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Abstract

Emittance can be measured by intercepting an elec-
tron beam on a range thick plate and then observing the
expansion of beamlets transinitted through small holes.
The hole size is selected to minimize space charge effects.
In the presence of a magnetic field the beamlets have a
spiral trajectory and the usual field free formulation must
be modified. To interpret emittance in the presence of a
magnetic field an envelope equation is derived in the ap-
propriate rotating frame.

Introduction

Emittance in a magnetic field can be measured by using
an emittance mask or “pepper” pot plate to Cetermine the
change in radius of a2 small radius beamlet which transmits
through the emittance mask. There is a straightforward
envelope equation formula that is commonly used in exper-
imenis with a beamlet in a field free region to determine
emittance. However, in a magnetic field a beamlet does
not travel in a straight line, but rather rotates at the cy-
clotron frequency in a spiral path. In order to analyze
emittance measuring experiments, when a magnetic field
is present it is necessary to examine the envelope equation
in 2 frame which eliminates the effect of the spiral mo-
tior. To accomplish this goal the beamlet is desciibed by
an envelope equation applicable to a frame rotating at the
cyclotron frequency.

For comparison we first derive the formula based on the
field free emittance measurement. Next the envelope equa-
tion for a beamlet in a magnetic field is derived, introduc-
ing a new quantity @, which enters the envelope equation
quadratically with the emittance. To augment the inter-
pretation of experimental data the envelope equation in
the rotating frame is written with quantities expressed in
terms of lab frame equivalents. A discussion is given of the
assumptions necessary to allow an identification of the Qs
function with the familiar canonical angular momentuni.

Field Free Emittance Measurecment

The field free emittance is measured by observing the
initial and final radius of a beamlet which passes through
a hole in a range thick emittance mask. Over a known
distance the change in radius is related to the emittance by
the envelope equation. For constant energy and assuming
canonical angular momentum is zero, the rms envelope
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equation [1] for current [; is,
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Generally the beamlet transmits through a hole in the
emittance mask small enough so the dynamics are domi-
nated by emittance rather than space charge. The criteria
for an emittance dominated beam is that I,/17000y <<
E},.m/ R?, which for known current, v and expected emit-
tance specxﬁes a bound on the emittance mask hole ra-
dius, To analyze the beamlet it is assumed current is small
enough to satisfy this criteria, and in a field free region
k. = 0 so the governing equation is,
2 blet ﬁm (2)
dz? 72Rglet

where Ry is the rms radius of the beamlet and Ey.
is the emittance of the beamlet. Solving Eq.(2) the rms
radius is then related to the emittance by,

K R — Eglel =K K R2 — Egle: 3
14lpjee %3 =Kz + ity 2 ()

where the constant K = (dRotet/d2)§ + BE,./(YRo)?
depends on the initial conditions. In a typical experiment
(dRyier/dz)g = 0 and we obtain,

=0

TRy
Eppey = 12 Ry ~ R @

For a known emittance mask hole size (\/ng) and mea-
sured final beamlet rms radius, the normalized rms emit-
tance, Elje is given by Eq.(4). Under the assumpuon ofa
uniform phase space fill ot/ EZje; = Ibeam/ EZ,am and the
beam emittance can be expressed in terms of the currents

and beamlet emittance,
Ibeam
- R3 \f
blcl 0 Iblet

Alternatively a number of beamlets may be used to obtain
velocity angles at several beam radit and a phase space
plot can then be constructed. The emittance is derived
from the area of the circumscribing phase space ellipse.

®

Epeam = I

Emittance Measurement in a Magnetic Field

In a magnetic field it is necessary to derive an envelope
equation in a frame rotating with the beam. Generally
for an experiment in which the goal is to achieve as small
a beam focus as possible the initial beam emission is set
up to guarantee the canonical angular momentum of the
beam is zero. When the canonical angular momentum of
the beam is zero the appropriate rotation frequency of the
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frame rotating with the beamlet is the cyclotron frequency.
The starting point of the derivation is Eq.(17) from tefer-
ence [1], where energy is assumed to be constant and self
forces are neglected.
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Neglecting self forces is a similar assumption to the no
space charge criteria discussed previously. In Eq.(8) the
cyclotron frequency contains the sign of the charge, w. =
¢B./ymec. The desired rotating frame rotates in the same
direction as an electron. For 8; > 0 and v; > 0 an electron
rotates in the @ direction, so the correct angular rotation
vector is |wc|Z, and because for an electron the charge is
negative, this is —w.Z. Denoting by an asterisk the time
derivative in the rotating frame, the relation between the
time derivative in the fixed frame to that in the rotating
frame is d/dt = d/dt* —w, 2 x. Using this relation in Eq.{6)
gives,

(6)
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To get a force eguation for the vector from the beamlet
centroid to the particle, 7, set 7 = o+ Frot Where o is
the vector from the original origin to the center of rotation
and the 1 is the vector from the center of rotation to the
partlcle The beamlet centroid is assumed to be located
by & from the original origin, and k= Fror + Te, where
7 locates the beamlet center from the center of rotation.
The equation for h is the same as that of ¥ in Eq.(7).
Consequently ¥ — h must also satisfy the same equation
and this gives the equation for o~ re = 7 which yields
the desired equation for

—=(we)2x (7}
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To derive an envelope eguation from Eq.(8) three sub-
sidiary equations are obtained from dot products. An
energy equation is obtained from the dot product with

di~/dt,
d (dF\?
dr \dr

where I = [ x di™ /dt*]. 3
from a dot product with ™
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The third equation is obtained from the z component of
™ x Eq.(8),

d(.)c

= ©

. A virial equation is obtained

(10)
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The average, <> over a slice of the beamlet is defined to
be a summation of a particle quantity over the radial slice,

<>= L TN, Forexample L =< 1>, R* =< r*2 >, and
V2 =< (dr*/dt")}® >. Averaging over Eq.(9) gives,

d . pdwe
& =l (12)
averaging over Eq.(10) gives,
d? (R? 2
—_— — ) = - )
pITE ( ) ) V?—wlL (13)
and averaging over Eq.(11) gives,
dL _ R dw, we dRr*?
FE T A ()

From Eq. (14) it can be shown dQp/dt* = 0 where @ =

7(L — w.R?[2)/c. Using Eq.(13) in Eq.(12) to eliminate
d SR A
d_!'—(R dt'2+ —wiR )—0

An integration of Eq.(15) gives the beamlet envelope equa-
tion in the rotating frame,

(15)

dERuye 1, B +QF _
] + Zk:Rblet il 721?2.“ =0 (16)

where Ef ), = 7° RY (V2 —(dRper/dt* ) —(Lf Rujet)?) /2.
Note that Epy.: and L refer to the emittance and angular
momentum of the beamlet. If rotation shear in the original
beam which intercepts the emittance mask can be ignored
and we assume L = 0 this leads to Qp ~ —yk.R?/2 and
then Eq.(16) becomes,

d? Rble: =

T

Eblet

(17
v Rblev.
Under this condition Eq.(5) can be used to determine erait-
tance, and the answer is identical to the field free case.

For the most general situation the rotating frame quan-
tities EJ),, and @F need to be related to the stationary lab
frame. Ej, is a preserved quantity since there is no scat-
Lermg and Q3 is preserved as a consequence of Eq.(14). It
is therefore only necessary to find the relationship between
the lab and rotating frame quantiti&s at the creation posi-
tion of the beamlet and it is then known for all positions.
From the usual definitions V? = V2, + w2R},., and also
L = Lip + weftd),,. Thus the deﬁnmon ‘of the beamlet
emittance can be expressed in terms of lab guantities at
the creation position of the beamlet,

(dRutes/dt")? = (Liab/ Riret)?)/c?
(18

and the rotating frame quantity Qs is expressed in terms
of lab angular momentum,

Bl = Y R Vido —

Qo= (Llab + Fwe Rbm) (19

The expression on the right hand side of Eq.(19) is very
similar to the definition of the whole beam canonical angu-
lar momentum. The correspondence is however incomplete



since the whole beam canonical angular momentum is an
average over all particles and Liqb has only included parti-
cles contained in the beamlet. To make further progress it
is assumed that any part of the whole beam is character-
ized by any other smaller subset. When this assumption
is satisfied we have Q¢ = Py.

In Eq.(18) there is an additional problem beyond the
question of uniformity because dRpier/dt” is the conver-
gence or divergence of the beamlet with respect to its cen-
ter, whereas the analogous quantity for the whole beam
is with respect to the whole beam center. This means in
general the beamlet quantity particles have a net inward
or outward motion with respect to the whole beam center.
For the beamlet this is like a steering kick. To avoid this
problem it is assumed the whole heam arrives at the beam-
let creation location at a waist. At this location we then
have, from the assumption of uniform phase space fill,

2 _ Iblet 2
Eblel = T Ebeam
beam

=A'E§BBITI (20)
The X function can be expressed in terms of the beam
@peam and beamlet radius apje;. The beamlet current den-
sity is assumed to be uniform over its area with a value
given by the whole beam (uniform phase space) current
density at the beamlet centroid position ry.

-]
1 _—

Gbeam
Using Ipter = frazbm.lbm and £q.(2!) we find,
X = 2(Gblet/Gbeam) (1 — (ra/aveam)*). The canonical an-
gular momentum of the whole beam is assumed to be zero

and then the beamlet envelope equation in the rotating
frame is,

b3 (.
Jblet = =322
beam

(21)
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From Eq.(22) the radial spread of a beamlet can be used
to determine Epeam.

Often in experiments an attempt is made to eliminate
the field in the beamlet expansion region. Thus an inter-
esting comparison is the size of the second and third terms
in Eq.(22). This comparison indicates how successful one
must be experimentally at eliminating field leakage so the
emittance dominates the expansion of the beamlet. The
two terms are equal at a field strength of,

3400 Ebeam V¥

2
blet

Blgauss] = (23)

The condition given by Eq.(23) specifies the field such that
the beamlet does not change radius if the initial beamlet
dR/dz = 0. For B less than the value given hy Eq.(23) the
emittance is dominant, and when it is greater the magnetic
field is dominant, For nominal values of Epeam = 0.25
rad-cm, Rpiee = 0.1 cm and X = 0.01 cm £q.(23) gives
B = 8500 gauss.

In a situation where k. is constant in z Eq.(22) can be
solved,
kez =sin™} [__kf_R%m — 21\'2]

e
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where the constant Ko = (dRY,,./dz)? + 0.25k2(R,..)° +
(X Efeam)/(YRL:)?, is from the initial conditions, and
3 =4K3 —4XE'g“m(kc/7)2. Since Epeam is contained in
the definition of K2 and K3, it can be seen that Eq.(24) is
a transcendental equation for Fyeamm. When k. is small the
starting point for a numerical solution is to use the field
free solution for Epeam-

29)

In an experiment where emittance is known Eq.(22)
can be solved to give the bean.let radius at a particular
location.

1
Rpjer =—1/2K;5 +
ke
" _ks(Rglet)z — 2K,

- K3

As a test of the derivation of Eq.(22) and the Eq.(25) so-
lution, a particle code was used to follow a beamlct over
a distance of 71.2 cm with 1600 partices. The magnetic
field was 2530 gauss, @veam = 1 cmi, Gplee = 0.15 cm,
Epeam = 0.25 rad-cm, ¥ = 34 and R}, = 0.104. The
Eq.(25) solution gives e = 0.48 cm: for these parameters
and the computer simulation gives a value of Rpjez = 0.50
cm which agrees to 4%.
Summary

Kzsin (k.z +sin™! [p])

(25)

The formula relating the emittance to the initial and fi-
nal transmitted heamlet radius has been derived for a field
free measurement. A beamlet envelope equation aeglect-
ing space charge and assuming constant energy has been
derived in a frame rotating at the cyclotron frequency. It
was found when the beamlet does not have any angular
momentum the magnetic field term in the rotating frame
envelope equation is canceled by the Q¢ contribution. In
this situation the rotating frame envelope equation is iden-
tical to the field free case and the original relation for
emittance in terms of initial and final transmitted beamlet
radius is applicable. In the general case an equivalence be-
tween lab canonical angular momenturn and @y has been
shown and the assumptions necessary for this to be valid
have heen discussed. For uniform phase space the enve-
lope equation in the rotaiing frame was written in terins
of the lab or whole beam emittance. In order to do this
it was necessary to assume a beam waist at the beam-
let creation position. It is the measurement of the whole
beam emittance that is the usual experimental objective.
An expression that may be numerically solved has been
determined to solve for the whole beam emittance, given
experimental values of beam energy, magnetic field, initial
and final beamlet radius. For a situation where emittance
is known a solution has been derived for the beamlet ra-
dius at any position. This solution has been tested against
a particle code and found to agree to within 4%.
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