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Summary.-=A brief review oflcytonetry instrumentation and its potential
applications in tumor biology is preiented using our recent data. Age-
distribution measurements of cells from spontaneous dog tumors and cultured
cell; after exposure to X-rays, alpha particles, or adriamycin are shown. The
data show that DNA fluorescence meaéurenents have application in the study of
cell kinetics after either radiation or drug treatment. Extensive and careful

experimentation is needed to utilize the sophisticated developments in flow

cytometry instrumentation.



Developments in the analysis of cells by flow, commonly termed "flow
cytometry” or "flow mi:rofluorometry (FMF)," have provided a variety of
instruments having applications in biology and medicine. Some flow-systems
developments pertinent to radiobiology and oncology will be reviewed briefly
in this paper. The applications and pitfalls are discussed in relation to our
recent data.

In certain respects, flow cytometric instrumentation is an extension of the
radiation detection and electronic signal processing technology developed to
study atomic nuclei (i.e., gamma-ray spectroscopy). Briefly, electronic and
optical aignals from individual cells are obtaiuned for various cellular
parameters such as size, DNA, RNA, protein, or light scatter (Fig. 1).
Innovations in cell staining techniques and in optical, electrical, aand
mechanical developments have provided the present state-of-the-art in cell
analysis capabilities. The signals from sereral parameters of each cell can
be processed either individually or in combination using pulse-height
anslyzers or computers. Those ca2lls of interest can be sorted out for
morphological, clonogenic, or other analyses using any one or a combination of
these signals. The historical development of flow cytometry imnstruments has
been reviewed by Mullaney et al. (1976), Arndt-Jovin and Jovin (1978),
Melamed, Mullaney and Mendelsohn (1979), and Salzman (1979).

The most commonly measured parameter to date by flow cytometric techniques
has been DNA content by measuring the fluorescence of cells stained with
DNA-specific fluorochromes such as mithramycin (Crissman and Tobey, 1974),
propidium iodide (Krishan, 1975), and combined ethidium bromide plus
mithramycin (Barlogie et al., 1976). In many cases, this allows quantitation
of cells in the Go/GI’ S, and GZ/H stages of the cell cycle. Since the DNA

content of quiescent Go and cycling G1 cells and the DNA content of Gz- and



M-phase cells are the same, currently it is difficult to resolve them from one
another. However, at least three staining techniques have been developed that
promise to improve the GO/G1 distinction, including (1) incorporation of
bromodeoxyuridine (BUdR) into the cellular DNA of cycling cells to resolve G°
from G1 cells (Swartzendruber, 1977); (2) improved discrimination between Go
and G1 cells and G2 from M cells utilizing acridine orange in which
differences in DNA denaturation allow a distinction between them (Darzynkiewicz
et al., 1977, 1979); and (3) fluorescent antibody detection of cycling cells
that have incorporated BUdR compared to noncycling cells that do aot take up
this thymidine analog (Gratzmer and Ingram, 1979). Although these techniques
requires some protocol modification for use with different cell systems,
however, when properly used, the potential exists for improvecd discrimination
of G° from G1 cells and G2 from M cells.

Most staining techniques presentiy require fixation of the cells; hence,
when using these methods, it is not possible to distinguish clonogenic from
nonclonogenic cells. Arndt-Jovin and Jovin (1977) found that the bis-
benzimidazole dye Hoechst 33342 could be used to obtiin DNA distributioms with
a minimal decrease in viability or clonogenicity of the stained cells.

Twentyman et al. (1979) and Pallavicini et al. (1979) used Hoechst 33342-

stained and sorted tumor cells to study the clonogenicity of cells in
different stages of the cell cycle. It is important to understand the
biochemistry of cell staining, without which the cytometry data could be
misleading.

A major limitation in interpreting flow DNA distributions is the hetero-
geneity of cells within tumors and the overlapping tumor cell and somatic cell

DNA contents. Using multiparameter flow analyses with markers such as protein

content, Coulter volume, or small-angle light-scatter cell-size measurements,



improved separation of tumor from normal cells can be achieved (Steinkamp,
1977). Tumor cells tend to have a greater protein mass for a given DNA
conent than normal cells. Therefore, simultaneous measurements of protein
and DNA, in certain cases, can distinguish tumor cells from normal cells, even

when the DNA contents are the same (Crissman et al., 1978).

RESULTS AND DISCUSSION

We are currently cesting for a possible correlation between DNA histograms
by flow cytometry of dog tumor biopsies and tumor histepathology in collabora-
tion with the Veterinary School at Colorado State University in Fort Collins,
Colorado. Spontaneous dog tumors are being studied at the Los Alamos
Scientific Laboratory as models for human tumors. Figure 2 illustrates two
examples of DNA distributions obtained from spontaneous dog tumors (i.e., a
diploid hemangiosarcoma and a hyperdiploid mammary carcinoma). As of
August 1979, we have analyzed 75 dog tumors and numerous normal dog tissues.
The DNA index* for these neoplasms has ranged from 1.0 to 3.0, with a mean of
1.4. Those solid tumors with a DNA index 2 1.4 have had higher fractions of
cycling cells (S + G2 + M) and were usually classified histopathologically as
more undifferentiated. Interestingly, a previous study by Atkin (1966)
indicated that bumar cervical carcinomas having near-tetraploid DNA contents
responded more favorably to radiotherapy than near-diploid tumors while, for
breast carcinomas, near-diploid tumors showed better radiation responses than
higher DNA content lesions (Atkin, 1966). More definitive and correlative
data are needed to establish the relationship of tumor histology, DNA content,

and radiosensitivity.

*

DNA index = Tumor GO/G1 Fluorescence Peak Channel

, where the normal leuko-

Normal Dog Leukocyte GO/G
Fluorescence Peak Channel®

cyte DNA contents are normalized to 1.0.
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DNA diastributions are useful for studying cell kipnetics and progression
effects induced by various therapy modalities. Figure 3A compares the
distribution of cells about the life cycle for V79 monolayer cells exposed to
X-rays and plutonium alpha particles of matched doses resulting in 10%
survival. These results suggest that, after alpha-particle exposure, the
retention of cells in S phase is longer in time compared to X-rays. S-phase-
specific retenvion for alpha particles may be coupled with a longer mitotic
delay compared to X-rays at a given survival level--consistent with the
observations that the RBE for high-LET radiations is higher for the end point
of mitotic delay compared to the RBE for cell killing.

Reoxygenation and redistribution of cells treated with fractionated X-rays
have been studied using V79-171b Chinese hamster multicellular spheroids. DNA
distributions of cells from 10- and 2l-day-old control spﬁeroids and
irradiated spheroids (333 rad x 1 fraction and 333 x 6 fractions in 2 wk) are
shown in Fig. 4, illustrating the increased cycling fraction (S + G2 + M) of
cells in the spheroids treated with fractionated radiation due to
reoXygenation and entry of arrested hypoxic cells into cycling. This
reoxygenation effect was suggested by an increase in the Coulter volume
distribution curves and increased cycling fraction of the 2l-day-old spheroids
treated with fractionated X-rays compared to control spheroids (Figs. 5C and
5D). These results are consistent with the reoxygenation and radio-
sensitization of V79-171b spheroid cells observed by Sutherland and Durand
(1976) for split-dose irradiation.

It is known that considerable variability exists in tumor respouse to the
drug adriamycin. Figure 6 shows the results of our recent cell progression
studies using a regular V79 Chinese hamster cell line and an adriamycin-
resistant V79 line developed by Belli et al. (1978). A comparison of the DNA
distributions for adriamycin-exposed cells clearly shows that dramatic

-



cytokinetic perturbations occur in regular V79 cells, compared to practically
no change except for some S-phase decrease in adriamycin-resistant V79 cells
(Fig. 6). If most of these blocked cells are doomed to die, whi h was found
to be the case with these data, then the magnitude and duration of the therapy
perturbations might be predictive of the cell-killing response for a given
treatment. Since the DNA distributions canEDe obtained rapidly, such meazure-
ments may be helpful in selecting patients who would respond favorably to a
given drug, or vice versa. Such measurements on tumor cells from surgical or
biopsy specimens assayed in vitro may be useful in predicting tumor response
in patients for a given drug. These measurements, however, could be limiting
for certain tumors in which a few cells are cycling and accumulate in G2
perhaps even in culture. Although the role of cell kinetics in tumor biology
has been questioned in terms of clinical application, cytometry instrumenta-
tion could be a helpful test to resolve this important question. '
Light-scatter and low- and high-frequency electrical impedance measurements
also have been used to characterize cells. Light-scatter measurements are
being used to obtain cell size and cell surface information from unfixed
cells, with or without staining. Multinle-angle light-scattering measurements
are being used to study the morphology of cells (Salzman et al., 1975).
Swartzendruber et al. (1979) showed that, in the mouse teratocarcinoma system,
multiple-angle light-scatter measurements were useful for distinguishing among
differentiated epithelial cells, differentiated neuromnal cells, and thei:
undifferentiated neoplastic precursors. High-frequency rf-impedance flow
sensing of cells in the l- to 10-MHz range has been used to study the
resistivities of cells (Hoffman and Britt, 1979). Hoffman and Swartzendruber

(1979) demonstrated experimentally that rf-imped:nce was useful in



diatinguishing between differentiated and undifferentiated teratocarcinoma
cells of similar size. In addition, preliminary studies in our Laboratory
have shown that dual-parameter Coulter dc volume and rf-impedance sensing
could detect subtle drug and X-ray-induced damage in V79 monolayer cells that
was not evident by cell-size, light-scatter, or DNA fluorescence measurements.

The biological interpretation of flow data obtained by multiparameter
studies, as well as light-scatter and/or electrical impedance measurements of
cells, is still in its embryonic stage. Only repetitive experiments using
simple biological systems in reference to known biological phenomena may lead
to an understanding of such data.

CONCLUSIONS

The introduction of flow cytometry instrumentation into hiology and medicine
has made it possible to examine quantitatively the various cellular and sub-
cellular parameters that, until recently, were difficult or impossible to
measure. The initial viomedical research expectations for flow cytometry
instrume:ntation were rather high. Because of the biolggical complexities, the
sophisticated developments of flow instrumentation have far surpassed our
ability to solve prob!:ms of biological interest. The potential for further
improvements in our knowledge in tumor biology is there but requires extensive
and careful experimentation to understand the biological meaning of the
enormous amount of data collected by these instruments. It is important that
we do not fall into the trap that has been so aptly described by the famous
Indian poet (Mobel Laureate) Tagore, regarding people with a literary mind:

we must not get so tusy with our nets that we neglect the fishing.
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FIG. 1. Schematic diagram of a flow cytometry instrument.
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FIG. 2.--DNA fluorescence distribution data for two spontaneous dog tumors
plotted beth as DNA distributions and of computer-generated two-parameter
contour profiles of DNA fluorescence and Coulter volume (shown in the
insert). Left) Hemangiosarcoma having a low-cycling fraction with DNA
index = 1.0. Visual separation between normal and malignant cells
was improved using two parameters. (Right) Mammary carcinoma having a
high~cycling fraction with a mixed heteroploid DNA index of 1.2

and 1.6.
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FIG. 3.--Comparison of the DNA distributions of mithramycin-stained V79
monolayer-grown cells, showing the difference in cell~cycle progression
of plutonium alpha particle vs. X-ray-exposed (XRT) cells that received
isosutvival (10%) doses. The DNA distributions are shown for coaotrol
(-0-), XRT-10% (-X-), and a-10% (=C-) cultures sampled 9 h after
treatment. Note the larger fraction of Go/GI cells for XRT-10% compared

to @-10% at this time period, representing the shorter mitotic delay for

XRT cells.
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FIG. 4.--The effect of fractionated X-rays (XRT) on V79-171b multicellular
spﬁeroid population DNA distributions, showing accelerated growth resulting
from XRT-induced reoxygenation and redistribution. (Left) Normalized
DNA distributions of 10-day-old unirradiated (-O-) and XRT (-X-), 333 rad x
1 + 3 h, mithramycin-stained cells, showing little change. (Right) Normalized
DNA distributions of 2l-day-old unirradiated (-0-) and XRT (-X-), 333 rad x 6
in 2 wk, sampled 3 h after the last exposure. Note the increased cycling
fraction (S + Gz + M) in the 2l-day-old mithramycin-stained spheroid cells

given fractionated XRT.
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FIG. 5.--The effect of fractionated X-rays on V79-171lb spheroid mithramycin
normalized DNA distributions and Coulter volume distributinns. Isometric
plots of DNA fluorescence (X-axis), Coulter volume (Y-axis;, and cell
number (Z-axis) are shown for (A) lo;day-old coantrol spheroids; (B) 10~
day-old X-rays (333 rad + 3 h) having a small increased cycling fraction;
(C) 21-day-old control spheroids; and (D) 2l-day-old sphevoids sampled
3 h after the last of six fractions (333 rad in 2 wk), showing an
increased cycling fraction and a broadened Go/Gl Coulter distribution
due to transition of small hypoxic cells from Go/Gl by reoxygenation

and reentry into cycling.
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FIG. 6.--Comparison of the normalized cell-cycle distribution of regular V79
Chinese hamster cells (~O-) and adriamycin-resistant V79 cells (-¢~)
following exposure to adriamycin (0.5 pg/ml, 1 h) given to exponentially
growing monoiayer cells. In contrast to the dramatic S and GZIM blocks
that are evident in regular V79 cells (-C-), only a moderate S-phase
decrease was observed by 24 h postexposure in the adriamycin-resistant

cells.
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