^4

width of the GQR increases from V % 2.6 MeV in Sm to Y fy 4.5 MeV in Sm.

This is significantly less than the 4 MeV splitting observed for the GDR and the

total 6 MeV splitting between the K = 0 and 2 components obtained from a simple
25

estimate utilizing the usual QQ interaction. However, a rigorous application
of self-consistency to the coupling of the quadrupole mode leads to a modified
QQ interaction which reduces the splitting to about 2 MeV between the K = 0 and

26

2 components consistent with the observed broadening. G. Kyrchev et al. have

performed microscopic calculations considering isoscalar and isovector 2

strength simultaneously for many even-even deformed nuclei from Nd to Cm.

The width and position they obtain for the GQR in Sm (T = 4.5 MeV, E = 12.3

MeV) are in excellent agreenent with our experimental values (F % 4.5 MeV, E =
27 *

12.2 MeV). Zawischa and Speth have performed RPA calculations for several

deformed nuclei (although not for Sm) and also obtain widths generally around

4 to 6 MeV.

In the other region of deformed nuclei (the sd shell) there is evidence of

splitting of the GQR due to the deformation. In the inelastic a scattering ex-

periments of Knopfle et al. the E2 strength in Ne (Fig. 20) was observed to

be split into two distinct components, one centered at E ^ 2 2 MeV containing

i> 35% of the EWSR and the other at E ^ 14.5 MeV containing about 20% of the EWSB.
29 x

W. Knupfer et al. J using an excited core model have obtained predictions in
agreement with experiment (Fig. 10). The GR excitations of a 0 core were234



coupled with excitations of valence nucleons. Similar results were obtained

studying the effects of coupled monopole, 6 and y quadrupole vibrations within

the GCM by Abgrall et al.

THE LOW ENERGY OCTUPOLE RESONANCE (LEOR)

In inelastic a spectra taken at Texas AsM while studying the GQR, a promi-

nent group of states was observed at an excitation energy considerably below

the GQR which was out of phase with it. This is illustrated for many nuclei in

Fig. 21. This structure is centered at E ^ 32/A MeV and the angular distri-
X

butions are fit nicely by L = 3 calculations (Fig. 22) exhausting 6 to 23% of the

AT = 0 E3 EWSR. This collection of strength is notably absent in Ca and Pb,

and is observed to be quite weak in several other nuclei. The observed proper-

ties of the LEOR are summarized in Table I.

In the harmonic oscillator-based

schematic model of giant resonances the

octupole EWSR strength is divided into

two parts, roughly corresponding to 3tiw

and lfioj strength. The LEOR is in good

accord with the expected properties of

the lho) giant resonance and exhausts

roughly 2/3 of its expected strength

TABLE I

PROPERTIES OF LEOR FROM INELASTIC ALPHA

SCATTERING AT TEXAS AsM

Nucleus
Ex
(MeV) (SPG")

S
2EWSR

66

75
89,

Zn

As

6.6

90
92

96

100

Nat

116,

118,

124

142

144

197

Zr

Mo

Mo

Mo

Ag

Sn

Sn

Sn

Nd

Sm

Sm

Au

7.1

7.2

6.7

6.2

6.1

6.4

6.5

6.9

6.2

6.2

6.5

3-7

5-7

10

-v 9

16

% 6

^ 5

17

M 4

13

17

17

9-9

3.2

22

16

^20

20

22

^ 8
^ 6

23

20

22

21

8.1

3.8

19

(30 to k0% of the total EWSR in the

schematic model). The absence of a
9 0 ft iif\

strong LEOR in Pb and Ca cannot be

understood in terms of such a simple

model, however. Indeed the presence of

two strong collective 3 states (the

first 3 and the LEOR) in the region

between Zn and Sm requires a more

sophisticated theory. In Fig. 23 we

compare RPA calculations of Liu and
32

Brown to the present data for 3
40 90 ?f)8

strength in Ca, v Zr, and Pb. The

calculations employed a residual inter-

action of the Sky-"me type. The agree-ment for 90 Zr is excellent; the theory
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correctly predicts both the location and strength of the LEOR. The excitation

energy of the lowest 3 state is, however, only half of the experimental value.
ZtO 208

In Ca and Pb a rather weak LEOR is indicated theoretically which is very

suggestive of the experimentally observed absence of a strong resonance. In

these two nuclei the exceptionally strong low-lying 3 state already exhaust-, a

large part of the l+iw octupole strength.

To see whether the RPA can correctly account for the gross properties of the

LEOR and low-lying 3 states in other nuclei, we have performed calculations for
40. 58... 66_ 116C 142... 197A ,, 208D. _, . , _Ca, Ni, Zn, Sn, Nd, Au, and Pb. The code, written by T.

Kishimoto, employs a Nilsson-type harmonic oscillator potential and an octupole-

octupole residual interaction. The strength of the interaction was chosen by

requiring the calculation to correctly reproduce the excitation energy of the

first 3 state in each nucleus. Figure 24 shows the results of the calculations
r* e\ Q

compared to the LEOR data. The marked decrease in strength of the LEOR in Pb
rQ

and Ni is extremely well reproduced.

The balance of EWSR strength between the LEOR and the low-lying 3 state can

vary substantially over a small change in A, but the total 1-fio) strength remains

rather constant. The partitioning of the octupole strength, correctly predicted

by the RPA, is the result of spin-orbit splitting of the unperturbed octupole

response function. The balance between these two solutions of the RPA equation

depends largely on the initial strength associated with the low-energy configura-

tions. If the low-energy configurations contain much initial strength, as is the

case in Ca and Pb where both protons and neutrons can contribute, the low-

lying 3 is favored. In the mass region between A = 66 and A = 148 there is

typically either a low-energy neutron (near Z = 50) or proton configuration (near

N = 50 or 82) but not both.

The effect of quadrupole deformation on the LEOR in the samarium isotopes is
144 148large and reminiscent of the behavior of the GDR. In Sm and Sm the LEOR

144strength is contained in one peak (with fine structure in the case of Sm) at
154E ^ 6.5 MeV. In deformed Sm two octupole peaks are seen at E = 5.7 MeV and

3.7 MeV. The lower of these states has a width r ^ 2 MeV compared to T ^ 1 MeV

for the upper state. This suggests that the lower peak may contain at least two

of the four expected components of an octupole vibration of an axially symmetric

quadrupole deformed nucleus (with angular momentum projections K = 0 through

3").
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Two theoretical models have been advanced to explain the structure of the

LEOR in deformed nuclei. One, due to Malov et al., is based on a continuum RPA

treatment. The other, by Kishimoto, is an extension of the work of Ref. 25 to

the octupole case. A central feature of the latter model is a renormalization of

the 0-0 residual interaction which arises from the requirement that the inter-

action be self consistent. The data is presently sufficiently poor that no

choice between them can be made.

The nuclei As, Mo, and Mo also exhibit a weakening of the LEOR which

is likely due to an octupole-quadrupole coupling effect. The peak cross section

for the molybdenum isotopes 92, 96, and 100 are respectively 20 mb/sr, 7 mb/sr,

and 6 mb/sr. The magnitude of the continuum in Mo and Mo prevents one from

drawing any firm conclusion about the quantitative nature of this process; the
92resonance may be weaker or merely broader than in Mo. Our RPA calculations for

these three isotopes using a residual interaction derived from the first 3 in
92

Mo indicate that the observed weakening is not primarily a simple shell model
effect.

THE ISOSCALAR BREATHING MODE STATE

The possible existence of an isoscalar breathing mode state in nuclei has

been the subject of considerable experimental interest in recent years. The

isoscalar giant resonance (GR) observed by inelastic scattering at an excitation

energy of ^60/A MeV in many nuclei was a possible candidate but has been con-
1 ' c? 90.8

sidered to be predominantly quadrupole. A high resolution study'' of Pb

(p.p1) and (3He,3He') has located a peak at 9.11 MeV in Pb which depletes 7% of

the E0 T = 0 EWSR; the rest of the strength was not identified.

The Sendai group has presented an interpretation of their electron-scatter-

ing data on Zr and Pb which suggests that the breathing mode state may be

located at an energy very close to the GDR, however, this interpretation is

critically dependent upon the model chosen for excitation of the GDR, whose con-

tribution must be subtracted from the data. Marty et al. have suggested that

differences in their inelastic deuteron data and our inelastic alpha spectra

might be due to a breath ing-mode state located just above the GQR in Ca, the

dashed line in Fig. 27- For Pb considerable fine structure was apparent on

the GR peaks and fits consisting of four narrow Gaussian components plus two

broad Gaussian components generally were necessary. For Zr and Sm no fine
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structure was apparent so fits were restricted to two broad components. Excerpts

from Sm spectra after subtraction of the continuum are shown in Fig. 29 with

sample two-peak fits. The angular distribution obtained for the broad components
]Lli 208

for both Sm and Pb at E = 96 MeV are also shown in Fig. 29. The predic-

tions for a monopole state, the isovector dipole state and a quadrupole state are

shown superimposed on the data. It is readily seen that the lower excitation com-

ponent is relatively well fit by the quadrupole calculation, while the higher ex-

citation component is fit adequately by the monopole calculation. In particular,

the predicted signature of a monopole state, a sharp minimum around k , is very

apparent in the data for the higher excitation component for both nuclei, while

no such dip exists in the data for the lower excitation component. The prediction
90

for the GDR is out of phase with the observed data. Excerpts from Zr spectra
are shown along with angular distributions for the two components in Fig. 30."

Again the lower excitation component is well described as E2 while the upper com-

ponent appears to be E0. The parameters obtained for the monopole peaks are

summarized in Table II.

TABLE I I

PARAMETERS OF MONOPOLE PEAKS OBTAINED IN DIFFERENT REACTIONS

Ex .r KN
Nucleus (MeV) (MeV) %EWSR (MeV) Reference

9°Zr 17 M.8 Ik ± 17 183 Texas A&M

17.5 37

17 k (108) 36

Sm 15.1 ± 0.5 2.9 ± 0.5 100 ± 50 197 22

U.8 ± 0.2 l.k ± 0.15 20 + 10 38

M5 60 - 100 1*
208Pb 13.7 ± O.k 3-0 ± 0.5 105 ± 50 208 22

13.5 37

'3-? 97*1 10!9
2° 36

13-9 ± 0.3 2.5 ± 0.6 110 ± 22 21
l̂ t.3 ± 0.15 3.3 ± 0.1 ^50 38

50 - 75 1*

Reanalyzed.
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For Pb and IT these results are in rough agreement with those from

Sendai and the peak parameters obtained are consistent with those from
21

Groningen. Also we have performed a graphical reanalysis of (p,p') data on
208D, , 90, , 208D,Pb and Zr and Pb.

In our alpha scattering studies the GR peak was observed to be asymmetric

in many heavy nuclei. An analysis separating the GR peak into two components
?42 144 148 154

was performed for Nd and ' ' Sm. The angular distributions for both

components were the same within the uncertainties over the angular range 13 i

Q. < 25 , hence the entire asymmetric peak was attributed to the GQ.R. In recent
21

work at Groningen utilizing inelastic alpha scattering at 120 MeV, a shoulder
206 208 197

on the higher excitation side of the GR has been observed in ' Pb, Au

and B? (Fig. 25). The angular distributions obtained from 12 £ ® < 21 for

this shoulder are consistent with L = 0, 2 or 4 transfer.

Inelastic alpha scattering at angles small enough to observe the first mini-

mum in the angular distribution has been established as a reliable technique for
144

obtaining L transfer. DWBA calculations for Sm (a,a1) with L = 0, 2 and 4

transfer are shown in Fig. 26 using optical parameters from Ref. 7- The breath-

ing mode form factor of Satchler (Version I) was used for the L = 0 calculation.

The form factors used for the other modes were standard collective form factors.

The magnitudes of the DWBA predictions changed somewhat with differing optical

potentials, form factors (both Satchler's Version I and II were tried for the

monopole), and differing Coulomb excitation parameters, however, the shapes of

the angular distributions remained unchanged. In particular, the deep minimum

around 4 was present exclusively for L = 0 transfer in all calculations.
22

Inelastic alpha scattering measurements were performed at Texas A&M using

an 86-cm-long resistive wire proportional counter backed by a scintillator in

the Enge split-pole spectrograph. By blocking the elastics from the counter and

blocking events above the excitation regions of interest, spectra of the giant

resonance region can be obtained with good statistics in times ranging from 5

hours at 9, = 3° to less than an hour for 6. > 6 .

Data were taken with E^ = 96 MeV on 9°Zr, Sm and 2° 8Pb at 3°, 3-1/2°, 4°,

4-1/2 , 5 . 6 , 7 . and 8 with good statistics to ascertain the shape behavior

of the GR peaks over these small angles. Pb spectra taken at 3 , 4 ,. and 6

with E = 9 6 MeV are shown in Fig. 27. The broad bumps from the (a, He) reac-

tion are apparent; a dashed line indicates the background chosen for analysis of
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the GR peaks. Although the GR to continuum yield improves at higher bombarding

energies, the angular distribution features which distinguish among the even

(odd) multipoles move to smaller angles as the energy is raised resulting in

increased problems with slit scattering and beam tuning.

The angular distributions obtained for the Pb 2.61 MeV S" = 3 and 3-20

MeV J77 = 5~ states are shown in Fig. 28. The DWBA fits are quite good over the

angular range 3° < 8 £ 20 and the deformation parameters obtained are in agree-

ment with those obtained previously.

Analysis of the GR peaks was accomplished by fitting a multicomponent peak

to the observed peak after subtraction of a nuclear continuum as indicated by

Sm published by the Oak Ridge group. The spectra they obtained are shown in

Fig. 31 with graphical fits using two peaks with the parameters from Ref. 22.

This provides a good representation of the data (within the statistical errors).

If the lower excitation peak is assumed to exhaust most of the E2 EWSR, and rela-

tive E2/E1/E0 cross sections are taken from the calculations of Satchler,

excitation of the GDR would account for less than half of the observed strength

of the higher excitation component. If the remainder is assumed to be E0 about

S0% of the EWSR strength is indicated. Additionally there is evidence (mentioned

earlier) from (p.p1) in light nuclei that excitation of the GDR is overestimated

in the calculations of Satchler, hence an even larger portion of the second peak

may be EO.

These results are in agreement with those from Orsay and with the Sendai

results using the Goldhaber-Teller model for analysis of the El. Recent Darm-

stadt electron scattering results on *"u"Pb at low momentum transfers where the

El excitation strength is essentially model independent also obtain EO (or E2)
39strength at this energy. Microscopic calculations by Speth yield a form fac-

O(\ ft

tor for (e.e1) to the GDR in Pb much like the GT form factor, further con-

firming that the GT model is preferred.
nn Q

An energy of 13.7 MeV for the breathing mode in Pb Is in excellent agree-

ment with the estimates of Krewaid et al. and Speth et al. Utilizing the

liquid drop model, the breathing mode energy E n is related to the nuclear matter

compressibility K by:

0 3R ' m
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where R is the nuclear radius and m is the nucleon mass. The values of K ob-

tained for 9°Zr, l2|ffSm and 2° 8Pb are 183, 197 and 208 MeV, respectively. Micro-
42

scoplc RPA calculations were performed by Blaizot et al. for five interactions

which were particularly successful in Hartree-Fock calculations. Keeping in mind

that their K = (TT 2/15)K, the Skyrme interactions (S IV and S I M ) gave K = 310
20.8 90

and 340 MeV respectively, for Pb and similar values for Zr, much higher than
2(3

the experimental values. The interaction Bl of Brink and Boecker gave K % 170
44

MeV while Dl of Gogny gave K % 222 MeV, somewhat closer to the measured value.

EXCITATION OF GIANT RESONANCES BY HEAVY IONS
45 46

Groups at Michigan State University and Karlsruhe iave utilized inelas-
6 90

tic scattering of LI ions to observe the GQR. In the MSU work performed on Zr
at E, = 74 MeV, a weak broad structure was seen at E = 13-8 MeV which is like-

D. . X
ly ' the GQR, although the angular distribution obtained was featureless. The

c ?0ft

work at Karlsruhe utilized 156 MeV Li ions on Pb and the resulting spectrum

is shown in Fig. 32. The GQR appears very prominently on a rather small contin-

uum background. The angular distribution obtained is featureless, but is fit

reasonably well in both shape and magnitude by DWBA calculations. The higher

beam energy seems necessary to produce a reasonable cross section for the GQR, as

in alpha scattering. These results suggest inelastic Li scattering at energies

around 150 MeV may be very useful in determining at least the shape and position

of the GQR in nuclei.

The only other reported excitation of the GQR by heavy-ions of which I am

aware is by a group at Yale who utilized Al( C, C*) Al. A spectrum from

their work is shown in Fig. 33- They have drawn a suggested background, implying

that the yield above this is due to excitation of the GQR (and possibly the LEOR) .
27

When the yield above the suggested background is compared to the known Al GQR
(seen in alpha scattering, Fig. 8 ) , there are some similarities, however, the

12
known GQR is considerably narrower. The C angular distribution obtained is

featureless and not in particularly good agreement with DWBA predictions. In

this case no clear prescription for drawing the background is apparent in the

spectra, and I must admit to being skeptical of the chosen background. The

separation of the GQR, from the continuum, indeed even the presence of the GQR is
*
Supported by the U.S. National Science Foundation and the Robert A. Welch
Foundation.
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not obvious from the data. A similar experiment on Ca, where the GQR is quite

narrow and should be immediately apparent would be quite interesting.

CONCLUSION

The large amount of inelastic scattering data now available has elucidated

many properties of the giant multipole resonances. Many more intriguing ques-

tions have now been revealed. The structure observed in the GQR in light nuclei

and the differences between different excitation modes suggest that decay mea-

surements to better define the wave functions of these fairly simple configura-

tions would be very interesting. Many predictions are now available regarding

the behavior of both the GQR and the LEOR in deformed nuclei, and more thorough

studies of these in deformed nuclei would be valuable. The structure in the

region of the Pb GQR is very poorly understood and requires more work. The

properties of the LEOR are just beginning to be defined; little is known about

its fine structure and many nuclei have not been investigated at all. The

breathing mode state has just been definitively identified very recently, and

its location in lighter nuclei as well as its general properties remain to be

established. The field of heavy-ion excitation of giant resonances is wide

open; there have been suggestions that the deep inelastic processes proceeds

through giant resonance, but there is little evidence of their direct excitation

with projectiles heavier than lithium. Finally the superb peak to continuum

ratio for the GQR obtained with 156 MeV Li ions indicates the possibility of

obtaining the properties of the GQR much more accurately than with lighter

project!les.
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Fig. 1. Monopole, dipole and quadru-
pole oscillations of the nu-
cleus are illustrated from the
hydrodynamic model viewpoint.
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Fig. 2. Particle-hole excitations res-
ponsible for the multipole os-
cillations are illustrated
with a harmonic oscillator po-
tential .
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Fig. 3. The location of giant multi-
pole resonance strength in a
nucleus of mass about kO is
indicated schematically.
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Fig. h. Inelastic a scattering spectra
taken at Texas A£M. The bom-
barding energy was 96 MeV for
all targets with As: 56 and for
9^Zr. All others were taken
at E a = 115 MeV.
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Fig. Inelastic a scattering spectra
taken at Julich at E a = 106,
145, and 172.5 MeV. The kine-
matic limits for 5|He and 5LJ
break up contributions are
indicated by solid and dashed
arrows.
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Fig. 7. The solid lines are DWBA cross
sections at the second maximum
in the L=2 angular distribu-
tions using a fixed set of
optical parameters. The cir-
cles were calculated using op-
tical potentials appropriate
to the bombarding energy.
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Fig. 9. Inelastic a spectra taken at

E a = 155 MeV in a Julich-
Heidelberg collaboration.

Fig. 8. (a,a1) spectra in the giant
resonance region after subtrac-
tion of the continuum.
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Fig. 10. Spectra of a particles inelas-
tically scattered from ^0 in
coincidence with decay protons
(dark region) and decay a par-
ticles (line) from Ref. 13.
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plane wave predictions. '"0
(aa'ag) and 12C(a,y) E2 are
compared in the bottom spec-
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Fig. 13. A portion of the
spectrum taken at 8L = 7° is
shown after continuum subtrac-
tion. Angular distributions
for the 18 MeV and \h MeV
groups are also shown along
with L = 2 OWBA calculations.
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Fig. 15. Angular correlations obtained
for p decay of the 18 MeV
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14 MeV group. The lines rep-
resent DWBA predictions for
the partial waves indicated.
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Fig. 17. Inelastic a scattering angu-
lar distributions for the
narrow S.k and 10.3 MeV states
in 208Pb. The curves are
DWBA predictions for L=3
transfer.
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Fig. 18. (a,a1) angular distributions
obtained for the 11-MeV group
in 208pb are shown for two
analyses. E2 and Eh DWBA cal-
culations are shown, and the
combinations required to fit
the data are indicated.

253



9000

Sm(a,o')Srr,

Ea=ll5 MeV

15 10 5
Exc. Energy (MeV)

] l lift ml
Fig. 19. ' ^ ' ' ^ ' ' ^ S m GR peaks are

shown superimposed after con
tinuum subtraction.
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Fig. 21. (a,a1) spectra taken at a
peak in the E3 cross section
are shown. The background
chosen for analysis of the
LEOR is indicated.
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OCTUPOLE
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Fig. 22. (a,a1) angular distributions
obtained for LEOR in several
nuclei are shown with L=3
DWBA predictions.
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Fig. 23. The RPA calculations of Ref._
32 are shown with observed 3
strength indicated by the
vertical bars.
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Fig. 24. The 3 strength observed in
the vicinity of the LEOR is
compared with RPA calcula-
tions for several nuclei.
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Fig. 25. Inelastic a scattering spec-
tra obtained at Groningen on
2O6pb. Two peak fits are
shown for two background
choices (Ref. 21).
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Fig. 26. DWBA calculations normalized
to the full EWSR for inelas-
tic alpha scattering on '^Sm
are shown for L = 0, 2, 4
transfer.
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Fig. 27. 208Pb spectra taken at 3°, ^
and 6°. Note the suppressed
zero. One background chosen
for analysis is indicated.

.10.
10 IS
6cm. Weg.)

208nFig. 28. Pb (a,a1) angular distribu-
tions with DWBA calculations
for low-lying 3" and 5"
states.

Fig. 29. Excerpts from ^ S m (a,a1)
spectra after continuum sub-
traction are shown for 3 ang-
les. Two peak fits are indi-
cated. Also shown are '^Sm
and 20°Pb angular distribu-
tions for both broad compo-
nents of the GR. L = 0, 1,
2, h DWBA calculations are
shown.
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Fig. 30.

Fig. 32.

Excerpts from ' Zr(a,«')
spectra after continuum sub-
traction are shown for 3 ang"
les. A gaussian of constant
width and position is shown
for each angle. The angular
distributions obtained for
upper and lower portions of
the GR are shown together
with L = 0 and 2 DWBA pre-
dictions.
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