Classical Theory of Beam-Induced Plasma Currents

S. P. Hirshman
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
CLASSICAL THEORY OF BEAM-INDUCED PLASMA CURRENTS

S. P. Hirshman

Date Published - December 1979

NOTICE This document contains information of a preliminary nature.
It is subject to revision or correction and therefore does not represent a final report.
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
ABSTRACT

A variational calculation of the current induced in a plasma by fast beam particles is presented. A new energy polynomial expansion of the classical Spitzer function is obtained and used to derive an accurate analytic expression for the beam-induced current j_\parallel, which includes the effects of electron-electron collisions and is valid for all values of $\bar{v}_b = v_b/v_e$ and effective charge \bar{Z}. This analytic result is in excellent agreement with previous numerical calculations. An accurate rational form for the beam-induced current as a function of beam velocity is obtained by patching the large and small \bar{v}_b asymptotic expansions of j_\parallel.
1. INTRODUCTION

Cordey et al.\(^1\) have recently computed a numerical solution of the steady-state electron Fokker-Planck equation in the presence of a beam-injected momentum source. Their computation extended previous results to include the effects of electron-electron collisions, which result in distortions of the electron energy distribution function, as well as arbitrary beam velocities \(v_b\) relative to the electron thermal speed \(v_e = (2T_e/m_e)^{1/2}\). The remarkable result of their analysis was that for \(v_e > v_b\) and \(Z = 1\), the net plasma current could be in the direction opposite to the beam current (neglecting trapping effects due to toroidal geometry).

The purpose of the present analysis is to obtain an accurate analytic expression for the classical beam-induced current from a suitable variational principle involving the classical Spitzer function.\(^2\) Indeed, it is shown that the Spitzer function, which is the electron response to a parallel electric field applied to a plasma, is the Green's function for calculating the beam-induced current. Thus, accurate determination of the Spitzer function (which is generally easier to obtain than the beam-induced electron distribution) is sufficient to compute the beam current from the variational principle.

In Sect. 2, the electron kinetic equation in the presence of a beam of energetic particles is briefly reviewed. The variational principle for the plasma current is established in Sect. 3, and asymptotic forms for the current are computed. The Spitzer function is determined from the classical variational principle\(^3\) in Sect. 4, and it is used in Sect. 5 to obtain the desired expression for the beam-induced current.
2. THE ELECTRON FOKKER-PLANCK EQUATION

In a uniformly magnetized plasma, the Fokker-Planck equation describing the electron response f_e along the magnetic field due to a beam distribution f_b is:

$$C_{ee}(f_{e1}, f_{Me}) + C_{ee}(f_{Me}, f_{e1}) + \sum_i C_{ei}(f_{e1}, f_{Mi}) = -C_{eb}(f_{Me}, f_b) \equiv S_b(v) \quad (1)$$

Here, $f_{e1} = f_e - f_{Me} \sim n_b$ is the first order (in beam density n_b) linearized electron response, f_{Mj} are Maxwellian distributions for $j = e,i$, and C_{ee} is the Coulomb collision operator for electron-electron collisions (cf. Appendix A). In the main (thermal) ion rest frame,

$$\sum_i C_{ei}(f_{e1}, f_{Mi}) = \frac{\nu_{eo}}{x^3} \bar{Z} L f_{e1} , \quad (2a)$$

where $\bar{Z} = e n_e e_i^2 / n_e e^2$ is the effective charge, $x = v / \nu_{ei}$, $\nu_{eo} = 4 \pi n_e e^2 \chi \ln \Lambda / (m_e^2 v_e^2)$ is the electron-electron collision frequency, and

$$L = \frac{1}{2} \sin \theta \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} \quad (2b)$$

is the pitch angle scattering operator, where $v_{||} / \nu = \cos \theta$ and $v_{||} = \frac{B}{v}$. The beam distribution function f_b is assumed to be known from the solution of the beam-slowing-down equation.4,5 For computing the current along the magnetic field,

$$j_{||} = e_b \int v_{||} f_b dv - |e| \int v_{||} f_{e1} dv , \quad (3)$$
it is sufficient to consider only the $\ell = 1$ spherical harmonic of the beam distribution function in Eq. (1) (this follows from the spherical
symmetry of the linearized collision operators):

$$ f^{(1)}_b = \frac{3}{2} P_1(\xi) \int_{-1}^{1} P_1(\xi') f_b(v') d\xi' = \frac{3}{2} a^{(1)}(v) P_1(\xi), \quad (4a) $$

where $\xi = \cos \theta$ is the pitch angle variable and $P_1(\xi) = (3/2)\xi^2 - 1/2$.

For $v_b/v_e \ll 1$, which is typical of present-day beam injection into
tokamaks, the detailed velocity dependence of $a^{(1)}(v)$ is unimportant
[cf. Eq. (5)]. To treat more general values of v_b/v_e and arbitrary beam
distributions, we shall compute the electron (Green's function) response
to a monoenergetic source of beam particles:

$$ a^{(1)}(v) = n_b u_b \frac{\delta(v - v_b)}{2\pi v_b^3}, \quad (4b) $$

where $n_b u_b = \int v f_b dv$. Once the electron distribution function in
response to this source has been obtained from Eq. (1), the beam-
induced current for arbitrary beam energy distributions may be computed
by integrating Eq. (3), with the appropriate energy weighting factor,
over the energy parameter v_b.

With f_b given by Eq. (4), the source of beam momentum in Eq. (1),
$s^{(1)}_b(v) = \frac{3}{2} P_1(\xi) \int_{-1}^{1} P_1(\xi') s_b(v') d\xi'$, may be evaluated as follows:

$$ s^{(1)}_b(v) = -\frac{2v_b}{v_e} \left(\frac{n_b e^2}{n_e e^2}\right) v e^2 $
where
\[
\begin{aligned}
 s(x) &= \begin{cases}
 x^{-3} \left(1 + \frac{6}{5} \frac{v^2}{v_b^2}\right) & \text{if } v_b < x \\
 \frac{6}{5} x^2 - 2 & \text{if } v_b > x
 \end{cases}
\end{aligned}
\] (5b)

and \(\overline{v}_b = v_b/v_e \). Note the discontinuity in \(s(x) \) at \(v_b = v \).

Since we are interested in calculating the beam current, defined in Eq. (3), it is convenient to introduce the electron distribution in the beam frame:
\[
f_{eb} = f_{el} - \frac{2v_{||} u_{||} b}{v_e^2} \frac{n_{eb}}{n_e |e|} f_{eo}.
\] (6)

In terms of \(f_{eb} \), the current is \(j_{||} = -|e| \int v f_{eb} \, dv \). Furthermore, since electron-electron collisions conserve momentum, \(C_{ee}(f_{eb}, f_{Me}) + C_{ee}(f_{eb}) = C_{ee}(f_{el}) + C_{ee}(f_{eo}) \), \(f_{eb} \) satisfies the following modified kinetic equation:
\[
C_{ee}(f_{eb}) + \frac{v_{eo}}{x^3} L f_{eb} \equiv C_{ee}(f_{eb}) = \overline{S}_b(v),
\] (7a)

where
\[
\overline{S}_b(v) = -2(v_{||} u_{||} b / v_e^2) (n_{eb}/n_e)^2 \frac{v}{v_e} \overline{s}(x) f_{Me}
\]

and
\[
\overline{s}(x) = \begin{cases}
 x^{-3} \left(1 + \frac{6}{5} \frac{v^2}{v_b^2}\right) & \text{if } v_b < x \\
 \frac{6}{5} x^2 - 2 & \text{if } v_b > x
 \end{cases}
\] (7b)
Note that for $Z \approx Z_b \equiv e_b / |e|$ and $v_b < 1$, typical of tokamak parameters, the discontinuity in $s(x)$ is especially severe. Thus, the solution of Eq. (7a) must be obtained with extreme precision in order to compute the beam-induced current accurately in this relevant case. To improve the accuracy in the calculation of $j_{||}$, a variational expression for the beam-induced current is now derived.
3. VARIATIONAL EXPRESSION FOR THE BEAM-INDUCED CURRENT

The classical variational principle\(^3\) for Eq. (7a) is formed from the entropy production subject to the constraint of nonzero momentum production:

\[
\dot{S}_1 = \int \phi_{eb} C_e (I_{eb}) dv - 2 \int \phi_{eb} \bar{S}_b(v) dv,
\]

where \(\phi_{eb} = f_{eb}/f_{Me}\). Although \(\dot{S}_1\) is stationary with respect to variations in \(\phi_{eb}\) when Eq. (7a) is satisfied, its extremum value is \(-\int \phi_{eb} \bar{S}_b(v) dv\), which is not the plasma current for \(\bar{S}_b(v)\) given by Eq. (7b).

In order to form the appropriate variational quantity, consider the "adjoint" equation

\[
C_e(f_{es}) = \frac{v}{v_e} f_{eo}.
\]

Equation (9) is recognized as the normalized Spitzer equation,\(^2\) with \(v_e\) replacing the usual acceleration term \(2|e| E_\parallel / (m_e v_e)\). Multiplying Eq. (9) by \(\phi_{eb}\) and using the self-adjoint property of \(C_e\), i.e.,

\[
\int \phi_{eb} C_e(f_{es}) dv = \int \phi_{es} C_e(f_{eb}) dv,
\]

yields

\[
j_{\parallel} = -\frac{|e| v}{v_e} \int (f_{es}/f_{eo}) \bar{S}_b(v) dv = j_{\parallel b} Z_b \int \frac{2v}{v_e} \frac{f_{es}}{n_e} \bar{s}(x),
\]

where \(j_{\parallel b} = n_b c_b u_{\parallel b}\) is the unshielded current carried by the fact beam ions. Note that the Spitzer function \(f_{es}\) is the Green's function for the beam-induced current.
Consider the hybrid entropy production rate:

\[
\dot{S}_2 = \int \frac{1}{2} [\phi_{es} C_e (f_{eb}) + \phi_{eb} C_e (f_{es})] dv
- v_{eo} \int \frac{v}{v_e} f_{eb} dv - \int \phi_{es} S_b (v) dv.
\]

Variation of \(\dot{S}_2 \) with respect to \(\phi_{es} \) and \(\phi_{eb} \) yields Eqs. (7a) and (9), respectively. The current can then be evaluated variationally in terms of the extremal value of \(\dot{S}_2 \), denoted by \(S^* \):

\[
j_\parallel = - \frac{e_b v_e}{v_{eo}} S^*.
\]

For practical computations, it is convenient to expand \(\phi_{es} \) and \(\phi_{eb} \) in a series of energy polynomials \(L_n (x) \):

\[
\phi_{es} = \frac{2v}{v} \sum a_n L_n (x),
\]

\[
\phi_{eb} = \frac{2v}{v} \sum b_n L_n (x).
\]

For the special case when the same indices of \(L_n \) are chosen for the trial functions \(\phi_{es} \) and \(\phi_{eb} \) in the variational principle Eq. (11), the current may be obtained variationally from Eq. (10), with \(\phi_{es} \) determined by the classical variational principle for the electrical conductivity \(\delta S_3 = 0 \), where 3.
As shown in Sect. 5, the beam-induced current can be adequately computed using the restricted variational principle denoted by Eqs. (14) and (10). It should be noted that because the source term in the Spitzer Eq. (9) is a smooth function of velocity, it is easier to obtain an accurate analytic approximation for \(f_{es} \) than for \(f_{eb} \).

It is possible to use Eq. (10), together with limited knowledge about \(f_{es} \), to obtain asymptotic expressions for \(j_\parallel \) in the limits \(\bar{v}_b \to 0, \infty \), without first solving Eq. (9). Consider the limit \(\bar{v}_b \ll 1 \), which is of interest for tokamaks. Then:

\[
\frac{j_\parallel}{j_\parallel b} = z_b \int \frac{2v_\parallel}{v_e} f_{es} x^{-3} \left(1 - \frac{Z}{Z_b} + \frac{6}{5} \frac{v_e^2}{v_b^2} \right) dv
\]

\[
\int_{x \leq \bar{v}_b} \frac{2v_\parallel}{v_e} f_{es} \left[x^{-3} \left(1 + \frac{6}{5} \frac{v_e^2}{v_b^2} \right) + \frac{1}{v_e^3} \left(2 - \frac{6}{5} x^2 \right) \right] dv .
\]

(15a)

Now, it can be shown\(^1,2\) that as \(x \to 0, f_{es}/x \to 0 \). Thus, the last term in Eq. (15a) is smaller than 0(\(v_b^2 \)). Using conservation of momentum in Eq. (9) and recalling \(\bar{Z} x^{-3} f_{es} = -C_{ei}(f_{es})/v_e \) yields

\[
j_\parallel /j_{\parallel b} = 1 - \frac{Z_b}{Z} \left(1 + \frac{6}{5} \frac{v_e^2}{v_b^2} \right) , \quad \bar{v}_b \ll 1 ,
\]

(15b)

in agreement with the result obtained in Ref. 1 by an entirely different method.
In the opposite (cold electron) limit $v_b \gg 1$,

$$\frac{j_{\|}}{i_{\|}} = -Z_b \int \frac{2v_{\|}}{v_e} \left[x^{-3} \frac{Z}{Z_b} + \frac{v}{v_b} \left(2 - \frac{6}{5} x^2 \right) \right] f_{es} \frac{d\nu}{\nu} + O \left(\frac{v^2}{v_b} \right)$$

$$= 1 - \frac{Z_b}{v_{\|}^3} \left[\Lambda_0(\bar{Z}) + 3\Lambda_1(\bar{Z}) \right] \left(\frac{3\sqrt{\pi}}{4} \right).$$

(15c)

Here, Λ_0 is the normalized Spitzer conductivity and Λ_1 is the classical thermoelectric coefficient:

$$\Lambda_0 = -\frac{4}{3\sqrt{\pi}} \int \frac{2v_{\|}}{v_e} f_{es} \frac{d\nu}{\nu} = \frac{1}{Z} \left(1 + 0.374Z \right) \left(\frac{1.085 + 2.783Z + 0.424Z^2}{1 + 1.161Z + 0.16Z^2} \right),$$

(16a)

$$\Lambda_1 = -\frac{8}{15\sqrt{\pi}} \int \frac{2v_{\|}}{v_e} \left(x^2 - \frac{5}{2} \right) f_{es} \frac{d\nu}{\nu} = \frac{0.877 + 0.695Z + 0.095Z^2}{(1 + 0.292Z)(1 + 1.161Z + 0.16Z^2)}.$$

(16b)
4. ANALYTIC DETERMINATION OF THE SPITZER FUNCTION

An analytic expression for \(f_{es} \) will now be obtained using the variational principle, Eq. (14). Expressions for \(f_{es} \) have been previously obtained\(^6,7\) in terms of an expansion in Sonine polynomials with energy argument \(x^2 \). The coefficients in this expansion were determined by taking appropriate moments of the kinetic Eq. (9). [Identical results would have been obtained had the variational principle Eq. (14) been used with the Sonine expansion considered as a trial function.]

The two lowest order terms in such an expansion yield an accurate result for the classical parallel conductivity, which is a variational quantity. However, this truncated expansion does not give an adequate representation of the local energy dependence of the Spitzer function. In view of the discontinuity in the beam source term appearing in Eq. (10), a more accurate expression for \(f_{es} \) is required. One possible way to improve the analytic approximation for \(f_{es} \) is to increase the number of terms in the Sonine expansion. However, because the energy dependence of the collision operator is benign, \(C/v_{eo} \sim x^{-2} \) or \(x^{-3} \), and the source term in the Spitzer Eq. (9) also has a weak energy dependence \(\sim x \), a rapid increase in the accuracy of this representation is not to be expected by introducing higher powers of \(x \) in the Sonine expansion.

To obtain a more rapidly convergent representation for \(f_{es} \), consider the Lorentz limit \(Z \to \infty \), in which electron-electron collisions are ignorable. In this limit, \(f_{es} = -\frac{v_{\parallel}}{v_e} x^3 \); thus, the Sonine expansion in even powers of \(x \) attempts to approximate the odd power \(x^3 \) dependence of \(f_{es} \). The expansion of \(f_{es} \) can be effectively renormalized by
introducing a trial function for \(f_{es} \) which includes both even and odd, relatively low powers of \(x \). Therefore, assume \(f_{es} = -\frac{v_{\parallel}}{v} D(x) f_{eo} \), where

\[
D(x) = x(d_1 x + d_2 x^2 + d_3 x^3 + d_4 x^4).
\]

The lowest power of \(x \) in Eq. (17) was chosen so that \(f_{es}/x \to 0 \), which was required to obtain the low energy asymptotic expansion in Eq. (15b). The highest power of \(x \) was chosen to obtain an accurate representation of the Spitzer current \((\Lambda_0) \) and heat conduction \((\Lambda_1) \), which are required to obtain the high energy asymptotic behavior in Eq. (15c).

If Eq. (17) is inserted as a trial function in the variational principle Eq. (14), the momentum conservation condition implied by the \(v_{\parallel} \) moment of Eq. (9) will not be automatically satisfied. [Had a \(d_o \) term in Eq. (17) been retained, momentum conservation would have been one of the variational constraint equations. However, such a term is not compatible with the small \(x \) behavior of \(f_{es} \).] To guarantee momentum conservation for the trial function of Eq. (17), an additional term

\[-2(\lambda/v_e) \int [v_{\parallel} C_e (f_{es}) - v_{eo} (v_{\parallel}^2/v_e) f_{eo}] \]

is appended to the variational quantity \(\dot{S}_3 \) in Eq. (14). The Lagrange multiplier \(\lambda \) is then determined by the constraint that its coefficient in \(\dot{S}_3 \) vanish, i.e., momentum conservation.

Define the matrix elements of the collision operator:

\[
m_{ij} = \int \frac{v_{\parallel}}{v_e} x^i C_e \left(\frac{2v_{\parallel}}{v_e} x^j f_{eo} \right) dv = m_{ji}.
\]
Inserting $D(x)$ from Eq. (17) into the appended variational principle yields

$$\dot{S}_3 = -\frac{1}{2} \left[\sum_{i=1}^{4} \sum_{j=1}^{4} m_{ij} d_i d_j - \frac{4n_e}{\tau_{ee}} \sum_{i=1}^{4} \langle x^i \rangle d_i + 2\lambda \left(\sum_{i=1}^{4} m_{oi} d_i - n_e v_{eo} n_e \right) \right].$$

(19)

Here, $\tau_{ee}^{-1} = (4/3\sqrt{n})\nu_{eo}$ and

$$\langle x^4 \rangle = \int_{0}^{\infty} x^{j+4} e^{-x^2} dx = \frac{1}{2} \Gamma \left(\frac{1}{2} j + \frac{5}{2} \right).$$

(20)

The computation of the matrix elements is considered in the Appendix.

For the present case of interest, the required normalized coefficients $\bar{m}_{ij} = m_{ij}(n_e/\tau_{ee})^{-1}$ are given explicitly as:

$$\bar{m}_{01} = (\sqrt{\pi}/2)Z$$

(21a)

$$\bar{m}_{02} = Z$$

(21b)

$$\bar{m}_{03} = (3\sqrt{\pi}/4)Z$$

(21c)

$$\bar{m}_{04} = 2Z$$

(21d)

$$\bar{m}_{11} = \left(\frac{151}{30} \sqrt{\pi} - \frac{104}{15} \right) + \sqrt{Z}$$

(21e)

$$\bar{m}_{12} = \frac{4}{\sqrt{\pi}} - \sqrt{\pi} + (3\sqrt{\pi}/4)Z$$

(21f)

$$\bar{m}_{13} = (607/40) \sqrt{2} - 102/5 + 2Z$$

(21g)
The variation of \dot{S}_3 in Eq. (19) with respect to d_j for $j = (1, 2, 3, 4)$, yields the matrix equation

$$\bar{m} \cdot d + \lambda \bar{m}_0 = \Gamma,$$ \hspace{1cm} (22a)

where $(\bar{m})_{ij} = \bar{m}_{ij}$, $(d)_{1} = d_{1}$, $(\bar{m}_0)_{i} = \bar{m}_{01}$, and $(\Gamma)_{i} = \Gamma \left(\frac{1}{2} i + \frac{5}{2} \right)$. The Lagrange multiplier λ is determined by momentum conservation:

$$\bar{m}_0 \cdot d = (3\sqrt{\pi}/4).$$ \hspace{1cm} (22b)

Solving Eqs. (22a, b) simultaneously yields:

$$d_1 = (4.397 - 2.32\bar{Z} - 0.283\bar{Z}^2)/G(\bar{Z})$$ \hspace{1cm} (23a)

$$d_2 = (0.793\bar{Z}^2 + 8.053\bar{Z} - 4.627)/G(\bar{Z})$$ \hspace{1cm} (23b)
$$d_3 = (0.0467\bar{Z}^3 + 0.108\bar{Z}^2 - 4.136\bar{Z} + 2.006) / G(\bar{Z}) \tag{23c}$$

$$d_4 = (-0.011\bar{Z}^2 + 0.716\bar{Z} - 0.304) / G(\bar{Z}), \tag{23d}$$

where $G(\bar{Z}) = \bar{Z}(1 + 0.292\bar{Z})(1 + 1.161\bar{Z} + 0.16\bar{Z}^2)$. Note that for $\bar{Z} \to \infty$, $d_j = \delta_{j3}/\bar{Z}$ and the Lorentz result is recovered. For $\bar{Z} = 1$ and 2, the function $\bar{Z} D(x,\bar{Z})$ computed variationally here is compared in Table I with the numerical results. Even though the analytic distribution function has been computed from a variational principle for the current (a moment of f_{eS}), there is good point-wise agreement in velocity space between the present result and the numerical one.
Table I. Spitzer function $ZD(x, Z)$

<table>
<thead>
<tr>
<th>x</th>
<th>Numerical</th>
<th>Analytic</th>
<th>Numerical</th>
<th>Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.0053</td>
<td>0.018</td>
<td>0.0012</td>
<td>0.003</td>
</tr>
<tr>
<td>0.20</td>
<td>0.017</td>
<td>0.034</td>
<td>0.005</td>
<td>0.009</td>
</tr>
<tr>
<td>0.30</td>
<td>0.066</td>
<td>0.087</td>
<td>0.028</td>
<td>0.037</td>
</tr>
<tr>
<td>0.40</td>
<td>0.155</td>
<td>0.17</td>
<td>0.084</td>
<td>0.094</td>
</tr>
<tr>
<td>0.60</td>
<td>0.45</td>
<td>0.45</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>0.80</td>
<td>0.90</td>
<td>0.88</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>1.20</td>
<td>2.27</td>
<td>2.27</td>
<td>2.35</td>
<td>2.33</td>
</tr>
<tr>
<td>1.60</td>
<td>4.38</td>
<td>4.39</td>
<td>5.10</td>
<td>5.06</td>
</tr>
<tr>
<td>2.08</td>
<td>8.19</td>
<td>8.15</td>
<td>10.54</td>
<td>10.33</td>
</tr>
<tr>
<td>2.40</td>
<td>11.83</td>
<td>11.7</td>
<td>16.00</td>
<td>15.6</td>
</tr>
<tr>
<td>2.88</td>
<td>19.53</td>
<td>19.8</td>
<td>27.7</td>
<td>27.6</td>
</tr>
<tr>
<td>3.20</td>
<td>26.00</td>
<td>28.1</td>
<td>38.5</td>
<td>39.9</td>
</tr>
</tbody>
</table>

\[ZD(x, Z) = \begin{cases}
 x^2(0.60 + 1.41x - 0.66x^2 + 0.134x^3); & \text{Z} = 1 \\
 2x^2(-0.11 + 1.17x - 0.44x^2 + 0.086x^3); & \text{Z} = 2
\end{cases} \]
5. EVALUATION OF THE BEAM-INDUCED CURRENT

Using the variational expression Eq. (10) and the results of Sect. 4, the parallel beam-induced current \(j_{l}/j_{ll} = F(v_b, Z) \) may be evaluated:

\[
F = -Z_b \sum_{j=1}^{4} d_j \overline{T}_{j},
\]

where

\[
\overline{T}_{j} = \frac{8}{3\sqrt{\pi}} \int_{0}^{\infty} x^{4+j} e^{-x^2} s(x) dx.
\]

Using momentum conservation, Eq. (22b), this may be reduced to the following convenient form:

\[
F = 1 - \frac{Z_b}{Z} \left(1 + \frac{6}{5} \frac{\overline{v}^2_b}{\nu_b^2}\right) \text{erfc}(\overline{v}_b) + Z_b \sum_{j=1}^{4} d_j (\overline{Z}) \overline{T}_{j}(\overline{v}_b).
\]

Here,

\[
T_1 = \frac{32}{3\sqrt{\pi}} \left(1 + \frac{6}{5} \frac{\overline{v}^2_b}{\nu_b^2}\right) \text{erfc}(\overline{v}_b) - \frac{11}{2} \frac{1}{\nu_b^3} \left[\text{erf}(\overline{v}_b)
ight]
\]

\[
T_2 = \frac{4}{3\sqrt{\pi}} \left(1 + \frac{6}{5} \frac{\overline{v}^2_b}{\nu_b^2}\right) \text{erfc}(\overline{v}_b) - \frac{11}{2} \frac{1}{\nu_b^3} \left[\text{erf}(\overline{v}_b)\right]
\]
where \(\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^2) dt \), \(\text{erfc}(x) = 1 - \text{erf}(x) \), and \(\text{erf}'(x) = (2/\sqrt{\pi}) \exp(-x^2) \). The small and large \(\overline{v}_b \) limits of this expression confirm the asymptotic results obtained in Eq. (15).

Table II gives values for the beam-induced current ratio \(F \) for various values of \(\overline{Z} \) (\(Z_b = 1 \) was assumed) and \(\overline{v}_b \). Comparison with Table IV of Ref. 1 shows that the analytic result is in very close agreement, over a wide range of effective charges and beam energies, with the calculated numerical values for \(F \). Figures 1 and 2 show the comparison between the analytic and numerical results for \(F \), for \(\overline{Z} = 1 \) and 2, respectively. Also shown are the asymptotes calculated in Eq. (15).

Finally, recall that the expression for \(F \) in Eq. (24c) is a Green's function (of argument \(\overline{v}_b \)) for the actual beam current [cf. Eq. (46)]. It is therefore useful to obtain a simple analytic approximation for the quantity \(F \). Such an expression is suggested by patching the asymptotic limits for \(F \) computed in Eq. (15) to obtain:

\[
T_3 = \frac{56}{5} \frac{1}{\overline{v}_b^3} \left[\left(1 + \frac{23}{56} \overline{v}_b^2 \right) \text{erf}'(\overline{v}_b) - 2/\sqrt{\pi} \right]
\]

\[
T_4 = \frac{8}{3\sqrt{\pi}} \left(1 + \frac{6}{5} \overline{v}_b^2 \right) \text{erfc}(\overline{v}_b) - \frac{119}{4\overline{v}_b^3} \left[\text{erf}(\overline{v}_b) \right.
\]

\[
\left. - \overline{v}_b \left(1 + \frac{74}{119} \overline{v}_b^2 + \frac{20}{119} \overline{v}_b^4 \right) \text{erf}'(\overline{v}_b) \right], \quad (25d)
\]
where $m > 2$ and

$$
\alpha = \left[\frac{3\sqrt{n}}{4} \overline{Z} (A_0 + 3A_1) \right]^{1/(3+2n)} \left(\frac{5n}{6} \right)^{n/(3+2n)}.
$$

Least-squares fitting of Eq. (26) with the data in Table II yields, for $\overline{Z} \geq 1$:

$$
n(\overline{Z}) = 1.65 + \frac{0.22}{\overline{Z} - 0.55}.
$$

$$
m(\overline{Z}) = 3.37 - \frac{0.85}{\overline{Z} + 0.48}.
$$

As an example, consider $\overline{Z} = Z_b = 1$. Then, $n = 2.14$, $m = 2.80$, $\alpha = 1.47$ and

$$
F = 1 - \frac{(1 + 0.56 \overline{v}_b^2)^{2.14}}{(1 + 0.34 \overline{v}_b^2)^{2.6}}.
$$

For intermediate values of $\overline{v}_b = (0.8, 1.0, 1.3, 1.5, 2.0)$, for which this approximation is expected to be worst, one obtains $F \approx (-0.247, -0.210, -0.033, 0.124, 0.474)$ in close agreement with the values of F in Table II.
Table II. Ratio of net current to fast ion current, F, calculated from Eq. (24c)

<table>
<thead>
<tr>
<th>v_b/v_e</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.5</th>
<th>2.0</th>
<th>4.0</th>
<th>8.0</th>
<th>16.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>-0.012</td>
<td>0.080</td>
<td>0.156</td>
<td>0.325</td>
<td>0.493</td>
<td>0.747</td>
<td>0.873</td>
<td>0.937</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.041</td>
<td>0.053</td>
<td>0.131</td>
<td>0.304</td>
<td>0.477</td>
<td>0.738</td>
<td>0.869</td>
<td>0.934</td>
</tr>
<tr>
<td>0.3</td>
<td>-0.084</td>
<td>0.012</td>
<td>0.093</td>
<td>0.270</td>
<td>0.450</td>
<td>0.723</td>
<td>0.861</td>
<td>0.931</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.177</td>
<td>-0.078</td>
<td>0.005</td>
<td>0.191</td>
<td>0.383</td>
<td>0.683</td>
<td>0.840</td>
<td>0.920</td>
</tr>
<tr>
<td>0.7</td>
<td>-0.237</td>
<td>-0.140</td>
<td>-0.058</td>
<td>0.129</td>
<td>0.324</td>
<td>0.643</td>
<td>0.816</td>
<td>0.907</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.243</td>
<td>-0.149</td>
<td>-0.070</td>
<td>0.113</td>
<td>0.307</td>
<td>0.627</td>
<td>0.806</td>
<td>0.901</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.203</td>
<td>-0.118</td>
<td>-0.046</td>
<td>0.121</td>
<td>0.302</td>
<td>0.612</td>
<td>0.793</td>
<td>0.893</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.034</td>
<td>0.032</td>
<td>0.088</td>
<td>0.221</td>
<td>0.368</td>
<td>0.633</td>
<td>0.797</td>
<td>0.892</td>
</tr>
<tr>
<td>1.5</td>
<td>0.116</td>
<td>0.169</td>
<td>0.215</td>
<td>0.324</td>
<td>0.445</td>
<td>0.669</td>
<td>0.813</td>
<td>0.899</td>
</tr>
<tr>
<td>2.0</td>
<td>0.470</td>
<td>0.499</td>
<td>0.524</td>
<td>0.584</td>
<td>0.653</td>
<td>0.784</td>
<td>0.873</td>
<td>0.930</td>
</tr>
<tr>
<td>3.0</td>
<td>0.822</td>
<td>0.831</td>
<td>0.839</td>
<td>0.858</td>
<td>0.881</td>
<td>0.924</td>
<td>0.955</td>
<td>0.975</td>
</tr>
<tr>
<td>3.8</td>
<td>0.912</td>
<td>0.917</td>
<td>0.921</td>
<td>0.930</td>
<td>0.941</td>
<td>0.963</td>
<td>0.978</td>
<td>0.988</td>
</tr>
<tr>
<td>6.0</td>
<td>0.978</td>
<td>0.979</td>
<td>0.980</td>
<td>0.982</td>
<td>0.985</td>
<td>0.991</td>
<td>0.994</td>
<td>0.997</td>
</tr>
<tr>
<td>10.0</td>
<td>0.995</td>
<td>0.995</td>
<td>0.996</td>
<td>0.996</td>
<td>0.997</td>
<td>0.998</td>
<td>0.999</td>
<td>0.999</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

This work was sponsored by the Office of Fusion Energy, U.S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.

REFERENCES

The matrix elements of the Coulomb collision operator defined in Eq. (18) will now be computed. There are two contributions to m_{ij}:

$$m_{ij} = m_{ij}^{ei} + m_{ij}^{ee},$$ \hspace{1cm} (A.1)

where $m_{ij}^{ab} = -\int (v_{ii}' / v_e) x^i C_{ab} \left(\frac{2v_{II}}{v_e} x^j f_{Me} \right) dv$. The contribution to m_{ij} from electron-ion collisions is readily evaluated using the Lorentz form of the collision operator:

$$m_{ij}^{ei} = \frac{n_e e^2}{v_e} \Gamma \left[\frac{1}{2} (i + j) + 1 \right].$$ \hspace{1cm} (A.2)

The electron-electron collision operator contribution is most easily computed using the Landau form for the collision operator. Letting

$$\phi_j(v) = \frac{v_{II} x^j}{v_e}$$

yields

$$m_{ij}^{ee} = \frac{n_e e^2}{v_e} (m_{ij}^T + m_{ij}^F),$$ \hspace{1cm} (A.3)

where

$$m_{ij}^T = \frac{3\sqrt{\pi}}{4\pi^3 v_e^3} \int dv dv' \partial_{x_i} \phi_j (v) \partial_{x_i} \phi_j (v') \exp \left[-(x^2 + x'^2) \right] U_{kk}$$ \hspace{1cm} (A.4a)
Here, \(U_{\ell k} = \frac{(u^2 \delta_{\ell k} - u_{\ell} u_{k})/u^3}{u} \), \(u = \mathbf{v} - \mathbf{v}' \), \(\partial_{\ell} \equiv \partial/\partial v_{\ell} \), and repeated indices are summed over. Taking a coordinate system aligned with the local \(\mathbf{B} \)-field, so that \(\mathbf{B}/\mathbf{B} = \hat{e}_1 \), yields

\[
\left(\begin{array}{c}
\frac{m_{ij}}{m_{ij}}^F \\
\frac{m_{ij}}{m_{ij}}^T
\end{array} \right) = \frac{3\sqrt{\pi}}{4\pi^3 v^5 e} \int dv dv' x^i \left(\begin{array}{c}
\delta_{\ell 1} + \frac{iv_{1}v_{\ell}}{v^2} \\
\delta_{\ell k} + \frac{iv_{1}v_{k}}{v^2}
\end{array} \right) U_{\ell k} \exp[-(x^2 + x'^2)]
\]

In order to evaluate these coefficients, it is convenient to write \(\mathbf{v} = \mathbf{v} \) in spherical coordinates \((v, \theta, \phi)\) where the azimuthal angle \(\theta \) is measured with respect to \(\hat{e}_1 \), i.e., \(\mathbf{v} = \hat{e}_1 \cos \theta + \hat{e}_2 \sin \theta \cos \phi + \hat{e}_3 \sin \theta \sin \phi \). Then, \(\hat{v} \) can be taken as a new axis from which \(\mathbf{v}' \) is measured in spherical coordinate \((v', \theta', \phi')\). Thus, for fixed \(\hat{v} \), two orthogonal unit vectors can be defined, \(\hat{x} = \sin \theta \hat{e}_1 - \cos \theta \cos \phi \hat{e}_2 - \cos \theta \sin \phi \hat{e}_3, \hat{y} = \sin \phi \hat{e}_2 - \cos \phi \hat{e}_3 \), such that \(\hat{x} \cdot \hat{y} = \hat{x} \cdot \mathbf{v} = \hat{y} \cdot \mathbf{v} = 0 \). In terms of this \((\hat{x}, \hat{y}, \hat{z})\) coordinate system, \(\mathbf{v}' = v'(\cos \theta' \hat{v} + \sin \theta' \times \cos \phi' \hat{x} + \sin \theta' \sin \phi' \hat{y}) \), and \(-u = (v' \cos \theta' - v) \hat{v} + v' \sin \theta' \times \cos \phi' \hat{x} + v' \sin \theta' \cos \phi' \hat{y} \). After some straightforward integrations, the following results are obtained:
\[m_{ij}^T = \frac{2}{\sqrt{\pi}} \left(\frac{i + j + 3}{2} \right) \left\{ G(i + j + 1, 0) + \left(1 + \frac{i j}{i + j} \right) \left[G(i + j + 1, 0) \right. \right. \\
- \left. \left. 2 \cdot \frac{(i+j+1)}{2} \right] \right\} \] (A.6a)

\[m_{ij}^F = -\frac{4}{\sqrt{\pi}} \left(\frac{i + j + 5}{2} \right) \left\{ \left[\frac{2 + \frac{19}{15} i + \frac{1}{5} i^2}{2} \right] \right\} G(j + 1, i + 2) \\
+ \left(\frac{2 + \frac{19}{15} j + \frac{1}{5} j^2}{2} \right) G(i + 1, j + 2) - \left[\frac{1}{3} + \frac{1}{10} (i + j) \right] 2 \cdot \frac{(i+j+1)}{2} \] (A.6b)

where

\[G(m,n) \equiv \int_0^{\pi/4} \cos^m \theta \sin^n \theta \, d\theta \] (A.7)

Useful recursion relations for \(G \) are obtained by integrating Eq. (A.7) by parts:

\[G(m,n) = G(m - 2,n) \frac{(m - 1)}{m + n} + 2^{-\left(m+n\right)/2} \] (A.8a)

\[G(m,n) = G(m,n - 2) \frac{(n - 1)}{m + n} - 2^{-\left(m+n\right)/2} \] (A.8b)

Initial values are easily obtained by direct integration:

\[G(0,0) = \frac{\pi}{4} \] (A.9a)
Previously, these matrix elements had been computed for even integer powers \((i,j) = (2m,2n)\) only. The formulas in Eqs. (A.6)-(A.8) are, however, valid for arbitrary (nonintegral) real numbers \(i\) and \(j\), and were used to compute the matrix elements required in Eq. (21).
FIGURE CAPTIONS

FIG. 1. Graph of beam current ratio F as a function of \bar{v}_b from Eq. (24c) for $\bar{Z} = Z_b = 1$ (solid curve). Open points are numerical results from Ref. 1. Dashed curves are asymptotic curves from Eqs. (15b-c).

FIG. 2. Graph of beam current ratio F as a function of \bar{v}_b from Eq. (24c) for $\bar{Z} = 2$ and $Z_b = 1$ (solid curve). Open points are numerical results from Ref. 1. Dashed curves are asymptotic curves from Eqs. (15b-c).
FIG. 1.

\[F = \begin{cases}
1 - 4.84 \left(\frac{v_e}{v_b} \right)^3 & v_e/v_b \ll 1 \\
-1.20 \left(\frac{v_e}{v_b} \right)^2 & v_e/v_b > 1
\end{cases} \]
FIG. 2.

\[F = \begin{cases}
1 - 3.22 \left(\frac{v_e}{v_b} \right)^3 & v_e / v_b < 1 \\
0.5 - 0.6 \left(\frac{v_c}{v_b} \right)^2 & v_e / v_b \geq 1
\end{cases} \]
INTERNAL DISTRIBUTION

1. L. A. Berry
2. A. L. Boch
3. R. A. Dory
4. H. H. Haselton
5. P. N. Haubenreich
6. M. S. Lubell
7. O. B. Morgan
8. M. W. Rosenthal
9. J. Sheffield
10. D. Steiner

11-35. S. P. Hirshman
36-37. Laboratory Records Department
38. Laboratory Records, ORNL-RC
39. Document Reference Section
40-41. Central Research Library
42. Fusion Energy Division
Library
43. Fusion Energy Division
Communications Center
44. ORNL Patent Office

EXTERNAL DISTRIBUTION

45. D. J. Anthony, Energy Systems and Technology Division, General Electric Company, 1 River Road, Bldg. 23, Room 290, Schenectady, NY 12345
46. Bibliothek, Institute for Plasma Physics, 8046 Garching bei München, Federal Republic of Germany
47. Bibliotheque, Service du Confinement des Plasmas, C.E.A., B.P. No. 6, 92, Fontenay-aux-Roses (Seine), France
48. J. D. Callen, Nuclear Engineering Department, University of Wisconsin, Engineering Research Building, 1500 Johnson Drive, Madison, WI 53706
49. Lung Cheung, Department of Electronics, University Science Center, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
50. Prf. F. F. Cap, A 6020 Innsbruck, Innerebnerstr 40, Austria, Europe
51. J. F. Clarke, Office of Fusion Energy, G-234, Department of Energy, Washington, DC 20545
52. R. W. Conn, Fusion Technology Program, Nuclear Engineering Department, University of Wisconsin, Madison, WI 53706
53. CTR Library, c/o Alan F. Haught, United Technologies Research Laboratory, East Hartford, CT 06108
54. CTR Reading Room, c/o Allan N. Kaufman, Physics Department, University of California, Berkeley, CA 94720
55. J. Narl Davidson, School of Nuclear Engineering, Georgia Institute of Technology, Atlanta, GA 30332
56. S. O. Dean, Director, Fusion Energy Development, Science Applications, Inc., 2 Professional Drive, Suite 249, Gaithersburg, MD 20760
57. Documentation S.I.G.N., Département de la Physique du Plasma et de la Fusion Contrôlée, Association EURATOM-CEA sur la Fusion, Centre d'Études Nucléaires, B.P. 85, Centre du Tri, 38041 Cedex, Grenoble, France
59. H. K. Forsen, Exxon Nuclear Co., Inc., 777 106th Avenue, N.E., C-000777, Bellevue, WA 98009
60. Harold P. Furth, Princeton Plasma Physics Laboratory, Princeton University, Forrestal Campus, P.O. Box 451, Princeton, NJ 08540
61. Roy W. Gould, California Institute of Technology, Mail Stop 116-81, Pasadena, CA 91125
62. Robert L. Hirsch, Exxon Research and Engineering, P.O. Box 101, Florham Park, NJ 07932
63. Raymond A. Huse, Manager, Research and Development, Public Service Gas and Electric Company, 80 Park Place, Newark, NJ 07101
64. V. E. Ivanov, Physical-Technical Institute of the Ukrainian SSR Academy of Sciences, 310108 Kharkov, U.S.S.R.
65. A. Kadish, Office of Fusion Energy, C-234, Department of Energy, Washington, DC 20545
66. E. T. Karlson, Department of Technology, Box 534, S-75121 Uppsala, Sweden
67. Y. Kiwamoto, Research Institute for Energy Materials, Yokohama National University, Yokohama 232, Japan
68. R. N. Kostoff, Office of Fusion Energy, Department of Energy, Room 509, 401 First Street NW, Washington, DC 20545
69. L. M. Kovriznikh, Lebedov Institute of Physics, Academy of Sciences of the U.S.S.R., Leninsky Prospect 53, Moscow, U.S.S.R.
70. Guy Laval, Groupe de Physique Théorique, Ecole Polytechnique, 91 Palaiseau, Paris, France
71. Library, Centre de Recherches en Physique des Plasma, 21 Avenue des Bains, 1007, Lausanne, Switzerland
72. Library, Culham Laboratory, United Kingdom Atomic Energy Authority, Abingdon, Oxon, OX14 3DB, United Kingdom
73. Library, FOM-Institut voor Plasma-Fysica, Rijnhuizen, Jutphaas, Netherlands
74. Library, Institute for Plasma Physics, Nagoya University, Nagoya, Japan 464
75. Library, International Centre for Theoretical Physics, Trieste, Italy
76. Library, Laboratorio Gas Ionizzati, Frascati, Italy
79. D. G. McAlees, Exxon Nuclear Co., Inc., 777 106th Avenue, NE, Bellevue, WA 98009
80. J. E. McCune, School of Engineering, Department of Aeronautics and Astronautics, Bldg. 37-391, Massachusetts Institute of Technology, Cambridge, MA 02139
81. A. T. Mense, Subcommittee on Energy Research and Production, B-374, Rayburn House Office Building, Washington, DC 20515
82. Claude Mercier, Service du Theorie des Plasmas, Centre d'Etudes Nucleaires, Fontenay-aux-Roses (Seine), France
83. K. Nishikawa, Institute for Fusion Theory, Hiroshima University, Higashisendamachi, Hiroshima, Japan
84. Burnet Outten, Jr., Western Metal Products Company, 1300 Weber Street, Orlando, FL 32803
85. R. E. Papsco, Grumman Aerospace Corp., 101 College Road, Princeton, NJ 08540
87. D. Pfirsch, Institute for Plasma Physics, 8046 Garching bei München, Federal Republic of Germany
88. Plasma Physics Library, c/o Dr. Philip Rosenau, Department of Mechanical Engineering, Technion-Israel, Institute of Technology, Haifa, Israel
89. Plasma Physics Group, Department of Engineering Physics, Australian National University, P.O. Box 4, Canberra A.C.T. 2600, Australia
90. A. Rogister, Institute for Plasma Physics, KFA, Postfach 1913, D-5170, Jülich 1, Federal Republic of Germany
92. V. D. Shafranov, I. V. Kurchatov Institute of Atomic Energy, 46, Ulitsa Kurchatova, P.O. Box 3402, Moscow, U.S.S.R.
94. W. M. Stacey, Jr., School of Nuclear Engineering, Georgia Institute of Technology, Atlanta, GA 30332
95. V. I. Tereshin, Physico-Technical Institute of the Ukrainian SSR Academy of Sciences, Kharkov, 310108 Kharkov, U.S.S.R.
96. J. B. Taylor, Culham Laboratory, United Kingdom Atomic Energy Authority, Abingdon, Oxon, OX14 3DB, United Kingdom
97. Thermonuclear Library, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki, Japan
98. K. Uo, Plasma Physics Laboratory, Kyoto University, Gokasho, Uji, Kyoto, Japan
99. Francisco Verdaguer, Director, Division of Fusion, Junta de Energia Nuclear, Madrid 3, Spain
100. Office of Asry UC-20 g, Theoretical Plasma Physics Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830
101. Assistant Manager, Energy Research and Development, DOE-ORO
102-280. Given distribution as shown in TID-4500, Magnetic Fusion Energy (Distribution Category UC-20 g, Theoretical Plasma Physics)