LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

1

•

cos Aramos National Laboratory is operated by the University of California for the United States Department of Linergy under contract W 7405 LNG 36

LA-UR--89-2936

DE89 016967

Sensitivity Relationships in TITLE **Energetic Materials**

C.B. Storm, J.R. Stine, and J.F. Kramer AUTHOR(S)

NATO Advanced Study Institute on Chemistry SUBMITTED TO and Physics of Molecular Processes in **Energetic Materials**

By acceptance of the article. The publisher recognizes that the U-S-Covernment retains a nonexiclusive invally free to ense to publish or reproduce The participant form of this contribution, or to allow others to do so, for U.S. Government purposes

the Los Actives. National Laboratory requests that the publisher identity this acticle as work performed under the auspices of the O.S. Department of Energy ----

- (の)(3) // (の)(の)(の) Los Alamos National Laboratory Los Alamos, New Mexico 87545

DISTRIBUTION OF THE DECUMENT IS UNLIMETED STAD

and the marine

Presservent by this pr : ·,

DISCLAIMER

as an account of work sponsored by an agency of the United States

Sta s Government nor any agency thereof, nor any of their

bility for the accuracy. completeness, or usefulness of any information, apparatus, product, or

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

Government Neither the United

report was prepared

ĥ

process disclosed, or represents that its use would not infinnge privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

ducts not necessarily constitute or imply its endorsement. racom-

mendation, or favoring by the United States Government or any agency thereof. The views

manufacturer, or otherwise

authors expressed herein do not necessarily state or reflect those of the

inited States Government or any agency thereof

C. B. Storm, J. R. Stine, and J. F. Kramer Los Alamos National Laboratory Los Alamos, NM 87545 USA

In searching for new explosives one is most concerned with performance (detonation velocity and pressure), thermal properties, and sensitivity. Whether a new candidate explosive is ultimately widely used may well be determined by other factors, such as cost, texicity, melting point, etc., but the initial research effort is guided by the trinity of performance, thermal stability, and sensitivity. This presents a difficult multifactoral problem in assessing the various molecular properties that contribute to each of these principal selection criteria. For instance, detonation velocity is affected by density, elemental composition, and heat of formation. These factors must be varied together in such a way as to maximize the combined effect on performance.

Sensitivity is a complex problem and there is no single useful definition. Tests of the sensitivity of an explosive are devised with the idea of judging the potential safety of use in a particular application. This immediately raises two questions: 1) How do different molecules rank within any given sensitivity test? 2) How do different sensitivity tests compare in ranking molecules?

An understanding of sensitivity is in large part a chemical problem. The ease with which a detectable reaction of any kind can be initiated in an explosive; the tendency of a small reaction, once established, to grow to destructive proportions; and the ease with which a high-order detonation can be established in an explosive all contribute to the materials response to the stimulus in a sensitivity test. These properties are a consequence of the kinetics and thermodynamics of the thermal decomposition of the explosive.

Weston et al. [1] have considered relationships among various shock sensitivity tests and Price [2-4] has considered a variety of factors important in shock sensitivity tests. Among the more sensitive explosives, correlations tend to be satisfactory between tests that rely on shock initiation. It is important to understand the critical factors in each test (small scale gap test, large scale gap test, radius of Extex primer in the minimum priming test, run distance to detonation in the wedge test (8.3 GPa), critical diameter for propagation in sceady state detonation, critical flying plate kinetic energy fluence). In less sensitive explosives failure diameter effects appear to be the major problem in poor correlations.

Urizar et al. have coasidered the relations between four shock sensitivity tests [5] used at Los Alamos that initiate a defonation. These are the minimum priming charge, wedge, large scale gap and small scale gap tests. The tests reported in Ref. 5 were carried out on twenty one different materials made up under different conditions and in various compositions from seven pure explosives. They conclude "that the correlation is generally good, but that exceptions are numerous enough that no one test can be used with confidence as a measure of the detonation sensitivity of an explosive over a range of conditions of practical interest". Of the six possible cross-correlations among the four tests the powerst, surprisingly, was between the small-scale and large-scale gap tests

By far the most commonly used measure of an explosive's sensitivity is the drop-weight impact test. This is convenient, easy-to-run, and inexpensive. An important question is whether this test is indicative of the explosive's behavior under other circumstances, i.e., a shock stimulus. In a typical drop-weight impact test the time constant for reaction is in the range of 200-250 μ s and the pressure is between 7-15 kbar. In a shock experiment the times range from 0.05-2.0 μ s and the pressures range from 30-200 kbar. Is the mechanism of decomposition of the explosive at all similar under these rather different conditions?

A problem that one immediately encounters in approaching these questions is that only a limited number of compounds have been studied under well-controlled and defined conditions. For shock initiated studies the largest collection of information has been gathered by the Naval Surface Warfare Center (NSWC) using the Navy Small Scale Gap Test [6,7]. For drop-weight impact tests a large collection of consistent data is available from NSWG [8-12] and from the Los Alamos National Laboratory (IANL) [13-15].

In Table 1 we give the drop-weight impact sensitivity (h_{50}, cm) and the shock sensitivity as measured by the NSWC small scale gap test (P₉₀ the pressure in kbar required to initiate miterial pressed to 90% theoretical maximum density (TMD), P₉₅ = 95% TMD, P₉₈ = 98% TMD) for 21 explosives. The impact sensitivity given for TATB is estimated from oxygen balance correlations and will be discussed later.

If one selects from Table 1 a series of compounds that are closely related structurally, i.e. TNB, DIPAM, MATB, DATB, TATB, the correlation between the impact gensitivity and the shock sensitivity at 90w TMD ($h_{50} = 7.35P_{90}$ -27.44, $R^2 = 0.99$) is excellent. Figure 1.

Figure 1. A plot of the drop-weight impact sensitivity (h_{50}) vs the NSWC small scale gap test shock sensitivity at 90% TMD for TNB, DIPAM, MATB, DATB, and TATB. Data from Table 1.

Figure 2. A plot of the drop weight impact sensitivity (h_{50}) vs the NSWG small scale gap test shock sensitivity at 90% TMD for the 21 explosives in Table 1.

Compound	Composition	հ5()a (cm)	Popb (kbar)	P95	P98
PETN ^C	C5H8N4012	12	1.41	10.76	13.69
Pentolite	50/50, PETN, TNT	18	8.21	:1.73	15.18
TNETB ^d	с ₆ н ₆ N ₆ 0 ₁₄	18	9.25	13.13	17.48
PDX ^e	C3HEN606	24	10.97	15.77	20.35
HMX ^f	C ₄ H ₈ N ₈ O ₈	26	10.81	14.32	17.49
HNAB	C ₁₂ H ₄ N ₈ O ₁₂	32	12.17	18.11	22.48
Tetry1 ^h	C ₇ H ₅ N ₅ O ₈	32	10.64	15.14	19.42
Octol	75/25, HMX, TNT	42	12.62	19.23	25,98
Octol	65/35, HMX, TNT	42	12.30	18.50	26.02
HNS-I ⁱ	C14 ^{II6N6012}	47	26.26	30.15	32.90
н ns -11 ^j	$C_{14}H_6N_6O_{12}$	39	15.03	20.29	24.70
Comp B	60,'40, RDX, TNT	65	16.15	21.54	27.76
TNEDV ^k	C7H9N5012	/1	14.99		
hnb ¹	$C_{12}H_4N_6O_{12}$	76	18.25		- ·· • • •
TACOT - z ^m	C ₁₂ H ₄ N ₈ O ₈	85	34.43	41.26	
TNB ^{II}	C ₆ H ₃ N ₃ O ₆	100	14,96	27,28	37.25
D I PAM ^O	C ₁₂ H ₆ N ₈ O ₁₂	132	25.11	29.71	33.04
tnt ^p	C7115N306	160	17.72	25.65	33,35
MATB ^q	C6H4N4O6	1//	27.91	35.35	41.02
DATB ^r	CGHSNSOG	320	46.20	54.22	59.88
T∧TB ^S	CAHANAOA	490 ¹	70.38	121.92	164.86

TABLE 1. The impact and shock sensitivities of a variety of common explosives and their mixtures.

a. The impact sensitivity (h_{50}, cm) as measured at LANL and/or NSWG, using the Bruceion method, type 12 tools, 2.5 kg weight, 40 mg sample, 5/0 sandpaper, 25 trials, b. The shock sensitivity as measured by the NSWG small scale gap test, P₉₀ the pressure in kbar required to initiate material pressed to 90% theoretical maximum density (TMD), P₉₅=95% TMD, P₉₈=98% TMD, c. Pentaerythiitoltetranitrate, d. Trinitroethyltrinitrobutyrate, e. Gyclotrimethylenetrinitramine, f. Gyclotetramethylenetetranitramine, g. 2,2',4,4',6,6' Hexanitroazobenzene, h. 2,4,6 Trinitrophenylmethylnitramine, f. Hexa nitrosti?bene (0.2.2 μ particle size). J. No particle size specification, k. Trinitroethyl 4,4 dinitrovalerate. TABLE 1. (Continued)

 2,2',4,4,-6,6'-Hexanitrobiphenyl. m. 1,3,7,9-Tetranitrodibenzo-1,3a,4,6a-tetraazapentalene. n. Trinitrobenzene. o. 3,3'-Diamino-2,2',4,4',6,6'-Hexanitrobiphenyl. p. 2,4,6-Trinitrotoluene.
q. 2,4,6,-Trinitroaniline. r. 1,3-Diamino-2,4,6-trinitrobenzene.
s. 1,3,5-Triamino-2,4,6-trinitrobenzene. t. Estimated from oxygen balance of TNB, MATB, and DATB.

The correlation for this series between the shock sensitivity and 90% TMD and 95% TMD ($P_{95} = 1.74P_{90}$ -10.44, $R^2 = 0.92$) is good and the correlation between the shock sensitivity at 95% TMD and 98% TMD ($P_{98} = 1.40P_{95}$ -7.79, $R^2 = 0.99$) is excellent.

If one takes all 21 explosives listed in Table 1 and plots h_{50} vs P_{90} the correlation is not as good ($h_{50} = 7.23P_{90}$ -50.0, $R^2 = 0.87$), as one might expect, Figure 2. There are three main outliers off of the principal regression line, HNS-I, TACOT, and TNT. HNS-I is a special grade of hexanitrostilbene that has a 0.2-2 μ particle size distribution. HNS-II, which has no particle size specification, lies close to the regression line. It is well accepted that a small particle size can reduce shock sensitivity at high density. TNT lies off of the regression in the other direction, i.e. it is somewhat more shock sensitive than its impact sensitivity would suggest. TNT has an unusually low melting point and it has been suggested that melting in the impact test makes it appear to be less sensitive. TACOT, the third extreme outlier is a zwitterionic heterocycle, has not been extensively characterized, and may be a true structural anomaly.

If these three outliers are removed the remaining 18 explosives give an excellent correlation ($h_{50} = 7.83P_{90}$ -54.25, $R^2 = 0.99$), and this is the suggested regression for estimating the sensitivity of new materials. The shock sensitivity from 90% TMD to 95% TMD again correlates fairly well ($P_{95} = 1.55P_{90}$ -3.03, $R^2 = 0.54$) and the correlation between 95% TMD and 98% TMD is excellent ($P_{98} = 1.33P_{05}$ -1.84, $R^2 = 0.99$).

It is desireable to be able to estimate the sensitivity of proposed new materials. Even if only crude estimates can be made it is still useful for guidance for a syntheric effort. Kamlet [9-12] proposed a method for estimating impact sensitivity based on oxygen balance, which he defined as $OB_{100} = 100(2n_0 - n_H - 2n_C - 2n_{COO})/Molecular weight,$ $where <math>n_0$, n_H , n_C , n_{COO} are the number of oxygen, hydrogen, carbon and carboxylate in the molecule. The problem has been considered by a number of other investigators [16-25]. Kamlet found reasonable correlations between OB_{100} and $\log n_{50}$ for broad classes of compounds, i.e. nitroaromatics, nitroaromatics with a ring methyl group, nitramines, nitroaliphatics, and dinitrofluoro compounds. It was pointed out that individual impact measurements have a large scatter, but that when a large number of measurements are averaged reasonably consistent results are obtained. The regressions reported by Kamlet and Adolph [9, 12] for the various classes are:

- by Ramper and Adorph (5,12) for the various classes are 1) Nitroaromatic, $\log h_{50} = 1.73-0.320B_{100}$ 2) Nitroaromatic (alpha CH₃), $\log h_{50} = 1.33-0.260B_{100}$ 3) Nitroaliphatic, $\log h_{50} = 1.74-0.230B_{100}$ 4) Dinitrofluoro, $\log h_{50} = 2.14-0.300B_{100}$ 5) Nitramine, $\log h_{50} = 1.37-0.170B_{100}$

Because of the multi-component nature of the sensitivityperformance problem in energetic materials it is highly desirable to have a system in which C,H,N,O explosives can be organized. Because the performance of an explosive is dependent only on relative composition. Stine [26] has proposed a system based on the geometric properties of a regular tetrahedron. The empirical formula for a $C_a H_b N_c O_d$ compound can be normalized so that:

A+B+C+D=1, where A = a/n, B = b/n, C = c/n, D = d/n, n=a+b+c+d (Eq. 1).

This provides a convenient reference formula so different molecular compositions can be compared. A regular tetrahedron has the property that the sum of the four distances from any interior point to each of the four sides is a constant, which can arbitrarily be taken to be unity. Hence, every normalized chemical formula is represented by a unique point in a tetrahedron whose corners represent carbon, hydrugen, nitrogen and oxygen.

If the tetrahedron is centered at the origin of a cartesian coordinate system so that the four distances from any interior point to each of the four sides sum to unity, the coordinates on any intericr point are: X = $\sqrt{2(3D-1+C)/4}$; Y = $\sqrt{6(A-B)/4}$; Z = C-1/4; where A,B,C, and D are as given in Eq. 1. Two oxygen balance planes can now be defined; one containing the normalized points for CO, H_2O , and N_2 and the other containing the points for CO_2 , H_2O , and N_2 . The two definitions of oxygen balance (balance to CO or CO_2) are then the perpendicular distances from the point to the respective plane. Illustrations of this tetrahedral representation are given in ref. 26.

We have chosen as an index of sensitivity the distance of a point from the CO oxygen-balance plane. This sensitivity index is then defined as SI = 100(d-a-(b/2)-nCO)/5(a+b+c+d), where a,b,c,d are the coefficients of C,H,N,O, and nCO corresponds to the number of carbonyl groups in the molecule. This sensitivity index transforms to Kamlet's definition as OBK ~ 0.8/SI-0.05, R^2 ~ 0.99, for the 38 compounds in ref, 9,

In Tables 2-15 we have compiled the impact sensitivities for the compounds reported in Refs. 8-15. The compounds are grouped together by structural type. Table 2 reports nitroaromatic explosives (40 compounds); Table 3, nitroaromatic explosives with an alpha C-H

linkage (17 compounds); Table 4, nitropyridine explosives (6 compounds); Table 5, nitroimidazole explosives (10 compounds); Table 6, nitropyrazole explosives (8 compounds); Table 7, nitrofurazan and nitrooxadiazole explosives (7 compounds); Table 8, nitro-1,2,4-triazole explosives (18 compounds); Table 9, nitro-1,2,3-triazole explosives (16 compounds); Table 10, nitropyrimidine explosives (4 compounds); Table 11, nitroaliphatic explosives (7 compounds); Table 12, nitroaliphatic explosives containing other functional groups (44 compounds); Table 13, nitramine explosives (61 compounds); Table 14, nitrate ester explosives (7 compounds); and Table 15, miscellaneous nitroheterocyclic explosives (13 compounds), providing impact sensitivity information on 258 pure explosives. Since the methods discussed here depend on having a close structural analogy, this wide variety of information is provided.

In Figure 3 the sensitivity index (SI) is plotted against the impact sensitivity (log h_{50}) for 40 nitroaromatic compounds from Table 2. This is very much the same result as obtained by Kamlet [9]. The correlation for the original set of nitroaromatics reported by Kamlet and Adolph [9] of OB₁₀₀₂ vs log h_{50} is $R^2 = 0.866$; for the correlation of SI vs log h_{50} R² is 0.836, essentially the same. The overall regression for the 40 compounds in Table 2 is log $h_{56} = 1.72-0.19SI$, $R^2 = 0.639$.

If one considers groups of compounds that are structurally closely related the relation between impact sensitivity (log h_{50}) and SI are excellent. In Figure 4 we plot log h_{50} vs SI for TNB, MATB and DATB (Table 2, Nos. 5,12,15). This series gives an excellent correlation. If this is extrapolated to the SI of TATB (Tables 2-18) an impact sensitivity of 490 cm is predicted. This is the value used in Table 1 and in Figures 1 and 2. A similar value would be predicted from the h_{50} vs P₉₀ plots in Figures 1 and 2.

Several of the families of compounds in Table 2 have excellent correlations between log h_{50} and SI, i.e.

polynitroanilines (2-4,9,12), log $h_{50} = 1.75-0.24SI$, $R^2 = 0.997$

polynitrobenzenes (2-1,3,5), log $h_{50} = 1.70-0.13$ SI, $R^2 = 0.938$

polyaminopolynitrobenzenes (2-1,2,5), log $h_{50} = 0.58-0.84SI$, $R^2 = 0.998$

polynitrophenols (2-6,7,8,10,11,21,23,30,31), log $h_{50} = 1.72-0.28$ SI, $R^2 = 0.895$.

The apparent scatter of points in Figure 3 is then the result of a series of families of crossing straight lines with rather different slopes and intercepts. If one wishes to estimate the impact sensitivity of a proposed explosive, and it is in any wy related to known compounds, as closely related a series as possible should be chosen for interpolation or extrapolation to the appropriate SI value.

No .	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
1	Hexanitrobenzene	c ₆ N ₆ 0 ₁₂	348	5.00	12	13
2	Benzotrifuroxan	C6N606	252	0.00	50	13
3	l,2,4,5-Tetranitrobenzene	C6H2N408	258	1.00	27	13
4	2,3,4,5,6-Pentanitro- aniline	C6H2N6010	318	2,50	15	9
5	1,3,5-Trinitrobenzene	C6H3N3O6	213	-1.67	100	9
6	Picric acid	C6H3N3O7	229	-0.53	87	9
7	2,4,6-trinitroresorcinol	C6H3N3O8	245	0.50	43	9
8	2,4,6-Trinitrophloro- glucinol	C6H3N3O9	261	1.43	27	9
9	2,3,4,6-tetranitroaniline	с ₆ н ₃ N ₅ 08	273	0.45	41	9
10	2,4-Dinitroresorcinol	с ₆ н ₄ n ₂ 0 ₆	200	-2.22	296	9
11	4,6-Dinitroresorcinol	C6H4N2O6	200	-2.22	>320	9
12	2,4,6-Trinitroaniline	C6H4N4O6	228	-2.00	177	9
13	2,4,6-Trinitro-3-amino- phenol	C6H4N407	244	-0.95	138	9
14	2,3,4,6-Tetranitro- aniline	C6H4N608	288	0,45	41	8
15	l,3-diamino-2,4,6- trinitrobenzene	с ₆ н ₅ n ₅ 0 ₆	243	-2.27	320	9
16	l-Hydroxy-3,5-diamino- 2,4,6-trinitrobenzene	С ₆ Н5№507	259	-1.30	120	8
17	Ammomium picrate	C6H6N407	246	-1.74	135	13
18	l,3,5-Triamino-2,4,6- trinitrobenzene	C6H6N606	258	-2.50	>320	8
19	2,4,6-Trinitro- benzonitrile	с ₇ н ₂ N ₄ 0 ₆	238	-2.11	140	9
20	2,4,6-Trinitrobenzoic acid	C7H3N308	257	-1.43	109	9
21	2,4,6-Trinitroanisole	C7H5N3O7	243	-2.27	192	9
22	3-Methoxy-2,4,6- trinitroaniline	C7H6N407	258	- 2 . 50	>320	9
^ 3	l,3-Dimethoxy-2,4,6- trinicrobenzene	C8H7N3O8	273	-2.69	251	9
24	2′,2′,2′-Trinitroethyl- 2,4,6-trinitrobenzoate	C9114N6014	420	1.21	24	9

TABLE 2.	The	drop-weight	impact	sensitivities	οf	nitroaromatic
explosive	S.					

.

TABLE 2. (Continued)

No.	Compound	Formula	Mol Wt.	21	h ₅₀ (cm)	Ref.
25	2′,2′,2′-Trinitroethyl- 3,5-dinitrobenzoate	C9H5N5012	375	-0.32	73	9
26	2′,2′,2′-Trinitroethyl- 3,5-dinitrosalicylate	Ϲϣឣ៹Ν៹Ο៹	391	0.31	45	9
27	1,4,5,8-tetranitro- napthalene	с ₁₀ н ₄ № ₄ 08	308	-3.08	100	8
28	2',2'-Dinitropropyl- 2,4,6-trinitrobenzoate	с ₁₀ н ₇ N ₅ 0 ₁₂	389	-1.23	214	9
29	2,2',4,4',6,6'-Hexanitro- biphenyl	с ₁₂ н ₄ N ₆ 0 ₁₂	424	-1.18	85	9
30	3-hydroxy-2,2',4,4',6,6'- hexanitrobiphenyl	с ₁₂ н ₄ N ₃ 0 ₁₃	440	-0.57	42	9
31	3,3'-dihydroxy-2,2',4,4'- 6,6'-hexanitrobiphenyl	C ₁₂ H ₄ N ₆ O ₁₄	456	0.00	40	9
32	2,2',4,4',6,6'-Hexanitro- diphenylamine	C ₁₂ H ₅ N ₇ O ₁₂	439	-19	48	9
33	3,3'-Diamino-2,2',4,4'- 6,6'-hexanitrobiphenyl	C ₁₂ H ₆ N ₈ O ₁₂	454	-1.58	132	9
34	2,2',4,4',6-Pentanitro- benzophenone	с ₁₃ н ₄ № ₅ 0 ₁₁	407	-1.12	54	8
35	2,2',2",4,4',4",6,6',6"- nonanitro-m-terphenyl	C ₁₈ H ₅ N ₉ O ₁₈	635	-1.00	39	8
36	2,2",4,4',4",6,6',6"- Octanitro-m-terphenyl	C ₁₈ H ₆ N ₈ O ₁₆	590	-2.08	63	8
37	2,2',2",4,4",5',6,6"- Octanitro-p-terphenyl	C ₁₈ H ₆ N ₈ O ₁₆	590	-2.08	40	8
38	2,2',2",4,4",6,6',6"- octanitro-p-terphenyl	C ₁₈ H ₆ N ₈ O ₁₆	590	- 2 . 08	59	8
39	Dodecanitroquater- phenyl	C ₂₄ H ₆ N ₁₂ O ₂₄	846	-0.88	40	8
40	Azo-bis-2,2',4,4',6,6'- hexanitrobiphenyl	C24H6 ^N 14O24	874	-0.88	40	8

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
1	2,4,6-Trinitro- benz.ldehyde	C7H3N7O7	271	- 2 . 08	36	9
2	2,4,6-l`rinitro- benzaldoxime	C7H4N4O7	256	-1.82	42	9
3	2,4,6-Trinitrotoluene	C7H5N306	22 7	-4.09	160	9
4	l-Dinitromethyl-3- nitrobenzene	C7H5N306	227	-4.09	105	8
5	2,4,6-Trinitrobenzyl alcohol	C7H5N3O7	243	-2.27	52	9
6	2,4,6-Trinitro-m-cresol	C7H5N3O7	243	-2.27	191	9
7	1-(2,2,2-Trinitroethyl)- 2,4,6-trinitrobenzene	C8H4N6012	376	1.33	13	9
8	2,4,6-Trinitrostyrene	C8H5N3O6	239	-3.41	32	8
9	l-(2,2,2-Trinitroethyl)- 2,4 dinitrobenzene	C8H5N5010	331	-0.36	31	9
10	3,5-Dimethyl-2,4,6- trinitrophenol	C8H7N3O7	257	- 3 . 60	77	9
11	1-(3,3,2 trinitropropyl) 2,4,6-trinitrobenzene	- C9H6N6012	39 0	0.00	21	9
12	1-(3,3,3-trinitropropyl) 2,4-dinitrobenzene	- C9H7N5O10	345	-1.61	31	8
13	3-Methyl-2,2',4,4',6,6'- hexanitrobiphenyl	C13H6N6O12	438	-2.16	53	9
14	3-Methyl-2,2',4,4',6,- pentanitrobiphenyl	с ₁₃ н ₇ N5010	393	-3.71	143	9
15	Hexanitrostilbene	C ₁₄ H ₆ N ₆ O ₁₂	450	- 2 . 63	39	8
16	2,2',4,4',6,6'-Hexa- nitrobibenzyl	C14H8N6012	452	- 3.00	114	9
17	3,3'-Dimethyl-2,2', 4,4',6,6'-hexanitro- biphenyl	C ₁₄ H8N6O ₁₄	452	- 1 , 90	135	9

TABLE 3. The drop-weight impact sensitivities of nitroaromatic explosives with an alpha C-H linkage.

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
1	2,4,6-Trinitropyridine- l-oxide	C5H2N407	230	1.11	20	13
2	3,3′,5,5′-Tetranitro- 2,2′-azopyridine	C10H4N808	364	- 2 . 6 7	56	13
3	2,6-bis-(picrylazo)- 3,5-dinitropyridine	с ₁₇ н ₅ к ₁₃ 0 ₁₆	647	-1.37	33	13
4	2,6-bis-(picrylamino)- 3,5-dinitropyridine	с ₁₇ н ₇ N ₁₁ 0 ₁₆	621	-1.76	63	13
5	3,5-bis-(picrylamino)- 2,6-dinitropyridine	C ₁₇ H ₇ N ₁₁ O ₁₆	621	1.76	92	13
6	2,6-bis(picrylamino)- pyridine	C ₁₇ H9N9O ₁₂	531	-4.04	192	13

TABLE 4. The drop-weight impact sensitivities of nitropyridine explosives.

TABLE 5. The drop-weight impact sensitivities of nitroimidazole explosives.

No.	Compound	Formula	Mol. Wt.	SI	h _{5.)} (cm)	Ref.
1	2,4,5-Trinitro- imidazole	C3HN506	203	3,33	68	13
2	2,7-Dinitroimidazole	C3H2N404	158	0.00	105	13
3	Ammonium-2,4,5- trinitroimidazole	C3H4N606	220	0.88	50	13
4	Ammonium·4,5- dinitroimidazole	C3II5N504	175	-1.76	11	13
5	4,4′,5,5′-Tetranitro- blimidazole	C6H2N808	314	0,83	37	13
6	Diammonium-4,4′,5,5′- tetranitrobiimidazolate	C6H8N10O8	348	-1.25	105	13
7	2,4·Dinitro-l-picryl- imidazole	C9H3N/010	369	-0_34	46	13
8	2-Nitro-l-picryl- imidazole	C9H4N6O8	324	- 2 . 22	312	13
9	4-Nitro l-picryl- imidazole	C9H4N608	324	- 2 . 22	161	13
10	l-Picrylimidazole	CollisNisOn	279	4.40	314	13

No .	Compound	Formula	Mol. Wt.	SI	հ ₅₀ (cm)	Ref.
1	Ammonium 3,5- dinitropyrazole	C3H5N504	175	-1.76	158	13
2	4-Nitro-l-picryl- pyrazole	C9H4N6O8	324	-2.22	112	13
3	4-Nitro-3-picrylamino- pyrazole	C9H5N7O8	339	-2.41	>320	13
4	3,5-Dinitro-l-methyl- 4-picrylpyrazole	$c_{10}H_5N_7O_{10}$	383	-1.56	118	13
5	3,5-Dinitro-l-methyl- 4-picrylaminopyrazole	с ₁₀ н ₆ N ₈ 0 ₁₀	398	-1,76	274	13
6	1,4-Dipicrylpyrazole	C ₁₅ H ₆ N ₈ O ₁₂	490	-2.93	314	13
7	4-Nitro-l-picryl-3- picrylaminopyrazole	C15H6N10014	550	-1.78	149	13
8	5-Nitro-l-picryl-4- picryl&minopyrazole	C ₁₅ H ₆ N ₁₀ O ₁₄	550	-1.78	>320	13

TABLE 6. The drop-weight impact sensitivities of nitropyrazole explosives.

TABLE 7. The drop-weight impact sensitivities of nitrofurazan and nitrooxadiazole explosives.

No.	Compound	Formula	Mol. Wt.	<u>\$1</u>	հ50 (cm)	Ref.
1.	3-Amino-4-nitrofurazan	C2II2N403	130	0,00	21	13
2	4 4'-Dinitro-3,3'- blfurazan	C4N606	228	2.50	13	13
3	3-Nitro-4-picrylamino- furazan	C8HJN7O9	341	-0.37	60	13
4	3-Amino-4-picrylamino- furazan	C8H5N7O7	311	-2.59	120	13
5	2-5-Dipicry'-1,3,4- oxadiazole	C14H4N8013	504	-1.54	20	8
6	3,4-Bis-(picrylamino)- furazan	$G_{14}H_6N_{10}O_{13}$	522	-1,86	71	13
1	3,5-Bis-(picrylamino)- 1,2,4-oxadiazole	C14H6N10013	522	1.86	95	13

No .	Compound	Formula	Mol. Wt.	S I	h ₅₀ (cm)	Ref.
1	3-Nitro-1,2,4-triazole	C2H2N4O2	114	- 2 , 00	>320	13
2	3-Nitro-1,2,4-triazole- 5-one	C2H2N4O3	130	1.82	291	14,15
3	Ammonium 3-nitro-1,2,4- triazolate	C2H5N502	131	- 3 . 57	>320	13
4	Ammonium 3,5-dinitco- 1,2,4-triazolate	C2H4N604	176	0,00	110	13
5	4-Methyl-3,5-dinitro- 1,2,4-triazole	C3H3N504	173	-0.61	155	8
6	5,5'-Dinitro-3,3'-Di- 1,2,4-triazole	C4H2N804	226	-1.11	153	13
7	4-(2-Nitroothyl)-3,5- dinitro-1,2,4-triazole	C4H4N6O6	232	0.00	35	8
8	3-Nitro-l-picryl-l,2,4- triazole	C8H3N7O8	325	-1,15	68	13
9	l·Picryl-l,2,4-triazole	C8H5N5O10	280	-3,33	>320	13
10	3,Picrylamino-1,2,4- triazolo	CBH5N706	295	-3.46	>320	13
11	4-Picrylamino-1,2,4- triazole	C8H5N7O6	295	- 3,46	314	13
12	3-Amino-5-picrylamino 1,2,4-triazole	C8H6N8O6	310	-3,57	230	13
13	4-(2,4-Dinitrobenzyl) 3,5-dinitro-1,2,4- triazole	Ϲցℍͻℕℊ℧ϗ	339	-2.41	96	8
14	4-(4-Nitrobenzyl)-3,5- dinitro-1,2,4-triazole	C9H6N6O6	294	-4,44	>320	8
15	2-Picryl-3 picrylamino- 1,2,4-triazolo	C14H6N10012	506	2.38	>320	13
16	3,5-Bispi rylamino- 1,2,4-triazole	$c_{14}H_7N_{11}O_{12}$	521	- 2 , 50	240	13
17	N.N'Dipicryl-5,5' dinitro-3,3'-bi-1,2,4 triazole	C ₁₆ H4N ₁₄ O ₁₆	648	-0.80	138	13
18	5,5′-Bispierylamino- 3,3′-bi-1,2,4-triazole	C16H8N14O12	588	3.20	-320	13

TABLE 8. The drop-weight impact sensitivities of nitro-1,2,4- triazole explosives.

No .	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
1	4-Nitro-1,2,3-triazole	C2H2N4O2	114	2.0	25	13
2	Ammonium 4-nitro- 1,2,3-triazole	C2H5N5O2	131	-3,57	235	13
3	4-Nitro-l-picryl- l,2,3-triazole	C8H3N7O8	325	-1.15	9	13
4	4-Nitro-l-picryl- l,2,3-triazole	с <mark>8</mark> Н3N708	325	-1.15	67	13
5	l-(3',5'-dinitrophenyl)- 4-nitro-1,2,3-triazole	CBH4N606	280	- 3 , 33	56	13
6	l-(3',4'-dinitrophenyl)- 4-nitro-1,2,3-triazole	C8H4N606	280	-3,33	51	13
7	l-Picryl-1,2,3-triazole	C8H4N606	280	- 3 , 33	10	13
8	?-Pieryl-1,2,3-triazole	G8H4N606	280	-3,33	200	13
9	1-(3'-Amino-2',4',6'-tri- nitropheny1)-1,2,3-triazo	- CgH5N7O6 51e	295	-3,46	31	13
10	4-Picrylamino-1,2,3- triazole	C8115N706	295	- 3,46	103	13
11	4,6-Dinitro-l-picryl- benzotriazole	C ₁₂ H ₄ N ₈ O ₁₀	420	-2.35	40	13
12	5,6-Dinitro-l-picryl- benzotriazole	C12H4N3010	420	-2,35	35	13
13	l-Pieryl-4-pierylamino 1,2,3-triazole	C14H6N10012	506	2.34	35	13
14	2,6-Dipicrylbenzo-[1,2-d 4,5-d']-bistriazole-4,8- dione	: C18 ^{II} GN12O14	612	3,33	95	13
15	1,7-dipicrylbenzo [1,2-d:4,5-d']- bistiiazole	C18H6N12O12	582	3,75	38	13
16	l_5-Dipicrylbenzo- [l,2-d;4,5-d']- bistriazole	с ₁₈ 8 ₆ 8 ₁₂ 0 ₁₂	582	-3,75	40	13

TABLE 9. The drop-weight impact sensitivities of nitro-1,2,3-triazoles.

.

No ,	Compound	Formula	Mol. Wt.	SI	h50 (cm)	Ref.
1	2,4,6,2'2",4",6"- heptanitro-4',6'- diaza-m-terphenyl	C ₁₆ H: N9014	547	-2.05	58	8
2	2,4,6,4',2",4",6"- heptanitro-2',6'- diaza-m-terphenyl	C ₁₆ H ₅ N ₉ O ₁₄	547	-2.05	58	8
3	l-picryl-2-picrylamIno- l,2-dihydropyrimidine	C ₁₆ H7N9O ₁₂	517	-3.41	106	13
4	5-Nitro-2,4,6-tris- (picrylamino)-pyrimidine	C22H9N15020	803	-1.97	201	13

TABLE 10. The drop-weight impact sensitivities of nitropyrimidine explosives.

TABLE 11. The drop-weight impact sensitivities of nitroaliphatic explosives.

No.	Compound	Formula	Mol. Wt.	S I	հ50 (cm)	Ref.
1	1,1,1,3 tetranitro butane	C4H6N4O8	238	0.91	33	10
2	1,1,1,3,5,5,5- heptanitropentane	с5н5N7014	387	4.19	8	10
3	1,1,1,6,6,6-hexanitro- 3-hexyne	C6H4N6O12	352	2.96	7	8
4	1,1,1,6,6,6-hexanitro- 3-hexene	C6H6N6O12	354	2,00	17	8
5	3,3,4,4-tetranitro- hexane	с ₆ н ₁₀ N408	266	-2.14	80	10
6	2,2,4,4,6,6- hexanitroheptane	C7H10N6012	370	0,00	29	10
1	2,2,4,6,6 pentanítro heptane	с ₇ н ₁₁ N5010	325	-1,52	56	10

No .	Compound	Formula	Mol. Wt.	SI	h50 (cm)	Ref.
1	2,2,2-Trinitroethyl- carbamate	C3H4N4O8	224	2.11	18	10
2	2,2-Dinitro-1,3-propane- diol	C3H6N2O6	166	0.00	110	10
3	Methyl-2,2,2-trinitro- ethyl carbonate	C4H5N3O9	239	1.43	28	10
4	4,4,4-Trinitrobutyramide	C4H6N4O7	222	-0.95	40	8
5	Bis-(2,2,2-trinitro- ethyl)-carbonate	C5H4N6015	388	4.67	16	10
6	Methylene-bis-N,N'- (2,2,2-trinitroacetamide)	C5H4N8014	400	3.23	9	10
7	Bis-(trinitroethoxy)- methane	C5H6N6014	374	3.87	17	8
8	N,N'-Bis-(2,?,2- trinitroethyl)-urea	C5!16N8O13	386	2.50	17	10
9	5,5,5-Trinitropentanone-2	2 G5H7N3O7	221	-2.21	125	10
10	Ethyl-2,2,2-trinitro- ethylcarbonate	05H7N3O9	253	-0.42	81	10
11	N-(2-Propyl)- trinitroacetamice	C5H8N4O7	236	- 2, 50	112	8
12	Bis-(trinitroethyl)- oxalate	C6114N6016	416	3.75	15	8
13	2,2,2-Trinitroethyl 4,4,4-trinitrobutyrate	C6H6N6O14	386	2,50	18	10
14	Bis-(trinitroethyl) oxamide	C ₆ H ₆ N8O14	414	1.76	13	8
15	Trinitroethyl 2,2- dinitropropylearbonate	G6H7N5O13	357	1.61	15	8
16	N-Trinitroethyl 4,4,4- trinitrobutyramide	C6H7N7O13	385	1,52	18	8
17	1 5 Bis ("minitroethy1) bluret	G6H7N9O14	429	1,39	24	8
18	N (t-Butyl) trinitro acetamido	C6H10N4O7	250	-3,70	110	ŋ
19	Tris (2,2,2 trinitroethy) orthoformate	L)C7H7N9O21	553	4.77	1	10

TABLE 12. The drop-weight impact sensitivities of nitroaliphatic explosives containing other functional groups

TABLE 12. (Continued)

No.	Compour.d	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
20	1,1,1,7.7,7-Hexanitro- heptanoue-4	C7H8N6013	384	0.59	34	10
21	Methylene-bis-(trinitro- etnyl)-carbamate	C7118N8016	460	1.54	27	8
22	2,2-Dinitropropyl- trinitrobutyrate	C7H9N5012	355	-0.30	15 1	8
23	2,2,2-Trinitroethyl- 4,4-dinitrovalerate	C7H9N5012	355	-0.30	70	10
24	Bis-(2,2·dinitropropyl)- carbonate	C7H10N4011	326	-1.25	300	10
25	2,2 Dinitropropyl- 4,4,4-trinitrobutyramide	C7H10N6011	354	-1,18	72	10
26	Bis-(trinitropropyl)- urea	C7H10N8013	414	0.00	23	8
27	Bis-(1,1,1-trintro-2- propyl)-urea	C7H10N8013	414	0.00	19	8
28	Bis-(trinitroethyl)- fumarato	C8H6N6016	442	1.67	14	8
29	Trinitroethyl-bis- (trinitroethoxy)-acetate	C8H7N9O22	581	4.13	6	8
30	4,4,4-Trinitrobutyric anhydride	CBH8N6015	428	0.54	30	10
31	Bis-(2,2,2-triaitro ethyl) succinate	C8H8N6016	444	1,05	30	10
32	Bis-(2,2 dinitropropyl) oxalate	C8H10N4012	354	-1,76	227	1.0
33	N,N'-Bis-(3,3,3-trinitro propyl)-oxamide	C8H10N8O14	442	-0,50	45	10
34	2,2,7 Trinitroethyl 4,4 dinitrohexanoate	$c_8 u_{11} v_5 o_{12}$	369	-1.39	138	10
35	2,2 Dinitrobutyl 4,4,4-trinitrobutyramide	C8H11N5O12	369	-1.39	101	10
36	2,2-dinitropropyl- 4,4-dinitrovalerate	C8H12N4O10	324	- 2 , 94	>320	10
37	Nit coisobutyl 4,4,4 trinit robutyrate	C8H12N4010	324	-2,94	279	10
18	Tetrakis (2,2,2 trinitro ethyl) orthocarbonate	C9H8N12028	732	5.26	1	10
39	Methylene bis (4,4,4 (rinitrobutyramide)	Coll12N8014	456	1.40	113	10
40	Ethylene bis (4,4,4 trinitrobutyrate)	$c_{10} R_{12} N_6 o_{16}$	472	0,91	120	10
41	N,N Bis (2,2 dinitro propyl) 4,4,4 trinitro butyramide	с _{тонта} м8015	486	1.28	12	10

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
42	ðis-(2,2,2-trinitro- ethyl)-4,4-dinitro- heptanedioate	c ₁₁ H ₁₂ N8020	576	0.39	68	10
43	2,2-Dinitropropane-1,3- 1,3-diol-bis-(4,4,4- trinitrobutyrate)	C ₁₁ H ₁₂ N8020	576	0.39	50	10
44	Bis-(2,2,2 Trinitro- cthyl)-4,4,6,6,8,8- nexanitro-undecanedioate	C ₁₅ H ₁₆ N ₁₂ O ₂₈	812	0.85	32	10

No.	Compound	Formula	Mol. Wt.	\$1	h ₅₀ (cm)	Ref.
1	N,N'-Dintiro- methanediamine	CH4N404	136	1.54	13	10
2	N-Nıtro-N-methyl- formamide	C ₂ H ₄ N ₂ O ₃	134	-3.64	320	13
3	N,N'-Dinitro-1,2- ethanediamine	C2H6N404	150	-1.25	34	10
4	Methyl-2,2,2-trinitro- ethylnitramine	C3H5N508	239	2.38	9	10
5	Trinitroethyl- nitroguanidine	C3II5N708	267	2.17	15	8
6	Cyclotrimethylene- trinitramine	C3H6N606	222	0.00	26	10
7	N-Methyl-N,N'-dinitro- l,2-ethenediamine	C3H8N404	164	-3.16	114	10
8	Trinitroethyl- cyanomethylnitramine	C4H4N608	264	1.82	11	8
9	Bis-(2,2,2-trinitro- ethyl)-nitramine	C4H4N8014	388	5,33	5	10
10	N-Methyl-N-nitro- (trinitroethyl)-carbamate	$c_{4}H_5N_5O_{10}$	283	2.08	17	8
11	N,N'-dimethyl-N,N'- dinitiooxamide	C4H6N406	206	- 3 . 00	79	8
12	N-Nitro-N-(trinitro- ethyl)-glycinamide	C4H6N609	282	0.80	17	8
13	Cyclotetramethylene- tetranitramine	C4H8N8O8	296	0.00	29	10
14	N,N'-Dinitro-N-[2- (nitroamino)ethyl]- L,2-ethanediamine	C4H10N606	238	-2.31	39	10
15	1, 3, 3, 5, 5-Pentanitro- piperidine	с5н686010	310	٤.48	14	10
16	2,2,2-Trinitroethyl 37,37,37-trinitropropyl nitramine	C5H6N8014	402	3.64	6	10
17	N,N'-Bis-2,2,2 trinitro ethyl)-N,N'-dinitro methancdiamine	с ₉ н ₆ N ₁₀ 0 ₁₆	462	4.32	5	10
18	Trinitroethyl-N-ethyl N-nitro-carbamate	C5H7N5010	297	0.37	y 19	8
19	Trinitroethyl 2 methoxy ethylnitramine	CyllgNyOg	28	-0,36	o 47	8

TABLE 13. The drop-weight impact sensitivities of nitramine explosives.

TABLE 13. (Continued)

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
20	N-methyl-N'-trinitro- ethyl-N,N'-dinitro-l,?, -ethanediamine	с ₅ н ₉ N ₇ 0 ₁₀	327	0.32	11	10
21	N,N'-3,3-Tetranitro- l,5-pentanediamine	с ₅ н ₁₀ N ₆ 08	282	-1.38	35	10
22	N-nitro-N-(3,3,3- trinitropropyl)-2,2,2- trinitroethyl carbamate	с ₆ н ₆ n ₈ 0 ₁₆	446	3.33	9	10
23	2,2,2-Trinitroethyl- N-(2,2,2-trinitroethyl)- nitramino acetate	с ₆ н ₆ N8016	446	3.33	9	10
24	2,2,2-trinitroethyl-4- nitrazavalerate	с ₆ н ₉ №5010	311	-1.00	35	10
25	Trinitropropyl-(2,2 dinitropropyl)-nitramine	C6H9N7012	371	0.88	17	8
26	2′,2′,2′-Trinitroethyl- 2,5-dinitrazahexanoale	C6H9N7012	371	0.29	15	10
27	2,2,2 trinitroethyl-3,3- dinitrobutyl nitramine	C6H9N7012	371	0.88	20	10
28	N-(2,2-Dinitropropyl)- N,2,2-trinitro-l- propanamine	C6H10N6010	326	-0.63	29	10
29	1,7-dimethoxy-2,4,6- trinitrazaheptane	C6H14N608	298	2.94	166	8
30	N,N'-Dinitro-N,N'-bis [2-(nitroaminc)ethyl]- l,2-ethanediamine	C _E H ₁₄ N808	326	-2.78	53	10
31	Bis-(trinitroethyl)- 2,4-dinitrazapentanedioate	с ₇ н _б №10 ⁰ 20 с	550	3.72	10	8
32	2,2-dinitropropyl-5,5,5- trinitro-2- nitrazapentanoate	C7H9N7O14	415	0.81	16	8
33	Trinitroethyl-5,5- dinitro-3-nitrazahexanoat	C7H9N7014 e	415	0.81	25	8
34	2,2,2-Trinitroethyl- 2,5,5-trinitro-2- azahexanoate	C7H9N7O14	415	0.81	2.2	10
35	N-nitro-N,N'-bis- (trinitropropyl)-uvea	C7H9N9O15	459	1.25	21	8
36	2,2,2-Trinitroethyl-2,4, 6,6-tetranitro-2,4- diazaheptaneoate	C7H9N9O16	475	1./1	18	10
37	Bis-(2,2,2-trinicroethyl) 3-nitrazaglutarate	C8H8N8O18	504	1.90) 14	10
38	N,N'-Dinitro N,N'-bis- 3,3,3-trinitropropyl)- oxamide	C8H8N10C18	532	1.82	9	10

TABLE 13.	(Continued)
-----------	-------------

No .	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
39	Bis-(trinitroethyl)- 2,4,6-trinitraza- heptanedioate	C8H8N12022	624	3.20	13	8
40	2,2,6,9,9-Pentanitro- 4-oxa-5-oxo-6-azadecane	C8H12N6012	384	-1.58	47	10
41	1,1,1,3,6,9,11,11,11- nonanitro-3,6,9- triazaundecane	C8H12N12O18	564	1.60	12	10
42	N-(2-2-Dinitrobutyl)- N-2,2-trinitro-1- butanamine	C8H14N6O10	354	-2.63	80	10
43	N,N'-Dinitro-N,N'-bis-(3- nitrazabutyl)-oxamide	C ₈ H ₁₄ N ₈ O ₁₀	382	- 3 . 50	90	10
44	2,2,4,7,9,9,hexanitro- 4,7-diazadecane	C8H14N8012	414	-1.43	72	10
45	N N'-dinitromethylene- bis-(4,4,4-trinitro)- butyramide	C9H10N10O18	546	0.85	13	8
46	1,1,1,5,7,10,14,14,14- Nonanitro-3-12-dioxa- 4,11-dioxo-5,7,10- triazatetradecane	с ₉ н ₁₀ n ₁₂ 0 ₂₂	638	2.26	11	10
47	Bis-(5,5,5-trinitro-3- nitrazapentanoyl)- methylenedinitramine	C9H10N14O22	666	2 18	15	8
48	1,1,1,4,6,6,8,11,11,11- Decanitro-4,8- diazaundecane	с9H12N12O20	608	1.89	11	10
49	1,1,1,3,6,6,9,11,11,11 Decanitro-3,9- diazaundecane	C9H12N12O20	608	1.89	10	10
50	Bis-(2,2 ? trinitroethyl) -4-nitiaza-1,7- heptanedioate	C ₁₀ H ₁₂ N ₈ O ₁₈	532	0.00	29	10
51	Bis-(2,2,2-trinitroethyl) -3,6-dinitraza-1,8- octanedioate	C ₁₀ H ₁₂ N ₁₀ O ₂₀	592	0.77	29	10
52	Bis-(trinitroethyl)-2,5, 8-trinitrazanonanedioate	C ₁₀ H ₁₂ N ₁₂ O ₂₂	652	1.43	17	8
53	N,N'-Dinitro-N,N'-bis- (3,3-dinitrobutyl)- oxamide-triazatetradecane	C10H14N8O14	470	-2.1/	37	10
54	1,1,1,3,6,9,12,14,14,14- Decanitro-3,6,9,12-tetraz tetradecane	C ₁₀ H ₁₆ N ₁₄ O ₂₀	652	0.6/	19	10
55	Bis•(trinitroethyl)-5,5- dinitro-2,8-dinitraza- nonanedioate	с ₁₁ н ₁₂ 812024	696	1.69) 12	8

TABLE 13. (Continued)

,

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
56	2,2,4,7,7,10,12,12- Octanitro-4,10- diazatridecane	C ₁₁ H ₁₈ N ₁₀ O ₁₆	546	-1.45	44	10
57	2,2,5,7,7,9,12,12- Octanitro-5,9- diazatridecane	с ₁₁ н ₁₈ N ₁₀ 0 ₁₆	546	-1.45	37	10
58	l,4-Bis-(5,5,5-trinitro- 2-nitrazapentanoate)-2- butyne	с ₁₂ н ₁₂ N ₁₀ О ₂₀	616	0.00	16	8
59	1,1,1,18,18,18-Hexanitro 3,16-dioxa-4,15-dioxo-5,8 11,14-tetranitrazaoctadec	C ₁₂ H ₁₆ N ₁₄ O ₂₄ ane	740	0.61	19	10
6C	1,1,1,3,6,6,8,10,10,13, 15,15,15-tridecanitro- 3,8,13,-triazapentadecane	c ₁₂ H ₁₆ N ₁₆ O ₂₆	800	1.71	23	10
61	2,2-Dinitropropanediol- bis-(5,5-dinitro-2- nitraza-hexanoate)	C ₁₃ H ₁₈ N ₁₀ O ₂₀	634	-1.31	138	8

, .

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
1	l,2,3-Propanetriol trinitrate	СзН5N3O9	227	3.50	20	13
2	N-(2,2,2-Trinitroethyl)- nitraminoethyl nitrate	C4H6N6011	314	2.96	7	10
3	2,2-Bis(nitroxymethyl) -1,3-propanediol dinitra	C5H8N4012 te	316	2.07	13	13
4	3-[N-(2,2,2-Trinitro- ethyl) nitramino]-propyl nitrate	C5H8N6011	328	1.33	12	10
5	3,5,5-Trinitro-3- azahexyl nitrate	Ϲͻឣ៰ΝͻΟ϶	283	0.36	21	10
6	1,9-Dinitrato-2,4,6,8- tetranitrazanonane	C5H10N10O14	434	2.05	10	8
7	4,4,8,8-Tetranitro- 1,11-dinitrato-6-nitraza undecane	C10H16N8O16	504	-0.80	87	10

TABLE 14. The drop-weight impact sensitivities of nitrate ester explosives.

TABLE 15. The drop-weight impact sensitivities of miscellaneous nitroheterocyclic explosives.

No.	Compound	Formula	Mol. Wt.	SI	h ₅₀ (cm)	Ref.
1	Ammonium 5-Nitro- t trazolate	CH4N602	132	-1.54	30	13
2	Ethylenediammonium di-5-nitrotelrazolate	C4H10N12O4	290	-3.33	42	13
3	3,5 Dinitroisoxazole	с ₃ н N ₃ 05	159	2.50	29	13
4	l,4-Dinitroglycoluril	C4H4N6O6	232	-2.0	100	13
5	l-Nitro-2,5-bls- (trinitromethyl)-pyrroli	C6H6N8014 dine	414	2,94	6	8
6	b-Picrylaminotetrazole	C7H4N806	296	- 2. 40	36	13
1	3,3,9,9-Tetranitro- 1,5,7,11-Tetraoxaspiro- (5.5)-undecane	C7H8N4012	340	0.65	66	10
8	N-(2,2,2-Trinitroethyl)- 3-3-5-5=tetranitro- piperidine	с7H8N8014	428	1.62	1.8	10
9	N (Trinitropropyl) 3,3,5,5-tetranitro piperdine	C8H10N8014	442	0.50	29	8

.

Ňo.	Compound	Formula	Mol. Wt.	S1	h ₅₀ (cm)	Ref
10	l,3,7,9-Tetranitrodibenzo -1,3a,4,6a-tetraazapentalo	C12H4N8O8 ene	388	-3.75	85	8
11	3-6-Bis-(picrylamino)- s-tetrazine	C ₁₄ H ₆ N ₁₂ O ₁₂	534	-2.27	61	13
12	l,3,5-Tris(l-oxo-5,5,5- trinitro-3-nitrazapentyl) s-triazacyclohexane	C ₁₅ H ₁₈ N ₁₈ O ₂₇	882	0.00	13	8
13	Tripicryl-s-triazene	C ₂₁ H ₆ N ₁₂ O ₁₈	714	-2.11	85	8

Figure 3. A plot of the impact sensitivity (log h_{50} , cm) of the 40 nitroaromatic explosives in Table 2 vs the sensitivity index (S1). The regression is log $h_{50} = 1.70-0.20$ SI, $R^2 = 0.605$.

Figure 4. A plot of the impact sensitivity (log h_{50} , cm) of TNB,MATB, and DATB vs the sensitivity index (S1), extrapolated to TATB. The regression is log $h_{50} = 0.59 \cdot 0.8481$, R² = 0.998. See Table 2 5,12,15,18 for values plotted.

An example of the use of the different families is given in Figure 5. Here we plot compounds 1, 2, 3, 5, 12, 15, 18, 29 and 33 from Table 2, providing examples of the polynitrobenzene series, the polyaminotrinitrobenzene series and benzotrifuroxan. To estimate the consitivity of 5,7-diamino-4,6-dinitrobenzofuroxan (DADNBF) a tic-line between TATB and BTF is used, log $h_{50} = 1.70 \cdot 0.40$ SI. This family relationship suggests a sensitivity of 268 cm for DADNBF. To estimate the impact sensitivity of 7-amino-4,6-dinitrobenzofuroxan (ADNBF) a tic line is constructed between DATB and BTF, log $h_{50} = 1.70 \cdot 0.36$ SI. This estimates an impact sensitivity for ADBNF of 174 cm.

In Figure 6 we plot the impact sensitivity of the 18 1,2,4-triazoles given in Table 8. The 1,2,4-triazoles that have no other sensitive functional group generally lie above the regression observed for nitroaromatic explosives and thus form an inherently less-sensitive class of explosives.

The 1,2,3-triazoles also provide some interesting examples, Table 9. The very large difference in the impact sensitivities of 1-picryl-1,2,3-triazole compared to 2-picryl-1,2,3-trazole and 4-nitro-1-picryl-1,2,3-triazole compared to 4-nitro-2-picryl-1,2,3triazole have been commented on previously [19]. Recent consideration of the problem [27] has ascribed the large difference in sensitivity to the facile loss of nitrogen in the 1-picryl isomers. This illustrates another use of the correlations, large exceptions point out important structural factors. This in turn suggests molecules that are interesting for detailed calculations and provides clues as to decomposition mechanisms.

Among explosives chemists the belief is widely held that ammonium salts are "unusually stable". When an acid is converted to its ammonium salt three extra hydrogens are added and the ammonium salt will certainly be more stable (i.e. less sensitive) than the parent acid. In Figure 7 we plot the SI vs log h_{50} for a variety of ammonium salts. The numbers in the figure refer to the table from which the data are taken. The solid line represents the general nitroaromatic regression and is for reference. The two extreme deviations in the sensitive direction (15-1,2) are nitrotetrazoles, an inherently sensitive class of materials. Seven of the ten ammonium salts follow the general nitroaromatic regression reasonably well. Ammonium 3,5-dinitro-1,2,4-triazolate appears to be rather more insensitive than expected. It has already been pointed out (Figure 6) that 1,2,4-triazoles are as a class less sensitive. It appears that an ammonium counter-ion provides no special "insensitivity".

In any energetic material one is pursuing a compromise between energy content and metastability. When a hot spot is formed it will grow 'f the rate of heat production is greater than the rate of heat loss [28,29]. In general as more nitro groups are added the available heat per molecule (Q) increases. For a homologous series, as a

Figure 5. A plot of the impact sensitivity (log h_{50} , cm) of compounds 1,2,3,5,12,15,18,29 and 33 from Table 2 vs the sensitivity index (SI).

Figure 6. A plot of the impact sensitivity (log h_{50} , cm) of the 18 nitro-1,2,4 triazoles in Table 8 vs the sensitivity index (S1). The regression for points 1,2,4,5,6,17 is log $h_{50} = 2.00 - 2.481$, R² = 0.929. The solid line is the regression for nitroaromatics from Table 2 and is for a reference comparison.

reaction becomes more exothermic the transition state leading to the products becomes lower (Hammond postulate) [30]. This leads to an increased rate of energy release at a given temperature. It is commonly observed in linear free energy relationships in homologous series that rate constants (k) and equilibrium constants (K) have linear relationships. So it is not surprising that the sensitivity index (an oxygen balance related number) relates in a systematic way to the impact sensitivity.

Based on an examination of the properties of various explosives tested for impact and/or shock sensitivity it would be desireable to identify the most important factors contributing to the decomposition. Kamlet and Adolph [12] suggested in 1981 "that impact sensitivities of explosives depend on the rates of thermal decomposition reactions which occur at the temperatures generated under the impact hammer, with the rate determining step usually being the homolytic cleavage of the weakest atom linkage (referred to as the "trigger linkage")." Their proposal was based in part on earlier work by Wenograd [31] which demonstrated that the time delay to explosion for most organic explosives could be described by $\tau = Aexp(B/RT)$, where τ is the delay time. T the absolute temperature, and A and B constants. This led Wenograd [31] to suggest that the important parameter in impact sensitivity is the temperature reached during the 250 μ s confinument interval under the impact hammer.

An explosive has a characteristic critical temperature, i.e. the lowest constant surface temperature it which a specific material of a specific size and shape will self-heat catastrophically. Below the critical temperature, energetic materials still decompose, but they fail to generate sufficient heat to become self-sustaining.

The critical temperature for the thermal explosion of an explosive may be calculated from the Frank-Kamenetskii equation [32]:

$$\frac{E}{Tm} - R \ln \frac{n^2 \rho Q Z E}{Tm^2 \lambda \delta R}$$

.

where R is the gas constant (1.99 cal mol⁻¹K⁻¹), a is the radius of a sphere or cylinder or the half-thickness of a slab, ρ is the density (g cm⁻³), Q is the heat of explosion (cal g⁻¹), Z is the pre-exponential (s⁻¹) and E the activation energy (kcal mol⁻¹) from the Arrhenius expression, λ is the thermal conductivity (cal cm⁻¹ sec⁻¹K⁻¹), and δ is a shape factor (0.88 for infinite slabs, 2.00 for infinite cylinders, and 3.22 for spheres). Rogers [32,33] has determined the kinetics constants for a variety of explosives (PETN, TETRYL, RDX, HMX, DIPAM, TNT, HNS, DATB, TACOT, TATB) for which shock sensitivity and impact sensitivity data are also available (Table 1). Using the kinetics constants and physical properties reported by Rogers [32,33], the heats of explosion given by Zeman et al. [34], and the cylindrical dimensions of the NSWC small scale gap test [6] we calculate the critical temperatures for these explosives as given in Table 16.

In Figure 8 the calculated critical temperature (Tm) for the diverse set of explosives in Table 16 is plotted against the shock initiation pressure (log P₉₀) taken from Table 1. The regression is log P₉₀ = 0.007Tm-2.03, R² = 0.848. For these same explosives Tm plotted against the sensitivity index provides a R² correlation of 0.554, impact sensitivity (log h₅₀) plotted against the sensitivity index for this series of explosives provides a R² correlation of 0.512. The critical temperature-shock sensitivity relationship is about as satisfactory at 95% TMD (logP₉₅₂ = 0.007Tm-1.87, R²=0.823) and at 98% TMD (log P₉₈- 0.007Tm-1.76, R²=0.808). This relationship of calculated critical temperature and shock sensitivity is consistent with the hypothesis of Wenograd [31] and of Kamlet and Adolf [12] that the rate of thermal decomposition is a critical factor in shock and impact sensitivity.

A great deal of attention has been focussed on the notion of a critical "trigger linkage" in explosives. If such a bond could be identified, and avoided, less sensitive materials could be designed [12]. In more sensitive explosives it is likely that a single early dominant step can be identified. A detailed analysis of a series of picryl-1,2,3-triazoles has been made [27]. In less sensitive explosives complex chemistry is likely to preceed a rate determining step and the insensitivity of the explosive is in fact the consequence of the chemistry preceeding the rate determining step.

A good example is TATB. The thermal decomposition of TATB has been reported to consist of a slow endothermic stage followed by two slow exothermic stages, culminating in an explosive reaction above the critical temperature [35]. Sharma et al. [36] have observed the formation of furazans in impacted TATB and suggest that this is an important early decomposition step for the reaction of TATB. The heat of formation of TATE is 37 keal/mole and for BTF it is 145 kcal/mole [37]. On converting an ortho-nitroamino functionality to a furoxan the All is increased on average by 61 kcal/mole. The value for a furazan would be gomewhat less, but still a substantial positive change. Thus the elimination of water (58 keal/mole) to form a furazan functionality is nearly a thermochemically neutral reaction. During the early stages of hot spot existance there is little early energy release to drive growth. This provides a favorable effect on sensitiveness (case of initiating a reaction center) and on explosiveness (ease of transition to a violent explosion). Since the safety of an explosive is approximately the recipiocal of the product of these factors [38], TATB is a rather safe material (for an explosive) to work with. The inherent ingensitive nature of the material resides in the themochemically neutral chemistry required before exothermic decomposition engues. It is difficult, in this scheme, to identify a "trigger linkage."

Figure 7. A plot of the impact sensitivity (log h_{50}) for nine ammonium salts of nitroazole explosives and ammonium picrate. The numbers on the graph refer to the Table which is the source of the data. The solid line is the nitroaromatic regression (Table 2) and is for reference

Figure 8. A plot of the calculated critical temperatures (Tm) vs the shock sensitivities (log P_{90}) for the diverse set of explosives in Table 16. The shock sensitivities are from Table 1.

Compound ^a	Tm(K)	Compound	Tnı(K)	
PETN	427	TNT	491	
TETRYL	449	HNS	508	
RDX	450	DATB	533	
HMX	483	TACOT	539	
DIPAM	484	TATB	562	

TABLE 16. The critical temperatures calculated from the Frank-Kamenetskii equation for a diverse set of explosives.

a. See Table I for abbreviations.

Nitromethane is another interesting case. Engelke et al. [39] have provided a variety of evidence that the early critical intermediate in nitromethane decomposition is the aci ion $(GH_2NO_2^-)$. In pure nitromethane the driving force at high pressure is the electrostriction effect of the formation of the $GH_3NO_2H^+$ - $GH_2NO_2^-$ ion pair. If this has a ΔV of -20 cc/hole one can very crudely estimate aci ion concentrations of 10⁻⁷ to 10⁻¹⁰ M at pressure conditions adequate to initiate homogeneous nitromethane. The aci ion is a very reactive species. It is known to be a good nucleophile, a precursor to fulminic acid, and a facile electron transfer agent. If these very small amounts of an intermediate are kinetically completent to bring about the violent exothermic decomposition of nitromethane it must indeed be very reactive. This is the basis for the arguments related to the amine sensitization of nitromethane [39]. Does one then view the G-H bond in nitromethane as the trigger linkage?

A third example is the dramatic difference in the impact sensitivity of 1-picryl-1,2,3-triazole and 2-picryl-1,2,3-triazole, as mentioned earlier in this article. An extensive structural and theoretical analyses [27] has been carried out on these isomers. It was concluded that the 1-picryl-1,2,3-triazole isomer loses nitrogen by a low activation energy, exothermic, process. This drives the propagation of the hot spot. In this case the N₂ loss is certainly a "trigger linkage".

We have shown a relationship between impact and shock sensitivity and illustrated how a sensitivity index based on oxygen balance can be used to estimate sensitivity in closely related series of molecules. It is shown that the critical temperature of an explosive calculated by the Frank Kamenetskii equation correlates fairly well with the shock sensitivity of the material. This supports the idea that the shock or impact initiation of an explosive is primarily a thermal event and not dominated by pressure driven chemistry. The concept of the "trigger linkage" in explosives is discussed and it is pointed out that insensitive explosives will require early chemistry that is thermochemically neutral or endothermic and leads to the build up of later strongly exothermic chemistry.

ACKNOWLEDGEMENT

This work was supported by the U.S. Department of Energy and by the U.S. Department of Defense, Office of Munitions.

REFERENCES

- Weston, A.M., Kinkaid, J.F., James, E., Lee, E.L., Green, L.G. and Walton, J.R. (1981), "Correlation of the Results of Shock Inititation Tests", Seventh Symposium (International) on Detonation, Office of Naval Research, Washington, DC. pp. 887-897.
- Price, D., and Liddard, T.E. (1966), "The Small Scale Gap Test: Calibration and Comparison with the Large Scale Gap Test", NOLTR pp. 66-87, White Oak, MD.
- Price, D. (1985), "Examination of Some Proposed Relations Among HE Sensitivity Data", J. Energetic Materials, 3, pp. 239-254.
- 4. Price, D. (1986) "Gap Tests and How They Grow", Minutes of the 22nd Explosives Safety Scminar, Anaheim, CA, pp. 365-380.
- 5. Urizar, M.J., Peterson, S.W. and Smith, L.C. (1978), "Detonation Sensitivity Tests", IA-7193MS, Los Alamos, NM.
- Ayres, J.N., Montesi, L.J. and Bauer, R.J. (1973) "Small Scale Gap Test Data Compilation; 1959-1972", Volume I, NOLTR 73-132, White Oak, MD.
- Liddard, T.P., and Price, D. (1966) "The Small Scale Gap Test: Calibration and Comparison with the Large Scale Gap Test", NOLTR 66-87, White Oak, MD.
- Adolph, H.G., Holden, J.R., and Ghiera, D.A. (1981) "Relationships Between the Impact Sensitivity of High Energy Compounds and Some Molecular Properties Which Determine Their Performance", NSWG TR 80-495, White Oak, MD.
- Kamlet, M.J., and Adolph, H.G., (1979) "The Relationship of Impact Sensitivity with Structure of Organic High Explosives. 11. Polynitroaromatic Explosives", Propellants and Explosives, 4, pp. 30-34.
- 10. Kamlet, M.J. (1976) "The Relationship of Impact Sensitivity with Structure of Organic High Explosives. 1. Polynitroaliphatic Explosives", Sixth Symposium (International) on Detonation, Office of the Naval Research, Washington, DG, pp. 312–322.

- Kamlet, M.J. (1960) "Sensitivity Relationships", Third Symposium (International) on Detonation, Office of Naval Research, Washington, DC, pp. 13-34.
- 12. Kamlet, M.J., and Adolph, H.G. (1981) "Some Comments Regarding the Sensitivities, Thermal Stabilities, and Explosive Performance Characteristics of Fluorodinitromethyl Compounds", Seventh Symposium (International) on Detonation, Office of Naval Research, Washington, DC, pp. 84-92.
- Stine, J.R. (1989) "A Pure Explosive Data Base", Los Alamos, NM; Coburn, M.D. (1989) private communication.
- 14. Lee, K-Y., Coburn, M.D. (1985) "3-Nitro-1,2 4-triazole-5-one, A Less Sensitive Explosive", LA-10302, Los Alamos, NM.
- Lee, K-Y., Chapman, L.B. and Coburn, M.D. (1987), "3-Nitro-1,2,4triazole-5-one, A Less Sensitive Explosive", J. Energetic Materials, 5, pp. 27-33.
- Delpuech, A. and Cherville, J. (1978) "Relation Between Electronic Structure and Shock Sensitivity of Secondary Nicro Explosives: Molecular Criterion of Sensitivity. Part I. Nitroaromatics and Nitramines", Propellants and Explosives, 3, pp. 169-175.
- 17. Delpuech, A. and Cherville, J. (1979) "Part II, Nitric Esters", Propellants and Explosives, 4, pp. 121-128.
- Delpuech, A., and Cherville, J. (1979) "Part III. Influence of Grystal Environment", Propellants and Explosives, 4, pp. 61-65.
- Delpuech, A., Cherville, J. and Michaud, G. (1981) "Molecular Electronic Structure and initiation of Secondary Explosives", Seventh Symposium (International) on Detonation, Office of Naval Research, Washington, DG, pp. 65-74.
- Jain, S.R., Adiga, K.C. and Pai Verneker, V.R. (1981) "A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures", Combustion and Flame, 40, pp. 71-79.
- 21. Sundararajan, R., Adiga, K.C. and Jain, S.R. (1981) "Energetics of the Condensed Ternary Fuel Oxidizer Systems", Combustion and Flame, 41, pp. 243-249.
- 22. Sundararajan, R. and Jain, S.R. (1983) "Structure and Impact Sensitivity kelation in Organic Explosives", Indian J. Technology, 21, pp. 474–477.
- 23. Brassy, C., Roux, M. and Ansanneau, M. (1987) "Reflexions on the Sensitivity of Polynitroaromatic Explosives", Propellants, Explosives, Pyrotechnics, 12, pp. 53-59.

- 24. Mullay, J. (1987) "A Relationship Between Impact Sensitivity and Molecular Electronegativity", cropellants, Explosives, Pyrotechnics, 12, pp. 60-63.
- 25. Mullay, J. (1987) "Relationships Between Impact Sensitivity and Molecular Electronic Structure", Propellant, Explosives, Pyrotechnics, 12, pp. 121-124.
- 26. Stine, J.R. (1989) "On predicting Properties of Explosives -Detonation Velocity", J. Energetic Materials, in press.
- 27. Storm, C.B., Ryan, R.R. Ritchie, J.F., Hall, J.H. and Bachrach, S.M. (1989) "Structural Bases of the Impact Sensitivities of 1-Picryl-1,2,3-triazole, 2 Picryl-1,2,3-triazole, 4-Nitro-1-picryl-1,2,3-triazole, and 4-Nitro-2-picryl-1,2,3-triazole", J. Phys. Chem., 93, pp. 1000-1007.
- Bowden, F.P. and Yoffee, A.D. (1952) "Initiation and Growth of Explosion in Liquids and Solids", Cambridge University Press, Cambridge, p. 64.
- 29. Dehui, L. and Yuming, X. (1987) "The Relationship Between Impact Sensitivity and Molecular Activity of High Explosives" in Jing, D. ed. Proceedings of the International Symposium on Pyrotechnics and Explosives, China Academic Pub., Beijing, China, pp. 800-807.
- 30. Hammond, G.S. (1955) "A Correlation of Reaction Rates", J. Am. Chem. Soc., 77, pp. 334-338.
- 31. Wenograd, J. (1961) "The Behavior of Explosives at Very High Temperatures", Trans. Faraday Soc., 57, pp. 1612-1620.
- 32. Rogers, R.N. (1975) "Thermochemistry of Explosives", Thermochimica Acta, 11, pp 131-139.
- 33. Rogers, R.N. (1988) private communication.
- 34. Zeman, S., Dimun, M. and Truchlik, S. (1984) "The Relationship Between Kineric Data of the Low-Temperature Thermolysis and the Heats of Explosion of Organic Polynitro Compounds", Thermochimica Acta, 78, pp. 181-209.
- 35. Gatalano, E. and Rolon, G.E. (1983) "A Study of the Thermal Decomposition of Confined Triaminotrinitrobenzene. The Gaseous Products and Kinetics of Evolution", Thermochimica Acta, 61, pp. 37-51.

- 36. Sharma, J., Hoffsommer, J.C., Glover, D.J., Coffey, C.S., Santiago, F., Stolovy, A. and Yasuda, S. (1984) "Comparative Study of Molecular Fragmentation in Sub-initiated TATB caused by Impact, UV, Heat and Electron Beams", in Asay, J.R., Graham, R.A. and Straub, G.K. eds., Shock Waves in Condensed Matter-1983, Elsevier Science Pub. B.V., pp. 543-546.
- 37. Dobratz, B.M. (1981) "LLNL Explosives Handbook", Lawrence Livermore National Laboratory, University of California, Livermore, CA.
- 38. Davis, W.C. (1977) "Sensitivity of TATB Explosives", LA-6676-MS, Los Alamos National Laboratory, Los Alamos, NM.
- 39. Engelke, R., Schiferl, D., Storm, C.B. and Earl, W.L. (1988) "Production of the Nitromethane Aci Ion by Static High Pressure", J. Phys. Chem., 92, pp. 6815-6819, and references therein.