WRAP-PWR-EM SYSTEM DEVELOPMENT AND APPLICATIONS

by

F. Beranek

Savannah River Laboratory
E. I. du Pont de Nemours & Co.
Aiken, SC 29801

An invited paper to be presented to the
Water Reactor Safety Meeting,
Washington, DC,
November 5-9, 1979.

This paper was prepared in connection with work under Contract No. AT(07-2)-1 with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
SUMMARY

The WRAP-EM system is a complete computational system for analysis of loss-of-coolant accidents (LOCAs) in light-water power reactors. The system has been developed for use by the Nuclear Regulatory Commission in evaluating and interpreting reactor vendor model methods and results.

WRAP-EM has the capability of predicting fuel parameters during the normal operation of a reactor, performing thermal-hydraulic initialization of the reactor system, analysing the behavior of the reactor core during an accident (encompassing the blowdown, refill, and reflood stages), and executing a detailed transient thermal analysis of the hottest pin in the core during the accident. A minimum amount of user intervention is required throughout the analysis.

WRAP-PWR-EM is the integrated system of codes used for the analysis of pressurized water reactors (PWRs). GAPCON-THERMAL-2 is used to initialize fuel parameters as a function of reactor operating time. Both the blowdown and reflood phases of an accident are analyzed by RELAP4/MOD5. The refill calculation is based on a simple accumulator flow model (FLOW4) developed at NRC, and the hot-pin analysis is performed by FRAP-T4-LACE. The automated transfer of relevant data from one code to another is accomplished through interface routines developed at SRL (except RELAP4/MOD5-FLOOD to FRAP).

* The information contained in this article was developed during the course of work under Contract No. AT(07-2)-1 with the U. S. Department of Energy.
Because different fuel models are used in the various codes, it is important to ascertain that the conditions predicted at a given time by two different codes are similar. In particular, at the time of accident initiation, the fuel parameters determined by RELAP and FRAP must be similar to, and more conservative than, the parameters predicted by GAPCON. The conservatism requirement is set for licensing concerns. Results achieved using Zion fuel indicate that fuel temperatures predicted by RELAP and FRAP are more conservative than the GAPCON predictions.

The refill portion of the transient is that time during which the lower plenum is being filled with water until the liquid level reaches the bottom of the core. Analysis of this period by RELAP requires very small calculational time-steps. An alternative technique has been developed based on a simple accumulator flow model. Within the refill period, the core is assumed to heat up adiabatically. The core thermal response is calculated by continuing the RELAP4 calculation with the hydraulics calculation bypassed. The lower plenum subcooling, which is required as input to the flood calculations, is calculated by a mixed-average, bulk-fluid, temperature calculation. Several assumptions relating to heat transfer during this period have been made to decrease the computational time. Results of sensitivity studies to determine conservative estimates of these parameters will be presented.

The system is presently being evaluated by analyzing various LOFT experiments and the Zion reactor. Results of these analyses will be discussed. Future plans include performing pre-test analyses on the LOFT L2 series experiments as well as reference and sensitivity studies regarding the Zion facility.
REFERENCES

WRAP-PWR-EM DEVELOPMENT AND APPLICATIONS

F. BERANEK
SAVANNAH RIVER LABORATORY
OUTLINE

I. System Description
II. Fuel Model Consistency
III. Refill
IV. Analyses
 ● LOFT
 ● ZION
 ● FLOOD Sensitivity
V. Program
PWR ANALYSIS SCHEME

STEADY STATE BLOWDOWN REFILL REFLOOD

BREAK END-OF- BEGINNING HOT
BYPASS OF CORE PLANE
RECOVERY QUENCH

THERMAL-HYDRAULIC
ANALYSIS

GAPCON RELAP4/MOD5 SRL REFILL RELAP4/MOD5-FLOOD

PWRSS

H = 0

FUEL PIN
ANALYSIS

GAPCON FRAP-T4 FRAP-T4 FRAP-T4
GAPCON-FRAP CONSISTENCY AT HOTTEST AXIAL NODE

Burnup = 13000 MWD/MT

<table>
<thead>
<tr>
<th></th>
<th>GT2</th>
<th>F4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerline Temperature (°F)</td>
<td>3159</td>
<td>3285</td>
</tr>
<tr>
<td>Fuel Surface Temperature (°F)</td>
<td>1540</td>
<td>1588</td>
</tr>
<tr>
<td>Gap Conductance (BTU/hr-ft2-°F)</td>
<td>374</td>
<td>356</td>
</tr>
<tr>
<td>Gap Pressure (psi)</td>
<td>1204</td>
<td>1238</td>
</tr>
<tr>
<td>Stored Energy (BTU/lb)</td>
<td>163</td>
<td>170</td>
</tr>
</tbody>
</table>

1 GT2 ≡ GAPCON-THERMAL-2
2 F4L ≡ FRAP-T4-LACE
GAP CONDUCTANCE

FRAP (Open gap)

\[h = \frac{k}{\Delta X + g + 1.98R} + h_r \]

GAPCON (Open gap)

\[h = \frac{k}{\Delta X + g'} + h_r \]

- \(k \) = thermal conductivity of gas
- \(g \) and \(g' \) = temperature jump distances
- \(\Delta X \) = gap width
- \(R \) = average roughness
- \(h_r \) = radiation term
- \(h \) = gap conductance
REFILL

- RELAP calculation prohibitive
- FLOW4 - Simple accumulator flow model
- Core thermal model - Adiabatic heatup
- Mixed average bulk fluid model
GAPCON-FRAP CONSISTENCY AT HOTTEST AXIAL NODE WITH MODIFIED GAP CONDUCTANCE CORRELATION

Burnup = 13000 MWD/MT

<table>
<thead>
<tr>
<th></th>
<th>GT2¹</th>
<th>F4L²</th>
<th>F4LM³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerline Temperature (°F)</td>
<td>3159</td>
<td>3285</td>
<td>3234</td>
</tr>
<tr>
<td>Fuel Surface Temperature (°F)</td>
<td>1540</td>
<td>1588</td>
<td>1550</td>
</tr>
<tr>
<td>Gap Conductance (BTU/hr-ft°F)</td>
<td>374</td>
<td>356</td>
<td>372</td>
</tr>
<tr>
<td>Gap Pressure (psi)</td>
<td>1204</td>
<td>1238</td>
<td>1222</td>
</tr>
<tr>
<td>Stored Energy (BTU/lb)</td>
<td>163</td>
<td>170</td>
<td>166</td>
</tr>
</tbody>
</table>

¹ GT2 ≡ GAPCON-THERMAL-2
² F4L ≡ FRAP-T4-LACE
³ F4LM ≡ FRAP-T4-LACE MODIFIED
GAPCON-WRAP(RELAP) Fuel Temperature Comparison

- O RELAP
- X GAPCON
- Burnup = 13000 MWD/MT

Centerline Temperature, °F

Elevation, ft
Lower Plenum Pressure

Double-Ended, Cold-Leg Break (Zion)
Break Size = 4.1247 ft³
Zion Core Flow

Double-Ended, Cold-Leg, Break (Zion)
Break Size = 4.1247 ft²
System Nodalization (Zion Plant)

INTACT LOOP

BROKEN LOOP
PROGRAM

- PWR System Checkout and Evaluation

- Verification Studies
 1. LOFT (L1-5 and L2-3)
 2. Semi-scale (S-06-03 and MOD3)
 3. Zion

- WRAP Analysis for NRC
 1. LOFT Pre-test Calculations
 2. Reference and Sensitivity Studies
 3. NRC Licensing Concerns