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SUMMARY

Very large volumes of solid waste are generated during oil shale
retorting due to the low percentages of organics (10-30%) in the oil
shale materials. Therefore, a large amount of material must be
processed for a given unit of oil product produced. The reclamation and
use of these wastes are desirable from an environmental and economical
point of view. Two of the primary considerations in the disposal of
these wastes are their structural integrity and the leaching of toxics
into groundwater. These wastes are termed spent shale and commonly have
a pozzolanic character.

The spent shale used in this study was generated from oil shale
mined from the Green River Formation in the Piceance Basin of western
Colorado. The cil shale was processed using the Lurgi-Ruhrgas method
(Schmalfeld 1975). The spent shale was packed in the Harvard miniature
apparatus (Soiltest 1964) using three different water contents.
Subsequently, the columns were allowed to cure for periods ranging from
one day to eight weeks.

Four types of analyses were performed on the cured columns. X-ray
diffraction (XRD), scanning electron microscopy with an energy
dispersive X-ray analyzer (SEM/EDXA), differential thermal analysis
(DTA), and thermogravimetric analysis (TGA).

An attempt was made to determine the mineral phase(s) responsible
for cementing and the increase in compressive strength. Marcus et al.
(1985) concluded that the dissolution of anhydrite, the hydration of
periclase, and the increase in calcite were the major mineral-phase
changes responsible for the increase in strength of the spent shale. 1In
the present study, we did not detect an increase in the amount of
calcite with increasing cure time. Dolomite also remained relatively
unchanged over the 56-day period. There was no XRD evidence for the
presence of anhydrite; however, minor amounts of gypsum were detected in
all but the 56-day sample. Quartz and feldspar decreased with
increasing cure time.

These data contradict the findings of Marcus et al. (1985), which
showed that the quartz phase is stable. By the 17th day of curing,
periclase was completely hydrated and not detected by XRD analysis. We
detected an unidentified mineral phase that increased with increasing
compressive strength and may be a major constituent of the cementitious
material. The presence of a ferrite spinel phase in hydrated spent oil
shale is reported by Marcus et al. (1985) and Bentur and CGrinberg
(1982). The identification of the ferrite spinel phase was not
conclusive from the XRD analysis done in our study. However, SEM/EDXA
analysis identified Fe in all of the cured samples. In addition, Mg,
Al, si, K, and Ca were detected in all of the samples. SEM
photomicrographs reveal an increase of cementation over the 56 days of
curing. The photomicrographs also show an increase in the growth of
clusters of rod-like crystals. The chemistry of these rod-like crystals
is dominated by Ca, Si, and S with minor amounts of Mg, Al, and K.
However, the mineral associated with the rod-like material has not been
idertified. 1Identification of the cementing material bridging between
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the spent shale particles was attempted using EDXA. The EDXA spectra of
this material was analogous to the spectra for calcite (Welton 1984).
However, because the amount of the bridging material in the samples was
low, the spectra may have been influenced by the mineralogy of the spent
shale particles.

DTA and TGA analyses were performed on the cured samples in two
different atmospheres: nitrogen and carbon dioxide. There was little
difference noted between the two atmospheres for analysis temperatures
below 530°C (986°F). However, there were differences above 530°C
(986°F). Decreasing carbonate content with increasing curing time was
indicated by comparing thermal curves in carbon dioxide atmospheres with
those in nitrogen atmospheres. Thermal analyses were also used to
correlate weight loss with unconfined compressive strength. Weight loss
events between 100-530°C (212-986°F) are caused by reactions involving
the loss of bound water; however, this water loss is not well
understood. The results of the thermal analyses suggest that a
hydrated, clay-like mineral may be responsible for the increase in
compressive strength. Carbonate dissolution may help identify
components that are responsible for the formation of cementitious
material.



INTRODUCTION

Large volumes of solid waste are generated during the extraction of
fuels from oil shal=. When disposing these wastes, there are two
primary concerns. Structural integrity is an important consideration
foxr the design of stable waste piles, and leaching of toxic compounds
into surface-water groundwater is the other major consideration. This
report presents the results of a study using X-ray diffraction,
SEM/EDXA, thermogravimetric analyses, and differential thermal analyses
to define the chemical nature of the cementing agents responsible for
the structural strength of processed oil shale.

Turner and Rothwell (1991) report that oil shale solid wastes
generated using the Lurgi-Ruhrgas method increased in strength,
durability, and resilient modulus with increased water content and
increased curing time. The optimal water content for material strength
is about 30%. A 30% water content produced greater structural strength
than a 20% water content (Rothwell 1989). Further experimentation is
needed before a more exact optimal water content can be determined.
Turner and Rothwell (1991) alsep report that material strength increased
with curing time to 28 days.

There are several possible reasons for the increased strength with
increased water content. Turner and Rothwell (1991) suggest that
cementing is being done by hydrated minerals. Marcus et al. (1985)
noted that the amounts of CasOo, and MgO decreased upon hydration in a
similar spent oil shale. It is certainly possible that these minerals
are involved with the formation of hydrates during the curing process.
The minerals that form during the process probably represent numerous
types and forms. Bridging materials in a similar spent shale included
calcium and magnesium carbonates, hydroxycarbonates, and complex
aluminum and silicon compounds of the alkaline earth elements (Marcus et
al. 1985).

The purpose of this study is to investigate the mineralogical
character of the cements that are responsible for the increased strength
of the spent oil shale. Several techniques to identify the nature of
the cementing agents have been used in this study. X-ray diffraction
was used to identify mineral dissolution and formation; scanning
electron microscopy (SEM) was used to observe the cementing agents;
energy dispersive X-ray analysis (EDXA) was used to provide information
on the elemental composition of both the bulk material and the cementing
agents; and differential thermal analyses and thermogravimetric analyses
were used to document the presence of suspected minerals that may be
involved in formation of the cementing material.

MATERIALS AND METHODS

Sample Source

The o0il shale solid waste studied was a byproduct of the Lurgi-
Ruhrgas processing method used by Rioc Blanco 0il Shale Company Inc. The
solid byproduct remaining after the extraction of kerogen from oil shale
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consists of two components. One is collected in solid surge bins and
the other in flue filters. 1In general, the flue dust from the filters
is much finer-grained than the surge-bin solids.

The two waste products were stored separately after processing. The
surge-~-bin waste was placed in large storage bags each weighing
approximately 1000 lb. The flue dust was placed in 55-gal steel drums.
Rio Blanco 0il Shale Company Inc. estimated that approximately 10% by
weight of the processed shale consists of flue dust.

Twenty bags of surge bin solids and one 55-gal drum of flue dust
were obtained from the Rio Blanco 0il Shale Company Inc. for this study.
The samples were chosen at random and comprise only a small percentage
of the total volume of stored spent shale at the site (Rothwell 1989).

Column Preparation

Columns consisting of processed oil shale and water were prepared to
test engineering properties and to evaluate the mineralogical
characteristics of the material. Compacted columns were prepared by the
University of Wyoming's Department of Civil Engineering (UW). The
columns were made using either a 20 or a 30% water content. The columns
were allowed to cure for these specified periods: 1 day, 20% water; 1
day, 30% water; 17 days, 20% water; 14 days, 30% water; and 56 days, 30%
water. The columns were wrapped in cellophane to minimize the loss of
water by evaporation during the curing period. ‘

The water in the columns was removed by flushing with ethanol to
stop the curing process at the specified time. Ethanol was used because
it is considered a non-reactive substance and would not influence the
mineralogy of the materials. This method eliminates or reduces curing
and prevents changes in the samples that may occur prior to analysis.
Four to five pore volumes of ethanol were passed through the columns
before UW submitted them to WRI for study.

X-ray Diffraction Analyses

The unhydrated and hydrated spent oil shale samples were initially
crushed with a hammer in ziplock bags. The crushed sampl' ' were then
ground with a mortar and pestle to <1 mm and predominantly <0.05 mm,
They were dried overnight in an oven at 100°C (212°F), cooled in a
desiccator, and sifted through a 45-um sieve. Approximately 2 g of each
sample was mounted on glass slides using a mixture of acetone and Ducco
cement for random sample orientation. The acetone/Ducco cement mixture
was shown not to alter the mineralogy of the material in a preliminary
comparison with an ethanol slurry. The acetone/Ducco cement mixture was
prepared at approximately a 5-to-1 ratio. The samples were dried for 1
min under a heat lamp and then air dried for 10 min.

X-ray diffraction analyses were done using anlautomated, computer-
driven scintag PAD V diffractometer system. The diffractoueter is
equipped with an intrinsic germanium, solid-state detection system and
computer-assisted, user-interactive software supplied by the
manufacturer. The system was operated at 45 kv and 40 mA using Ni-
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filtered CuKa radiation. Spectra were acquired from 2 to 62° 20 at
2°/min. Each sample was then remounted and rerun to test
reproducibility.

The diffractograms were compared to Joint Committee on Powder
Diffraction Standards (JCPDS) files for phase identification. X-ray
diffractograms of the unhydrated and hydrated Lurgi samples are
illustrated in Appendix A.

Scanning Electron Microscopy/Enerqy Dispersive X-ray Analyses

The samples cured for 14 and 56 days were the strongest and least
friable of the columns. Therefore, we used these samples for further
study. We attempted to obtain a sample of the 17-day core but were
unsuccessful. Two of the sample columns were cut and mounted on
aluminum stubs using colloidal graphite. The use of snlid rather than
crushed samples prevents the cementing materials from being masked by
topography. The unhydrated sample was also mounted for analysis. The
samples were then coated with gold using an Edwards Sputter Coater
S150B.

SEM/EDXA was performed using an Amray model 1820 computer-enhanced,
digital-imaging scanning electron microscope (100-s count, 15.00 kvV,
35.00° take-off ang.>'. The SEM is equipped with a Tracor Northern
model 5500 series II fully computer-operated energy dispersive X-ray
analyzer (EDXA), which was used for semiquantitative elemental
determinations.

Differential Thermal Analyses

Differential thermal analyses were performed with a Perkin-Elmer
DTA 1700 differential thermal analyzer (DTA). The DTA was controlled by
a Perkin-Elmer System 7/4 thermal analysis controller and Perkin-Elmer
PC Series thermal analysis system software, which was run on a PC
Limited 286 personal computer, Calibrations were performed as described
in the operator’s manual provided by Perkin-Elmer (1989a).

The reference cup of the DTA was filled with 50 mg of aluminum
oxide (Al,03). The sample cup contained about 40 mg of powdered sample,
with about 5 mg of aluminum oxide on both the top and bottom of the
sample. The sample cups were made of aluminum oxide.

Two runs were performed on each of the six samples. The furnace
chamber was pu-ged with 50 cm3/min of nitrogen for one run, and 50
cm3/min of carb>n dioxide was used for the other run. Each sample was
heated from 80 to 1020°C (176 to 1868°F) at a constant rate of 20°C/min
(68°F/min). Trhe temperatures of the reference and sample cups were
measured by thermocouples located directly beneath the cups.

Thermogravimetric Analyses

Thermogravimetric analyses were performed with a Perkin-Elmer TGA 7
thermogravimetric analyzer (TGA). The TGA was controlled by a Perkin-
Elmer TAC 7/PC instrument controller, which was operated by Perkin-Elmer
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PC series thermal analysis system software run on a PC Limited 286
personal computer. Calibrations were performed as specified in the
manufacturer’s operator’s manual (Perkin-Elmer 1989b)

TGA samples were prepared in the same manner as the samples used
for DTA. Platinum sample cups were loaded with 55 mg of powdered
sample. Samples were heated from 100 to 1020°C (212 to 1868°F) at a
constant rate of 20°C/min (68°F). Two runs were performed on each of
the six samples. The furnace chamber was purged with 50 cm /mln of
nitrogen or carbon dioxide for each sample. '

RESULTS AND DISCUSSION

X-ray Diffraction Analyses

Comparisons of five hydrated samples and one unhydrated sample were
made using XRD. The mineral phases that were positively identified in
the Lurgi samples by XRD analysis are shown in Table 1.

Table 1. Mineral Phases in the Lurgi Spent Shale Identifiad by X-ray
Diffraction Analysis

1 day, 1 day, 14 day, 17 day, 56 day,

Unhyvdrated 20% water 30% water 30% water 20% water 30% water
Quartz Quartz Quartz Quartz Quartz Quartz
Calcite Calcite Calcite Calcite Calcite Calcite
Feldspar Feldspar Feldspar Feldspar Feldspar Feldspar
Dolomite Dolomite Dolomite Dolomite Dolomite Dolomite
Gypsum Gypsum Gypsum Gypsum Gypsum

Periclase Periclase Periclase Periclase

Calcite {CaCO3) and dolomite (CaMg(CO3),) peaks were the only
minerals to remain relatively unchanged over the 56-day cure period.
The quartz (SiO,), feldspar (NaAlsSi;Og-KAlSijOg), and periclase (Mgo)
peaks all decrease with cuire time. These results conflict with the data
reported by Marcus et al. (1985), which lists quartz as an unchanged
mineral phase. A deconvolution program was run using software provided
by Scintag to determine the presence of gypsum (CaSO,). Minor amounts
of gypsum were detected in all but the 56~day hydrated Lurgi sample.

We did not detect peaks that correspond with the minerals illite,
anhydrite, hematite, analcime, pyrite, corundum, or magnesite. All of
these phases were reported by Marcus et al. (1985) as occurring in
either hydrated or unhydrated spent oil shales. The samples were
magnetic, which is caused by an unidentified iron oxide phase. Also,
there were a few unidentified peaks within all of the samples that will
need to be studied further.

We expect many minerals to be present in unhydrated Lurgi spent oil
shale (Table 2). 1In this study, we were unable to confirm the presence
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of Al,03, Fey03, and CaO. A possible explanation for the lack of such
minerals may be the loss or alteration of these minerals during sample
transport and preparation.

Table 2. Major Minerals in Unhydrated Spent Shale (Marcus et al. 198&3)

Quartz sio,
Corundum A1203
Hematite Fe,04
Lime cao
Periclase Mgo
Anhydrite Casoy

An unidentified mineral with a peak at 19.7° 26 was cbse.ved in the
unhydrated Lurgi sample that is not evident in the hydrated phase
(Figure 1). This mineral is a likely source of the material responsible
for cementation of spent oil shale. To date, this mineral has not been
identified. The cementitious material probably contains mineral phases
in concentrations less than the 5-10% needed for XRD identification, or
is in an amorphous form. Amorphous phases can not be detected by XRD.

Scanning Electron Microscopy/Enerqy Dispersive X-ray Analynes

Elements consistently detected in the samples were Mg, Al, Si, K,
Ca, and Fe. The amount of individual and separate particles decreases
as cure time increases (Figure 2). An obvious increase in cementation
and bridging between particles is shown in Figure 3. Spent shale
particles, calcite rhombohedrons, and small rod-shaped crystals occurred
in the l4-day sample. We also detected many clusters of hexagonal rod-
like minerals in the samples (Figure 4). Spectral analysis of these
crystals using ED¥A shows that their elemental make-up is dominated by
Ca, Si, and S with Mg, Al, and K as minor elements (Appendix B). Marcus
et al. (1985) report that similar rod-like crystals consisted of Al, Si
and S with minor amounts of Ca, K and Mg.

One of the problems that we encountered with EDXA use in this study
was difficulty in focusing on an area that was small enough to
distinguish a bridge of cement from the other constituents of the spent
oil shale. The elemental analysis of a cementing material detected in
one sample was dominated by Ca (Figure 5). This spectra compares well
with a typical calcite spectra as noted by Welton (1984) (Figure 6).
However, because the X-ray diffraction data does not show an increase in
the calcite peaks, it is difficult to conclude that calcite is an active
cementing agent. In fact, calcite is probably not a significant
cementing agent, but it contributes to cementation by providing
constituents that react with Si and Al compounds to form cementation
material. Essington (1989) examined the cementation process in hydrated
Lurgi spent oil shale ard concluded that ettringite is a main cementing
constituent. XRD and SEM/EDXA analyses in this study show no evidence
of the occurrence of ettringite in the cured spent oil shales. If
present, ettringite may occur in low concentrations.
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Figure 2. SEM Photographs of Hydrated Lurgi 0il Shales (a) the l4-day
at x254 Magnification and (b) the 56-day at x352
Magnification
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Figure 3. SEM Photographs of Hydrated Lurgi 0il Shales (a) the l4-day
at x1390 Magnification and (b) the 56-day at x1030
Magnification
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Figure 4. SEM Photographs of the Rod-like Crystals in the 17-day
Hydrated Lurgi 0il Shale
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Thermogravimetric Analyses

Decompogsition temperatures of minerals are greatly affected by their
chemical and mineralogical makeup (Hendrickson 1975) and by the
atmosphere in which decomposition takes place (Warne 1980). For this
reason, mineral identification can not be determined strictly from
temperatures of decomposition.

The rate of weight loss reached a local minima at ~250°C (~482°F)
and anothur at ~530°C (986°F). For this reason, we split cur analyses
into three temperature ranges: less than 250°C, 250-530°C (482°F, 482-
986°F), and greater than 530°C (986°F).

Average weight losues for the thermogravimetric experiments between
100 and 250°C (212 and 482°F) and between 250 and 530°C (482 and 986°F)
as a function of curing time are shown in Figure 7. There was about a
twofold increase in weight loss between the unhydrated shale and the
one~day samples in the 100 to 250°C (212 to 482°F) range and in the 250
to 530°C (482 to 986°F) range. An additional threefold increase in
weight loss occurred from the one-day samples to the l4-day samples.
The total weight loss between 100 and 530°C (212 and 986°F) decreased
slightly from the l4-day cured sample to the 56-dav cured sample.

The unhydrated spent shale lost 0.3% of its total weight when we
heated it from 100 to 250°C (212 to 482°F), and an additional 0.3% was
lost when we heated it from 250 to 530°C (482 to 986°F). After one day
of hydration, the situation changed. Weight loss between 100 and 250°C
(212 and 482°F) increased to 0.5%, whereas the loss between 250 and
530°C (482 and 986°F) increased to 0.6%., The amount of weight loss
between 100 and 530°C (212 and 986°F) changed substantially after 14
days. The weight loss progressed from 0.5% for the unhydrated shale, to
1.1% after one day of curing, to 4.0% after 14 days.

The total weight loss between 100 and 530°C (212 and 986°F) went
from 4.0% after 14 days to 3.9% after 56 days. After 14 days, a 2.0%
weight loss occurred between 100 and 250°C (212 and 482°F), whereas
after 56 days a 1.4% weight loss was observed between 100 and 250°C (212
and 482°F). The situation was reversed at higher temperatures. A 1.9%
weight loss occurred between 250 and 530°C (482 and 986°F) after 14 days
of curing. After 56 days, a 2.2% weight loss occurred between 250 and
530°C (482 and 986°F). The weight 'oss shifted from the low-temperature
event (100 to 250°C/212 to 482°F) to the higher temperature event (250
to 530°C/482 to 986°F) between 14 and 56 days.

The thermogravimetric curves (Figures 8 through 13) show an
increasing rate of weight loss at 530°C (986°F). Weight loss steadily
increased from 600 to 750°C (1112 to 1382°F) for all samples with little
difference caused by changing purge gases. At 750°C (1382°F), the rate
of weight loss increased in a nitrogen atmosphere but decrcased in a
carbon dioxide atmosphere for all hydrated samples. This effect was
most pronounced in the samples cured for 14, 17, and 56 days. Weight
loss stopped at 820°C (1508°F) in a nitrogen atmosphere and at 930°C
(1706°F) in a carbon dioxide atmosphere.
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Unhydrated 1-day cure 14-day cure 56-day cure

100-250 °C 250-530°C

Figure 7. Weight Loss Between 100 and 530°C for the 30% Water Columns
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Weight loss below 530°C (986°F) increases with longer curing time.
Generally, but not always, loss of waters of hydration occurs at less
than 250°C (482°F) (smykatz-Kloss 1974; Dollimore et al. 1981; Marino
and Mascolo 1981; Stacey 1981; Horsley and Nowell 1981; Mousty et al.
1981; Roessler and Odler 1981). Minerals with multiple waters of
hydration generaily lose them in steps when the mineral is pure
(Smykatz-Kloss 1974). Dehydroxylation generally occurs at temperatures
greater than 200°C (392°F) (Glasser 1983; Marino and Mascolo 1981;
Gonzalez-Calbet and Franco 1981; Stacey 1981; Todor 1976). Thiu
suggests that the weight losses we observed below 530°C (986°F) are due
to dehydration and dehydroxylation reactions. At least two types of
reactions are occurring under 530°C (986°F), since the rate of weight
loss reached a local minimum at 250°C (482°F) in all samples that
exhibited weight loss over this temperature range (Figures 10, 11, and
13).

The thermogravimetric curves show a prcgression from the unhydrated
and l-day through the 56-day cured samples (Figures 8 through 13). The
shapes of the curves are similar over 530°C (986°F) for all samples,
with the exception of two events in the 56-day sample. Below 530°C
(986°F), there was a large increase in weight loss with increasing
curing time (Figures 7 and 14).

The change in low-temperature reactions with curing time is shown
in Figure 7. There was a 0.5% weight loss below 530°C (986°F) in the
unhydrated spent shale. After a l-day cure, the weight loss increasel
to 1%. The two-week and eight-week sample colurns lost 4% of their
initial weight. These reactions are notv well understood; however, we
suggest that water binds tc the shale initially, and reaches a limit of
~4% within the first 14 days. Weight loss between 100 and 250°C (212
and 482°F) decreased and the weight loss between 250 and 530°C (482 and
986°F) increased during the l4th through 56th days of curing (Figure 7).
During this period, the water became more tightly bound to the shale.

We attribute the thermal events between 530 and 1000°C (986 and
1832°F) to the loss of tightly bound water and to the decomposition of
dehydrated minerals because loosely bound water has already been removed
as described above.

Differential Thermal Analyses

The unhydrated column and the l-day, 20% water columns show no DTA
peaks that can definitely be attributed to any exothermic or endothermic
events. DTA evaluation of the l-day, 30% water column; the l4-day, 30%
water column; and the 17-day, 20% water column shows an exothermic event
between 200 and 350°C (392 and 662°F) in a CO, atmosphere. The 1l-day,
30% water column also shows an endothermic event between 250 and 425°C
(482 and 797°F) in a nitrogen atmosphere.

There are several endothermic events that occur in all samples
between 650 and 1000°C (1202 and 1832°F). There ie a sharp endothermic
peak at 905°C (1661°F) in a CO, atmosphere and a more gradual peak at
825°C (1517°F) in a nitrogen atmosphere. There are also endothermic

N
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peaks at 820°C (1508°F) and 760°C (1400°F) in a carbon dioxide
atmosphere. These peaks are not noticeable in a nitrogen atmosphere.
They may be present but, if so, they are hidden by the leading edge of
the peak at 825°C (1517°F). There are two peaks that we detected only
in the 56-day evaluations: an exothermic event at 920°C (1688°F) and an
endothermic event at 710°C (1310°F).

Montmorillonite, vermiculite, and chlorite (Smykatz-Kloss 1974) and
halloysite and kaolinite (Todor 1976) all exhibit similar thermal
decomposition characteristics. 3etween 100 and 200°C (212 and 392°F),
they are characterized by an endothermic event with accompanying weight
loss due to evaporation of water occupying the interlayer. Between 500
and 750°C (932 and 1382°F) is a large endothermic event alsc accompanied
by weight loss due to dehydroxylation (Todor 1976). Finally, between
825 and 1000°C (1517 and 1832°F), there is a small exothermic event.
This is attributed to the collapse of the clay’s lattice structure and
recrystallization of the dehydroxylated clay into a spinel-phase crystal
(Smykatz-Kloss 1974).

In our study, the endothermic event at 710°C (1310°F) and the
exothermic event at 920°C (1688°F) of the 56~day sample in a nitrogen
atmosphere (Figure 11) suggest that a hydroxylated clay-like mineral has
formed between day 14 and day 56. Unfortunately, the decomposition of
0032' masks the dehydroxylation of hydroxylated silicate minerals and
reduces our interpretative ability.

The large peaks at 825°C (1517°F) in a nitrogen atmosphere and at
905°C (1661°F) in a carbon dioxide atmosphere have the shape change and
peak shift caused by different atmospheres typical of simple, anhydrous
carbonates (Warne 1980). These peaks are substantially smaller for the
samples with longer cure times, thus, suggesting that the source of
these peaks decomposes with time. It seems likely that this material is
CaCo;.

The amount of CaCO, decreases with increasing curing time. This is
based on two trends over the temperatures at which these large
endotherms occur. The endotherms in the DTA curves show progressively
smaller magnitudes with increasing curing times in both the nitrogen and
the carbon dioxide atmospheres. Alsc, there is progressively less
weight loss with increasing cure time in a carbon dioxide atmosphere
between 890 and 940°C (1634 and 1724°F). This suggests that CaCoO; is
solubilizing, and Ca is possibly reacting with Si0, and Al compounds to
form cementitious materials.
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CONCLUSIONS

Results of this study show that there are changes in the chemical
properties of the hydrated spent shale dependent on water content and
cure time. Mineral-phase changes are evident in XRD and SEM/EDXA
analyses. X-ray diffraction data were analyzed for changes in mineralogy
over a period of increasing compressive strength. The XRD data show no
increase in the amount of calcite with an increase in cure time. This
evidence suggests that the cement is not in the form of calcite. Also,
we could not positively identify anhydrite; however, minor amounts of
gypsum were detected in all but the 56-day sample. The amount of
periclase also decreases with increasing cure time. The dissolution
products of periclase, calcite, and gypsum undoubtedly contribute to the
formation of the cementitious material. An unidentified peak at 19.7°
26, detected in the unhydrated spent shale, was not evident in the
hydrated samples. It is very likely that this unidentified mineral is
also instrumental in the cementation process and needs to be studied
further. The spent shale was magnetic; however, a Fe mineral phase could
not be identified with XRD.

Scanning electron microscopy revealed that with an increase in
compressive strength there is also an increase in bridging between
particles of spent shale. Marcus et al. (1985) also report that the
growth of crystallite bridges between particles correlate to an increase
in cementation. Elemental analysis, with the energy dispersive X-ray
analyzer, identified Mg, Al, Si, K, Ca, and Fe as the major elements
present in all of the samples. calcium was the major element identified
in the bridging material. Because the concentrations of bridging
material were relatively low in the samples we examined, the EDXA spectra
we obtained could have shown constituents from the surrounding material.
We identified sulfur as a main element along with Mg, Si, and Ca in
clusters of rod-like crystals. Marcus et al. (1985) identified these
rods as another form of cementing material. The rods increase in size
and number with the increase in cure time. From this evidence, we can
conclude that the rod-like crystals contribute to the cementinag ~f the
material.

Differential thermal analyses and thermogravimetric analyses were
performed to correlate compressive strength gain with thermal
alterations. The initial incorporation of water into the structure of
the spent shale was completed during the first 14 days of curing. This
is demonstrated by the constant weight loss between 100 and 530°C (212
and 986°F) after 14 and 56 days of curing. There were significant
changes in the thermal curves of the 14-and 56-day samples. First, there
was a shift from a low-to medium-temperature weight loss (100-250°C to
250-530°C/212-482°F to 482-/986°F). We suggest that this shift is caused
by changes in the structure of water present in the spent shale. Second,
we detected significant changes in the 56-day sample. An endothermic
event occurred at 710°C (1310°F) that is characteristic of the
dehydroxylation of a number of clay minerals (Todor 1976). Also, an
exothermic event occurred at 920°C (1688°F) that is characteristic of the
collapse of the clay'’s lattice structure and subsequent recrystallization
into a spinel phase (Smykatz-Kloss 1974). This evidence suggests that
formation of a hydrated, clay-like mineral occurred in the 56-day sample.
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RECOMMENDATIONS

Quantification of the cementing material in the hydrated Lurgi spent
oil shale will require additional analyses. Evaluations using electron-
procbe microanalysis (EPMA), nuclear magnetic resonance (NMR), and
transmission electron microscopy (TEM) may show us more on the
composition of the cementing materials. Other analytical procedures
such as selective dissolution in combination with XRD and EDXA may prove
to be important tools that will provide additional information of the
composition of the cementing materials.
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APPENDIX A

X-ray Diffractograms of the Unhydrated and Hydrated
Lurgi Spent 0il Shales
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