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ABSTRACT 

Spectral diŝ ^̂ ^ 

of nuclear leve l densit ies. If we require not simply the total number of 

levels a t each energy but also their distribution in spin, we need to know 

the spin-cutoff'parameter and i t s energy dependence. Recent calculations 

of the spin-cutoff parameter have shown, qualitative aqreement with data. 

Reasons for the remaining discrepancies will be discussed and procedures 

for improving agreement between theory and experiment will be suqnested. 

*Work performed under the auspices of the U.S. Department of Enerqy by the 
Lawrence Livermore Laboratory under contract number VJ-7405-EKG-48. 



I . INTRODUCTION 

Bethe 1 ./applied ;,the central l im i t theorem to the d is t r ibu t ion "of states 

as a funct ion of angular momentum projection ( J ? ) and derived an expression 

re la t i ng the number of levels of spin J at a speci f ic energy to the to ta l 

number (of a l l J) at that energy. The'fundamental parameter entering this 
2 • expansion, <J, :-•'. has come to be called the spin-cutof f parameter. 

I t is usual to define a state as having a speci f ic angular momentum 

pro ject ion on the Z axis and a level PS encompassing the (2J+1) degenerate 

s tates. Denoting the 'number of-states with angular momentum project ion J-, 

as M(J^), wp ran express i l ( J ) , the number of levels of spin J , as 

N(J) = M(J) - M(J+1). 

This resul t follows from the fact that every level of spin J has a 

state wi th each projection of angular-momentum in the range -J < J 7 •• J . 

Thus, H(J) is the nunber of levels with spin • J and M(J+1) is the number 

wi th spin >_ J+1. Clear ly, the difference between these two is the number 

of levels,_pfr..-spin J . 

Bethe assumed a Gaussian form for M( j ) , so that 

H(j) = — ! ! i _ exp _ J / 2 
tt n l l " . . ..•••:••-.-.• ( 1 

where NQ is the to ta l nufnber of states anrj p ( - <Jy >'") is the spin-cutof f 

parameter. Approximating the difference M(J) - H(0+1) by'—| • we 
..-," d J .J=J+\ 

obtain 
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N(j ) = _° ^ - exp = ^ i -
>'^.n , 2a L ,(2JL 

To generalize this resul t fo r a level density as a function of botf1 

J and E, one needs to subst i tute N(E) for N n and replace o wit'o o(E). 

I f values for N(E) and o{E) are avai lable, one may calculate P ( £ , , 1 ) 

from Eq. (2 ) . T rad i t iona l l y , both N(E) and ,-(E,J) have been calculated 
2 

with the thermodynamic approach. This method can easi ly be programmed 

for a Targe computer and does not require Targe amounts of computer t ime. 

I t is l im i ted to one-body Hami I tonians, however, and there is at least some 

indicat ion that the predicted spin-cutof f parameters" do not agree well 

with data. To investigate the extent to which these discrepancies are due 

to the omission of two-body e f f ec t s , we must u t i l i z e spectral d i s t r i bu t i on 

theory. 

H . FORMALISM 

Use of the formalism of spectral d is t r ibu t ion theory allows calculat ion 

of level densit ies and spin cuto f f parameters. The method is based on the 

evaluation o f operator traces in r a shell model basis. Because of uni t a r i t y , 

these necessarily have the same value as the corresponding traces in the 

basis o f eigenvectors. The values for the traces then allow an expansion 

for the d i s t r i bu t i on of eigenvalues as a function of the parameters of 

i n t e r e s t . , — . ;:-

As an example, consider the d is t r ibu t ion o f states as a function of 

energy. I f the tota l number of states and the traces of H and H 2 are 
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known, then we can calculate 

H •• = - - ^ ( 3 ) 

2 
? - < H -.-> 

H > = VN (4 ) 

where < • denotes expectation value, « -̂  denotes trace, and N is the 
total number of states in the basis. Finally, we have for the distribution 
of states p(E) the form 

frs N -(E - -• H A 2 

p(E) = — — — exp — ^— 
/2T a H 2 n H ( 5 ) 

2 2-,1 

where o,, _ = [< H > - < H > J 2 

In a situation where we wish to determine p(E,J), two possible expansions 
are possible, as seen in Fig. 1. Because the early work of Bethe involves 
first an expansion of the distribution as a function of H and then an expan
sion in J 7, this sequence has normally been followed. Some work in spectral 
distributions has utilized an alternative scheme, in which the J 7 expansion 
is made first and then H (and H ) are expanded in powers of J^. This yields 
a Gaussian for each value of J with a separate value of < H > and < H >. 

A key question involves the adequacy of two moment expansions. Because 
most of the trace calculations are carried out with the use of the propagator 

"45 approach, •*• extending the calculations to higher moments has proved to be 
a difficult task. Until more comparisons between results calculated with 
only two moments and those including higher moments are available, the r.oed 
for higher moments will remain uncertain. Such comparisons1' as have been 
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made, however, support the conclusion that higher moments of H, specifically 
3 4 H and H , do improve the agreement between calculationrand [experiment. 

2 - • r .---.•—-- -.: .~:-:.:r..,r-. 

Adding powers of J\ higher than J z produces smaller changes. 
If we make theusual Bethe expansion (i.e., H first and then J 7) and 

postulate that the H distribution is rigorously Gaussian, then higher 
moments in the J-, expansion would be included through a h'ermite polynomial 
expansion. More generally, we viould allow both distributions to be non-
Gaussian in which case the appropriate polynomials for the expansion are 
the characteristic polynrmials defined as 

/ P v (x) Pt|(x) P(x) dx = &vv (6) 

where p(x) is the level density as a function of the parameter x. Here x 
would be H if we make the Bethe expansion or -J-, if we project on J-, first 
and then H. Note that if p(x) is Gaussian, the P (x) will be Hermite 
polynomials. Explicit calculation of the P (x) involves use of traces of 
order 2\J in the operator x. 

III. COMPARISON OF MOMENT EXPANSION RESULTS 
WITH EXACT DIAGOHALIZATIOH CALCULATIONS 

To investigate the importance of higher moments in spectral distribution 
expansions, it is necessary to study systems where the higher moments as well 
as the exact energy dependence of the operators of interest are known. Both 
of these conditions are met in small systems, where the eigenvalues of the 
system may be obtained from a diagonalization. The eigenvalues, in turn, 

-5-



may be used to calculate the moments and the exact energy dependence of 
the operators. 

21 As an example, consider Ne in a shell model basis consisting of an 
"J r 

0 core and f ive valence part ic les in the d g . - , s and d - , ? o rb i t a l s . 

This generates 1113 levels (8580 states) of isospin T = 1/2, with spins 

ranging from 1/2 to 19/2. The two body interact ion is that of Chung and 

Wi ldentha l . 9 

Fig. 2 shows a Gaussian expansion for the d is t r ibu t ion of levels of 

a l l spins compared to the exact values. AI1.0 indicated is the expansion 

obtained with terms corresponding to moments as high as H , Very small 

discrepancies are seen fo r the Gaussian expansion, so the improvement 

provided by the H expansion is modest. 

I f the state d i s t r i bu t ion is projected on the J-, axis, we obtain the 

d i s t r i bu t i on shown in Fig. 3. Again, the Gaussian expansion provides an 

excel lent description of the d is t r ibu t ion , with only s l igh t improvement 
4 

resu l t ing from the inclusion of the J , term. Although the size of the 

basis i s small, th is provides an impressive j u s t i f i c a t i o n of Bethe's assumption 

in t rea t ing the J z d i s t r i bu t i on as Gaussian. 

Since we are interested in,the d is t r ibu t ioh of,,levels as a function 

of both 0 and E, i t is important to check whether the Gaussian d is t r ibu t ion 

is equally appropriate fo r the levels in a narrow energy range. Results 

for two typical energy bins are shown in Fig. 4. As in the case of the 

d i s t r i bu t i on for the whole basis, the Gaussian f i t is quite good. 

I t therefore appears that in order to expand the level density as a 

funct ion of E and J , we require the energy dependence of < J Z >, with the 
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4 
energy dependence of <J 7 > of lesser interest . Fig. 5 shows the energy 

dependence of J-, for the Ne system. Values of th is parameter .calculated 

from expansions based on the moments of HnJ-, for n = 0,1,2 (second order 

expansion), for n = 0-4, and fo r n = 0-8. Clearly, the second 

order expansion provides a poor f i t , par t icu lar ly in the low energy region 

which is of most physical i n te res t . Adding terms to produce a fourth order 

expansion substant ia l ly improves the f i t and v i r t u a l l y complete convergence 

occurs fo r the eighth order f i t . 

Obtaining the necessary moments for such an expansion is a d i f f i c u l t 

task. In a s i tuat ion where the eigenvalues are known, of course, moments 

of a r b i t r a r i l y high order can be obtained easi ly. Since our primary in teres t 

for level density calculations is in spaces which are too large for d iagonal i -

zat ion, we require a l ternat ive means of obtaining the moments. The propagator 
2 2 approach is qui te ef fect ive for moments as high as <J, H >, but becomes 

increasingly cumbersome for higher moments. An a l ternat ive procedure is 

the representative vector method. This method is su f f i c ien t l y new that the 
21 

only appl icat ion of i t has been to Ne, but i t is expected to be quite useful 

in very large spaces. I t may also be used in obtaining moments for 

conf igurat ions. „ ^ — - -.-:-~--•--•—::•:•-:-:. 

IV. CONFIGURATION EXPANSIONS 

n 

The increased difficulty of calculating moments of H higher than H 
suggests that other possible means of improving the characterization of the 
energy dependence of operators be investigated. An obvious possibility is 
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to look at an expansion of the operator of in terest in terms of con f igure ions. 

Even i f we r e s t r i c t ourca lcu la t ions to~H and H 2 , we can improve our represen-

ta t ion -o f the energy dependence of an operator by evaluating the ontr ibutions 

in terms of a number of Gaussians and summing them up. 

For example, instead of calculating <H>, <HJ Z

2 >, - H 2 J Z

2 > , <J 2 > and <H2> 

for the ent i re basis for Ne, we could evaluate these separately fo r each 

conf igurat ion, defined as a speci f ic number of part ic les in each shel l model 

o r b i t a l . One such conf igurat ion, denoted 5 0 0 contains 5 nucleons in the 

d 5 / 2 ' ° i n t h e 5 i / 2 _ a n d _ ° J n t h e d 3/2 o r b i t a l 5 ; i f a l l possible arrangements 

of the f i ve nucleons among the three orbi tals are considered, there are a 

to ta l of 20 such„„configurations. Each of these_will have-components -distr ibuted 

among a number of eigenstates, so i t is appropriate to define a strength d is

t r i b u t i o n for each conf igurat ion. Evaluation of <H>, <H2>, < J 2 > , <HJ 2> and 
2 2 - ' -

<f-TOz > fo r the individual configurations allows the spin cutof f parameter 

to be expressed as the sum of twenty Gaussians. 

Comparison of th is calculat ion with "the values from a diagonalization 

is presented in Fig. 6, taken from Ref. 10. The two moment expansion u t i l i z i n g 

configurations is seen to be superior to the two moment expansion fo r the 

entire~basis and about equal to the_ four moment expansion for the ent i re 

basis. A six moment expansion for the entire basis is closer to the exact 

values than the configuration expansion. 

I t may seem puzzling that a twenty Gaussian expansion is not dramatically 

be t te r , f o r example, than a four moment expansion in the ent i re basis. The 

reason fo r the modest improvement is that the configuration d is t r ibut ions 

are highly non-Gaussian. Par t icu lar ly those configurations which l i e either 



above or below the centroid of the entire distribution have tails which 
extend into the central region. This skewing makes the Gaussian assumption 
particularly poor for configurations, as in seen in Figs. 7 and 8. The entire 
distribution, on the other hand, is very close to Gaussian. Inclusion of 
a few additional moments of the Hamiltonian provides excellent convergence 
for the spin cutoff parameter. 

V..~ SUMMARY 

Spectral d is t r ibu t ion techniques can y ie ld calculated values for die 

spin cutof f parameter. The simplest calculations a^e those which i n c l u d e - : ." 

moments of H no higher than H 2 ; these "apparently provide only a f a i r repre

sentation of the exact values. Better information is obtained from e i ther a 

configuration expansion or the inclusion of terms corresponding to addit ional 

moments of H in the e n t i r e basis. Either of these alternatives w i l l mean 

some increase in complexity of the calculat ion; a choice between the two 

approaches w i l l probably be based on convenience and length of the .ca lcu la t ion , 

since e i ther approach can y ie ld accurate values for the spin cutoff parameter. 
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FIGURE CAPTIONS 

\l9i bj " S c h e m a t i c r e P r e s e n t a t i o n of the methods of obtaining level densities 
as functions of E and..,J .from scalar traces. Tigure la shows the 
distribution as a function of E and J. The first projection method 
is to project on the E axis and calculate < J 2 > 1 / 2 as a-function of 
E as shown in lb,- An alternative technique is to project first on 
on-the J z axis and then express <H> and <H 2> as functions of J z also 
shown in lb. In either case approximate values of p(E,J) can be 

- obtained"from scalar traces of powers of H and J 7. 

Fig. 2: Distribution of levels with energy for 2 1 N e calculated in an sd 
basis with the Chung-Wildenthal interaction. Thejiistogram 
indicates the exact values (from a diagonalization); the fits 
are a Gaussian (solid line) and an eighth order expansion (dot-

_ _dashed line). 

Fig. 3: Distribution of states as a function of J z for 2 1Ne in an sd 
basis. This encompasses 1113 levels or 8580 states (T = 1/2). 
The dashed ( — ) _ and.dot-dashed (•-) liner, show J z

2 and J^ 

expansions, respectively, "wtTi'le 'the • indicates the exact value. 

Fig.-4: Distribution of states as a function of J z for 2 1Ne in an sd 
basis in two energy bins. The A points indicate exact values in 

• - the energy bin between -38 and -40 MeV, while the dots indicate 
the values for the bin between -28 and -30 MeV. Both J 2 and J, 4 

L . L 

expansions are shown. The two body matrix elements of Chung and 

Wildehthal were used in the calculat ion. 



Fig. 5: Energy dependence of the spin cutoff parameter for ~'r»e calculated 

in an sd basis with the Chung-Hi 1 denthai' in teract ion. The jo in ts 

indicate. the exact (diagonalization) results and the sol id l i ne . 

dashed l ine.and dot-dashed l ine denote the second order, fourth 

order and eighth order expansions, respectively. The sixth order 

expansion (not shown) is w i th in 2 of the eighth order expansion. 

Fig. 6: Same as Fig., .5,. except that the expansions are second order in the 

ent i re basis (dashed l ine) and second order in configurations 

(dot-dashed Tine). The configuration expansion to second order is 

almdst :^di'ntic;aT:to thawhole basis esDansion to fourth order (Fio. 5) 

Fig. 7: Strength d is t r ibu t ion for ; the:041j;configuration ( four part ic les in 

thes-. .p and one in the d , . - o rb i ta l ) ; i n { lis. The histogram shows 

the exact (diagonalization) resu l ts , while the so l id l ine and the 

dot-dashed l ine denote Gaussian and eighth order expansions, 

respectively. The deviations from a Gaussian fonn are evident. 

The in teract ion used is that of Churui and Wi 1 den t h a i . This resul t 

is from Ref. 6. 

Fig. 8: Strength d is t r ibu t ion for the 104 configuration (one part ic le in 
91 ^ 

the dg . j and four in the d ^ . - o rb i ta l ) in fie. Shown are Gaussian 

and eighth order expansions. The non-Gaussian mult ip le peaking of 

this d i s t r i bu t i on is typical of the configurations in this space. 
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