r

LA-UR _87-2534 OZW F_ 8/707 110 - ’/

LOS AIgmog Natorg LEDQrBIOrY § 0DEr8Ied Oy 1Re Univerity Of Cantormg 1or 1ne UN1eE 3:8108 Department af Erergy under contract w."403.-ENG. 38

nTLg  THEORY OF NEUTRON SCATTERING EXPERIMENTS ON MOMENTUM \
DISTRIBUTIONS IN QUANTUM FLUIDS

LA-UR--87-2534

DE87 013169
AuTHONS): Richard N. Silver

SUBMITTRD TO  The 11th International Workshop on Condensed Matter Theories,
Oulu, Finland, July 27 to August 1, 1987.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Governmen! nor any agency thereof, nor any of their
employees, makes any warranty, express ot implied, or assumes any legal Lubility or responsi-
hility for the accuracy, completeness, o1 usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and oointons of authors expressed herein do not necemsarily state or reflect those of the
United States Government or any agency thersof.

Gv 82209107CE of 1N19 S/NE1Q. TRG DUBNSNE? *GO0PMI0E INGL NG U § SOVArnMEnt reIaing § AONENINDIVE. *OYENY-FED hEONED () BUBHIN §f 1 00rEeues
NG AUBNSAEE '™ Of G COMMPVNON OF 10 SNOW GINGrS 10 00 00. 'er U S Govarnmam 5w/ eeess.

TR0 LO8 A 1a/MB8 NOIIOAD LOBETEINFY 'ORVENIE ING! ING DUBNING? GONLY g YRG0 00 SOrt SONErMOS VAGE? MO Sudeas ¢! the U § Desenment ot L e’

MASTER
LoS AlaMOS imeaneierataoasr

om0 m DISTRIBUTION OF THIS NOCUMENT IS UKLIMITED .


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


THEORY OF NEUTRON SCATTERING EXPERIMENTS ON MOMENTUM
DISTRIBUTIONS IN QUANTUM FLUIDS

Richard N. Silver

MS B262, Theorstical Division

Los Alamos Neutron Scattering Center
Los Alamos National Laboratory

Los Alamos, NM 87548

I. INTRODUCTION

Momentum distributions are of fundamental interest to our understanding
of the many body physics of quantum solids and fluids. Since the original
suggestion by Hohenberg and Platzman,! there have been many experimants2
with the goal of determining momentum distributions by vcattering neutrons at
momentum transfer high enough to invoke the impulse approximation (IA). The
IA is questionable for helium, because the He-He potential is steeply repulsivs at
short distances leading t~ significant final state corrections. These must be
understood in order to extract from experiment the parametars of interest, such as
the Bose condensate fraction in 4He or the Fermi surface discontinuity in 3He.
Most theories for final state corrections!,3-5.6 have predicted a quasi-Lorentzian
broadening of the IA, However, Gersch, et al.” argued, via a complex many-body
cumulant derivation, that real space correlations result in a non-Lorentsian final
state broadeping. A simple quasiclassical theory for this prediction was given by
Silver and Reiter,8 who expressed the corrections in terms of the radial
distribution function, g(r), and the He-He cross action. Until now a fully quantum
theory, which included the correst physics for the quantitative correction of
experiment, has been lacking.

In tlLis paper, I present the first perturbative derivation of the final state
corrections to the impulse approximation for deep inelastic neutron scattering
experiments. The final state broadening is found to depend on g(r) and the He-He
phare shifts. The theory satisflies the f-sum rule, the w2 sum rule ("kinetic energy”)
valid at high Q, and the w3 sum rule. In the structure of the theory, the self-energy
terms alone would lead to quasi-Lorentzsian broadening. However, these are
exactly canceled by a part of the vertex terms which introduce g(r). Numerical
results are presented for superfluid 4He.



0. MOTIVATION

Let us review the physical picture first discussed by GGersch, et al.7 and
derived in a quasiclassical approximation by Silver and Reiter.8

A neutron scattering from a helium quantum fluid instantaneously imparts
a momentum transfer Q and an energy transfer w to an atom. The impulse
approximation (IA) is obtained if Q and w are large compared to any of the
momentum and energy scales characterizing the fluid, so that the helium atom can
be assumed to recoil freely. Then Q S(Q,w) is a function only of a "scaling”
variable, Y = M(w - AQ2/2M)/AQ, and it is simply related to the initial
momentum distributior n(p) according to

Q[ &' Q' ¢ (1)
QSM(Q,w)-PM(Y)= ; ‘ mT)’u(’)&(u- H -4 TI—)

This equation has been extansively used in the analysis of experimeat.2

However, the He-He potential is steeply repulsive at short distances
violating the conditions for the [A. The final state scattering of the He atom by its
neighbors should broaden the LA, according to

QSWQu = F(Y) = I_.dY'R”(Y-Y')PM(Y') (2)

Res(Y) would be a Lorentzian! in the simple approximation that the He atom
scatters at a constant rate 1/2 pv gy, 1y, Where p is density, v @ AQ/M is velocity,
and oy, 4, is the cross section.

In reality, the final state scattaring rate is not a constant because the initial
positions of the helium atoms are strongly correlated. Figure 1 shows tho He-He
potential® and the radial distribution!0 function, g(r), for 4¢He. The atoms sit in the
attractive part of the potential (r > 2.7 A) at some distance from the steeply
repulsive core (r £ 2.3 A) responaible for the final state scattering at high Q. In
Wigner's quasiclaseical approximation,!! the variable Y is conjugate to the
distance which the recoiling atom travels before reaching the cors. As there are
few collisiors at very small collision distance, Rps(Y) shoula be narrower than the
Lorentsian prediction and lack Lorentsian tails.

To obtaia this physics in a fully quantum theory, | must retain the full
correlationr in the ground state, expressed through gi(r), in a calculution of the
dynamical scattering law, S(Q,w), givan by

SQuw e % L du' "t < §_0H NG e > ()
Here, p(0) = Ly A%, o du is the density operator, N is the numbar of parti:les,
< > denotes expectation values in the ground state of the full Hamiltonian, H,
including the interactions responsible for the strongly correlated g(r) and n(p). Ido
not wish to calculato g(r) and n(p). Rather, I take them as a given property of the
ground state Iy, > such as obtained by a variations| or Monta Carlo calculation, or
from a neutron diffraction experiment.
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Fig. 1 He-He potential, V(r), and the radial distribution fixnction, g(r), for 4He at
T = 0°K.

If I naively proceed to perturbatively expand only the time dependent part of
(3), I find an infinite number of terms which diverge as inverse powers of
w = AQ3/2M + ie. A method for infinite order resummation is required. The Kuto
formula for the frequency dependent electrical conductivity in a metal, o(w), has a
form similar to Eq. (3). A similar problem occurs in which perturbatioa expansion
results in an infinite number of divergent terms in inverse powsrs of @ + ie. One
solution of this problem is to use Liouville perturbation theory and & diagonal
projection operator method to resum a!l the singular terms.12 [ adopt a similar
procedure to evaluats 8(Q,w), except that | use an off-diagonal projection operator
appropriats for Qu 0. As is true for the perturbative derivation of Boltzmann
equation answers for the resistivity starting from the Kubo formula, I find that
vertex termig must be retained and these introduce the correlatioas, gtr).

In terms of Feynman diayrams, the perturbative expansion of Eq. (3) should
yield the Dyson equation shown in Fig. 2. | assume that Q is sufficiently high that
the dynamics of low momentum holes, craated by Ay and represented by —¢— .
wccurs over 8 much longer time scele than the dynamics of high momentum
particles, created by A*, o and represented by —p— . The wiggly lines reprosent
T-matrices. So tha dynamics of holes can be !gnored, but their inatantaneous
spatial correlations (deflned by g(r,t) for t = 0) are important. [f oniy the bare and
self energy terms in Fig. 2 are included, the resuit would be quasi-Lorentsian
broadening of the IA.3 The vertex term in Fig. 2 includes a hole four point
function, represented by (), which is related to g(r) = 1. Inclusion of the vertex
term yields a non-Lorentsian final state broadening of the LA, A precise meaning
to the diagrams in Fig. 2 will be given in Secs. M and IV.
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Fig. 2 Niagrammatic representation of the Dyson equation for deep inelastic
neutron scattering.

II. HARD CORE PERTURBATION THEORY FOR DYNAMICS

In this section, I present a general framework for the Liouville perturbative
expansion of $(Q,w) in terms off-diagonal projection operator methods and ground
state expectation values of products of creation and annhilation operators. In the
following section I specialize to the particular case of "deep inelastic neutron
scattering” (DINS) at high Q.

I define a "superoperator” as an operator S which acts on the ordinary
operator to its right, say O, to creata a new ordinary operator 0', according to 80 =
O'. For example the Liouville superoperator L is defined by

LY = -18.01 (4)

Here * denotes £n ordinary operator constructed out of sums of products of s-alars
and creation and annhilation operntors, and “denotes a superoperator. If H can be
written as the sum of kinetic,K, and potential, V, terms, then similarly L = K + V.

Consider then the quantity which vecurs in 8(Q,w), Eq. (3)

(5)

- "
§%w) = I dee' -t c'"”‘BQ(O)c"““
0

In terms of superoperators

. , (8)
Yo m —2 5

S¥(w) ;“—_t pq(m

Eq. (8) can be expanded as a Dyson equation

.Q - “ -~ ' - “0

S¥(w) -y pQ(O) + m vV 8% (w)
Sinca K& *, bk = (¢, ,o-¢,)8 ", ,ob,, the singular terms in the expansion of (7) as
inverse powers of w + ie = AQ2/2M occur as (Aw* ~K)! operates on terms of the form
XN

7

In general, $%(w) has the form of an (nfinite summation of terms consisting of
a scalar times products of creation and anahilation operators. Following the
treatment!? of the singular terms in the Kubo fcrmula developed by Argyres and
Sigel, [ seek a projection superoperator A which projects out only those components
of an oparator, O, which create single particle excitstions of momentum Q out of
the ground state, i.e.



~ - - ad - -(8)
A0 = %_ Okahqah

Argyres and Sigel!2 used a diagonal projection superoperator, @ = 0, whereas I
use an off-diagonal one. A murt also satisfy AA = Aand Ad*, Ay =A%, Ak.

Defining &' = 1-4, straightforward manipulations then yield from the
Dyson equation (7) for $Q(w)

. A .
38%u) = ——— B + D ATAEw) 9)
PR ¢ YA '¢
where the T superoperator is
ATE w VA + AVA ——ot ivi (10)

Awt -K-3'VA
Note that (10) is the superoperator analogue of the Hamiltonian T matrix
equation,

A two body approximation would be to replace T by

~ A - (l l)
TO = ~(T,01
where the two body T' matrix operator in

.1 (12)
= — N + +
T 20 ‘;Tﬁ Tninzqanl'qatz-qanzanl

Here Ty k,Q are the scalar components of the T-matrix, which can be expressed in
terms of the phase shifts and scattering angles when w is on-energy-shell. Note
that exactly this two-body approximation!2 {s used in the perturbative derivation
of the resistivity starting from the Kubo formula.

I claim the following is an explicit construction of the projection
superoperator required

. . (13)
6sS 8,2, <10, 8, .01>
ry =P

Here [A,B] is a commutator, nx = <A4*,4,>, and < > denoies ground state
avsrage. Reruarkably, the same formula works for Bosons and Fermions.

Within the two-body T-matrix approximation, I find that Eqgs. (3), (9) and
(13) constitute a closed system of equations for S(Q,w). These depend on properties
of the ground state through the ny and through a four-point function

> (14
]
Usually I do not have complete information on ®(k),k3,Q). [ do know its symmetry

properties suzh as ®(k ) ,k2,Q) = &(ky,k2,K) where K = k3-Q-ky. [also know a sum
rule

'S ) ~"d " -
@lkl.k,,Q) ac u.'.qo.rqa.za.

-'N- AN TIRCIEY L I [ &'r ¢ (g = 1) (15)

"hey



which follows from the definition of S(Q). Here, g(r) is the radial distribution
function and p = N/Q is the density. As we shall see, the first term on the right
hand side gives rise to self energy terms in the Dyson equations and the second
term to vertex terms. Note that the -1 component of the second term exactly
cancels the first term.

IV. S(Q,w) ATHIGH Q

I now specialize to the problem of deep inelastic neutron scattering (DINS),13
which is the behavior of 8(Q,w) for very high Q. For clarity, I restrict the
calculation to 4He. I will use the concept of high, capital "Q", and low, small "q",
momenta to select the important terms at high Q. To define “high” and "low”
momenta operationally, a high momentum Q is where to an excellent
approximation nQ = 0 and pf d3r eiQ-r(g(r) — 1) = 0 (or AQlyo> = 0). Thatis high
momenta greatly exceed the typical momenta characterizing the condensed phase.

At high Q, [ expect that two-body collisions dominate the final state broad-
ening, so that the approximation Eq. (11) is valid. I also expect that the Ty, x,Q can
be talten to be the free particle T-matrix because the nQ are negligible at high Q. A
tedious, but straightforward, expansion of Egs. (9), (11)-(13) would then yield a
complicated set of equations for the components 39, of 38Q(w) defined by

AS Qs+ (16)
ASYw) = ; sfa;, 02,

At high Q, I find the following simplifications:
1)  The projection operator can he reduced to

~ ¢ 7
AO:E n‘- &t 4 <ag*a, O>+a'a, <O’ a,> a7
r "

heQ A ke hh-Q A-Q
whers the prime on the summation means it is restricted to low momenta.

2) Terms genersted of the form 4*.4, o always have negligible coefficients
®/k),k2,Q), and 80 the second term in (17) can be dropped.

3) Terms gencrated from T4y are negligible compared with terms generated
from TA*, o, becaus: the corresponding P matrices are larger for high
momenta due to the steeply repulsive He potential.

4) Athigh Q, the forward and backward scattering Boss symmetrized T-matrix

sym (18)
ri-wQ.N . rn-wxa + Ti-wQ.ﬂf—l-O

is to a good approximation a function only of Qand q, i.e.
Hm T™ = T\Q.¢) (19)
A.:Q d-yrQNg Qe
5)  Ican take T(Q.q) to be on-energy-shell since [ am interested ir. Aw very close
to the t .coil energy A2Q%/2M. (I may wish to consider off-enegy-shell '1(Q.q)
for smaller Q, which would introduce3 an asymmetry weighted toward high

w. This could aleo be important in the problem of electron scattering in
nuclear physics.)



Following this line of reasoning, I arrive at a relatively simple equation for
the SQ,

= 1 ' - .
S '= - lm +=—3 Y (TQ D Mhk-qk.q (20
ﬁw—chqﬂc Qn‘ p, q .,
Consider first the limit of a non-interacting system where g(r) » 1. Then
(21)

lim — D Oh-q k) =8 _ N

g1y Ty 4
would satisfy the sum rule, Eq. (15), and would be the correct non-interacting
result. Then {20) isreadily solved to yield

lm S¥w) = — : — (22)
ar—l Aw “6.Q " pT(q,0)
This is the usual self-energy corrected propagator for a high Q particle in terms of
the forward scattering T-matrix. This result would yield quasi-Lorentzian final
state broadening of the impulse approximation. (Going off-energy-shell would
introduce some asymmetry toward the high w side of the recoil peak3).

Howe rar, g(r) is very different from 1. While I don’t exactly know
n!, Zx ®(k-q,k",q), I do know the ny weighted average of it from the sum rule, Eq.
(15). Therefore, I approximate it by its average

(23)

"o
This will lead to a convolution form of the final state broadening, Eq. (2). When
Eq. (23} is substituted into Eq. (20) there are three terms on the right hand side.
These terms may be represented by the Feynman diagrams shown in Fig. 2. A
golution of Eqs. (20) and (23) can be obtained as follows.

ls Sh-q,k',q) =N8q_o +p J Lreé® gin=1}

89, (w) is a function only of ki, where parallel () is defined with respect to the
direction of Q. Then one can sum over q;. Define

-1 M
To» — > FQ.adq) = (24)
- W= % " Q
" g (25)
) = <= Sy e
and
. (28)
dlglmp ] Sre® g0
Using the scaling variable,13 Y ® M(w - AQ2/2M)/AQ, I obtain
) 1 o -
(V=hlih) =k + Y lky-q,Tiq) (27)

The secord term of (27) has the form of a convolution, and 30 the equations can be
solved by Fourier transform from momentum space to real space



@ ik x (28)
s = M ] dxe "ap{c‘f dx'(Y+l‘(z'))}
0 0

where I'(x) is the Fourier transform of T(qy), Eq. (24).

1 use semiclassicul methods,'4 which are certainly accurate at high Q, to
solve for I'(x). I start with the standard expression for T in terms of phase shifts,

= 4np? u8, (29)
Qe =~—= Y @+lfe ‘~11Pcos®)
wQ teven

At high Q, a large number of £ contribute to (29). I can therefore replace the sum
by an integral using the Poisson summation formula. The scattering angle,
0 = 2q,/Q, is small. I can therefore use the large ¢/amsll angle representation of
Legendre polynomials in terms of Bessel functions

(30)

2
1 , 1\2., o
Pe(eoce)=J°((!+ll2)0)= 2n Io upll(¢+§) =4, ni¢) do

Q
where #() is a unit vector perpendicular to Q. The summation over q, in (24)
simply yields a 8-function involving r; in Eq. (23). I replace the angular
momentum ¢ by the impact parameter, b = (¢+1/2)2/Q. Then ir;) = b, [ evaluate
the phase shifts, 8(b), using the JWKB approximation.

V. RESULTS FOR DEEP INELASTIC NEUTRON SCATTERING

Following the steps outlined in Sec. IV yields the following final results for
final state broadening function as defined in Eq. (2)

1 - * (31)
ReglY) = ~ Re ] d:cp{i l dz\(Y + l‘(x'))}
n 0 0
where
Mz) = 35"—‘1 ] bdb [, g(Va'+b" (32)
- [}
o YT - (33)
fb= ¢ -1+ (] 1
M0

['(w) is related by a constant to the He-He T-matriz. Only the M = -1 term is
significant in the summation in Eq, (33), and it leads to the hard sphere glory
oscillations of the He-He cros~ section. I will refer to Eq. (31) as the “hard core
perturbation theory"” result (HCPT).

The final results, Eqs. (31)-(33), meet all the requirements for a quantum
theory discussed by Silver and Reiter.8 Comparing the present results with the
quasiclassical theory (QC), I find that the mathematical form from HCPT is
remarkably similar, However, in the present theory: 1) forward diffractive
scattering is properly taken into account, so chat the second term produces glory
oscillations (absent in QC) and the large x scattering rate is 1/2pv 2nr? (2 x QC); 2)



the db integrals now involve the phase shifts (rather than the "effective” hard
sphere radius in QC), so that steeply repulsive potentials can also be handled;
3) the argument of g(r) is simpler, which allows HCPT to satisfy the w2 and w3 sum
rules15 for rhuch smaller Q (not true in QC for Q < 20 A1), and which eliminates
the strong dependence on the detailed form of g(r) cbtained in the QC theory; 4) the
integral in the argument of the exponential extends to x (it was x/2 in QC); 5) there
is a shift in the peak position due to the real part of I'(x) (absent in QC). I have no
explanation for the differences between these two theories.

The HCPT results also differ quantitatively from the work of Gersch, et al.7
while they agree regarding the importance of spatial correlations. The decoupling
approximation is different, HCPT expresses the results in terms of g(r) where Ref.
7 does not, HCPT properly handles the forward diffructive scattering where Ref. 7
does not, etc.

The HCPT results can be derived by an alternate procedure in which 1
approximate the Hamiltonian to retain only the high momenta and short distance
(i.e. r such that V(r) ~ O(A2Q2/2M)) components in the dynamics. The static
expectation values are evaluated in a ground state determined from the low
momenta and long range parts of the Hamiltonian. This was, in fact, the >riginal
route to Eqgs. (31)-(33).

Results similar to (31)-(33) can be derived for Fermion systems (e.g. 3He),
except that the summation in (2?) must be changed to account for the different
statistics.

The final state broadening, Eq. (31), has been evaluated numerically for
superfluid 4He. Figure 3 compares the HCPT resolution function to a

-1
Rncn ve. RLZ at 20 A

1.5 P; Ll “ ELANENE SRR BN ¥ 1 T yor T , T _J
L. — HCPT |
o H. T s O.K eseselc Lz -
- — ]
- B 1
> - :
; - . -
! ]
- 4
- -
O Y S | i A-(

Y (A
Fig.3 Final state resolution functions, R(Y), calculated for tHe at @ = 20 A1 in
the present theory (HCPT) and in the quasi-Lorentzian approximation
(L2).



quasi-Lorentzian (LZ) obtained by taking g(r) - 1 in Eq. (32). The Ryjcp(Y) has a
narrower FWHM, a zero second moment satisfying the kinetic energy (w2) sum
rule, and no high frequency wings.

Figure 4 shows calculations of QS(Q,w) for the HCPT, LZ, and IA models
using a theoretical momentum distribution calculated by Lam, et al.,16 which has
an 11.9% Bose condensate fraction. For HCPT, the linewidth of the non-condensed
atoms is comparable to the IA, but the Bose condensate peak is not clearly
resolved. The LZ lineshape is much wider than the HCPT and the IA, and the
glory oscillations (nc¢t shown) are much larger in LZ than in HCPT. It is
remarkable thet QS(Q,w) turned out to be positive in this calculation as required,
even though Rijcpr(Y) is both positive and negative. This required a close
relationship between g(r) and n(p).

Figurc 5 shows the change in QS(Q,w) between 20 A-! and 200 A-1. The Bose
condensate peak only slightly sharpens at 200 A-t, but it is still not clearly
resolved. The approach to the IA is very slow for He (logarithmic in Q), and the IA
is never reached for a hard sphere potential no matter how high the Q. Final state
corrections are important at any experimentally feasible Q.

Detailed numerical predictions for 4He, 3He and the hard sphere Bose liquid
will be presented elsewhere.!7

The convolution form for the final state broadening, Zq. (2), can fail for a
variety of reascas: the k-dependence of the left hand side of Eq. (23) may be
significant; Q may not be high enough to justify the on-energy-shell approximation
for the T-matrix, etc. A detailed discussion of the corrections to Egs. (2) and (31) at
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Fig. 4 Calculations of QS(Q,w) in the present theory (HCPT), quasi-Lorentzian
(LZ), and the impulse approximation (IA) for 4He at Q = 20A-!.
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lower Q is beyond the scope of this article, although the Q achieved in present
generation experiments may not be high enough to apply the Egs. (2) and (31)
blirdly.

VI. CONCLUSION

The hard core perturbation theory of dezp inelastic neutron scattering
experiments qualitatively confirms the earlier many-body cumulant theory of
Gersch, et al.7 and the quasiclassical theory of Silver and Reiter.8 The
quantitative predictions end the structure of the theory are new. [ have shown
how vertex corrections give rise to a non-Lorentzian, zero second moment
lineshape for final state corrections.

The good news for experimentalists is that, at high enough Q, the final state
broadening takes the form of a convolution and is smaller then the Lorentzian
broadening theories would predict. The bad news is that neither the Bose
condensate peak in 4He, nor the Fermi surface discontinuity in 3He, will be clearly
resolved in any feasible DINS experiment. However, provided the final state
theory is known and instrumental corrections understood, a deconvolution
procedure (such as maximum entropy) might be feasible to extract the singular
structures and other features of momentum distributions. There must now be a
detailed effcrt to reanalyze momentum distribution experiment on quantum solids
and fluids.

For theorists, it is truly remarkable that a projection superoperator method,
originally designed to solve transport problems in the limit of Q = 0, can be
¢xtended to solve scattering problems at very high Q. This suggests that the



method may pe applicable to a wide variety of problems involving the calculation
of dynamics, (Q,w), from a knowledge of static correlations, S(Q). An immediate
application will Le to momentum distribution experiments in nuclear and particle
physics, such as electron nucleus scattering.
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