
PERFORMANCE OF A PARALLEL ALGORITHM FOR SOLVING
THE NEUTRON DIFFUSION EQUATION ON THE HYPERCUBE*

Bernadette L. Kirk
Radiation Shielding Information Center CONF-890844—1

YousryY.Azmy npftQ nnfii28
Analysis and Design of Advanced Systems

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

P.O. Box 2008
Oak Ridge, Tennessee 37831-6362

Phone 615-574-6176
Telex(Answer Back): 854467(ORNL EPIC UD)

Abstract
The one-group, steady state neutron diffusion equation in two-dimensional

Cartesian geometry is solved using the nodal method technique. By decoupling
sets of equations representing the neutron current continuity along the length of
rows or columns of computational cells a new iterative algorithm is derived that
is more suitable to solving large practical problems. This algorithm is highly
parallelizable and is implemented on the Intel iPSC/2 hypercube in three versions
which difter essentially in the total size of communicated data. Even though speedup
was achieved, the efficiency is very low when many processors axe used leading to
the conclusion that the hypercube is not as well suited for this algorithm as shared
memory machines.

KEYWORDS: PARALLEL-ALGORITHM; HYPERCUBE; DIFFUSION;
NODAL; PERFORMANCE

"Th« submitted manuscript h»a been
authored by a contractor of the V.S.

AC05-8«on3M00, Accordingly, th« U.S.
Government r et ains a noneicclusi wfl

royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes."

*Research sponsored by the U.S. Department of Energy Office of Magnetic Fusion
under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

PERFORMANCE OF A PARALLEL ALGORITHM FOR SOLVING
THE NEUTRON DIFFUSION EQUATION ON THE HYPERCUBE

Bernadette L. Kirk and Yousry Y. Azmy
Abstract

The one-group, steady state neutron diffusion equation in two-dimensional
Cartesian geometry is solved using the nodal method technique. By decoupling
sets of equations representing the neutron current continuity along the length
of rows or columns of computational cells a new iterative algorithm is derived
that is more suitable to solving large practical problems. This algorithm is
highly parallelizable and is implemented on the Intel iPSC/2 hypercube in three
versions which differ essentially in the total size of communicated data. Even
though speedup was achieved, the efficiency is very low when many processors
are used leading to the conclusion that the hypercube is not as well suited for this
algorithm as shared memory machines.

1. INTRODUCTION
Elliptic partial differential equations (PDEs) abound in many scientific

disciplines. In reactor physics, for example, one form in which they appear
is the neutron diffusion equation. The standard approach in finding a good
approximate solution to an elliptic equation is by subdividing the coordinate
systems into intervals, thereby producing a finite mesh. Discrete variable
equations are then derived from the PDEs, and solved for the dependent discrete-
variables, locally defined with respect to the mesh. Finite-difference methods
require very fine meshes to model the neutron flux accurately. Translated into
a computing environment, these methods require large memory and long CPU
time. Nodal methods, on the other hand, have been shown to produce good
approximate solutions with the use of coarse meshes that results in a high
computational efficiency (Lawrence, 1985). Recent development of parallel
computing architectures have introduced a new challenge for numerical analysts;
namely the development of algorithms used to solve the discrete-variable
equations in parallel so that high speedups are achieved. Indeed elliptic PDEs
have been solved on the hypercube architecture (Chan et al., 19S6; Haghoo and
Proskurowski, 1988). Also parallel algorithms were developed for solving the

neutron diffusion equation on shared memory machines (Zee and Turinsky, 1987;

Rajic and Ougouag, 1988; Kirk and Azmy, 1989).

In this paper we describe a new algorithm for solving the nodal method

diffusion equations which is particularly suitable for parallelization. The

algorithm is based on decoupling the discrete-variable equations into three sets:

two tridiagonal systems representing the neutron current continuity in the x and

y directions for each row and column, respectively, and a five-point scheme system

representing the balance of neutrons over computational cells. This feature is

unique to the nodal method equations, so that the results and conclusions reached

in this work are valid only for this method.

A major concern in developing algorithms for parallel machines is the

adequacy of the parallel architecture to produce significant improvement in

the performance of the algorithm as the number of processors participating

in the solution is increased. We present three variations of our new algorithm

implemented on a distributed memory machine, INTEL'S Hypercube. Extensive

numerical testing of these variants show that speedups are obtainable on the

hypercube, but that exploiting its full potential cannot be achieved even when

extremely large problems are solved. Comparison of the performance of the

three programming schemes reveals the crucial effect of the size of communicated

messages on the speedup and efficiency.

In Section 2 we briefly outline the derivation of the nodal diffusion method

equations, and we discuss the two methods used to solve them, namely the

direct and iterative methods. In Section 3 we describe the successive relaxation

acceleration method that we applied to the iterative method, and we present

results to demonstrate its effectiveness in reducing the number of iterations

significantly. In Section 4 we present the parallel algorithm used to solve the

nodal diffusion equations on the hypercube. Three variants of this algorithm

that differ from one another in the total size of communicated messages are

compared in Section 5. The adequacy of parallel architectures of the message

passing type to solving the nodal diffusion method equations using the algorithm

presented here is discussed in Section 6. Finally, our conclusions are summarized

in Section 7.

2. T H E NODAL M E T H O D FOR T H E
N E U T R O N DIFFUSION EQUATION

In two-dimensional cartesian geometry, the one-group steady-state neutron

diffusion equation is:

where D is the diffusion coefficient, a is the macroscopic removal cross section, <j>

is the neutron scalar flux, and S is the volumetric external source of neutrons.

By dividing the problem domain into two-dimensional closed intervals of the

form [—amy+am] x [—6m,+6m], respectively, for m = 1,...,L, a nodal method

solution can be derived locally. Since details of the derivation are presented

elsewhere (Kirk and Azmy, 1989), only an outline of the development of the nodal

method neutron diffusion equation is included here.

First we average Eq. (1) over a computational cell to obtain a balance

equation relating the cell-averaged flux to the neutron current on the four

surfaces bounding that cell. Next by transverse-averaging Eq. (1) with respect

to x and y separately we obtain two ODEs with the transverse-averaged flux as

dependent variable. These can be solved by approximating the leakage term in

a truncated expansion, resulting in two expressions for the transverse-averaged

flux within the computational cell in terms of its value on the cell edges. These

expressions are used to derive additional relations between the cell-averaged flux

and the cell-surface currents. Finally, the cell-surface currents are eliminated from

the neutron balance equation yielding,

U

where 7^ = crmjDm, am and Dm being the average values of a and D over cell

m, P£ = tanh(fmam)/fmam, and P£ = tanh(7ma,n)/7mam . In Eq. (2) the cell-

averaged flux is defined by,

TA—r^ / dx / dy<t>(x' v) *
(4am6m) J J

and the cell-averaged source, Sm , is denned analogously; while the x-averaged,

surface-evaluated flux is defined by,

' / :

and the y-averaged, surface-evaluated flux, 0±m , is defined analogously. Clearly

the set of cell-averaged and transverse-averaged (i.e., x- and y-averaged) fluxes

constitute the set of discrete-variables solved for in the nodal diffusion method.

In addition to the balance equation, an equation expressing the continuity of

the neutron z-current across a y =constant surface of adjacent cells is necessary,

(3)

where w^ = (7maT OP^)2/(l — P^) , and the J-th computational cell is adjacent to

the m-th computational cell in the positive ar-direction such that the two surfaces

x = +am and x = —a; coincide. Analogously, the y-current continuity equation is:

*+»r" l26ipf j + Dn,«...,,
D uy K - ' " "N

where cell n is adjacent to cell m in the positive y-direction. Equations (2), (3),

and (4) combined with the boundary conditions form a linear set of equations

that has as many equations as unknowns. In the remainder of this section we

explore two methods for solving this system, the direct method and the iterative

method.

2.1 T H E D I R E C T M E T H O D F O R SOLVING T H E SYSTEM OF
EQUATIONS
Equations (2), (3), and (4) constitute a matrix equation of the form:

A4>z + Biv + Cl - D , (5)

where 4>z is the vector consisting of the surface fluxes, ^ I j , </>+], <^2,,<{>+L;

4>y is the vector of surface fluxes 4>y_1, 4>y+\, <f>+2,----, 4>\L an<^ ^ ' s '^e vector

of cell-averaged fluxes <f>1, <f>2,....,<f>i. In equation (5), A, B, C are coefficient

matrices and D is a one-dimensional vector containing the volumetric and

boundary sources.

The direct solution of Eq. (5) is obtained by combining the terms of the left

hand side into the product of one matrix and the vector made up of 4>z, <f>y,

and <f>, then solving the resulting system using double precision matrix equation

solvers DGEFA and DGESL from the LINPACK subroutines (Dongarra, 1978).

2.2 THE ITERATIVE METHOD FOR SOLVING THE SYSTEM OF
EQUATIONS
By de-coupling equation (2) from (3) and (4), an iterative procedure can

be achieved. This is done in the following manner. Initial estimates of the cell-

averaged fluxes, 4>m, are given, thus reducing the current continuity equations

(3) and (4) to tridiagonal systems of equations, each representing a column

or a row, respectively, where the unknowns become only the surface fluxes.

Each tridiagonal system constitutes an independent process and is solved

separately (with the LINPACK routine DGTSL) for the surface fluxes. These

newly obtained quantities are substituted into equation (2) to update the cell-

averaged fluxes. The updated values of the cell-averaged fluxes are tested against

those in the preceding iteration. Convergence is achieved, and the calculation

is successfully terminated if the pointwise relative difference between two

consecutive iterates is less than or equal to a pre-determined small value of e.

2.3 COMPARISON OF THE DIRECT VERSUS THE ITERATIVE
METHOD
In order to compare the performance of the direct and the iterative methods

for solving the neutron diffusion nodal method equations, they were applied to

a simple test problem. The measured CPU time for each of the two methods,

as well as the total number of unknowns (~ 3L) for a range of mesh sizes is

presented in Table I. These results were obtained on a Data General sequential

computer with 4 megabytes of memory.

Table I. Comparison of the performance of the direct
vs iterative methods for a simple test problem

with t = 1.0£ - 04

Mesh size

8 x 8

10 x 10

12x12

14 x 14

16 x 16

18 x 18

20x20

22 x 22

Number of unknowns
for direct method

176

280

408

560

736

936

1160

1408

Direct method
(seconds)

16.52

54.43

151.29

367.07

776.97

1609.93

Iterative method
(seconds)

19.26

45.45

90.74

163.63

271.68

431.11

632.26

899.39

As Table I indicates, the number of unknowns grows rapidly with refining the

mesh for the direct method. This translates to increased computational times and

larger memory requirement. The iterative method outperforms the direct method

in CPU time starting from mesh sizes greater than 8 x 8 . The unavailable values

in the table for the direct method for mesh sizes 20 x 20 and 22 x 22 are due to

memory limitation on the size of the matrix equation that can be solved directly

with 4 megabytes of memory. This constraint does not limit the iterative method

for any conceivable mesh, since the matrix equations solved in this method are

tridiagonal and of the order yL only.

3. ACCELERATING THE ITERATIVE METHOD
To reduce the number of iterations and improve the convergence, successive

overrelaxation is applied on the cell-averaged fluxes 4>m. Let 4>l
m signify the ?-th

iterate of the cell-averaged flux. Then equation (2) can be written as

py

(6)

where <f>m\ 4>-mi 4>m •> 4>-m a r e *n e ̂ "'^ values of the surface fluxes obtained

from the solution of the two current continuity equations.

The above equation can be expressed as

where K* is the right hand side of Eq. (6) divided by the coefficient on the left

hand side.

Multiplying both sides of Eq. (7) by a factor w we get

. (8)

Adding (1 — w)<f>'m to both sides of Eq. (8), we obtain

(I - W)^ + Wii = (I - W)^ + WIC , (9)

which simplifies to

4>i
n = (l-w)tin+wKi . (10)

Finally, by replacing <f>'m by ̂ J^1 on the right hand side of Eq. (10), we get

the new iterate expressed as

Different values of w in the range 1 < w < 2 were used for Eq. (11). For

the algorithm the value chosen after several computer test runs is w = 2 (Ames,

1965). This appears to be the optimum value.

8

Figure 1 shows the reduction in the number of iterations. The acceleration

factor is almost 2.

The results for the hypercube in the following pages reflect the accelerated

iterative method.

4. APPLICATION OF THE ITERATIVE
METHOD ON THE HYPERCUBE

In the iterative method, the surface flux equations (3) and (4) for each

row or column of computational cells, respectively, forms a tridiagonal system

of equations which is completely uncoupled to tridiagonal matrix equations

corresponding to other rows or columns. Hence, each such system can be solved

independently of the others. For an n x m mesh, for example, there are n x-

current continuity equations involving the surface fluxes in the x-direction for

each row, and m equations in the y-direction for each column. These constitute

n + m independent processes which can be executed simultaneously. This

characteristic of the iterative method readily lends itself to a parallel solution

algorithm on the hypercube and other parallel machines.

The following steps summarize the design of the algorithm on the hypercube

(Intel iPSC/2). The "host" program will assign the number of processors. The

"node" program will involve mainly performing the iterations by solving the

tridiagonal systems of equations.

Step 1: The 'host' program gives each processor a copy of the 'node'

program. It also sends initial guesses of the cell-averaged fluxes <j>m
(set to 0 at the start) and mesh size information to the nodes. Node
0 is designated problem manager.

Step 2: Each processor is assigned a set of tridiagonal systems
corresponding to certain rows or columns and will solve for the
surface fluxes—<^'s an<^ ^m's—an<^ w ^ a^d ^ s contribution (for

a particular direction) to each <f>m using the continuity Eq. (2).
At the end of this calculation, each processor sends to node 0, the

component of <f>m it has computed. (Note that node 0 also performs
Step 2.)

Step 3: Node 0 receives the ^m ' s from all processors and sums their

contributions for each cell. It then takes the old <f>m 's and compares

them with the new ^TO's by testing the pointwise relative difference

against e. If the e criterion is satisfied, Node 0 sends the ^m ' s to the
host which successfully terminates execution. Otherwise Steps 2 and
3 are repeated.

5. HYPERCUBE RESULTS
Three variants of the parallel algorithm described above were implemented

and tested on the hypercube. In the program the new iterates for the ^ m ' s are

stored in the array NEWPHI(I,J) and the old iterates in the array PHIBAR(I,J).

The three programming cases are as follows:

Method A: Node 0 sends the fully dimensioned array PHIBAR(I,J) to all the
nodes except itself. The nodes send the fully dimensioned array
NEWPHI(I,J) to Node 0. The maximum dimension in each case
is 50 x 50. Node 0 does not send NEWPHI(I,J) to itself.

Method B: Node 0 sends the fully dimensioned array PHIBAR(I,J) to all the
nodes except itself. Each node sends only that row or column
of the NEWPHI(I,J), (I = 1,...., n and J = 1,..., n), where the
computational mesh size is n x n, to Node 0.

Method C: Node 0 sends only a row or column of PHIBAR(I,J) to the node
assigned to compute the tridiagonal system corresponding to that
row or column. Each node sends only that row or column of the
NEWPHI(I,J) to Node 0. In each case, 1= 1,..., n, and J = 1,...., n.
Clearly this method minimizes the size of communicated messages,
but requires larger overhead operations in order to manipulate the
arrays into the forms described above.

Methods A, B, and C were executed on the Intel iPSC/2 hypercube with

64 processors (Dunigan and Romine, 1987). Each processor has 4 megabytes of

memory.

The measured node CPU times for different cube dimensions, i.e., number

of processors, are presented for a test problem with 32 x 32 mesh in Table II.

For this mesh size the largest number of independent processes is 64, so that the

dimension 6 cube exploits the parallelism in this case to its limit.

10

Table II. Performance of methods A, B, C for 32 x 32
mesh (number of iterations = 1068; e = 1.0E - 04)

Number of

processors

1

2

4

8

16

32

64

Method A

(sec)

874.46

502.74

353.62

347.75

483.83

822.83

1530.56

Method B

(sec)

862.07

505.83

333.80

249.20

212.83

199.20

195.12

Method C

(sec)

859.22

530.11

363.69

279.61

235.46

216.46

207.02

The 32 x 32 mesh is chosen because for the various choices of numbers of

processors in Table II there is perfect load balance with the use of wrap mapping

of the processors. For this mesh size, there are 32 rows and 32 columns which can

be independently solved. Methods B and C in Table II show that 64 processors

indeed give the minimum time, i.e., largest speedup, for the algorithm. Method

A, on the other hand, gives the minimum time at 8 processors.

In Method A, the size of the messages sent is constant. For mesh sizes smaller

than 8 x 8 , the time it takes to solve the rows and columns equations (the 64

tridiagonal systems for 1068 iterations) is less than the time it takes for Node 0 to

communicate to all the nodes. For 8 x 8 and larger mesh sizes, the communication

time eventually exceeds the matrix solving portion as the number of participating

processors increases for two reasons—the communication time increases as

the number of processors increases, while the tridiagonal matrix solution time

decreases. This communication overhead grows considerably especially for the 64

processors in Method A. Because storage of the <̂ TO's is in the form NEWPHI(I,J)

11

and PHIBAR(I,J), Node 0 remembers the row or column it has solved, and

therefore does not send messages to itself.

Methods B and C provide better performance than A. In Method B, Node

0 sends the full array PHIBAR(I,J) to all the nodes, excluding itself. However,

each node sends only that row or column of the NEWPHI(I,J) array which it has

computed. Compared to Method A then, Method B involves a drastic reduction

in the total size of communicated messages, hence the communication penalty is

decreased markedly, resulting in monotonically increasing speedup as shown in

Table II.

Method C is an extension of Method B, except for the sending of the

PHIBAR(I,J) array. This time, Node 0 sends that row or column of ^m ' s which is

needed by the node performing the row or column tridiagonal system. Although

Method C has reduced message sizes compared to B, the latter outperforms the

former. The difference lies in the fact that in Method B there is extra overhead

needed to extract the parts of the PHIBAR array that need to be communicated

to each processor. Node 0 is thus sending more messages of smaller sizes. It

must be noted that this overhead is very penalizing because it is performed

sequentially on node 0. The overhead needed by node 0 to position the received

NEWPHI contributions in their proper locations is minor in comparison, leading

to the higher speedup for Method B even though it involves a larger total size of

communicated messages than Method C.

Table III lists the speedup and efficiency performance of the hypercube for

Method B. The speedup is denned by S = TxjTp, where 7\(Tp) is the CPU time

required to achieve convergence by one (P) processors. The efficiency is E = (S x

100)/P.

12

Table III. Speedup and efficiency vs number of processors

for the test problem with 32 x 32

mesh (Method B)

Efficiency

85%

65%

43%

25%

14%

7%

Number of
processors

2

4

8

16

32

64

1.70

2.58

3.46

4.05

4.33

4.42

6. ON THE ADEQUACY OF MESSAGE PASSING MACHINES
FOR SOLVING THE NODAL DIFFUSION EQUATIONS

The standard Amdahl law (Amdahl, 1967) does not take into account the

overhead due to intemode communications, which is a significant factor in

message passing computers. In this section we generalize Amdahl's formula to

cover this case as well. We use the resulting formula to investigate the impact of

communication on the performance of the parallel algorithm, and to speculate

on the problem size that can take full advantage of intensively parallel machines'

capabilities. The communication time depends very strongly on the parallel

architecture (i.e., the node connection scheme), the solution algorithm (e.g., the

number and size of communicated messages), the number of nodes participating

in the calculation, as well as on the specifications of the hardware itself. We

assume that the dependence on the number of participating processors, K(P), is

separable from the remaining dependencies, is strictly a non-decreasing positive

function of P, and that for a given machine with a specific algorithm implemented

to solve a given problem, all other dependencies constitute a multiplicative

constant, denoted Tc. That is, the total communication time is given by TCK(P).

Let T,, and Tp be the CPU time required to perform the serial portion and the

13

parallel portion of the algorithm, respectively, on one processor. Then the CPU

time required to solve this problem on P processors, is given by

T{P) = T, + Tp/P + TCK{P) . (12)

and the CPU time required to solve this problem on one processor, or an

equivalent sequential machine, is given by:

Ta + Tp. (13)

It follows immediately that the speedup, S(P), is given by,

where 5 = T./(Ta + Tp), and c = TC/(TS + Tp). Clearly 0 < s < 1, and

c > 0. However, cases of interest must have a large parallelizable portion, so

that s is close to unity, at a low communication cost, so that c is close to zero.

Indeed when c = 0, i.e., neglect the communication penalty, we recover precisely

Amdahl's law. Also the efficiency, TJ(P), follows:

1 + s(P - 1) + cPK(P) •

The main special feature that distinguishes message-passing parallel

processing computers is the possibility of using a very large number of processors

Since shared memory machines can support, in the order of 30 processors at a

much lower communication cost, one would prefer a message passing architecture

only in cases where large speedups can be achieved by using a large number

(maybe 50 or more) of processors.

The competition, hence compromise, between message-passing and shared-

memory parallel computer architectures can be seen clearly by considering

the dependence of the speedup and efficiency on the number of participating

processors in the ideal case of vanishing communication penalty. As well known

the speedup increases asymptotically to the constant value 1/s as P —> oo, while

T](P) —• 0. The fact that the speedup increases indefinitely, albeit very slowly

and costly beyond a certain point, means that there is a continuous gain to be

made by using more processors. Applications may be envisioned (e.g., real time

and faster than real time calculations) where increasing the speed of performing

14

a calculation supercedes all cost (i.e., efficiency) considerations thus giving

rise to the plausability of intensively parallel, distributed memory computers.

Implicit in this argument, and in fact in the derivation of all above equations is

the assumption that the implemented algorithm offers a very large number of

independent processes that can be executed simultaneously on P nodes for all

values of P considered. Therefore in practice, even though the Amdahl model

does not provide an upper limit on the number of processors used, the specific

application does.

So in a very broad sense shared memory architectures are more suited for

coarse grained parallel algorithms that offer only a limited number of independent

processes, and also for algorithms that require extensive data sharing between

the independent processes. Hence, we judge the adequacy of message passing

machines to solving the algorithm described in Section 5 by examining the

severity of the communication penalty and estimating the problem size that

produces enough independent processes to justify using such machines.

For the case K{P) = constant, the speedup again increases monotonically to

saturation at (s + cK)~l < 1/s, and the efficiency vanishes asymptotically as

P —+ oo. When K(P) is not constant, on the other hand, the speedup can attain

a maximum, i.e., optimum value at P satisfying

If P is smaller than the number of independent processes for a given size

problem, it sets a stricter limitation on the usage of message passing computers,

and if in this case P is of order 30 or smaller, it makes more sense to use a

shared memory machine. That is to say the minimum requirement for a parallel

algorithm to be adequately implemented on a message passing machine is that

the smaller of P and the number of independent processes be significantly larger

than about 30. Additional requirements would be to achieve significant speedup

at reasonable efficiency (~ 80%) with more than 30 participating processors. In

the remainder of this section we determine K(P), and estimte s and c for two

of the three variants of the iterative algorithm described in Section 5, then we

determine the adequacy of the Intel iPSC/2 hypercube for each method. The

estimates are for a simple test problem on a 32 x 32 mesh using the accelerated

iterative algorithms A and C. Analysis of method B performance (apparently the

15

best of the three variants) is complicated by the fact that the parallel portion of

the code does not vary as 1/P as stipulated by Eq. (12). Moreover the behavior

of K{P) is erratic and can not be fit by simple functions. Hence, we exclude

analysis of this method's performance.

6.1 ANALYSIS OF THE PERFORMANCE OF METHOD A

A linear function of the form

K(P) = P, P < 2, P{\) = 0 , (17)

fits the measured communication times for Method A very well, especially for

large P, the range of interest here. Equations (14) and (15) immediately reduce

to,

(IS)

and

V{P) = 1/[1 + s{P - 1) + cP2} . (19)

The optimal number of processors, given by Eq. (16), is

(20)

and the corresponding speedup and efficiency are

\-s)]-1 , (21)

and

= y/c/(l s)

+ 2 / (l) ' J

respectively. As expected, Eq. (20) indicates that large values of P are obtained

when both s and c are very small. Indeed in the implementation of the nodal

diffusion equations, we found that normally s is very small. A best case estimate

therefore will result if we set s = 0 to see that the optimum speedup cannot

exceed 1/2^/c resulting in an efficiency less than 50%.

16

According to the criteria set forth above, we conclude that the hypercube

is not adequate for algorithms of the type represented by Method A, namely

K{P) ~ P.

6.2 ANALYSIS OF THE PERFORMANCE OF METHOD C

The measured communiction time fits very well the function,

K(P) = 1 - 1/P ,
(23)

Tc = 139.96(sec) ,

Clearly this function grows much slower with P than the linear function of

Method A, leading to better performance as evidenced by the results of Table

II. Moreover, for this K(P) the optimal number of processors predicted by Eq.

(16) is unbounded, resulting in monotonically increasing speedup as in the ideal

(Amdahl) case. The maximum, i.e., asymptotic, speedup in this case is,

S = l/(s + c) . (24)

For this case we found that 5 = .0622 and c = .163, so that S = 4.44, a

relatively low speedup compared to the total number of independent processes

(64). Indeed the results in Table II show the extremely low efficiencies achieved

with more than two processors. Hence, it appears that Method C also does not

perform adequately on the hypercube for the problem size considered here. In

order to see the effect of the problem size, m, on this conclusion, we fit simple

functions of rn to s and c to find that s(m) ~ .06 and c(rn) ~ 5.78/m + .07.

Hence, the speedup, Eq. (14), becomes,

S increases monotonically with m and saturates as m —* oo at P/[\ + .13(P —

1)], which for all P is smaller than 7.7. That is Method C speedup on the Intel

iPSC/2 is bounded from above by 7.7 for all problem sizes and all numbers of

participating processors. This is sufficient to deem the hypercube inadequate

for solving the present algorithms for the nodal diffusion method equations.

Development of other algorithms or advances in the hardware performance will

be necessary before this conclusion can be revised. Meanwhile we emphasize

17

the adequacy of shared memory machines to the parallel solution of our new

algorithm (Kirk and Azmy, 1989).

7. CONCLUSIONS
We have derived a new iterative algorithm for solving the neutron diffusion

equation in two dimensional geometry that is highly parallelizable and therefore is

applicable to parallel computers. We implemented our new algorithm on the Intel

iPSC/2 hypercube and investigated its performance on a simple test problem. By

reducing the message passing on the hypercube, total CPU time was significantly

reduced. Speedups were achieved, but were found to be very small, hence,

inefficient when many procesors were used. We analyzed the performance of th>?

parallel code and extrapolated our results to larger size problems to show that

Intel iPSC/2 hypercube is not adequate for solving the nodal diffusion method

equations even for very large problem sizes. Shared memory machines, such as

the Sequent, appear to be more suitable for this problem.

REFERENCES

1. G. Amdahl, "Validity of the Single-Processor Approach to Achieving Large-

Scale Computer Capabilities," AFIPS Conf. PTOC, 30, 483 (1967).

2. W. F. Ames, Nonlinear Partial Differential Equations in Engineering.,

Academic Press, New York, 1965.

3. Tony F. Chan, Youcef Saad, and Martin H. Schultz, "Solving Elliptic Partial

Differential Equation on Hypercubes," Hypercube Multiprocessors, pp 196-210,

1986.

4. Jack Dongarra, LIN PA CK Subroutines, Argonne National Laboratory,

Argonne, 111., 1978.

5. Tom H. Dunigan and C. H. Romine, "Notes on a Short Course on the

Practical Use of Multiprocessors," Engineering Physics and Mathematics

Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., Sept. 29-Oct.

3, 1987.

18

6. M. Haghoo and W. Proskurowski, "Parallel Implementation of Domain

Decomposition Techniques on Intel's Hypercube," in the Third Conf. on

Hypercube Concurrent Computers and Applications, Vol. II-Applications,

Pasadena, Calif., 1988.

7. B. L. Kirk and Y. Y. Azmy, "A Parallel Approach to the Nodal Method

Solution of the Two-Dimensional Neutron Diffusion Equation," presented at

ANS Topical Meeting on Advances in Nuclear Engineering Computation and

Radiation Shielding, Santa Fe, New Mexico, April 9-13, 1989.

8. R. D. Lawrence, Prog. Nucl. Energy, 17, 271-301, 1986.

9. H. L. Rajic and A. M. Ougouag, "A Vectorized-Concurrent Nodal Neutron

Diffusion Method," p 163 in Proc. 1988 International Reactor Physics

Conference, Jackson Hole, Wyoming, Sept. 18-22, 1988 Vol. IV, American

Nuclear Society, LaGrange Park, Illinois, 1988.

10. Sung-Kyun Zee and Paul J. Turinsky, "Vectorized and Multitasked Solutions

of the Two-Group Neutron Diffusion Equations," p 83 in Proc. ANS Topical

Meeting on Advances in Reactor Physics, Mathematics, and Computation,

Paris, Vol. Ill, American Nuclear Society, LaGrange Park, Illinois, 1987.

22

Figure 1

