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A formalism is developed for calculating the
equilibrium fluctuaticn level in an inhomogeneous lLasma.
This formalism is applied to the collisionless drift wave
in a sheared magnetic field. The fluctuation level is
found to be anomalously large due to both the presence of
weakly damped normal modes and convective amplification.

As the magnetic shear is reduced, the steady-state fluctua-
tion spectrum is found to increase both in coherence and in
amplitude. The transport associated with this mode is
evaluated. The diffusion coefficient is found to scale as
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I. INTRODUCTION.

Any calculation of the anomalous transport caused by micro-
instabilities in magnetized plasmas requires an evaluation of the
equilibrium fluctuation level associated with these modes. Much
of the previous work in this field has dealt with nonlinear effects
that might limit the amplitude of the linearly unstable normal
modes, leading to a steady-state fluctuation level.

recent wnrk52_7 have demonstrated that, in a slab gecmetry
with wecak inhomogenity (i.e., ps/Ln’”l), the collisionless drift
mode is stabilized by the presence of magnetic shear. This
demonstration presents us with a unique possibility to calculate
both the fluctuation spectrum, and the transport coefficients
within the context of linear theory since the fluctuation
spectrum may be calculated by balancing the Chererkov emission
from discrete particles against the linear damping rate of the
radial eigennodes.

Although the collisionless drift mode is found to be
linearly stable when the full radial mode structurc is taken inte
account, it remains locally unstable, and, hence, one may expect
that convective amplification will lead to anomalously high
fluctuation levels. Since the normal modes are known to be stable,
the fluctuation spectrum may be calculated by the method of
shiielde¢ test particles.8 Kent and Taylor9 have used this method
to sctudy the fluctuation level due to convective amplification in

10

the absence of normal modes {(see alsn Baldwin and Callen™ ).
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Yere, we generalize their work to include the contribution of
weakly cdamped normal modes to the fluctuation spectrum. An
important result of this work is the formalism, developed :.n
Sec. II, in which the contribution of each normal mode to the
equilibrium fluctuation spectrum is expressed in terms of the
eigenfrequency, an additional parameter that characterize. the
coupling strength of the mode, and the eigenfunction; together
with various parameters tha* ~haracterize the equilibrium plasma.
M. Trucll has also studied thc ..uctuation level of normal
modes in an inhomogeneous plasma, but his formalism is limited
to situations in which the governing linear eigenmode equation
has the form of the Weber equation. We allow for more general
second-order differential eguations in developing our formalism
in Sec. II, and in Sec. III we show how the various factors
appearing in our expression for the spectral density may be
evaluated by using phase integral (i.e., WKB) methods. 1In Sec. IV
we focus on the fluctuation level of the collisionless drift mode,
and show that, as the magnetic shear becomes progressively weaker,
the fluctuations in these modes increase dramatically. 1In Sec. V
we cvaluate the anomalous transport associated with the collision-
less drift mode in a plasma slab, and in Sec. VI we comment on the

limits of validity of this calculation.
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II. THE SPECTRAL DENSITY.

The fluctuation spectrum of an inhomogeneous, but linearly
stable plasma may be calculated by superimposing the shielding
clouds of statistically independent test particles.s—lo We
consider a plane slab model with x used to label the non-
ignorable coordinate. The equilibrium plasma is assumed to
depend only on x, so we make use of a Fourier transform repre-
santation in the two ignorable coordinates, y and z . The
electrostatic potential may then be written as

¢h(x,t) = J ()%%—%E(x,m)exp(—iwt) ;

(1

where k= ky? + kzﬁ lies in the y-z plane. 1In a linearly stable

plasma the integration contour may be taken along the real w axis.

We make this choice of integration path, so hereafter v is taken

to be real. 1In addition, the k dependence of &k(x,w) is suppressed.
The electrostatic response of the plasma ig described by

Poisson's equation. In many cases of interest, Poisson's equation

takes the form
P(x,w)d" + R(x,w)d = 4mp , (2)

where rprimes denote derivatives with respect to x, and B(X,w)

the /Fourier transformed in y, z, and t) external charge

9
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Equation (2) may be formally solved by the use of a

. iz . :
Green's function, yielding

$ix,w) = { ax'g(x,x',w)p(x",w) . (3)
The propagator, g , is given by
(,%',) = an (&, (x,w)d_(x',@)hix=-x")
R A WP (x,w) "+ - d
o (xw)e_(,w)h(x’ - x)] (4)

- 3

where 1 (x,w) and ¢_(x,w) are the solutions to the homogeneous

equation

"+ Qx, )0 =0 (5)
with

Q(x,w) = R(x,w)/P(x,m) . (6)
The solutions, b, and ¢ _are constructed to satisfy the appro-

priate boundry conditions at + and - infinity respectively.
W(w) is the Wronskian of thesc two solutions, which may be shown

to be indepcendent of x,12

Wlo) = o_(x,0)8, (x,0) - 0! (x, w0, (x,u) )



and h(x) is the Heaviside function,

5 0 for x < 0
h(x) =
I 1 for x - 0 . (8)

The charge density of a test particle with phase variables
R(t) , v(t) is given by

b(x',mlg,z)z qj dt' expilwt’ -k-R(")I6[x" ~X ()] , (9)

where ¥ is the x component of R . A considerable simplification

is achieved by ignoring finite Larmor radius effects in evaluating
This approximation is sufficient for evaluating the fluctua-

tion leve. of collisionless drift modes when Te > Ti 2s the wave

length of the dominant modes are found to be large in comparison

to both the electron and ion gyroradii. We adopt it here, and
obtain
S(X;u-,gx,v] ) = 2ngdfle-k, (XIV 18" -X) . (10)

The interested reader will find a treatment of finite Larmor radius

corrections to p in Ref. 9.



The shielding cloud of an isolated test particle is obtained
by substituting Eq. (10) into Eg. (3). The two time, two point
correlaticn function is obtained by superimposing the shielding

clouds of the statistically independent test particles, yielding
i (' ) M (%, t) > = Zq; fd%,dXFﬁ(%|,X)Jdmdm'exﬂ—i[(w'—w)t+<n'Tﬂ
s

< 8o =Kk (0 VI8l -k (X)V, 1g(x' Kew ') gt (%, X, w)

(11)
where Fé(v|!,x)is the distribution function of species s .
Substituting Eg. (4) for g , and using the delta functions to
perform two integrations, we obtain
2
) qe oa *
Cx,x', 1} = — Se(x',t+T1) 97 (x,t) >
Te
* dw
= J 5?-S(x,x',w) , (L2)
-0

where the cross-spectrum is given by

’



. 32.‘."q2q2 min(x,x") 5.
SO, x",0) = ] —;——e—s—z—[mx,mmj(x'.w)f b ;
s Te!w(m)l - k”<x)}p(x,m)[

X

2
FS(M/H,,X)|¢_(X,m)! + ¢+(x,m)¢j(x-,w)h<x-x.,

[*  ax
& —TFS(U;/@,,xw:(x,mm_rx,m ek bkt e hi(x
v ko
it
X‘
# ! ¢y|7 (m/kH,X)@+(X,h)?f(X,m) + !_(K,U)Qf(x'ﬂﬂ
x k., . P:’ ’
I
&
x = S w0 Lo, 'u)| (13)

%ax(y x") H'!P|

We now assume that the cross-spectrum is dominated by weakly
damped normal modes. In the neighborhood of the Eth normal

mode we may approximate the Wronskian by

lwiw) | |dm ORI S (14)

where Qﬂ and Yp are the real ana imaginary parts of the eigen-
reguency, uwp . Retaining just the contributions to the cross-
spectrum from frequencies in the neighborhood of taese

eigenfrequencies, we obtein

S(x, %', ) ~{ Se(x, X IR(w=0p,v,) (15)

-%)



where

Y 2.2 -
S, (x,x') = - 32m qeqSTZ " dx
J(/_,‘ 2 = ‘:

16, () | ¢, (0p™ (x1)
- F (:-2 / ,X)q‘) X) ¢ Xq} xl ,
;dw/dw£|2Té lJDRHIP{z AT I ¢ ?

(16)
;K(x) is the eigenfunction of the £ normal mode, T, is the
decay time, -1/y, , and
1 (17)
R(2,Y) = = —r
(RS V
Note that
LimR(G,y) = 8(7) .
v=+0
Similarly, we may write the contribution of each weakly
damped normal mode to the cross-correlation function as
16ﬂ3q2q2
C, (x,x', 1) = ] — INESEMEID
i s [dW/dMQI Te|YQ| ’ }
- ax 2) ~iwet
ey e 0 P
RTES (18)
so that
Clx,x', 1) = JC,(x,x',1) . (19)

I3
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The numerator in Eg. (18), which is proportional to the number

R th R
of particles resonant with the 7 normal mode, describes the sponta-

. . . . . o th
neous (Cherenkov) emission by discrete particles into the 7 ' mode,

while the denominator includes the linear damping rate. IHence, Eq.
(18) may be interpreted as describing a balance between the power
input to the u“’mode from Cherenkov emission and the power lost
due to the lirnear damping of the normal mode.

Finaliy, we note that in calculating the contribution of wcakly
damped modes to the fluctuation spectrum, each mode need only be
characterized by the complex frequency, ~. , the mode structure,

« (%)}, and one additional parameter, [dW/d.. .

I1I. THE WRONEKIAN

In order to proceed with our analysis of the fluctuation spectrum,
we must calculate the Wronskian of the solutions to Eg. (5), f+(x,m)
and ¢_(x,.) in the neighborhood of the normal mode frequencies.
Asymptotic approximations to these solutions may be constructed
through the WKB approximation. This is accomplished by analytically
continuing the function Q(x,wx) into the complex x plane end examin-
ing the Stokes structure.13 Figure 1 illustrates a Stokes structure
characteristic of a convectively unstable plasma. Here, ¢+(x,m) ie
the solution to Eg. (5) that is subdominant in region I, to the right
of the turning point labeled V+ » while ¢_(x,u) 1is subdominant in

region V to the left of turning point vV, i.e.,
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1
—/2 X 1
= (x,Vy)_ = A exp i[[ Q‘é dx} (regiocn 1) , (20)
[}

1R, w) T
+ QA v,
and
—1/2 X 3/ \
¢ (x,w) = (V_,x) = Al exp i[j 0’2 de (region V) , (21)
- - S QA‘ v

where A 1is an arbitrary function of « that will be employed liater

in normalizing these solutions, and the notation (x,V+)s, (v ,x) is

s
, 13
adapted from Heading.

With the aid of the WKB connection formulae, these solutions

may both be continued into region III, where

¢+(x,m) = (x,V+ki+ i(V+,xé {(region III) , (22}
and

o (x,w) = [V_,V+](V+,X)S+ i[V+,Yj(x,V+h (region III) .(23)

The Wronskian is then given by

Ww) = %%cosl(w) . (24)
where
V+ .
I{w) EJ 0% ax , (25)
v

and A will be identified as the amplification factor.9

The normal mode frequencies are determined by requiring that
the Wronskian vanish. This reproduces the vsual WKB resonance con-
dition,

I(wy) = (&+ )1 . (26)



tireneo, at a nroinal mode frequency GW/dm}' Is gi1ven by
AV [ (27
=P { = IT;:./J"; ' )
i ‘H} 2 ,
where
Vi o
17 -/ 90
- L= 7y 29 gy (28)
3 ., j‘] EIA

may be cvaluated for cach normal mode by performing the inajicated
integration.

We note that, within the WKB approximaticn, Q is simplv k;.
Since the group velncity is given by Vq :(hkx/duQ“; . T, may be

written as

(29)

and hence, T, may be interpreted as the time for a signal to prop-
agate from onc turning point to tae other and back at the group
velocity, i.e., T, is the peric” “llation of phonons trapped
in the "potential well", -0Q(x,uw).

It is convenient to chooc: ach that

J axle, (a0’ =1, (30)

where the integral is taken along the real x axis. Figure 2 shows
the Stokes structure at a normal mode frequency. We note that along
the real axis between ¢ and 0' the eigenfunction is well approximated

by

~nieg

2

X 1
expil’ 0”ax . (31)

2
¢E(X) z;z l



When the Stok

s structur+ resembles Fig. 2, there exists a point

©

Y. . .
w' o~ (O0,0') such that th‘%x:,u‘) =0. The eigenfunction ¢?(x)
has a maximum at this point. In the neighborhood of this point, it

. ) L} 3 .
may, be approximated by a Gaussian centered at ®. with a width

(X G
[V R P — 132
¥y ‘ImHQ/Bx;,} 32)
where ki dﬁ(x',my). Hence,
xl
: 5 1 v P
RE G0 I ﬁ,—eXPZ[J( ImO.b(x,n:-,,)GX— (x—x,);’.'.v.:,J' (33)
: .k o 2 ; 4

1
in the neighborhood of x; , where the branch of OA is chosen such

that ﬂxip is greater than zero.
When the convective instability is strong, the turning points

will be far from the real awis, and most of the contribution to
f‘?,(x);‘dx comes from the region about x;, as well as the analogous

1
/7_ (X"

P,mg) again varishes.

region centered about x; on (0,0"), where ImQ

Hence, our normalization condition yields

v

*2

l - 1
A, = (7/2)/21«'2 Trx, exp[z I
0 (34)

1
ImQ Z(X,wk)dx + {terms with X;"XE)

This expression is reminicent of the convective amplification

factor of Kent and Taylor.9 In recent work on the collisionless

drift mode6’14 an amplification factor, written as e"® has
]

been derived by considering the scattering of a signal as it passes

“arough the locally unstable region about the rational surface.
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1n order of magnitude, these amplification factors are related by

S R S R G4 D L
The contribution of the iFh normal mode to the spectral density,

Eg. (16), may be written in the form
12vq g A ¢ -
o / b p? | . ’
s, (x,%) = ] ——28 Lk { e R N A N S E S EA
/. . T ]T,! )-.'nk‘ lpl A , 1A K
e 2 | '

where TR,AZ,WR and @;(x) may <1l be expressed in terms of phase

ir .egrals. 7This fluctuatior level will become anomalously large if
/\,‘, and/or 1, bccome very large. In Sec. IV, we apply this formalism
to the collisionless drift mode in a sheared magnetic ficld, and {ind
that the fluctuation level is indeecd substantial when the magnetic

shear is weak.

Iv. FLUCTUATION SPECTRUM OF THE COLLISIONLESS DRIFT MODE

A well~known example of a plasma wave that is convectively
unstable when all of the normal modes are known to be damped is the
collisionless drift wave in a plasma slab with a sheared magnetic
field (provided that the equilibrium variations are sufficiently
weak and Y"Ti =0) . This mode is described by an equation of the

form of Egq. (5) with Q given by15

(1+Te/Ti)Q4»(Q—l)€eZ(€e)

, (36)
(Ti/Te+Q)£iZ(£i)

R(x,2) = Te/Ti—13+

where X is the distance from the rational surface, §==[x-xr(k))/ps,

1
while 2= w/u*, with Pg = (miTe)/z/eB , and w* = (—-kLTe/eB) (l/Ln) .

21 1, - _12 1 R
In addition, £,=2" % im /m) KL /) (/%) 7y =2 0 ) ek

2
and b::(klps) ;Te ,Ti and mg » My are the electronvand ion temperature
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and mass respectively. 2(°) is t''e plasma dispersion function, Lg

! is the magnetic shear length, Lp is the density gradient scecle

length, and k, is the component of k perpendicular to B (but
recall that k as defined here lies in the y-z plane).

Previous work has demonstrated that the radial eigenmodes of
the collisionless drift wave can be obtained through the WKB approxi-
mation.4 In addition, it has been determined that, while this mode
is always damped in the presence of magnetic shear,5_7 the damping

rate becomes exponentially small in (Lg/L,) when this parameter is

greater than o critical value, (Ls/Ln)cr given approximately by4
1 !
~ . 4 ‘
(Ls/Ln%:" 3{m;/mg) . {(37)

- This fact, togethber with Eg. (35) suggests that the equilibrium
fluctuation level in this mode will become very large in the limit

of weak magnetic shear, (LS/Ln) >(L5/Ln)c.

A. Decay Time

In order to obtain the decay time in this weak shear limit, one
must take account of both the electron turning points, *E and the
ion sound turning points, tP, where we use the notation of Ref. 4.
The Stokes structure characteristic of this weak magnetic shear
limit is sketched in Fig. 3. This diagram differs somewhat from
that shown in Ref. 4 because we have allowed for finite ion tempera-
tures, and hence, Fig. 3 includes new physics — namely, ion Landau
damping. It is evident from Fig. 3 that a radially localized solu-
tion must be subdominant in regions I and X of the complex x plane.
The subdominant solutions in these regions may be continued into

regions V and VI to obtain both the Wronskian and the dispersion
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[y

relation. The continuation of these solutions from regions I and X

to regions V and VI is analogous to the problem of tunnelirg through
an overdense potential barrier, which has been treated by Heading.
The resulting dispersion relation is most usefully expressed by
expanding in the tunneling factor,
ERY:
A = epoJJ Q% dx (38)
l)

1
/e 5 0.

where the branch of the square root is chosen such that ImQ

At lowest order, we obtain

IMQOH = (54 S (39)

where I(w) ‘s given by Egq. (26), with the phase integ.al taken
between the two electron turning points, *E, along a path thait passes
through x=0. Similarly, |dw/dwzf is given by Egs. (27) - (29) in the
lowest order.

It was shown in Ref. 4 that the lowest order frequency .nust be
real for (Lg/Lp) >(LS/Ln)C. Hence, the decay time Tl==—l/Y2 is

determined at first order in this expansion. We find16

T, =T /E (40)

In order to limit the dimensions of the parameter space in our
numerical calculations, we fix the temperature at a value typical of
Ohmically heated plasmas, Te/Ti:=4 , and take the mass ratio to be
mg/m; =1/1837. The factors characterizing the fluctuation spectrum
are then functions of the single parameter, LS/Ln. The various '

integrals involved have been evaluated numerically with R. White's

WKB code.l’ ‘
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Figure 4 shows the decay time of modes =0 through %=2
nlotted against Ls/Ln' It is evident from this figure that the
decay time of the collisionless drift modes can be made arbitrarily
large by increasing L /L, . In addition, the decay time of the 1=10
mode is much longer than the decay time of the other modes. Since
the fluctuation level is proportional to T the fluctuation level
of the 7. =0 modes greatly exceeds that of modes with £ #0 . We will,
therefore, ignore the fluctuations of modes with L#0.

Figure 5 shows the dncay time of the ? =0 mode plotted against
b . The decay time is found to be strongly pecaked. The existence of
a most wecakly damped mode at a value of b where the differential
formulation of the radial eigenmode problem may reasonably be expected
to be valid is signficant because it allows us to calculate the
absolutae fluctuation level within the differential formulation with-~
out any arbitrary cut-offs in b due to the breakdown of the differen
tial formulation. In addition, the calculation of the fluctuation
level is greatly simplified because we need only consider the fluc-

tuation level of those modes in the neighborhood of this most weakly

damped mode.

B. The Fluctuation Spectrum

The weakly cdamped modes are localized in a region where

ii >>],>>£e . Hence, the contribution of Cherenkov emission from

. ) . . 2
ions, which is proportional to exp(—Ei) , may be ignored in comparison

to the emission from electrons. The large value of Ei also allows

us to approximate the function P(x,%) of Eg. (2) byl5
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P (x,3) —?3 —_— (41)

1t follows from the small value of o that Ty is nearly con-
stant in the region of localization of the mode. Hence, the speciral

density of the collisionless drift mode may be approximated by

47'1/7 syt
L = ! 1 i, 0= 7 -
Slx,x' 1) = — (Ls/rs)g(b)\,o(x)[ R{% =7 (b)), v (b} ]
np’ L
s'n
. 3 ) - ot ? £ ? ('._\'l v g’
explik_(x-x} (x-¥ )/.xo+2 X-%') (% ./_O)//.xO]
+ (terms with Fo o —xo; ko »-—ko) ,(82)
where we have assumed that [%~%']| - io ,and g‘b) 1is given by
1 T A2 o
gib) =~ (my/my)” =22 — O (43)
27 - X T° (2 +T,/T )
o o o i’7e

Figure 6 shows g(b) at L /L, =100. Since it is sharply peaked,
we choose to characterize it by an amplitude, g, « @ mean bmax » and
a width Ab which may be determined as functions of Lg/L, by fitting

the numerically obtained values of g(b) to the Gaussian,

o]

g(b) = 72 exp - [(b-bpax)/ab ] . (49)

Using Egq. (44) to model g(b) it is then a simple matter to

integrate over w and k to obtain the correlation function
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2 2
C(s,7) = 1/,—,<(e.i/’1‘e)2> {exp[—i(mm7+kxs) - (s—VgT)'/ZAS ]

4+ expl-ilw T-k,s) - (s+ vgnz/zﬂs-ﬁ Jexpl-s¥/2ix5] ., (45)

1
where s (x=x')/og, 1 2 {t=t"), wp = e{bpayl, kX=Q/zlwm ¢ Xg {bpay ) 1,

4

8% = 2/ (5ky/ gy ) 2D, Vg = (B /by, )/ (ks /A0na,) , and

g
<lep/T ) > = —=— . (46)

n p"'SLn

Numerical values of the mean frequency uy and the correlation

time, 1c<=2yeﬁs/vg are shown in Fig., 7. wy is only very weakly
dependent on Lg/Lp, while the corrclation time is found to increase
with LS/Ln. Figures 8 - 11 show vg, As , kxos, klps=l£ix and

kHLn as functions of Lg/Ly . Figure 9 also shows the correlation
length in the inhomogeneous direction %, vs. L./L, . The correlation

length assovciated with phase mixing among normal modes, /s, is found

15

numerically to be large compared to Axy= Axg(bpa,). Hence, ¢, =2 Axg.
The mean wave numbers and correlation lengths in the directions
parallel and perpendicular to the magnetic field may be inferred from
our expressions for the spectral density, Eq. (42). We find that k]i
k, are nearly independent of LS/Ln and are given by k“Ln = 0.1,
klps ~ (.87, for 50 <LS/Ln <100, while the correlation lengths, Sl”
and £, increase with LS/Ln (see Figs. 10 and 1l1)., Hence, the wave-
vectors are nearly perpendicular to the local magnetic field with
K, =k, >> k” .
Perhaps, the most interesting feature of the fluctuation spec-~

trum is the large value of <(e¢/Te)2> that may be achieved as Ly/L,

is increased. This is illustrated by Fig. 12. We find that the
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numerically determined values of "(e¢/TC)”/ are well fit to two

significant figures by

220 expl2[ (g /Ly g L) 17,

- (Q@,/TC)’/ >
nigly (47)

where (Ls/Lnk is given by Eq. (37). As a particular example,
<(e¢/Te)2> is evaluated for a PLT-like plasma with n= 10" em™’
B=10kG, and T,=1keV. The result is shown by the scale on the
right-lund side of Fig. 12.

It is evident from Fig. 12 that the fluctuation level of the

collisionless drift modes becomes very large at modecrate values of

Lg/Lyp - For the reference parameters L,=10cm, n= 10" cm”’ , B=10kG,
o Vo -

and T, =1keV, the fluctuations reach the level -{et/T,) > <10 at

L,/T, = 90. Toth the spatial amplification (A;' 10") and the long

2
decay times ('O ~lO‘Ln/cS) contribute to this result.
We summarize the results of this section by noting that the
fluctuation spectrum becomes more coherent, and the fluctuation

amplitude increases dramatically as L /L, is increasead,

V. TRANSPORT

Having evaluated the steady state fluctuation spectrum in
Sec. IV, we are now able to evaluate the transport associated with
these fluctuations. The large fluctuation levels that are obtained
in the limit of weak magnetic shear lead us to expect the transpoit
rates will be anomalously large in this limit as well.

The transport driven by the equilibrium fluctuation spectrum of
the ccllisicnless drift waves may be expressed as an integral over

the wave speccrum by assuming a linear response of the plasma to
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_he waves, and taking the appropriate morments of the drift kinetic
equation.18 In the absence of a temperature gradient, the electron

particle and energy flux may be written as

1 2f g
P [ PN -C A LPOIPE .
fg = =(°/2) (e—BJJdAL(PF) [1- Stk lky /Ky v, |90/ A% (48)
and
Qe = Tele (49)
wherc 3@r=’nvy‘ and Qe:-'nmv?vx-/Z. Using the fluctuation spectrum

obtained in Sec. IV, we find 7',=-Dgin/ix, with

2 <107 *exp!2 [ (Lg/Ly)ALg/Ly) 177 HB/10 KGY
(o]

D, - _
¢ (n/10"" en™*) (r /1 kev)"?

cm’/sec . (50)

Tt follows from the conservation of momentum that the particle flux
is ambipolar. Hence, Dj =Dg.

fquation (%0) dewcribes the anomalous transport associated with
the collisionless drift mode in a hydrogen plasma with no temperature
gradients, and a temperature ratio of T, /Tj=4. This result has
been derived from a slab model and does not include effects such as
¥B drifts and trapped particles that may be important in more com-
plicated gecmetries. It is interesting to note that this transport
coefficient yields containment times proportional to nT;;/2 , and that
the diffusion coefficient increases (and the containment time decreases)

rapidly with Ls/Ln'



VI. DISCUSSION

We have developed a formalism for studying the fluctuations
of weakly damped normal modes in an inhomogeneous plasma. This
formalism cxtends previous work9 on the fluctuation spectrum in the
absence of normal modes. It is uscd to evaluate the fluctuation
spectrum of the collisionless drift wave in a sheared magnetic field.
Roth the coherence and the amplitude of the fluctuation spectrum
are found to increase in the limit of weak magnetic shear. The
fluctuation spectrum is used together with the quasilinear transport
coefficicents to evaluate the transport associated with the collision-
less drift mode. The transport rates are found to be anomalously
large in the limit of weak magnetic shear.

The range of validity of this calculation is restricted at both
large and small values of Lg/L,. 1In the limit of strong shecar,
Lo/Ly (Ls/Lnl:=20 , the WKB approximation introduced in Sec. IT
breaks down. Since the formalism of Sec. II remains valid in this
limit, our calculation could be extended to include this strong shear
limit. @We have chosen not to do this because the scaling of (e¢/T)
described by Bq. (47) indicates that the fluctuation level will be
uninterestingly small in this limit.

Our expression for <(e¢/Te)2> grows without bound in the limit
of weak magnetic shear. Clearly, our assumption of a linear plasma
response, <cf, Eq. (2), must break down in this limit. The nonlinear
interaction of drift waves has been studied extensively.1 Although
this field is still an active area of current research, there seems
to be a general concensus that nonlinear effects become important

at amplitudes <(e¢/Te)2> ~(pS/Ln)2_
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In addition to the mode-coupling and strong-turbulence theories
discussed in Ref. 1, we note that the trapping of rescnant electrons
by the wave may be important due to the coherence of the fluctuation
spectrum obtained in Sec. IV. Particle trapping19 will occur at
amplitudes <(e¢/Te)2> ~(9ane/vte)%. As either of these limits on
<(e¢/Te)2> is approached our assumption of a linear p’asma response

breaks down, and Egs. (47) and (50) are no longer valid.
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Fig. 2. Stokes structure at a normal mode frequency in a convectively unstable

plasma,
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Fig. 4. Decay time of modes % = 0 through & = 2 vs.
LS/Ln with b = 1, Te/Ti = 4, and me/mi = 1/1837.
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Fig. 5. Decay time of 2 = 0 mode vs. b with LS/Ln = 100,
T,/T; = 4, and me/m; = 171837,
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Fig. 6. The normalized spectral density, g(b). Numeri-
cal values are indicated by dots, the Guassian obtained
from a least squares fit is shown by the solid lines. Lg/Lp

= 100, Te/T; = 4, mg/my = 1/1837.
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*ig. 7. Mean frequency {(solid line) and correlation
time (dashed line) vs. Ls/L‘n . Te/Ty = 4 and mg/mj =

1/1837.
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Fig. 8. Group velocity (solid line} and phase
mixing length (dashed line) vs. Ls/Ln‘
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Fig. 9. Mean wave number (solid line) and correla-
tion lenqth {dashed line) in the inhomogeneous (x)
direction.
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Fig. 10. Mean wave number (solid line) and correlation
length (dashed line) in direction perpendicular to both
the magnetic field and the density gradient.
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Fig. 1l. Mean wave number (solid line) and correla-
tion length (dashed line) parallel to the magnetic
field.
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Fig. 12. gg (left scale) and <(e¢/Tg)> (right
scale) for reference parameters n = 10" em~3, B =
10kG, To = lkeV, and Ly = 10 cm. Numerical values

are indicated by dots, while the numerical approxi-
mation of Eq. (46) is shown as a solid line.



