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We are performing an experiment to determine the electron neutr ino mass with 
the precis ion of a few eV by measuring the t r i t i u m beta deca.\ energy 
d i s t r i bu t i on near the endpoint. To make th is measurement, we have b u i l t a 
spectrometer wi th a resolut ion of 2 eV. Our source is frozen t r i t i u m since 
t r i t i u m and the HeT+ daughter ion have electronic wavefunctions that can be 
calculated w i th high accuracy. We aescribe the experiment and discuss the 
excited f i n a l molecular state ca lcu la t ions . 

The goal of our experiment is to measure the 
neutr ino mass to better than 2 eV. For a f i n i t e 
neutr ino mass, the t r i t i u m beta decay energy 
d i s t r i bu t i on changes most not iceably in an energy 
range only a few neutr ino masses from the 
endpoint. For a zero neutr ino mass, the f rac t ion 
of decays within 2 eV of the endpoint is only 2.6 
x 1 0 " l z . This small f r ac t i on dictates a low 
background high reso lu t ion spectrometer wi th 
large acceptance. Af ter teta decay, the 
resu l t i ng atom or molecule i s l e f t in one of many 
exci ted "states. These exci ted states take energy 
from the emerging beta and give r i se to a number 
of branches in the Kurie p l o t each with d i f f e ren t 
endpoint energies. Th'e sum of these branches i s 
what i s measured. A bel ievable physics resu l t 
emerges only i f one knows the occupation 
f rac t ions and energies of these f i n a l excited 
s ta tes. In add i t ion , the measuring apparatus 
must be well understood. F ina l l y , the emerging 
electrons undergo a dE/dx loss in the source 
i t s e l f . Ideal ly , a measurement of the dE/dx loss 
is made and a consistent neutrino mass i s 
determined in sources of d i f f e ren t thicknesses. 

For most complex molecules or t r i t i u m 
binding processes, the f i n a l state effects are 
not calculable with su f f i c i en t prec is ion. 
However, molecular t r i t i u m (T2) at l i qu i d 
helium temperatures i s Ideal because the low 
intermolecular binding energy means 1t 
essent ia l ly has the e lec t ron ic wavefunction o f 
the free Tj molecule. Two independent groups 
are performing the f i n a l s ta te calculat ions for 
molecular t r i t i u m . The ca lcu la t iona l approach i s 
qu i te d i f fe ren t . N, Winter 1 determines the 
e lect ron ic wavefunction from a complete 
conf igurat ion in teract ion ca lcu la t ion . U. Kolos 
and his coworkers* determine the e lect ronic 
wavefunctions by minimizing the energies using 
100 to 200 term e l l i p t i c wavefunctions. Both 
groups determine the nuclear wavefunctions fo r 
each of these e lec t ron ic states by solv ing 
Schroedingers eauation fo r that potent ial energy 

funct ion. For the bound states, the nuclear 
wavefunctior* are determined for each v ibra t iona l 
and ro ta t i j na l quantum state. As w i l l be 
discussed la te r , the i n i t i a l state for the 
molecule can be accurately taken as the ground 
electronic state and the ground nuclear motion 
state. On the other hand there w i l l be a 
d is t r ibu t ion of f i n a l states in each degree of 
freedom. 

Considering the states for the HeT+ 

daughter ion as a funct ion of the helium t r i t i u m 
interact ion distance shows that most of these 
states have the wrong electronic configuration to 
have any appreciable t rans i t ion p robab i l i t y . 
With the i n i t i a l Tj internuclear separation, 
1.4 A. U., there are only f i ve electronic s ta tes, 
including the ground state, which have 
su f f i c i en t l y large t rans i t i on probabi l i t ies to 
give r ise to d i s t i n c t branches in the Kurie 

l e t . As is expected from the closeness of the 
T2 and the HeT+ ground state internuclear 
separations, most of the probabi l i ty occurs for a 
t rans i t ion to the HeT+ ground state. The 
probabi l i ty of f i nd ing the HeT+ ion in the 
ground state a f ter the decay is approximately 60% 
which is to be compared with 70S in the decay of 
an isolated t r i t i u m atom. 

Unlike the atom, however, the HeT+ 

molecule in i t s ground state has both v ibra t iona l 
and rotat ional degrees of freedom which can 
absorb energy from the decay beta. At the l i q u i d 
helium temperature of our source, only the lowest 
v ibrat ional and the lowest rotat ional states of 
the T2 molecule are populated. However, a f te r 
the decay, when one o f the atoms has been given 
an impulse from the decay beta, most of the 
possible v ibra t iona l and rotat ional states of the 
HeT+ ion w i l l be populated. 

The HeT+ ion i s pr imar i ly excited to a 
high v ibrat ional s ta te when, near the endpoint of 
the beta decay d i s t r i b u t i o n , the decay beta is 
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emitted near ly aligned wi th the Internuclear 
axis. Conversely, the HeT+ Ion i s l e f t in a 
h ighly exci ted ro ta t iona l state when the decay 
beta i s emit ted nearly perpendicular to the 
Internuclear ax i s . This coupling between the 
beta decay and the v ibra t iona l and ro ta t iona l 
states gives a high density of states near the 
top of the po ten t ia l w e l l . The f u l l width at 
hal f height of t h i s d i s t r i bu t ion 1s about 1 eV. 
As a consequence o f th is small spread, the ground 
state branch in the Kurie p lo t i s smeared by only 
an average o f 1 eV, This add i t iona l spread is a 
small penalty to pay for the ease of using 
molecular ra ther than atomic t r i t i u m . 

Our source is actual ly so l i d t r i t i u m rather 
than a f ree molecule. Nevertheless, the t r i t i u m 
molecular wavefunction in the frozen so l id is 
very close to the molecular wavefunction of the 
free molecule. We can understand th i s fact 
q u a l i t a t i v e l y by noting that the t r i t i u m melting 
temperature implies that the intermolecular 
binding energy i s very much less than the o rb i ta l 
electron binding energy. Consequently we can 
expect a very small perturbation on the molecular-
wavefunction because of intermolecular binding 
forces. Quan t i ta t i ve ly , the e lectron p robab i l i t y 
density halfway to the nearest molecular neighbor 
i s approximately 3x10"^ of the maximum. This 
small e lec t ron ic overlap gives r i se to a 
neg l ig ib le d i s to r t i on of the molecular 
wavefunction. The depth of the i i i ternuclear 
potent ia l wel l is approximately 1,600 times 
deeper than the intermolecular po ten t ia l w e l l . 
This d i f ference in binding energies also 
indicates a very small perturbat ion of the 
molecular wavefunction in the s o l i d . 

A theore t ica l calculat ion o f the change in 
the Tj e lec t ron ic wavefunction resu l t i ng from 
the ef fects of binding t r i t i u m in the crystal 
l a t t i c e was done by L. Stolarczyk, Warsaw 
(Reported to us by H. Monkhorst, Universi ty of 
F lo r ida) . He symmetrically orthogonalized the 
wavefunctions and found that the f rac t iona l 
change in the wavefunction, A<|I/I|I, i s 
approximately 0.07S. This small change is not 
surpr is ing since the inductive forces which bind 
the • ' r i t ium molecules in the so l i d are t y p i c a l l y 
one to two orders of magnitude smaller than the 
exchange forces which govern molecular b inding. 

The experimental evidence f o r a very small 
change in the electronic wavefunction resu l t ing 
from the binding in the so l id cones from Raman 
spectra in gaseous and so l id hydrogen. The 
v ib ra t iona l energy levels are determined by the 
shape of the internuclear potent ia l wel l and the 
shape o f t h i s well i s determined by the 
e lec t ron ic wavefunction. The t yp i ca l measured 
sh i f t i n the v ibrat ional energy leve ls resu l t ing 
from the binding in so l id hydrogen is about 
1/2000 eV. Since th is energy s h i f t 1s very small 
compared w i th the typical v ib ra t i ona l energy 

level spacing of about 0.1 eV, th i s is evidence 
for a very small perturbation in the molecular 
wavefunctions resul t ing from the intermolecular 
binding in the s o l i d . Furthermore, the molecular 
binding forces are so weak t h i t the ro ta t iona l 
states are hardly perturbed and the molecules can 
ro ta te as though they were nearly f r ee . 

Hence, we conclude conservatively that the 
uncertainty in the t rans i t i on probab i l i t ies due 
to intermolecular binding in the so l id is less 
than 0.5X and much smaller f o r the energy level 
uncer ta in t ies . 

The experiment i s contained in a vacuum tank 
0.9 m in diameter and 7 m long. The tank is 
passively shielded by 2 concentric magnetic 
shields giving a residual f i e l d less than 2 
mi l l igauss 1n the active region. The source is a 
helium-cooled plate with t r i t i u m frozen on i t . 
Varying the amount of t r i t i u m gas introduced 
allows source thickness var ia t ion from a few up 
to hundreds of monolayers. Downstream of the 
source, a variable-length col l imator defines the 
angular acceptance of the electrons. The 
electrons then pass through a spectrometer which 
consists of three equally spaced gr id planes with 
f i e l d shaping electrodes arourid the axis. We 
measure the integral number of electrons whose 
energies are higher than the center gr id 
p o t e n t i a l . Electrons leaving the spectrometer 
pass through an e lect rostat ic lens which focuses 
them onto a so l i d state detector. 

The experimental apparatus was tested in 
ear ly f a l l by looking at the 7.3 keV electron 
conversion electrons from 5?r,o. As a result o f 
t h i s t e s t , we conclude that the spectrometer has 
a resolut ion which is better than 2 eV, 

In conclusion, we have discussed why frozen 
t r i t i u m is an ideal source o f fe r ing the highest 
a c t i v i t y per dE/dx of any material and of fer ing 
f u l l y calculable f i na l state e f fec ts . These 
f i n a l state effects contribute less than 1 eV of 
uncertainty to the f i na l possible determination 
of the neutrino mass. In add i t ion , we have b u i l t 
a spectrometer with a measured resolution of 
bet ter than 2 eV. As we complete the cryogenic 
components of the experiment, our Monte Carlo 
studies show that our frozen source and our 
apparatus w i l l be able to determine the neutrino 
mass to better than 2 eV. 
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