LA-UR-79-2557

Theoretical Models for the Specific Adhesion of Cells to Cells or to Surfares

George I. Bell
Los Alamos Scientific Laboratury University of California Los Alamos, New Mexico 87545

Int roduction

There are many examples in which the adhesion of cell to cell or of arll to substrate is mediated by bonds betwern specific malecules. [at some cases, the molecoles are well understood. Consider, for example, a solution contaning cells such as red blood cells which do not ordinarily stick to one another. Suppose that molecules, such as antibody molecules, which have two or more sites for binding to specific determinants on the cell surface are introduced into the solution. A single molecule may be able to bind simultancously to determinants on two cells and thus a sufficient concentration of such molecules may agglutinate the cells. Such agglutination of red cells by specific antibodics is commonly used for determining blood types. In other experiments the agglutination of various cells by protein molecules called lectins ${ }^{1}$ has been analysed. These studies generated considerable excietment about a decade ago when it was found that Lumor cells are more readily agglutinated ${ }^{2}$ than normal cells.

In 'hese examples, both the bri iging molecules and the cell surface determinants are fairly well characterized, while in many systems in vivo the adhesive interactions appear to involve specific molecules but are
less completely understood. For example, in various developing systems, such ati aggregating cells of the cellular slime mold ${ }^{3}$ or sponge cells ${ }^{4}$ or in the developing retina ${ }^{5}$, cell-cell adhesion seems to involve specific molecular interactions but the molecules are not completely characterieed. In addition, it appears that the immune system involves cell-cell interactions mediated by antibody molecules, antigen molecules, antigen-antibody complexes, or by the interactions of mutually complementary cell surfare recepters. Finally many studies have been made of the adhesion of surfaces where the interaction appears to involve interaction between extracellular molecules such as fibronectin ${ }^{6}$ and cell surface determinants. Again such studies have been motivated by findings that tumor cells have altered adhesive properties ${ }^{6,7}$ which may account in some essential ways for the invasive and metastatic properties of the tumis cells.

During the past couple of years 1 have attempted to construc some parts of a theoretical framework for the analysis of cell adhesion mediated by specific molecular interactions. In this paper, l will review some components of this framework and describe some recent experimental and theoretical results.

The Conceptual Model

I have in mind the fluid mosaic model of the cell membrane ${ }^{8}$ wherein the membrane is regardel as a phospholipid bilayer in which various integral membrane proteins are retained by virtue of their favorable free energy in the hydrophobic interior of the membrane.

Fluid Mosaic Membrane

Figure 1. Fluid mosaic model of a cell membrane.

Protei.as of interest for cell to cell binding have portions witheli extend beyond the lipid bilayer on the ontside of the cell and most are glycoproteins, that is, they include covalently attached sugar moieties. The proteins are more or less frec to move translationally in the jlane of the membrane and co rotate about an axis perpendicular to the membranc. The translational diflusion coelficients of several integral membrante proteins have been measured and values $\sim 0^{-10} \mathrm{~cm}^{2} / \mathrm{sec}$ are regarded as typical ${ }^{9}$. However, some surface proteins are virtually immobje ${ }^{l 0}$ while. others may move mure freely (see following sections). By contrast the diffusion coofficients for typical proteins of molecular wieght ~lo in aqueous solutions are $\sim r_{2 \times 10^{-7}} \mathrm{~cm}^{2} / \mathrm{sec}$.

For presont purposes, lot us dosifnate as recepturs those rall surface molecules which may mediate the adhesion cf cejl to cell or to substrate. Thus various membrane proteins or glycolipids might serve as receptors. For example, certain jymphocyles have anlibody-like' surface molecules which can serve as receptors in binding the cells lo complementary soluble anligens or lo antigenic determinants on the surfares of other cells or on substrates. We shall cegard such antihodyantigen interaction as a paradigm for the interaction between complementary receptors which may produce cell-cell adnesion.

If 1 ddition, soluble jigands including antibodjes, antigens, lectins, and antigen-antibody complexes can mediate cel]-cel] adehsion. In all cases the ligand must have at least two binding sites, one of which interacts with each cell so as to form a molecular bridge between the cells.

Both receptor molecules and ligands may have multiple binding sites and any general theoretical treatment would be quite complex. In order to
clarify the physical effects, I shall emphasize the simplest situation, in which the adhesion is produced by interaction between mutually complementary receptors, each with a single oinding site. Adhesion produced by bivalent ligands interacting with monovalent receptors is only slightly more complex ${ }^{l l}$. The main complication is that the ligands may crosslink receptors on each cell as well as form bridges between cells. Although I will emphasize cell-cell interactions, it should be recognized that most of the results would hold with minor modifications for cellsubstrate interactinns and that some would apply to the interaction of a cell with itself, in which, for example a cell protrusion sticks to some portion of the cell surface.

Although it is possible for cells with immobile receptos s to stick to each other, this generally requires a high density of surface receptors on each cell. The problem has been treated by Chak and Hart ${ }^{12}$.

Rate and Extent of lntercellular Bond Formation
Assume that two cells wich complementary mobile receptors come into contact with each other. Unless there are very many receptors per unit area un say the second cell, it is unlikely that a particular receptor on the f:ist cell will immediately find a complementary receptor on the second cell so positioned and oriented as to permit immediate binding. However insofar as the receptors are mobile they can diffuse about until by chance they achieve positions and orientations which do permit bond formation. A theory has been develcned for predicting such rates of bond formation assuming that the receptors are diffusing on two dimensional surfaces with known diffusion coefficients ${ }^{13,14 .}$ In addition, something must be known about the intrinsic rate constants
for reaction of the receptors. This information can be obtained from measured reaction rates in solution, if available.

If $N_{1 f}(x, t)$ and $N_{2 f}(x, t)$ are the numbers of free receptors per unit area on the two cells at position x and time $t, N_{b}(x, t)$ is the number of intercellular bonds, and k_{+}and k_{-}are the forward and reverse rate constants for intercellular bond formation, we may write

$$
\begin{equation*}
\frac{\mathrm{dN}}{\mathrm{dt}} \mathrm{k}_{+} \mathrm{N}_{1 \mathrm{f}} \mathrm{~N}_{2 \mathrm{f}}-\mathrm{k}_{-} \mathrm{N}_{\mathrm{b}} \tag{1}
\end{equation*}
$$

According to the theory 13,14 the rate constants may be calculated from the receptor diffusion constants, D_{1} and D_{2}, which are measurable, and solution reaction rates. In particular

$$
\begin{equation*}
\mathrm{k}_{+}=2 \pi \mathrm{E}\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right) \tag{2}
\end{equation*}
$$

where E is a factor (< 1) by which the reaction rate falls short of the diffusion limit. Moreover the equilibrium constant, $K^{m} \div k_{+} / k_{-}$, for membrane bound reaclants may be related to the equilibrium constant k^{s} for reactants in solution by

$$
\begin{equation*}
K^{m}=\frac{K^{s}}{R} \tag{3}
\end{equation*}
$$

where R is some distance $\sim 10-100 \AA$, relative to a lipid bilayer, within which the reactants may be localized.

From these equations we can deduce some important conclusions. First of all, the rate of bond formation can be very large. Consider for example, cells such as small lymphocytes having $\sim 10^{5}$ receptors on their surfaces, whirh is a representative value for the number of antibody like molccules. These cells have radii $\sim 4 \mu \mathrm{~m}$ and hence area $\sim 200 \mu \mathrm{~m}^{2}$
and thus ~ 500 receptors per $\mu \mathrm{m}^{2}$. When these cells first come into contact, $N_{b}=0$ and $N_{: f} \cong N_{i}$, the total number of receptors per unit area. If we take ${ }^{9} \mathrm{D}_{1}=\mathrm{D}_{2}=10^{-10} \mathrm{~cm}^{2} / \mathrm{sec}$ and $\mathrm{E}=0.1$ then $\mathrm{k}_{+} \cong 10^{-10} \mathrm{~cm}^{2} / \mathrm{sec}$ $=10^{-2} \mu \mathrm{~m}^{2} / \mathrm{sec}$ and hence from equation (1) $\mathrm{dN}_{\mathrm{b}} / \mathrm{dt} \cong 2.5 \times 10^{3} / \mu \mathrm{m}^{2} \mathrm{sec}$. Thus if these two cells are in contact over an area $\sim l \mu^{2}$ for a few msec, they can establish ~ 10 bonds, which it will be seen, may suffice to provide rather tight binding.

After the cells have been in contact for a while, $N_{b}(x, t)$ will increase at positions in the contact area. Bond formation will reduce $N_{\text {I }}$ locally but further free rereptors will diffuse into the contact area. Indeed, if the contact area is only a suitably small fraction of the cell surface, and if the diffusion of free receptors is not impeded by the presence of bound receptors, then ${ }^{15}$ at equilibrium $N_{f i} \cong N_{i}$ so that the number of bonds per unit area is, from equations (1) and (3)

$$
\begin{equation*}
N_{t} \cong K^{m} N_{1} N_{2}=\frac{K^{s}}{k} N_{1} N_{2} \tag{4}
\end{equation*}
$$

This means that the number of bonds per unit area can greatly excede the initial number of receptors per unit area. Indeed this can happen evcn for moderate values of K^{s} because of the very high local concentrations of receptors adjacent to the cell surface. Suppose, for example, that $K^{s}=10^{6} \mathrm{M}^{-1}=1.7 \times 10^{-15} \mathrm{~cm}^{3} /$ moiecule and $\mathrm{R}=20 \AA^{\circ}$. Then $\mathrm{K}^{\mathrm{m}} \cong 10^{-8} \mathrm{~cm}^{2}$ $=1 \mu \mathrm{~m}^{2}$ so that for $\mathrm{N}_{\mathrm{i}}=500 / \mu \mathrm{m}^{2}, \mathrm{~K}^{\mathrm{m}} \mathrm{N}_{\mathrm{i}}=500$. This means that these parameters could lead to a five hundred fold concentration of receptors in the contact area, i.e. $N_{b} \cong 500 \mathrm{~N}_{\mathrm{i}}$, where $\mathrm{i}=1,2$ and $\mathrm{j}=2,1$.

Anothe: Way of interpreting these results is to observe that N_{i} / R can be interpreted as the local concentration of receptors adjacent to the surface. The aiove parameters give $N_{i} / R=500 \times 10^{8} / 2 \times 10^{-7}$
$=2.5 \times 10^{17}$ molecules $/ \mathrm{cm}^{3}=0.4 \times 10^{-3} \mathrm{M}$, a remarkabiy high concentration of specific biological macromolecules.

Note that equation (4) gives a criterion for receptor redistribution. If $K^{m} N_{1} \gg 1$, then $N_{b} \gg N_{2}$ so that the receptors on the second cell will accumulate in the contact area. Similarly if $K^{m} N_{2} \gg 1$, then $N_{b} \gg N_{i}$ so that receptois will accumulate in the contact area on the first coll. The time for receptor redistribution is of the order of r^{2} / D where r is the radius of the contact area ${ }^{15}$ which is in the range of a few seconds to a few minutes for $0.1 \mu \mathrm{~m}<\mathrm{r}<1 \mu \mathrm{~m}$ and $\mathrm{D} \cong 10^{-10} \mathrm{~cm}^{2} / \mathrm{sec}$.

It should be noted that the forcgoing model neglects biolugical complications which may be essential in many cases. Obviously, we have assumed that the receptors are mutually accessible to each other. This implies that the two cells must be able to get close enough together and that there must not be intervening macromolecules masking the receptors from each other. It is predicted ${ }^{16,17}$ that non-specific electrical forces will permit the lipid bilayers to approach to within 50-100 \AA cf each other and indeed will favor such equilibrium separations. On the other hand it appears that at least invivo cells are often separated by such molecules as collagen, fibronectin, or mucopolysaccharides ${ }^{7}$. In such cases, the adhesion cf cells to molecules of the extracellular matrix is important, while opportunities for direct contact between integral membrane glycoproteins may be minimal unless the matrix is disrupted.

Anst:ier problem concerns the mobility of cell receptors. For one thing, in photobleaching experiments ${ }^{9}$ a íraction of the cell surface molecules often appear to be immobile. There are various explanations for this apparently immobile fraction, but one possibility might be
that there are local variations of receptor mobility over the cell surface such that, for example, receptors on cell protrusions such as microvilli are relatively immobile. This is believed to be the case for intestiral epitheliai cells. In addition, there is evidence that the adhesion of cells to objects can reduce the mobility of receptors on the whole cell surface ${ }^{18}$, presumably by modulating the linkage of receptors to the cytorkeleton, and that cytoskeletal connections accumulate in regions of cell-cell contact ${ }^{19}$.

Thus under various circumstanres cells can modulate the mobility of their receptors. In particular since adhesion per se may lead to mobility changes and indeed to receptor phagorytosis (eating) or excylosis (shedding), I suggest that the foregoing model may represent only the early stages of cell-cell binding and receptor redistribution. The sequelae may be complex and biologically important but are outside the scope of the model.

Sirength of Specific Bonds
It is of interest to consider how effective specific bonds are in holding two cells together, or a cell to a substrate, in opposition to hydrodynamic or other forces. To this end I have estimated the force which is required in order to rapdily break a typical antigen antibody bond ${ }^{13}$. In general, bonding may be viewed as due to some free energy minimum, of depth $-E_{o}$, selative to well separated reartants, and of range r_{0} in some reaction coordinate. The force which is required in order to eliminate bonding is of the order of $F_{o}=F_{o} / r_{o}$, which for a typical antigen-antıbody bond is around 1.2×10^{-5} dynes.

Of course each bond is spontaneousiy reversible and no force at all is required in order lo break it if one is willing to wait long enrough. But if two cells are stuck together by many bonds there is virtually no chance that they will all be broken at one time, unless a force is applied so as to stress the bonds (or unless the cells do something active to terminate binding). Under these circumstances, a bond lifetime t , is expected to depend exponentially on the force per bond, f,

$$
\begin{equation*}
T \cong T_{o} \exp \left[\left(E_{0}-r_{o} f\right) / k T l\right. \tag{5}
\end{equation*}
$$

where T_{0} is some natural bond frequency. T_{0} can be estimated from $F_{\text {. }}$ and $T(i=0)$, which is teciprocal of the reverse rate constant for bond formation. In equation $5, T$ is the absolute temperatur: and k is Boltzmann's constant.

Using this approach, I have estimated ${ }^{13}$ that a force $\approx 4 \times 10^{-6}$ dynes/ bond ($\sim 1 / 3 \mathrm{~F}_{\mathrm{o}}$) will suffice for separating the cells. These estimates were made for particular bond parameters, $E_{o}=8.5 \mathrm{kcal} / \mathrm{mole}, r_{0}=5 \mathrm{~A}^{\mathrm{A}}$, and for $\mathrm{K}^{\mathrm{m}} \mathrm{N}_{2}=1 n^{3}$ and could vary by a factor twe or more for other bond parameters of interest.

This force may be compared with other forces to which a cell may be subject. First of all there are non-specific electrical forces between cells because they are charged and polarizable objects. It has been predicted ${ }^{16,17}$ that the long range (van der waals) forces are attractive and that a force $\sim 10^{-5}$ dynes μm^{-2} is required to separate two cells from this attraction. Note that this is equivalent to about 2 of our specific bonds $/ \mu_{\mathrm{m}}{ }^{2}$. Since much larger receptor densities are expected, it is clear that specific bonds can be much stronger than the non specific attractive electrical forces.

The force required to hold a cell in a fluid strean can be estimated by Stokes law for laminar flow around a sphere. Tite result is ${ }^{13}$, for a sphere of radius $4 \mu \mathrm{~m}$ that $थ 13 v$ bonds will suffice to resist a flow of $\mathrm{v} \mathrm{cm} / \mathrm{sec}$. If, for example we are considering the adhesion of a lymphocyte to an endothelial cell in the venule of a lymoh node ${ }^{20}$ where $v \cong 0.3 \mathrm{~cm} / \mathrm{sec}$, this tells us that around 4 bonds should suffice to attach the cell.

Such estimates assume that all o! the bonds are equally stressed. This may be a reasonable approximation for attachment of a lymphocyte to an endothelial cell, where a single microvillus on the lymphocyte appears to stick to a local pit on the endothelial cell ${ }^{21}$, but it greatly overestimates the sirongth of attachment in other cases. For example, experiments fove been performed ${ }^{22}$ with cells which have been permited to adhere to the surface of a circular disc. The disc is then spun in a fluid at an angular velocity such that cells near the periphery are stripped off while thse near the axis are unperturbed. At some intermediate radius the cells are just barely removed.

The fluid flow near the rotating disc is nearly laminar and analysis shows ${ }^{23}$ that the drag force or stress per unit area on the disc is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{D}}=0.8 \mu \mathrm{r} \omega^{3 / 2} \nu^{-1 / 2} \tag{6}
\end{equation*}
$$

where μ is the fluid viscosity (in dyne-seconds per cm^{2}), r is the radius under consideration, ω is the angular velocity and v is μ / ρ with ρ
the fluid density. In water $\mu=v=0.01$ so that

$$
\begin{equation*}
F_{D}=0.08 \mathrm{rw}^{3 / 2} \text { dynes } / \mathrm{cm}^{2} \tag{7}
\end{equation*}
$$

This force acts on the disc parallel to its surface and if there is a flattened cell on the surface this , tress will terd to remove the cell from the surface. At some radius r there will be a critical sheer stress $F_{D C}$ which is just sufficient to remove the cells. The force on

In our fest imatr of bond strenght, it was atsoumed that as a rereptorreceptor hond is strossed, this will he the weakest link in the rhain. It is easy to ser that covalent bonds in a receptor are much stromger for they have about tonfold larger values of E_{o} and threrfold smaller values of r_{0}. However it is less clear that the roceptor will tot pull out of the lipid bilayer. For a particular integral membran. protein, glycophorin, I have estimated ${ }^{13}$ that the insee required to urroot this receptor is about 1.0×10^{-5} dyncs. For a ganglioside (lipid molecule. with attached sugars) the corresponding force was estimated to be near 5×10^{-6} dynes. It thas appears that the competition between receptor uprooting a.d bond breaking will depead on the precise nature the receptor and strength of the bond.

Sume Keront Fxprerinent:
 motrpuet a wade rathe of experiments. fontader, for example a surtate

 Jagand anterationts and broptors on the top surtace may, it still

 daffasan cometant of feceptors on matrophages. Thesp receptors
 (las:ses wf antibodirs. Itwe experiment is perfurned :ach that the erels arr !irst alluwad la spredi on the surface which is then coated with amtibodares in the odd. The wells are then warmed and a rapid disappearalar ef to recrptors from the top surface is observed while other reopeors on \quad op donot disappear. From the observed rate of disappearance mat at:aming that receptors which diffuse of the top never retura, it is posisible to deduce for the receptors in the cell membrane, a diflusion corfficient $=10^{-9} \mathrm{~cm}^{2} / \mathrm{sec}$. This is a much larger value of D than expected trom photobleaching experiments on other receptors and other vells. In the photubleaching experiments, fluorescent ligands are first bound to the receptors and then bleached by a pulse of laser light. The question is thus raised whether in such experiments the mobility of the receptor may be reduced by either ligand attachment or the iight pulse. In this context it is of interest to note ${ }^{25}$ that hybrid antibodies, one arm of which binds to a receptor and the other arm to ferritin or to virus, are capable of inducing reseptor clustering, a reaction normally associated with the crosslinking of receptors by bivalent ligands. These results raise the possiblity that fluorescein

 studying the adhesion betwern chromalfingratules fromerlls of the adranal

 the proteins air removed, the sticking probabilitifs are reduced by around two orders of magnitude. The interpretation ${ }^{27}$ is that proterin-protoin intcractions facilitate efficient sticking.

Alter two gramules arc firmly stuck together, frecod-lrarture electron microscopy suggests that proteins are systrmatically rxcluded from the contact area. It has been suggested ${ }^{27}$ that this is because certain lipids become concentrated in the contact area. That is, the protein mediated contact facilitates a phase separation of lipids which in turn excludee proteins, save around the periphery of the contact area.

 invalveri.

Referrince:i:

1. Nicrision, G.i., Int. Krv. liytol. 39, 89 ! 1974).
2. Kırgir, M., Pros. Nat. Acad. Sci. iSA 62, 994 (1969).
3. Karombes, S.ll. and Kosen, S.l). in Neuronal Recognition, ed. Buromdes, S.ll., Plemm Press, NY, (1976).
4. Burger, M.M., Turner, K.S., Kuhns, W.J. and Weinbaum, G., Phil. Trans. K. Soc. loud. B 271, 379 (1975).
5. Kulishaucr, U., Thiery, J.-!., Brackenhury, R., Sela, B. - A., arid Filelman, G., Prur. Nat. Acad. Sci. USA 73, 577 (1976).
6. GrinneJ], F., Int. Rev, of Cylology, 53, 65 (1978).
7. Surfaces of Nurmal and Malignant Cells, ed. R. Hynes, Wyley lnt. in press.
8. Singer, S.J. and Nicolson, G.L. Science 175, 720 (1972).
9. Webb, W.W., Frontiers of Biol. Encrgetics 2, 1333 (1978).

10. Smith, I.., llıiv. litalı, Biomeng. Irept., frivatr comm.
 (Iリ(I!) .
11. Silverstein, S., Rockrfoller Univ., Mintutir ripl in prep.
 Lardis, M.P., Proc. Nat. Acal. Sci. USA 71,932 (1974).
12. Morris, S..J., Clıiu, V.C.K., and Haynes, D. H., Momb. Hiochem. 2, 163 (1979).
13. Haynes, D. H., Kolber, M.A. and Morras, S.J., J. Theor. Biol., in press.
