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ABSTRACT

Over the last fifteen years computer modeling of liquids and solids has
become a useful method of understanding the structural and dynamical cor-
relations in these systems. Some characteristics of the method are presented
with an example from work on homogeneous nucleatlon in nonoatonlc liquids; the
interaction potential determines the structure: a Lennard-Jones systeo
nucleates a close packed structure while an alkali metal potential nucleates a
bcc packing*

In the study of ionic .systems like CaF2 the Coulomb interaction together
with the short range repulsion is enough to produce a satisfactory model for
the motion of F~ ions in CaFo at - 1600 K. Analysis of this motion shows that
F~ ions reside at their fluorite sites for about 6 x 10',-12 s and that the
diffusion is mainly due to F" jumps in the 100 direction. The motion can be
analysed in terms of the generation and annihilation of anti-Frenkel pairs.

The temperature dependence of the F~ diffusion constant at two different
densities has also been calculated. The computer model does not correspond
vith experiment in this regard.

I. INTRODUCTION
i

Over the last fifteen years considerable
increase in our understanding of liquids and
solids has resulted from the study of the
structure and dynamics of systems consisting
of a few hundred, and more recently a few
thousand, particles interacting with one
another in a prescribed fashion. Newton's
equations of motion are solved on a digital
computer and the particle trajectories resulting
' from the solution of the equations are used
to obtain insight into various properties
of interest. The purpose of the following
presentation is to show that in the field of
fast ion conduction this method is of con-
siderable promise.

In Section II a brief description of the
, method will be given; the special technical
problems one encounters when dealing with
Coulombic systems will be relegated to Section

- IV. In Section III a few results obtained
while studying homogeneous nucleation in
simple monoatomic systems will be presented.
The selection of this phenomenon for Inclusion
in this presentation was not fortuitous; in
dealing with properties of superionic conductors
it is obviously desirable to be able to study
models in which the mobile species goes into
an ordered state as the temperature is ;
reduced. Of course, apart from homogeneous !
nudeation, there are a large number of other ;
properties which could have been chosen to j
Illustrate the use of the method. In .sections '
IV and V a few results obtained while studying ;
CaFj near its melting point will be presented* ;
The difficulties encountered in comparing the :

calculated properties with the experimental ;
values are dealt vith in section V. !

II. MOLECULAR. DYNAMICS IN OUTLINE

-In the field covered by this conference
the use of the molecular dynamics method is
not widespread. In view of this it docs not
seem inappropriate to Indicate in broad outline
how the method operates.

Given a system of N particles and a
potential function 4 which depends in a. pre-
scribed manner on r̂ > *2> •••> rN t n e positions
of the particles, we have the classical
equations of motion M^r^ * - 34/ar^, Mj being
the masses. Since these are 3N ordinary
differential equations of second order, a
knolwedge of all rj and r^ at any time t
is, in principal,~enough~to know their values
at any subsequent (or previous) time. There
are a multiplicity of ways in which such
differntlal equations can be solved by con-
verting them to a set of difference equations
with a finite time Interval at. In other words
the solution is obtained as values of
rj(t + nAt), JjCt + nAt) for all i and n, given
the values for n - 0*

It will be out of place here to go into
the technical details of particular algorithms
that are currently being used in this context;
such details are given elsewhere [1]. It will
be useful on the other hand to lay down some of
the terminology that naturally arises. The set
of 6 N values of r^ and rj constitute a
phase point P of the system which can be
followed iii time i.e., its trajectory F(t)
F(t + nAt) obtained with P(t) as input. All
these phase points will have constant total
energy E. The kinetic energy, I Mj£ j^/2, varies
with time and so does •, the potential energy,
leaving the sum constant, (the constancy of the
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total energy can be used as a test for the •
presence of errors In computation). The set of
phase points constitutes a microcanonical
ensemble, apart froa the inaccuracy introduced
by the flniteness of it.

The kinetic energy, written as 3/2 NkT(t +
nAt) apart from a change of units, can be called
the "temperature" of the system. Only when
certain criteria for equilibrium have been
satlsifled, the average of T(t + nAt) over a long
enough Interval of time (i.e., many values of
n) can be referred to as the temperature <T> of
the system. The temperature T(t) provides a
convenient way of changing E. By simply
multiplying the velocities by a constant factor
a at any moment of time the phase point can be
shifted from one energy shell to another
of higher (o > 1) or lower (o < 1) energy.

The definition of the density of the
system requires consideration of the boundaries.
For this there are many possibilities. One is
obviously the absence of boundaries in which
case the density profile of the free droplet in
space may Itself be the object of investigation.
In most cases .however standard periodic boundary
conditions with a cube of volume 11 = L3

are used which confine the system of N particles
and keep the total number N in volume ft
strictly constant. This method of confinement
produces an infinite system with .no surfaces
or boundaries whatsoever. Needless to mention
that periodic boundary conditions will have
their own special role to play in the ensuing
dynamics and this needs to be kept constantly
in view. The mass density will obviously be
IMj/n and will be striculy conserved in the
total volume 0 - L 3 but will vary in various
regions of the cubic volume. Mien all M^ = M,
the nore usual quantity to specify the density
is the number density N/fl.

The dependence of <T> on E constitutes
the equation of state. This dependence will of
course change with density. The pressure can
be calculated using the virial of forces.

Given all r^ at any time the structural
properties can be calculated at that time. If
the system is in equilibrium the structural
information for different times can be lumped
together for better statistical averaging. In
many studies the pair correlation gag(r) plays
a central role. This is obtained by counting
the number of times v when two particles, one
of species a one of 6, are found at distances
between r, r + fir; AT then is the finite reso-
lution of the statistics collected for the pur-
pose. If there are N a of species a and Ng of B
in volume ft then in a given configuration
(i.e. all r±) vaB(r) - Na NB fi"

1 4, r 2 4 r gaB(r).
Averaging over many configurations will improve
the statistics. A more detailed picture of the

.= structure is given by pa(k)=No~
1',2Sexp(ik.ra).

••. The Fourier transform of vap(r), and hence~of

aB l s pa(b) PB (£>• Neutron and X-ray
diffraction experiments are a means of measuring
such Fourier transforms.

In the case of solids the mean position in
time of every particle provides a lattice point
• and the lattice structure provides a means of
determining the one particle density map of
the system. In superionlc conductors at least
one species does form a thermally agitated
lattice and hence provides a frame of reference
for analysing density maps. In liquids no such
analysis ls possible.

pa(k) is obviously a function of time:
It ls the value of the k'th Fourier conponent
at time t of the density of particles of
species a. Thus in a more formal language
than the one used above gag is the momentary
density-density correlation function in space
for particles of species a and B; the time
displaced correlation function then gives
information about the propagation of density-
density correlations in space and time and
hence the velocity of propagation (provided
the changes wih time are not overdamped).

The motion of the point R(t) in
configuration space (R(t) has~coordinates
X].»yi,Z]_,X2y222"<'zij)"'cati ̂ e obtained by cal-
culating (R(t) - R(0))2/N. The division by N
converts this into a mean square displacement of
a particle and gives a direct way of measuring
diffusion of particles. Of course, for a
multlcomponent system the diffusive motion of
particles of species o will be measured by
(Ro(t) - Ra(0))

2/No. For large t the behavior
of this quantity is of prime importance in
determining whether particles of species o form
a stable non-diffusing structure or a system of
diffusing particles with a non-zero constant of
self-diffusion. In the former cast the width of
the thermal Debye-Waller cloud can be neasured
in this way. As in the case of density fluct-
uations a more detailed picture of diffusion of
species a is obtained by calculating the time
dependence of Fs(k,t) = exp (ik.d (t)>, where
5a(t) " xaM ~ £o(0>' This 8*ves the
diffusive properties in particular directions.

It is useful to end this brief outline
by the statement that this method of study is
ill suited for systems which, to a good ap-
proximation, can be reduced to a collection of
N non-interacting one-body problems. A slightly
non-ideal gas or a system of particles with
harmonic forces with a small degree of an-
harmoicity are two examples.

III. HOMOGENEOUS KUCLEATIOS IK LIQUIDS (AS
EXAMPLE OF THE USE OF MOLECULAR DYNAMICS).

In the study of superlonic conductors a
property of some interest is the manner in
which, with lowering of temperature, the
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"melted" sublattlce goes Into a frozen, crystal-
line state. It is therefore relevant to
present for this conference some results
related with the onset of order In a disordered
system.

i
Recently there has been some discussion

concerning the Importance of the pair potential
in determining the symmetry of the solid which
is nucleated from a liquid. In this context
lenthy calculations were made by Hsu and
Rahman [2] using a variety of pair potentials.
One of their calculations Is summarized here.

A few years ago it was found that liquid
alkali metals, in particular liquid Rubidium,
could be studied by molecular dynamics to
obtain results in good agreement with neutron
inelastic scattering experiments on the prop-
agation of sound (i.e., density fluctuations)
in that liquid [3]. Hence this liquid was
chosen for the study of homogeneous nucleation
in addition, of course, to the Lennard-Jones
liquid. The potential [4] function is dominated
by Fricdel oscillations and it is given in
Ref. 2. The liquid of 500 particles is rapidly
quenched from about 320°K to about 40°K, and
then the molecular dynamics trajectories are
monitored for various properties of interest.
In Fig. 1 we see the behavior of the temperature,
pressure and the square of the displacement of
the system in its conflgration space (see
Section 11 above for the definition of this
quantity).

From Fig. 1 it is quite apparent that the
system undergoes a transformation after a
lengthy relaxation; during this long relaxation
the temperature and pressure do not show
sensitivity to the fact that the system Is
inexorably "going somewhere". It is during a
very short interval of time (- 7 ps) that all
three quantities shown- in Fig. 1 undergo a
catastrophic change after which there is
completely uneventful dynamical behavior.

A multiplicity of ways of analysing the
structure of the system before and after the
sudden change show that a bcc structure is
nucleated out of the liquid and it is the
latent heat which shows up in the rise of
temperature on nucleation, with a simultaneous
drop In pressure.

To investigate further the short period of
time during which the sudden changes occur, the
shapes of Voronoi polyhedra were used to
characterise the precise arrangement of the
neighbors of each particle. (Voronoi polyhedra
are generalizations of the familiar concept
of Wigner-Seltz cells in a lattice). By this
analysis it was found that there is a xritclal
nucleus size of about SO particles and that
crystallization is a consequence of the
catastrophic growth of one nucleus; the surface
of the nucleus was found to advance at about
120 msec"*. . .
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Fig. 1. Change of temperature, pressure, and
dlsplacment squared in configuration
space for a Rubidium system. Quenching
occured at t = 0. Insert in A is the
enlargement of variations of temper-
ature just before and after quenching;
this detail is invisible in the main
figure due to scale discrepancy, e -
403°K, a - U.U 8, Ka3/V - 0.95.
Nucleation occurs at - 11000 At
i.e. - 200 ps after quenching.

Similar calculations2 on a Lennard-Jones
system give rise to close packed structures
showing that the interaction potential is of
primary importance in determining the symmetry
of the ordered phase which is nucleated out of
the disordered liquid-like arrangement. j

Possible calculations along these lines '
for fast ion conductors are mentioned in j
Section VI below. - -L
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IV. T1IE MOTION OF F~ IONS IM CaF?

As has already been mentioned, the
potential function of the system Is the i
primary input required for molecular dynamics
studies. For most materials of interest in :
fast ion conduction it will be quite difficult
to construct particle interaction schemes of
sufficient simplicity for use in computer
models. However, for a material like CaF2,
In view of the work already available in the
literature, it is a simple matter to set up a
molecular dynamics calculation. ;

i

Kim and Gordon [5] have given, in tabulated
form, the short range part of the three inter-
actions. On adding the appropriate Coulombic
part one gets the full interaction for any
pair.

As regards the manner of incorporating
Coulomb Interactions, there is a considerable
body of literature on the use of Ewald sum-
mations in molecular dynamics calculations. In
principle, for a charge neutral unit cell of
arbitrary complexity, the Coulomb potential of
the infinite crystal can be written as
£ I f(ri - r-i); the sum over i and j > 1 is from
1 to H~vhere N is the total number of ions in
the charge neutral unit cell; f(r) is a
function of the vector r and it Is built
up of part real space and part reciprocal space
summations both of which are rapidly convergent..
The necessity of using Ewald summations in
dealing with charged particles makes molecular
dynamics calculations with charged systems much
more time consuming than similar calculations
with short range interactions only. The review
by Sangster and Dixon [1] gives a very useful
account of the problems involved.

There has been a' large amount of molecular
dynamics work on solid and molten ionic .
materials (see Sangster and Dixor [1]). In.
almost all the materials studied the cations !
and the anions carry unit charge and have t

comparable sizes. Obviously under such con-
ditions the cations and the anions cannot show \
qualitative asymmetry in their dynaalcal and .
structural behavior. In CaF2 there is an '••
obvious asymmetry between the Ca^'s and the
F"'s and therefore it is not excluded that they
may (and do) exhibit qualitatively different
behavior at appropriate temperatures. However
it is not obvious that the Kim-Gordon [S]
potential scheme is capable of showing this
qualitative difference.

Molecular dynamics calcualtlons on 2
using the Kim-Gordon scheme showed [61, for the
first time, that this manner of studying
liquids and solids is also a powerful potential
tool in the field of fast lop conduction. In
the following paragraphs a brief summary of the
work on CaF2 will be given.

At 1600 K and 2.525 gem"3 CaF2 is
close to its melting point; these conditions
were chosen as the optimal conditions for a
molecular dynamics calculation. The calcul-
ations was started with all ions at positions
coresponding to the normal fluorite structure.
The 108 Ca** and 216 F" Ions fit into a
cube of length 17.7 8. At 1600 K the
motion of the two types of ions is remarkebly
different as seen from Fig. 2.

MEAN SQUARE DISPLACEMENT (X 1/6)

Fig. 2. <r2>/6 for Ca4* and F" in CaF2- The
thermal cloud of Ca"^ is 0.12 fi2 vide.
F~ have a self-diffusion constant
2.6 x 10~S cn^sec"1. T « 1590 K, p -
2.525 gem"3. .

It will be appropriate at this point to
emphasize two possible points of view because
their difference cannot be overlooked. One is
to pursue the analysis of the dynamics generated
on the computer-to learn about the complex
correlations that are present in that dynamics.
The other is to ask how close the computer
system is to CaF2 as found in laboratory
experiments. A little of both these points of
view will be presented in the following.

The three pair correlation functions are
shown in Fig. 3. The distances of the F~*s
from the octahedral sites of the Ca*4" fee
structure (generated by the time averaged
positions of the Ca** ions) generates the
fourth "pair" correlation in Fig. 3; the broad
first peak'in this "pair" correlation is due to
the fact that the F~ motion, while it tem-
porarily resides at the fluorite sites, has a
large Debye-Waller cloud; in Ref. 6 this broad
first peak was erroneously interpreted as the
occupation by F~'s of the 0-sites. Proper
analysis (see Ref. 7,8) shows that only a
small fraction of F~'s can actually be said
to have left their sites to reside at the
O-site.
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Fig. 3- (a) Pair correlation betwen Ca2+

Ions. The populations under die
three peaks are 12, 6, 24, respectively,
the Ca2+'s preserve the face centered
cubic latice structure throughout the
molecular dynamics r>m. (b) Fair
correlation betwen Ca2+ and F~
ions. The populations under the first
peak Is 8; the peaks appear at
positions expected in the fluorite
lattice, (c) Fair correlation betwen
F~ ions. It indicates that the
F~ ions have considerable disorder
in their mutual arrangements.
However, the shoulder and the second
peak still correspond to positions in
the fluorite structure, (d) Pair

COMMEMCFMFNT r.F rrsi

correlation between the octahedral
site (of the Ca2+ fee lattice) and
the F~ ions; it shows a population
of one under the shaded region. Thus
half the anions appear in regions
unoccupied In a fluorite lattice but
they do not reside at the 0-sites.

It is to be noted that the pair cor-
relations give no direct indication as to the
nature of the dynaaics of the two types of
ions. It Is the behavior of the mean square
dlsplacment which gives direct evidence ot
the fact that the F"'s are mobile while the
Ca^'s are not.

On the basis of very detailed analysis of
the motion of F~ ions by Dixon and GilIan [7]
and by Jacucd and Rahman [8] it is quite
clear that these ions perforn their diffusive
motion by jumps which are mostly (80Z) in the
100 direction. This result can be deduce! by
simply "looking" at the motion of E~'s in
space and time; however, a more sophisticated
description of diffusion is given by its
Fourier analysis. Let d(t) denote the
displacement of an F~ in time interval t and
k be .the wave vector of interest for the
' Fourier analysis. Then Fs(k,t) defined i-i
Section II in terms of d an3 k gives us &
complete picture of the~diffusion process
for wave vector k» (In the jargon of neutron
inelastic scattering theory and experiments
Fs is the so called "self part" of the
"intermediate scattering function"; In favorable
circumstances, with such experiments one can
observe the frequency transform of this
function). Our interest in Fs lies In the
fact that simple mathematical models can be
constructed for Fs« One such model is that
of Chudley and Elliot [9] and it was shown by
Jacucci and Rahman [8] that inspite of the
oversimplifications in the model of Chudley and
Elliott it gives a very satisfactory account
of the molecular dynamics data. This is

• somewhat discouraging in the sense that
extremely accurate Fs(k»t) will be needed to
judge and to test models of jump diffusion
which introduce more sophistication into the
description than has been done in the Chudley-
Elllot model. It has been shown In Ref. 8 that
the jump model gives a satisfactory fit with
the molecular dynaaics Fs(k,t) on . *
taking 6.27 ps as the residence time, 80Z
probability of jumping in the 100 direction and
201 in the 110 direction. Trajectory analysis
in the mannerof Refs. 7 and 8 confirms this and
also shows that the motion can be analyzed in
terms of the generation and annihtliation of
anti Frenkel pairs.

V. TEMPERATURE ASP DENSITY DEPENDENCE OF
I DIFFUSION IK CaF;

.... J!ie. temPe«ture dependence of the diffusion
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constant at two different densities ia shown
in Fig.A. The result is an essentially linear
dependence on temperature at each density but
.a rather dramatic change with density. At
1450 K and 2.8 gem"3 the diffusion is barely
noticable whereas at that temperature and 2.525
gm~3 it is an easily observable diffusion
constant -2 x 10~5 cm^sec"1.

For finite budget molecular dynamics a dif-
fusion constant of - 10~5 cm2 sec~* is most
favorable and 10"^ cm* sec~l can be
Investigated at considerable expense. The
experimental information on diffusion in
CaF2 is that of Matzke [10] taken between 600 K
and 1200 K, giving a fit with the formula 50 x
exp (-23210/T°K) cm2sec~1. Extrapolated
beyond 1200 K this formula gives the steeply
rising curve shown in Fig. 4. Experimental
results In the region of temperature of interest
to molecular dynamics are therefore badly
seeded.
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expected since this density is lower than the
density of the solid at the melting point; It
is also expected then that the constant of
Belf-diffus-ion will be much larger than at the
normal density [11] of the solid at the 6ame
temperature. However at 2.8 gem"3 a nj
1650°K, the calculations still give a negative
pressure (pV/NkT —1) but the diffusion is
much slower than that indicated by the values
extrapolated out of Matzke's experimental
range.

VI. CONCLUDIKG REMARKS

1. One of the challenges for molecular
dynamics in the field of fast Ion conductors
will be to start from the molten state and on
cooling to observe first the crystallization of
one Ionic other species and on further cooling
the arrest of the species in the interstices of
the already frozen structure. In nonatonic
systems suc'u changes of phase have been
observed by calculation and some results have
been presented here for illustration.

2. In materials like Kim-Gordon-CaF2
considerable molecular dynamics data is already
available regarding the nature of jump motion of
the F~ ions and regarding the temperature and
density dependence of the constant of self-
diffusion. This can be used with profit for
developing a theoretical understanding of
structure and dynamics in CaF2 tvPe systems.

3. An effort will have to be made to
Invent a new Interaction potential scheme for
CaF2 which will give, a good description of
the thermodynamics of the real material and at
the same time of the transport of ?~ ions in
that system. This is lacking at present. In
the meantime hopefully experimental values of
transport coefficients near melting will
become available.

Fig.4. Constant of self-diffusion of F* at
two densities as a function of temper-
ature. Laboratory results of Matzke [10]
are shewn as the steeply rising
exponential.

The conclusion we can draw from Fig. 4 is
that a detailed comparison of the calculated and
experimental values of the diffusion constant
in CaP2 cannot be made at present. Firstly
experimental results in the temperature range
of interest are not available. Secondly a.
potential function scheme wil have to be
constructed which gives the correct equation
of state for CaF2 before a comparison with
experimental diffusion constants can be made,
the Kim-Gordon [5] potential gives a large
, negative pressure [6] at 2.525 gem"3 and
temperatures shown in Fig. 4. This is as
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