Old and new physics in nucleon spin structure

PDF Version Also Available for Download.

Description

EMC implies quarks carry very little of the proton spin. (G{sub A}/G{sub V}){sub n{yields}p} implies that valence quarks carry 70% of the spin, but disagrees with SU(6). (G{sub A}/G{sub V}){sub {Sigma}{minus}{yields}n} agrees strinkingly with SU(6). All semileptonic decay data can be fit by SU(3), but no model fits the data by breaking SU(6) without also breaking SU(3). Considerable data on hadron masses and magnetic moments are fit by a simple constituent quark model with only constituent quarks. A toy model for the proton with valence quarks and sea fits nearly everything.

Physical Description

6 pages

Creation Information

Lipkin, H. J. January 1, 1991.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

  • Lipkin, H. J. Weizmann Inst. of Science, Rehovoth (Israel). Dept of Physics Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

EMC implies quarks carry very little of the proton spin. (G{sub A}/G{sub V}){sub n{yields}p} implies that valence quarks carry 70% of the spin, but disagrees with SU(6). (G{sub A}/G{sub V}){sub {Sigma}{minus}{yields}n} agrees strinkingly with SU(6). All semileptonic decay data can be fit by SU(3), but no model fits the data by breaking SU(6) without also breaking SU(3). Considerable data on hadron masses and magnetic moments are fit by a simple constituent quark model with only constituent quarks. A toy model for the proton with valence quarks and sea fits nearly everything.

Physical Description

6 pages

Notes

OSTI; NTIS; INIS; GPO Dep.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Feb. 18, 2018, 3:59 p.m.

Description Last Updated

  • April 8, 2020, 10:19 a.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lipkin, H. J. Old and new physics in nucleon spin structure, report, January 1, 1991; Seattle, Washington. (https://digital.library.unt.edu/ark:/67531/metadc1098606/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen