Measurement problem in PROGRAM UNIVERSE

PDF Version Also Available for Download.

Description

We present a discrete theory that meets the measurement problem in a new way. We generate a growing universe of bit strings, labeled by 2/sup 127/ + 136 strings organized by some representation of the closed, four level, combinatorial hierarchy, of bit-length N/sub 139/ greater than or equal to 139. The rest of the strings for each label, which grow in both length and number, are called addresses. The generating algorithm, called PROGRAM UNIVERSE, starts from a random choice between the two symbols ''0'' and ''1'' and grows (a) by discriminating between two randomly chosen strings and adjoining a novel ... continued below

Physical Description

Pages: 21

Creation Information

Noyes, H.P. & Gefwert, C. December 1, 1984.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We present a discrete theory that meets the measurement problem in a new way. We generate a growing universe of bit strings, labeled by 2/sup 127/ + 136 strings organized by some representation of the closed, four level, combinatorial hierarchy, of bit-length N/sub 139/ greater than or equal to 139. The rest of the strings for each label, which grow in both length and number, are called addresses. The generating algorithm, called PROGRAM UNIVERSE, starts from a random choice between the two symbols ''0'' and ''1'' and grows (a) by discriminating between two randomly chosen strings and adjoining a novel result to the universe, or when the string so generated is not novel, by (b) adjoining a randomly chosen bit at the growing end of each string. We obtain, by appropriate definitions and interpretations, stable ''particles'' which satisfy the usual relativistic kinematics and quantized angular momentum without being localizable in a continuum space-time. The labeling scheme is congruent with the ''standard model'' of quarks and leptons with three generations, but for the problem at hand, the implementation of this aspect of the theory is unimportant. What matters most is that (a) these complicated ''particles'' have the periodicities familiar from relativistic ''deBroglie waves'' and resolve in a discrete way the ''wave-particle dualism'' and (b) can be ''touched'' by our discrete equivalent of ''soft photons'' in such a way as to follow, macroscopically, the usual Rutherford scattering trajectories with the associated bound states. Thus our theory could provide a discrete description of ''measurement'' in a way that allows no conceptual barrier between the ''micro'' and the ''macro'' worlds, if we are willing to base our physics on counting and exclude the ambiguities associated with the unobservable ''continuum''. 27 refs.

Physical Description

Pages: 21

Notes

NTIS, PC A02/MF A01.

Source

  • Symposium on the foundations of modern physics, Joensuu, Finland, 16 Jun 1985

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE85008179
  • Report No.: SLAC-PUB-3537
  • Report No.: CONF-850683-1
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 5759004
  • Archival Resource Key: ark:/67531/metadc1097788

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1984

Added to The UNT Digital Library

  • Feb. 18, 2018, 3:59 p.m.

Description Last Updated

  • March 20, 2018, 5:49 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Noyes, H.P. & Gefwert, C. Measurement problem in PROGRAM UNIVERSE, article, December 1, 1984; United States. (digital.library.unt.edu/ark:/67531/metadc1097788/: accessed May 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.