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i. PREFACE
The plan for these lectures is as follows:
First, I'll give a general introduction to Supernova Theory, beginning with

the presupernova evolution and ending with the later stages of the explosion. This
will be distilled from a colloquium type of talk. It is necessary to have the whole
supernova picture in one's mind's eye when diving into some of its nooks and
crannies, as it is quite a mess of contradictory ingredients. We will have some
discussion of supernova 1987a, but will keep our discussion more general.

Second, we'll look at the infall and bounce of the star, seeing why it goes
unstable, what dynamics it follows as it collapses, and how and why it bounces
back. From there, we will go on to look at the equation of state (EOS) in more
detail. We'll consider the cases T = 0 and T > 0. We'll focus on p < po, and then
p > Po and the EOS of neutron stars, and whether or not they contain cores of
strange matter.

There are many things we could discuss here and not enough time. If
I had more lectures, the remaining time would focus on two more questions of
special interest to nuclear physicists: the electron capture reactions and neutrino
transport. If time permited, we'd have some discussion of the nucleosynthetic
reactions in the explosion's debris as well. However, we cannot cover such material
adequately, and I have chosen these topics because they are analytically tractable,
pedagogically useful, and rather important.



Note added in preparing the written lectures: I have not written up in
detail the introductory review lecture with which I began. For a better orientation,
the reader could refer to the Hans Bethe's eightieth birthday review volume of
Physics Reports 163 (1988). An overview of the problem of neutrinos in supernovae
is given in my contribution to that volume. I am also currently writing a review
article on the equation of state and the direct mechanism, for the Springer-Verlag
volume edited by Albert Petschek. There are other reviews which can be found
through the Physics Reports volume and through my references at the end of these
notes.

1. INTRODUCTION
Many problems in supernova theory pivot upon nuclear astrophysics ques-

tions. Strong interactions and weak interactions are involved. We must deal with
matter under conditions for the most part inaccessible in the laboratory; i.e., high
densities and temperatures, and very neutron rich. The strong force controls the
equation of state (EOS). The weak force enters through /^-reactions and through
neutrino interactions of various forms. In addition to the problems of extreme con-
ditions, the neutrino physics is complicated because of the non-equilibrium nature
of the dynamics. (Time scales are such that the strong and electromagnetic forces
are easily equilibrated; the weak interactions are often too slow to achieve chemical
or thermal equilibrium.)

I'm in the business of numerical simulations of the supernova process. In
this field there has been a constant cycle of analytical and numerical work. The
analytical work has taken two distinct forms. The first is microscopic calculations.
These are often motivated by modelling requirements. The second is phenomeno-
logical analyses of the computer simulations which abstract the crucial quantities
and make sense out of the truly awesome quantities of numbers the numerical
experiments produce.

In these lectures my emphasis will not be on the microscopic details be-
cause of lack of time (as well as expertise) and because my main task is to give you
a set of homework problems. There are many ingredients in supernova theory, and
often we have felt that the selection of problems we have been able to pursue has
been forcibly dictated by gaps in the theoretical framework. Such gaps have taken
me personally into subjects such as general relativistic hydrodynamics, generally
covariant relativistic kinetic transport theory, strange matter, convection, funny
neutrino physics, etc. What I would like to do is to delineate what features are
most important and what are most uncertain, and to challenge you to tackle those
problems for which you might "have an unfair advantage," (to quote Hans Bethe)
so that we simulators can exploit you.



2. WHY DOES THE STAR GO UNSTABLE?
The precise onset of instability is difficult to delineate. Perhaps it is fair

to begin during Carbon burning, for at this stage the giant star (be it blue or
red) begins emitting more energy in neutrinos than in photons. The neutrinos
are mostly uV pairs produced by plasmon processes. Unlike the photons, the
neutrinos leave directly providing a central energy sink. The star's subsequent
burning stages are correspondingly quite short, the final stage of silicon burning
to iron peak elements taking only hours or days.

Simulations of the supernova explosion are generally broken into two
stages. The presupernova massive star evolution codes are terminated when the
central density reaches ~ 109 gm/cm . At this point the middle of the iron core
is already collapsing at v ~ -108 cm/sec. The following stages take only seconds.
The presupernova codes cannot follow the subsequent evolution because they do
not include general relativity, neutrino transport, or denser matter equations of
state. These begin to be sizeable corrections, and new codes must be used and
new physics must be incorporated. Thus begins the second stage of the supernova
process which groups like ours then follow, the explosion itself.

What are conditions like at this point? At the center we have:

p ~ 1010 gm/cm3 ; T < 1 MeV ; Ye ~ 0.42

where Ye is the number of protons per baryon. By charge conservation we have

e — Ye~ — Ye+

for the net lepton number, there being no appreciable number of neutrinos as yet.
Under such conditions the pressure is dominated by relativistic electrons, and thus
the center of the star looks like a (hot) white dwarf. To see this we must look
first at the electron-positron gas equation of state. The net density of relativistic
electron-positron pairs (me = 0) is given by

f d3k
ne = pYe = 2 f (/e- - fe+)

J (2ir)

- 7 ^ ) = fl + exp M ^ - ) , the 2 being for spin, and ^e =

jjbt- = — fj,e+ is the electron chemical potential. (We will take ft ~ c = 1) The

distributions are isotropic, and thus

where



T)e = fle/T

is the electron degeneracy parameter, and the conventional Fermi integral is de-
fined as

Fn{r,)= / dxxnf(x-rj) .
Jo

Similarly the energy density of the electron positron gas is given by

d3k

/ (2TT)

[fie)e 2
7T

Irrespective of the state of degeneracy, we have the relativistic relation

Pe = ^< •

We see we have to do integrals of the form

Gn(r,)=Fn(V)-{-l)nFn(-V) .

Now Go is elementary:

0° dx

1-
= In (1 + e") - In (l + e~v) = r?

exactly. Noting that

dr) n Jo dr) Jo dx
f 00

= -xnf [x - r,) + n I dxxn'1f{x-rl)=nFn-1
Jo

for n > 0, or equivalently (being careful with signs!)

we can build up the G-functions by recursive integration; i.e.,

Gx (r/) = / dr)GQ {rj) = — + Cx .



The integration constant is obtained by

(0) = 2 / —^L = 2 dxxe'x(\-
Jo 1 + ez ; 0

1 1 1 \ „ 7T2 7T2

and we can continue. (Note Co = C2 = C4 = • • • = 0.) The first few G-functions
are:

rf_ TT2

2 + 6

3 3

G 3 = -— H h
4 2 60

It is possible to write an expression for Gn in closed form, but it is a hideous
mess of Bernoulli numbers or Euler's zeta function. (This digression may seem
extended, but Fermi integral technology is an essential implement in the astro-
physical toolbox.) Thus we have obtained

where x = n/r/e, which shows that degeneracy should be measured by rje :» n.
Note that the average energy of an electron is given by

ee 3 ^ l
pYe 4"e\ 1 + x2 I

(This doesn't make sense when there are a lot of positrons around, fj.e ~ 0.)
Focusing on warm, but not completely degenerate matter, we see that the

chemical potential, \xt is related to the electron Fermi energy, ep, by



Letting p = 1010 pi0 gm/cm3 = 6.02 • 10~6pl0 fm 3,

/ Y \ 1//3

eF = (3TT2 • 6.02 • 10~6 • 0.42)1/3 197.33 ( — - p 1 0 ) MeV
V 0.42 /

Y \ 1 / 3

Since initially T £ 1 MeV, we see that 77,. 3> n and the thermal corrections
are small to the electron EOS. Note that the entropy per nucleon in electrons, 5e ,
can be obtained from the basic thermodynamic relation,

T Se + Ytiit = {ee + Pe) Ip ,

so

/ l + 2x2 + (7/15) x4 \ (*\2

So in the limit that x » 1 [r}e ̂ > TT)

Note that
_ 7T _ Se

Assuming the thermal corrections to be small, we find

Me = £F (l - 1/3 x2) •

It is instructive to consider the pressure per nucleon in electrons,

P P
e ~ ^eH-e I *• ~ *•«- \ *^ * ea r I , "I Jt-

p pYe 4 \ 1 + x2 I 4 \ 3

Putting in numbers

MeV



If the electrons were a non-degenerate Maxwell-Boltzmann gas their pressure
would be

^ = YeT (MB) ,
P

so
Pe _ £F _ Ve_

Pe(MB) ~ AT ~ 4 '

Now the pressure due to nucleons is given by

PN _ sr ^A'ZT Pconl - VT a- ^coul

— / . -i i — i 1 -r ,

p 71 A p p

where 4>A,Z
 ls the mass fraction of the (A, Z) nucleus normalized so that

Y is the number of independent particles per nucleon, and Pcoui is the coulomb
lattice pressure and is negative. (We will discuss this later in lecture 5.) It is given
roughly by

••coul ^ n n o - 1/3

(for Ye ~ 0.42 and nucleons clustered mostly in one large nuclear species) Thus,

0036
p. - o.86 = - 0 0 4 •

(Note Pcoui and Pe have the same density dependence, both varying inversely with
distance)

The nuclear thermal pressure, YT, depends on Y. For example, consider
a mixture of 10% free nucleons and iron. Then

r - 0 . 1 . ( 1 ) + 0 . 9 . ( 1 ) =0.116,

and for pure iron. Y = 1/56 = 0.018. The two cases would give

YT YT YT
- ~ (0.02 - 0.13) T ,Pe/p Ye[i.tl\ 0.87

the 2% correction being more appropriate. Thus, the nuclear contribution to the
pressure is smaller than the electron one, and can even be negative if all the
nucleons are in one large nucleus. Thus, the electron pressure dominates.

In Figure 1, we plot Y and P^/Pe, and see they are indeed quite small.
Thus, to first approximation the equation of state is dominated by the electrons.
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Fig. 1. Relative pressures and composition of infalling supernova matter. The top curves gives ^/
the ratio of nucleonic to leptonic pressure, and the bottom curves give Y, the number of
independent particles per nucleon, along the adiabats 5 = 1, 2, 3, 4, as a function of density.
All curves are for the case Ye = 0.45, as are figures 2, 4, 5.
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Fig. 2. Temperature of supernova matter. The temperature is given in MeV for adiabats 5 -
1, 2 . . . 10. 5 = 1, 6 is denoted by a solid line; 5 = 3, 8 by a long dashed line, etc. The
cases ye = 0.25, 0.30, . . . , 0.5 are given.
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Fig. 3. Composition of supernova matter. Particle abundances by mass function for Ye = 0.45, early
in supernova collapse. Shown are Xc% Xh, Xn, and Xp, the mass fractions of alpha particles,
heavy nuclei, and free neutrons and protons, for 5 = 1, 2, . . . , 10. S = 1, 6 is denoted by a
solid line; S = 3, 8 by a long dashed line, etc.



Figure 2 shows the temperature as a function of p, Ye, and 5; figure 3 shows the
mass fractions Xn, Xp, Xa, and XR; and figure 4 shows the adiabatic index F.
There's a lot of information in these figures, but they are noisy and so don't take
all the wiggles seriously, as I was too lazy to generate a smooth table.

Now finally we can begin to ask why the star goes unstable. With New-
tonian gravity a relativistic star has zero total energy. This is because both the in-
ternal energy and the gravitational energy vary inversely with distance and thereby
cancel. This is a standard result of polytrope theory. This means the entire star
can be shrunk or expanded with no cost in energy, accordion style. Thus, small
perturbations can lead to runaway instabilities. In the case of a white dwarf star,
the outermost regions are not so relativistic, and they provide the stability.

Two processes work hand in hand to propel collapse. These are electron
capture and photodisintegration. We will consider each.
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Fig. 4. Adiabatic index. V = d In Pjd hi p\t is displayed for Ye = 0.40 and 0.50
for S = 1 (solid line), 5 = 2 (dotted line), 5 = 3 (dashed line), and
5 = 4 (dashed-dottea line). The value *y = 4/3 is also shown. Note that
the 5 = 1 line drops below 4/3 at p ~ 1O8'5 gm/cm3, due to photodisin-
tegration.

In any regime one may approximate the EOS by the polytropic power law

where the pressure constant, K, and the adiabatic exponent, 7, are considered
independent of space and time. For the relativistic gas 7 = 4/3. Now there exist
various kinds of "y's that enter into supernova collapse, the most important one
being

d\np



the derivative taken with 5 and Ye held constant. (If neutrinos are present, and in
equilibrium with the matter, Ye + YVc should be held constant.) This T^ is purely
a function of the equation of state. However, another critical adiabatic index is
provided by

dlnP
dlnp M

i.e., the derivative is taken as a mass element collapses. The relationship between
the two can be written as

TcoU =
dlnP

dS
d\nP
d\nYe

S\nYe

s 6\np

giving the value of Fcon over a small change 6 In p. If we try to approximate the
EOS with the polytropic law and consider 7 ~ rcou and for the moment ignore
the change in entropy due to the process, we would find (ignoring the nucleons)

Now, we observe that in the supernova the process

drops Ye from 0.45 to 0.40 as p\o increases from 1 to 100, and thus we find

Actually it is if which has dropped, but we can approximate this by a decrease in
•7. So electron capture decreases *y to less than 4/3.

Photodisintegration involves reactions of the type

{A,Z)+i-+ [-}a + {A-2Z)n

or in the case of iron

Fe56 -+ 13a + 4n ,

which is endothennic, costing ~ 124 MeV. But why do these reactions take place as
the star collapses? Stellar evolution involves a series of burning stages of successive
fuels: H, He, C, O, Ne, Si, etc. After each stage exhausts its fuel, the center
contracts and heats up, and the ashes of the previous burning stage become the
fuel for the next one. This process terminates at iron (actually in the "iron peak")
where no more energy can be gained by fusion. Subsequently, the star contracts
looking for more fuel, but not finding any actually induces fission through gamma
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Fig. 5. Contributions to the entropy. Displayed are Se, the electron entropy (solid line), So the entropy
in baryonic translational motion (dotted line), S*, the entropy stored in nuclear excited states
(dashed line), and SRADI the entropy in photons (dashed-dotted line), for the adiabats 5 =
1,2, . . . , 10, for the case Ye = 0.45. Note that as the density increases along the adiabats,
entropy is transfered from the electrons to the nucleons.



rays as the temperature increases with an insunicient concommitant rise in the
pressure. This energy (the 124 MeV for iron) must come from sonewhere, and
where it comes from is the electrons. Remember that

Pc_

p

so that for the pure electron gas

d\np
4
3

irrespective of the degeneracy, or Se. But the photodisintegration reaction reduces
Se by transferring entropy from the electrons to nucleons, because an iron nucleus
disintegrated into constituents carries much more entropy per nucleon than if it
stays in one piece.

Now,

dlnP pe

s PC + PN

PN

•Pe + PN

dlnPe

dlnp

d\nPN

dlnp

i
Sc

<f.r

dlnPe
dSt

dinP
dSN

6Se

Slnp

N SS,

s\
V

dlnp

at fixed Ye. Ignoring the second term, the one due to nucleons, we find

,2

1 + (*)•

i + i
L 6Se

Se Slnp

Looking at figure 5 we see that the second term is indeed negative along adiabats,
and thus the effective T is reduced. Thus, photodisintegration, which actually
cools the electrons as matter heats up, promotes instability.

How does the collapse proceed?

3. SELF-SIMILAR HOMOLOGOUS COLLAPSE
Here we will follow the beautiful work of Amos Yahil (Ap. J. 265 (1983)

1047) who considered the case 1.2 < if < 4/3, and was motivated by the earlier
and also quite elegant work of Goldreich and Weber (Ap. J. 238 (1980) 991).

Yahil notes there is only a small charge in the entropy during the collapse,
and suggests the polytropic equation of state should suffice at describing at least
the early stages of the problem. He also notes that, thus, there are only two



dimensional constants in the problem, K and G, and that only one dimensionless
combination of r and t can be made with them, which is linear in r:

the minus sign occurring with t because t = 0 is taken to be the moment of
catastrophe, or infinite central density. The idea is that any other parameters in
the problem besides K and G, such as the initial density and velocity, will have
only a transient effect, and thus all the hydrodynamical variables (density, velocity,
energy, etc) should only be functions of the self-similar variable X. Yahil says,
"Thus, the solutions are self-similar; i.e., they have the same spatial structure at
all times." Goldreich and Weber did consider, in the more limited case of 7 = 4/3,
whether perturbations to the ordered flow would amplify faster than conditions
changed due to collapse, and found their solutions to be stable. In the more general
case Yahil's conjecture is well borne out by many numerical simulations.

Yahil continues to construct the dimensionless hydrodynamical variables:

m =

where p, v, m, e [D,V,M,E) are the dimensional (dimensionless) density, veloc-
ity, enclosed mass, and enclosed energy. These last two are defined by

x
M [X) = / dX4*X2D (X)

]
He then must put the acceleration equation

dv 1 dP Gm
at p or r2

and the equation of continuity
dp 1 d , 2 ^

aF + ^ ^ - o
into dimensionless form. (In doing this it is important to use the proper convective
derivative; i.e., ̂  = | | + «§H.) He finds the two coupled equations

\V - (7 - 2) X] D'/D + V = - (2 + 2V/X)

D' + \V-{i-2)X\V' = - (M/X2 + (7 - 1) V)



where a prime indicates differentiation with respect to X. He next breaks the
dimensionless velocity into two pieces

V = (7 - 2) X + U .

This is an important step. If V = (7 — 2) X then a fluid element remains sta-
tionary in that frame; i.e., always has the same x coordinate. (See the denning
relation for X ~ r (—t)1'2.) Thus, the "wind velocity" U is measured with respect
to a co-moving, homologous frame. Substituting U into the equations gives

M

The first equation can be easily integrated by multiplying by 4TTX2D and
integrating from 0 to X, resulting in

4xX2DU = (4 - 37) M .

Note that in the case 7 = 4/3, U vanishes everywhere. This means the entire
core collapses homologously. But for 7 < 4/3, U > 0; the interpretation is that
the outer core is unable to keep up with the inner core. It is this feature incorpo-
rated into the Yahil theory that represents a great improvement over the earlier
Goldreich-Weber theory. In the latter case, a limiting homologous core mass, equal
to 1.45 Mch, was found corresponding to a boundary condition of the outer edge
being in free fall. Yahil's theory extends to larger core masses as we indeed find in
supernova theory. (The initial iron core Chandresekhar mass is Mch ~ 1.45 A/Q,
but due to electron capture it drops to ~ 0.9 M©, and thus there truly is an inner
and outer core).

It is important to get the asymptotic behavior of the hydrodynamical
variables as X —* 00 (r —> 00 or —t—*0). In order to avoid singularities in this
case, we must note here that the ^-dependence of these variables must be cancelled
by the t-dependence implicit in the ^-dependence of the dimensionless variables.
This results for X » 1 (r » 0) in

D (X) ~ X-w-v
M [X) ~ X { 4 ~ 3 7 ) ^ 2 - ' T )

E {X) ~ x^-^W*-^

P(r)
m(r)

v(r)

At the time of catastrophe this gives the asymptotic behavior of the entire
infalling matter. However, by this point the self-similar solution breaks down at



the center because the stiffening of the equation of state above nuclear density
introduces new dimensional parameters into the theory. (Note 7 < 1.2 is excluded
because the energy diverges in this case.)

Let's consider the asymptotic behavior of several important quantities at
large r. For 7 = 4/3 and 7 = 1.3 we find:

Table 1 — Asymptotic Behavior

p
V

Vff = 2Gmjr
v/vjj

pv2

7 = 4/3

r"1

r3/2

r2/3

7 = 1-3
r-0.28

r0.42

r-0.86

r1.29

r0.S6

We see that as 7 is reduced, the density in the outer core drops less slowly
with radius, because the inner core falls away more rapidly. We shall see that this
will be harmful to the shock.

To proceed further, we really need to get the constants in front of the
asymptotic relationships. This means we must integrate the differential equation.
Since we have eliminated V, we must integrate

<LM

DX
dD_
DX

Now at small X <C 1,

X

4TT

where Do is the dimensionless central density. Note that the dimensionless sound
speed is given by

A = 7i/2£>(ir-i)/2 ;

and thus at small X the wind velocity is subsonic. At large X we have the
asymptotic relation,

But since for X » 1, U —• 00 because V —* 0, the wind becomes super-
sonic. Note that in the differential equation for D, the denominator vanishes at
the critical point, or sonic point, where the wind becomes supersonic. Yahil finds
the correct solution to the differential equation by varying Do. If £>0 is too low,
the wind velocity U reaches a subsonic maximum and then falls to zero at infinity,
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which is unphysical. (Note that U and A have the same asymptotic behavior so
that U/A -+ constant as X —» oo.) If Do is too large the derivatives become
infinite at the sonic point. Thus, the correct Do is found and then the solution
can be integrated numerically onward to X —> oo.

Figure 6 shows the solutions of Yahil's equations for the seven cases 7 =
1.20, 1.22, . . . , 1.32. The case 7 = 1.30, which has a special value being a good
representation for supernova collapse, is is denoted with a dotted line. On each
curve the starred point shows the position of the maximum velocity surface. We
note the following: —V/Vfj reaches an asymptotic value in the outer core, which
drops with 7. Likewise, the Mach number |V/./4| reaches an asymptotic value
which also decreases with 7. This has important consequences. It means that if
7 drops appreciably the outer core would be much less able to keep up with the
collapsing inner core, which runs away.

The position of the maximum infall velocity surface moves outward some-
what as gamma drops, but the density distribution (shown by the combina-
tion D = X2/(2 ')) remains higher for low 7. Note that the physical mass,
m ~ (—*)4~3"'M (X), so in the case of 7 appreciably less than 4/3 the maxi-
mum velocity surface moves in quite a bit with time. Since this is where the
Shockwave will turn (actually at the sonic point which also moves inward) then
this is harmful. For all these reasons Yahil claimed, "The difference 4/3 - 7 may
be the most important parameter in determining success or failure."

An important quantity in the Yahil analysis is the ratio of the infall ve-
locity to the freefall velocity at the center:

This is shown in figure 6 and is (0.175)2 = 0.0303 for 7 = 1.3, (0.226)2 = 0.052
for 7 = 1.26 and will figure prominently in the next section. There we'll consider
what happens when the central self-similarity solution breaks down, as the core
bounces when the stiffness of nuclear matter produces a rapid increase in the
adiabatic index.

4. BOUNCE
There is a lot of numerical experience with the process of bounce, but a

good analytical theory is lacking. We will construct the first step of this, calculat-
ing the density at the maximum compression of the core, or "maximum scrunch."
At first we will consider the simpler Newtonian case. We begin with the follow-
ing observation of the numerical simulations. If we plot v versus r at two times,
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Fig. 7. Velocity profiles, v vs r is given schematically at two times, MS (maxi-
mum scrunch) and LGH (last good homology).

we shall call "last good homology" (LGH) and maximum scrunch (MS), we see
something like figure 7.

At either time, the velocity is proportional to radius in the central region,
although at MS the constant of proportionality vanishes. This tempts us to pro-
pose that the velocity continuously levers in between these two times; i.e., that
the flow is always homologous. This means that the radius of a given mass point
M can be written as

where r\ (M) is the radius of mass point M when a = 1. Homologous flow must
preserve pr3 and thus

Since -£
M=Q

= 0 we can expand the density quadratically near the center

,CM,0_M,,(1_:^a).,aO-*(I_ij)



where pc is the central density, since the polytropic radius a (t) must follow a (t) =
aai for the structure to be preserved. Near the center the Newtonian acceleration
equation

dv 1 dP GM_ _
dt p dr r2

becomes
*^ 3 r\

where we have used the Newtonian sound speed

23p
CC'~ dp ' dr C< dr •

Thus, the acceleration equation can be rewritten as

- 2

We now define a = 1 to be where the acceleration vanishes and the core
begins to decelerate; i.e.,

a
a=0

Then letting

= 1 .

. 2 _

we find

and we once again rewrite the acceleration equation as

Thus, when the acceleration vanishes, the polytropic radius divided by the freefall
time equals the sound speed. This means the core passes through its hydro-
static equilibrium configuration, where perturbations are damped out by acousti-
cal waves.

By multiplying by 2%—, this equation can be integrated. We get
aff



The sound speed integral can be done exactly by noting

/

da 2 f da dP 1 f dp dP 1 f dP 1
a * J a dp 3 J p dp 3 J p 3

where we have used the thermodynamic identity

p
Thus,

U
An important parameter in this problem is thus

being the important quantity in the Yahil analysis of the previous section.
Denoting a\is as the scale parameter at maximum scrunch, when a = 0,

we find
,2 _ _ fl~ aMS \ ] _

V «MS / 3c^
if we use a pure polytrope equation of state we find

e + P 7 P
8 P P 7 - 1 P

P P\
so we would find

f2 _ (1 ~ <*MS) , 1 f^-3(i-1) i\
"MS 3 ( 7 - 1 ) V MS J

Note that if 7 = 4/3, 3 (7 — 1) = 1 so that the righthand side vanishes; i.e., there
can be no halting the collapse. Thus, we must have 7 > 4/3 for the righthand side
to be positive and for there to be a solution for <*MS- This is just another indication
that the gravitational and internal energies scale the same for a relativistic gas.

Suppose we take as a slightly more complicated EOS the BCK form

P= \-^~^ + -Pr.(^ -i>)«.

where Ke includes both electrons and neutrinos, U — p/po, and po is the density
of saturated nuclear matter. The energy density is obtained by integration;

e {U) _ e{U = 1

Po JpoL P2

9 - 4 / 3 1/3 97 1



since the nuclear pressure and energy vanish at 17 = 1 (constant energies per
particle won't concern us). Then

If we now assume we can identify a — I with U = 1; i.e., that deacceleration
begins as soon as the matter passes through saturation density, we obtain

so that

a )+
9{ri-i)

However, this is a simplification that we should remember, because numer-
ical simulations show that a = 0 when U ~ 2/3, because the matter undergoes the
phase transition to uniform nuclear matter at about 2/3 of the saturation density.
But it helps considerably, if dishonestly.

Noting that

C<Jl dP Q=(7=i 9 9 '

we find after a little algebra

(d2 - oj) _ KQ

This is a rather beautiful equation because:
1) if Ko = 0 it shows electrons alone cannot stop the collapse.
2) the dependence on the two nuclear parameters, Ko and 7, is explicitly

separated.
3) the same equation gives the behavior along the collapse trajectory (i.e., it

gives a), or be setting a = 0 it finds OMS> the maximum scrunch value.
One can integrate to obtain a{t), but this is a messy, non-analytical
integral.
To proceed further, we need to get some numbers, in particular Ke, Ko,

and f2. The leptonic pressure (assuming T ~ 0) comes from degenerate electrons
and electron-neutrinos.

p 9-4/3



Now eFe = (37r2pye)
1'3 ; epv = (2 • 3x*pYe) ' , the 2 coming in the neutrino case

because they have only one helicity state. Thus

K. = 9~^U-^3 {3^p0U)1/3 (ye
4/3 + fW) he .

Now we will take po = 0.145 fm~3, appropriate to neutron-rich matter
with Ye = 1/3. Taking Ye ^ 0.33, Yv = 0.07, we can get an effective lepton
number for the pressure and Ke:

0.40 = YL > YeS = (0.334/3 + 2l/30.074/3)3/" = 0.37

Ke = 255 MeV .

Now our f2 = CIQ1 of Yahil. Numerical simulations find / 2 =; (0.15) =
0.0225; i.e., the collapse proceeds at about 15% of free fall when the center passes
into nuclear matter and the equation of state stiffens. This corresponds to Yahil's
self-similar solutions for 7 ~ 1.31 which would give / ~ 0.16. At any rate, we'll
use / = 0.15 for definiteness.

So we have at maximum scrunch

3 (7 - 1)

Figure 8 shows the solutions for OMS for 7 = 2, 2.5, 3, 3.5, and 4.0, each curve
labeled by its value of 7. The horizontal dashed lines show what the solution
would be if f2 = (0.15)2 and Kb = (0.1, 0.2, . . . 0.6) Kt\ i.e., the value of OMS is
where the curve for a specific *y and KQ cross. Thus, for 7 = 2.5, KQ = 153 MeV,
collapse would be halted at OMS — 0.85, corresponding to a density compression
factor C/min = q^fn = 1.63. This is well borna out in numerical simulations (with
Newtonian gravity!) Note that unless KQ gets quite small, 7 is more important in
determining the bounce central density.

In the next graph (Figure 9), E/MS is displayed in the same fashion. The
dashed lines show what happens if the collapse begins to halt at U = 1; the solid
lines if it deaccelerates at U — 2/3. We can see that this would be catastrophic
for our theory, so we'll ignore this for the moment.

Actual hydrodynamical simulations now demand the use of general rela-
tivistic dynamics, and to compare an analytical theory of bounce with them would
be premature. However, it is possible to extend our analysis by linearizing the gen-
eral relativistic dynamical equations and proceeding in a similar fashion. Although
some of the simple scaling behavior of the 7 - and /f-dependence is lost, the gen-
eral features remain the same. In fact, I find that the analytical and numerical
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Fig. 8. Core compression amplitude, «MS, at maximum scrunch. The dashed
lines give a^, for the Kc's listed at the right, assuming Ke = 255MeV.

0.150

Fig. 9. Density at maximum scrunch. The dashed lines give Uma for the
listed at the right, assuming Kt = 255 MeV.



models compare even more favorably than in the Newtonian case. I had originally
intended to continue in this direction for these lectures, but length of time does
not permit an adequate treatment. At some point I hope to finish writing up this
analysis and publish it.

We now have somewhat of a feel for how and when the core bounces. A
fax more difficult problem is to calculate the transfer of energy outward to the
outer core of the star. To date, we have only numerical experience to guide us; a
good analytical theory is completely lacking.

5. EQUATION Of STATE

First, we will consider the case of p < po, and utilize the compressible
liquid drop model. We'll follow mostly Cooperstein (1985) and Bethe, Brown,
Cooperstein, and Wilson (1983). Further references can be found in these papers.

5.1. T = 0, p<p0

We write the energy per nucleon of nucleons as

where W^BULK is t n e nuclear matter piece, and WSIZE ^ e piece involving surface
energies, Coulomb energies, etc., i.e., the things involving finite size. For the
moment we ignore translational terms.

WBULK is easy to deal with. Here we are assuming that the density of the
nucleonic matter is clustered near po, even though we intend p <C po- So we write

= Wnm + Wt{l- 2x)2 + ^ ^ (l - Of

Wnm ~ - 1 6 MeV

where x = Z/A, and 0 = po/p« (x) , p» (x) being the saturation density at the
given neutron excess, and po is the density of the nuclear matter. WfiULK is
taken as quadratic both in (lfo — x), the neutron excess, and (1 — 0) the density
compression factor, since the energy of nuclear matter is minimized at saturation
density. For 0 > 1 this is inadequate, and so our expression for high density
uniform matter will be more complicated. The nuclear compression modulus

Ko (x) = 9
dp

= 9
dp2

p=p,{x)

also has an x-dependence. Both pa and Ko drop with x; the drop in KQ coming
mostly from the ps, upon which it depends quadratically (see Kolehmainen et ai,
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Fig. 10. Energy of nuclear matter. There is a minimum for symmetric matter
and also one for neutron-rich matter, which is displaced to the top left.
Neutron matter is unbound and has no minimum. A point of inflection
is crossed when nuclear matter becomes so neutron-rich it is no longer
bound, and Ko vanishes.

1985). That KQ must drop with x is easy to see. If we graph E(p) versus p for
different x, we get figure 10.

So, since neutron matter is unbound, there must be a point of inflection
where Ko = 0; for x < 1/2 Ko drops until it vanishes, and pa (1) should drop also.
How do Ko and pt drop with 1? They are both quadratic in (l - 2x), and with
SKM* parameters you would get

where p. (1/2) ss 0.16 far3 (= 2.7 • 10u gm/cm3), and Ko (1/2) ~ 210 ± 30 MeV
from Giant Monopole Resonance analysis of the breathing mode. BCK like to use
Ko (1/2) = 180. With this choice

Ko (1/3) = 140 MeV ,

MV3) =0.145 fm~3



These quadratic expressions shouldn't be used for very small x. However, an
improvement would be

Ps (X) =

and a similar expression for Ko (x), which have the same behavior near x = lfc-
The size energy now depends on the fraction of the total volume occupied

by the nuclear phase. This is the "packing fraction,"

u =

where p is the total baryon density. We write

in the case of a nucleus. We haven't included curvature terms, which are poorly
known, and which tend to be cancelled by translational terms we also neglect
(see Cooperstein and Wambach, 1984). Since A ~ Rll3, A-KR2 ~ A2!3; Z2/R ~
A2/A1/3 ~ A5'3 giving the A dependence of the surface energies and coulomb
energies. If we assume all dependence on x and u is in WmTf and Wcovi, then we

can find A via = 0 so that

•A = r

Then

= 3 ̂ ^ y 3

As A increases, the surface energy per nucleon goes down because less nucleons
are on the surface, while the coulomb energy still goes up. The result is the above
virial theoreom, which says

coulomb energy = V2 surface energy

The surface energy can be written as

£.nrf = W^A-1/3 = ^4*iZ2<W (x) .

If we assume R = RQ {^)~l/3 A1/3, we get

/Z2a8urf (x) .
/ 0 16\

= 4* —
V Po /



In doing so we have assumed that the neutron excess (xji - x) is constant
through the space inhabited by nucleons. In fact things are more complicated,
and there is a "neutron skin," but we will neglect this. Taking RQ = 1.14 fm;
os (x) = 17.8x2 (1 - xf MeV/fm2, we get

Po

2/3

MeV

290x2 (1 - x
273

Note that for x = 1/2, <*s — ^j^- — 1-1 Mev/fm2 is the surface tension energy.
To calculate the Coulomb energy we consider an electrically neutral "Wigner-

Seitz" cell with a nucleus at the center, displayed in figure 11.

a (nuclei) b (bubbles)

Fig. 11. Wigner-Seitz cells: The dense matter is in the hatched regions.

of the volume inside the nucleus. To calculate the electrostatic configuration, we
note that if there were no electrons in the cell we would have as the electrostatic
energy of a uniform sphere

•'-'coul ~~7 Z" TT •

A 5 K
But the cell is electrically neutral, and we assume (not too bad an approximation)
that the electrons uniformly inhabit the cell; they go in and out of the nucleus at
will. Then the charge inside the nucleus is



where
75.4x ' ( l -*) 4 ' 3

This is very convenient because the x, 0, and u dependences are factorized.

5.2. Bubbles
Suppose, as in figure l ib , we invert the geometry, putting the matter

outside bubbles. If the matter were to turn "inside out" when u = 1/2, then
the amount of surface area would be the same, and it is clear that for tt > x\i
energy would be better minimized by shrinking a bubble rather than filling up the
Wigner-Seitz cell at its outer boundary. It is possible to calculate WsiZE in this
bubble phase by reinterpreting the nucleus case. All we have to do is make the
substitution that

(u) =

(See Bethe et al 1983.)

HOMEWORK
Convince yourself it is true C?bub = ^ G M C (1 — «) by calculating Gbub («)
directly.

Note there is an important difference between the bubble and nuclear
phases. In either phase the coulomb energy wants the nuclear phase to fill the
entire cell so that the electrically neutral system has a vanishing electrostatic
energy. But the surface tension in the nuclear case fights this, by compressing
the nucleus; in the bubble case the surface tension tries to collapse the bubble to
eliminate the surface; thus the bubble may collapse unless Ko, which resists this
expansion of the nuclear matter phase, is large.

In either case we have

W = W (1, 6, u) ; /> = pou = p. (1) 6 u



Thus, at fixed i

P_

P

p

d\nu

d\np

Now at fixed In p, 6W must vanish. Thus we obtain for the pressure per particle

P

P

3W

d)n6

dW

x,u d\nu

To see how the system determines 9 and u given p and x, we evaluate the
above equilibrium constraint. Thus,

dW

dln6

dW G'
•a, = ^SIZE 77 •dlnu G

So

or

( 1 -

(see figure 12). Thus given x, this equation determines 9 vs u; and then p =
pa (z) $ • u is obtained. It depends only on

size energy of isolated nucleus 9/7 (x)
compression modulus *lte KQ (X)

which is the basic parameter in the problem. In the case of iron, we'd have
e8iie ~ 9 x 7/KQ ~ 0.25.

Some special cases can be easily derived and are listed in table 2.

Table 2 — Limits on 8, the nuclear compression

u

0

1
X A

G <r"
3 " r u r

1

~o

e
~ 1 + |e«ie « 1-08

~ 1 — e.Ue — °-75

~ 1



I

1

9

8

7

A

kV ' 1 ' '

L Z/A =

!,
- 1 1 1 1 1 1

, , , , , 1

\
180 MeV

= 0.35
= 0.325

MM

\

\

. i i I I

1 1 _

M
i
l
l

—

1 
1 

1 
1 

1 
1 

1
_L

L
L

1 1 ~

0 .2 .4 .6
U

Fig. 12. Packing fraction and nuclear compression.

For u -C 1:

.8

or 0Alz (1 - (?) ~ -E.U./3; or d ci 1 + e.i.e/3. Thus for u -> 0 from figure 13, we
see esize ~ 0.25 for symmetric matter, so 0 — 1.08. Thus the nucleus is compressed
by ~ 8% over saturation due to the surface tension winning out over the coulomb
force.

At u = 0.25, we find 0 = 1 independent of etjM; i.e., at a packing fraction
of one fourth, the nuclear matter phase is at saturation density.



For u ~ 1,

Thus

04/3 (1 - 0) =, - ^ (1 - 4u) =: +e8iie; » ̂  1 - e,«e; « - 1

i.e., the bubble disappears when $ < 1; 6 ~ 0.75, 0.8 for fi^e ~ 0.25, 0.20. Thus
we go to uniform nuclear matter at p ~ 0.8p, (i) while the nuclear pressure is
still negative, a condition known as "cavitation." How does the nucleus-bubbles
transition go?

For a first order phase transition we should have equality of the quantities,
P and (j.. At T = 0, n = E + P/p, thus

— — v _i_ n u c _ p
— Mbub — •'-'nuc > — -"bub

P
bub

Punc Pbub

"nuc = -"bub

— ~ P I I(-^bub ~ Enuc) — ~P I I
\Pbub Pnuc/

(Electrons must be included to obtain meaningful results here!) Near u = lfa, £bub :

£"nuc5 so we don't expect a large discontinuity in density. It takes a considerable
amount of algebra (or a small amount of numerics!) to show that the discontinu-
ity is indeed small near the transition. In addition, we should remember that the
leptonic pressure (electrons and neutrinos) is far greater than the nucleonic piece
in supernova matter, and this makes the effects of the phase transition weaker. In
fact, without the presence of the electrons, there would be no transition, as oth-
erwise the total pressure would be negative for both nucleonic phases, and each
would be unstable.

Now it is possible to have a whole series of other geometries besides nucleii
and bubbles, in order of symmetries; these are displayed in figure 13.

Such geometries were calculated by Ravenhall, Pethick and Wilson, (1983)
and also by Williams and Koonin. But the energy differences of these phases are
small (keV), and at T ~ several MeV we don't really care — the true situation is
to expect a "casserole" of different shapes.

My solution was to adopt the following formula:

G (u) = (1 - u) Gnnc («) + uGhuh (u)



antispaghetti bubblesnuclei spaghetti lasagne
Fig. 13. Subnuciear-density phases.

which is graphed in figure 14, along with the solution of Ravenhall et al,

R P W - [ 9 d + 2 [ d-2

where d is the dimension of the symmetry. (The bubble phases are obtained by

It's clear my formula smoothly passes along all the geometries. The phys-
ical content is: the size energy should depend only on the total surface area of the
system, and this should be a smooth function of density (actually u, the packing
fraction).

5.3. T > 0: Effective Mass and Drip Vapor
At finite temperatures, the picture changes considerably. My 1985 Nuclear

Physics article considers this situation. Fortunately, an improvement is that things
behave more smoothly due to the additional flexibility afforded by the increase in
the degrees of freedom available. However, we pay a price of additional complexity.
There are essentially two new degrees of freedom. The first is the population
of excited intrinsic nuclear states. The second is the appearance of a nuclear
statistical equilibrium mixture of species, with protons and neutrons dripping out
of the condensed phase to be free, and a variety of nuclear species now existing,
including light fragments such as alpha particles.

Instead of the energy we must now work with the free energy, F — E—TS.
The entropy is obtained as

c -3F
dT
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Fig. 14. Geometric function G (u). Solid line gives G (u), my geometric function,
and the dashed line the solution for the energetically favored phases of
Ravenhall, Pethick and Wilson, GRPW («)• The regions labelled are: 3N
(nuclei), 2N (nuclear spaghetti), IN - IB (lasagne and anti-lasagne,
which are the same), 2J5 (anti-spaghetti), and 32? (bubbles).

Before including "drip" or translational terms, we now add an excited state con-
tribution to the free energy B:

a mB = F = WBULK + WSJZE - -7 — T2

A m

m = m, + (m0 — m,)
m [Fe56] = 6.88 MeV

Ef is the nucleon fenni energy. The idea here is that the additional den-
sity of states due to the surface is proportional to the size energy and can be
parametrized in the effective mass. In our expression for the effective mass, mo = 2



is m* jm in the iron peak, and ma = 0.7 is m* jm for saturated matter. This treat-
ment will only be good below the critical point of the liquid vapor transition; near
this more has to be done. With the energy dependence of m* not yet included,
this leads to

- ~ pff-^G • [l - (T/9)2] .

This is very important, because this thermal pressure arising from the reduction
of the effective mass with increasing density will raise T before p = pa, when the
star collapses.

If we include drip, we now have a four-component mixture: n, p, a and a
heavy nucleus, H, with (Z,A). Four constraints must now be satisfied in addition
to conservation of charge and mass:

dB
A d log 6

df? / dB _ dB \ d log <ft _ _ ,

dB dB YT p
d log 6 d log u 1 — u

where Y = Xn + Xp + 1IAXC, + VA-XH . The last equation is the pressure balance
at surface, and

Y T +Y
 dB YT

is the nuclear contribution to the pressure.
Some important new behavior follows. At T > 0 nucleons (mostly neu-

trons) "drip" out of the dense phase. Thus ZjA > Yt. This feedback drastically
alters behavior along adiabats by increasing the surface tension, etc. It turns out
that the thermal effects (and the fact that ZjA < 0.5) tend to be larger than many
T = 0 phenomena.

6. NEUTRON STARS
Here the written notes will be terse. A fuller explanation of general neu-

tron star properties can be found in my 1988 Phys. Rev. C article, and a discussion
of strange matter can be found in Bethe, Brown, and Cooperstein (1987) and in
my contribution to the Windsurfing the Fermi Sea vol. 2, Cooperstein (1987). I
have chosen not to write up the strange matter material, as my 1987 article is a
sufficient review of our theory.



The basic equations of neutron star structure are the hydrostatic relations,

dM
dr

-dP _G(M + 4TIT3) (e + P)

where P, e, and p are the pressure, energy density, and baryon density, M the
gravitational mass, and we have taken c — \. These equations are closed when we
specify the functional relation of P, e, and p. Then the equation can be integrated
numerically by standard means, and the edge of the star comes when the pressure
vanishes. However, if we can use a simplified EOS, as Bludman (1979) did, then we
can get pretty far analytically, and restrict the number of models we need analyse.
If we use the relativistic polytropic equation of state

we get the dimensionless equations (Cooperstein 1988)

^ = zV
dz
M (m + z3en+1ac) (1 + ac6c) _
~d~z+ z2 (1 - 2 (n + 1) ac tn/z) " ° '

where the relativistic generalizations of the usual polytropic quantities are

r = i + i/»
r = az

M = 4Tra4ec • m
P = Pcd

n+l

e = ee0
n

a = P/e = ac6

In dimensional variables,

where the subscribed zero indicates evaluation at p0, and



3 - n

mi =

M = c

Thus all the dependence for a given value of n is centered in M, which can be
obtained numerically. At saturation density, the relativistic effects are small, and
thus

= 150 MeVfm"3

Po =
KoPo

Poa0 = — =
Kon

(n + 1)

Now, putting in numbers,

» / 2

•M

= (20.1 km)2

is obtained from
dM
dac

= 0
"crit

Given n we obtain for all Ko the following results cribbed froj). Bludman (1979):

Table 3

n

0.5
0.6
0.7
0.8
0.9
1.0
1.5

— Relativistic Polytropes

r
3.0
2.7
2.4
2.25
2.1
2
1.67

tfcrit

1.24
0.97
0.75
0.61
0.50
0.42
0.20

M

0.30
0.28
0.26
0.25
0.25
0.25
0.28

It is very useful that M is almost constant at the stability line.
Bludman's fit for the onset of instability is



- «/s =* 1.73<rcrit - 0.31<£it {ocrii < 2)

or

T - 1.5 = 1.21crcrit (acrit >~ 0.4, < 1.25) .

Note that there are two kinds of polytropic indices

P ~ e r P ~ p->

related by

I have also done integration of the structure equations using as the EOS

97 \po
P

£ = m p+ -.

(In my 1988 paper, there are some simple additional terms to provide the correct
symmetry energy at po). In doing so I made sure to respect causality with

dP
C* = — <1=>P= e + const ;

ae

but this produces not much effect! The results are quite similar to the relativistic
case.

A fit to the numerical results, better than 1%, is

A fit to the maximum central density is

It is possible to proceed now and talk about what all this has to do with the
supernova equation of state, but we'll leave that for other places.

7. FINAL WORDS
Well, this is the end of the written lectures, and preparing them has made

me think of how many parts of physics and astronomy the subject of supernovae
invades. We have not even skimmed the surface of many of the main topics. But



I hope I have given you some insight into a few of the representative problems.
These notes are by no means a complete review, but I hope they give a hook to
the interested reader to learn more and help us answer some of the questions.

Preparation also made me think of the summer school itself, the beauti-
ful setting in the Pacific Northwest, and the many hikes, drives, and expeditions
whose memories are as immediate as the lectures themselves. An enormous con-
gratulation must be offered to Phil Siemens for the herculean effort he made to
organize the summer school, and to make it a total experience. My greatest appre-
ciation must go to the students themslves, who were enthusiastic, hard working,
and tried to keep me honest. The staff at Oregon State University also has my
strongest thank you. The summer school was made possible by funding from the
National Science Foundation.

Much of the material presented here belongs to my collaborators, and I
thank them, particularly Ed Baron, for graciously permitting the words to flew
from me.
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