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1. Introduction

When a vortex-dominated flow interacts with a sharp density interface, the dynamics are charac-

terized by the interaction of baroclinically generated vorticity with the already existing vorticity field.

This can be seen in many natural and technological settings; examples are the interaction of a ship or
t

submarine wake with a thermocline, the collision of a buoyant thermal with a temperature inversion,

and the interaction of a vortex flow with a flame front [1]. This problem also serves as a generic model

for turbulent mixing and entrainment processes across sharp demsity interfaces [2].

The interaction between vortices and a free surface, which corresponds to the case where the den-

sity jump is very l,'u'ge, has been studied fairly extensively, both experimentally [3] and computation-

, ally [4,5,6,7]. By comparison, the literature for the more general case of vortex pairs and rings

interacting with sharp density interfaces is relatively sparse. Experiments and numerical studies have
J

been performed [1,2], but the numerical simulations were confined primarily to vorte× pairs, restricted
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to the inviscid case, and the effect of density variation modeled under the Boussinesq approximation.

The experiments were also confined to the Boussinesq regime. In this paper, we study the motion of a
¢

vortex ring in a sharply stratified, viscous fluid via a numerical solution of the full Navier-Stokes equa- "

tions with finite-amplitude density variation. Both Boussinesq and non-Boussinesq flow regimes will be '

studied, the effect of viscosity on the interaction will be examined, and three-dimensional aspects of the

motion will be addressed, such as Widnall instability of the vortex ring and vortex reconnection at the

interface.

2. Numerical method

The method [8] is a generalization to variable density flows of the second-order projection

method for the incompressible Navier-Stokes equations developed by Bell et al. [9], itself a higher-order

extension of Chorin's projection algorithm [10], based on a discrete form of the Hodge decomposition,

which states that a vector field can be decomposed into the gradient of a scalar potential and a

divergence-free component.

In its most basic form, the projection method requires the solution of advection-diffusion equa-

tions, which are then projected onto the space of divergence-free vector fields. The projection is

accomplished via a discrete-Galerkin finite difference formulation using a local basis for discretely
e

divergence-free vector fields developed by Stephens et al. [11] and Solomon and Szymczak [12] for the

steady Navier-Stokes equations. The generalization to variable density flow is made by expressing the

standard projection with respect to a density weighted inner product. The algorithm is extended to

higher order by introducing more coupling between the advection-diffusion step and the projection, and

by incorporating a variant of the unsplit second-order Godunov methodology _leveloped by Colella [13]

for inviscid, compressible flows into the evaluation of the nonlinear advection terms in the momentum

equations. This provides a temperal discretization that is second-order for smooth tlows and stable in

regions with steep gradients, even for singular initial data and in the limit of vanishing viscosity. These

properties make the method extremely well suited for application to tlows with baroclinic vorticity gen-

eration; the evolving interface is simply captured in the cour_ of _lving the mass conservation equa-

tion.
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3. Current Results

In the viscous interaction of a vortex ring with a density interface, if surface tension along the

interface i's neglected, the flow is governed by three dimensionless parameters. The Atwood number
t

Pt- P_
represents the magnitude of the density jump across the interface, and is given by A = _. The

P_+ P2

inverse Froude number governs the relative importance of inertial and gravitational effects. It is defined

F-2 = aF-_2,where a is the diameter of the vortex ring, F its circulation, and g is the gravitational
as

acceleration. The Reynolds number provides the familiar scaling of inertial to viscous effects, and here

F Dahm et al. [1] have shown that the productis based on the strength of the vortex ring. Thus, R = --.
V

AF -2, for relatively small values of AF +-2and in the absence of viscosity, governs the dynamics of the

flow. CT'helimit AF-2_ 0 defines the Boussinesq regime). Table 1 shows the parameter values for the

numerical experiments presented in this extended abstract. Four calculations are shown, representing

progressively weakening stratification.

Table 1. Numerical experiments

Run 1 Run 2 Run3 Run4

I

A 2/3 2/3 1/2 1/3

.....

F-2 0.5 0.0125 0.0125 0.C125

R 5000 5000 5000 5000

Grid resolution 250x500 250x500 200x600 150x750

......

The full variable-density, incompressible Navier-Stokes equations in axisymmetric coordinates,

together with the mass conservation equation, are solved:

U, + (U.V)U = R-IAU - lVp + F-2(1 - 1
p -rf) (t)

p, + (u.v)p =0 (2)

v.u =0. (3)

whereU = [Ul is the velocity vcctor, p is the density, and p is the pressure.
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In ali of the calculations, the ring was started at a distance of 0.875a below the interface, where

a is one ring diameter. The core was represented by a Gaussian vorticity profile with a ratio of core
p

radius to ring radius of 0.25. The interface was represented by a hyperbolic tangent profile with a tran-

sition thickness of 1/8 the core diameter, well within the criteria for a "thin" interface. In ali cases the

fluid is stably stratified.

A video animation of these calculations has been made and will be shown when the paper is

presented. Figures 1-4 are stills from that movie, and represe,nt the corresponding Runs described in

Table 1. lt should be noted in interpreting these countour plots that, for purposes of visualization, the

vorticity field was renormalized at each time step. The density field is shown at right; the vorticity field

is reflected by symmetry into ti:e left half-plane.

In Run 1, the conditions are for a stiff interface. As the interfac_ is approached by the vortex

ring, it undergoes no visible deformation, and the vortex ring itself behaves as if it is approaching a

solid wall. lt begins to expand, and a boundary layer is formed at the interface. The vortex peels

counter-sign vorticity from the interface, and secondary and tertiary rings are formed which orbit

around the primary ring. The counter-sign boundary layer vorticity ejects fluid back towards the sym-

metry axis. Eventually, a strong backflow is created, and the original ring is almost completely annhi-

alated.

The conditions for Run 2 represent a slightly weaker intert;ace (or stronger vortex ring). The

interface deforms slightly with the approach of the ring, rising into a gentle mound and generating

baroclinic vorticity along itself. Small pockets of light fluid, offset slightly to either side of the core of

the ring, are scooped from above the interface and injected into the heavy fluid. The baroclinic vorticity

is peeling counter-sign vorticity from the primary ring, reducing its strength and creating secondary and
i¢

tertiary rings. The bubble collapses, a strong backflow jet is created which is Kelvin-Helmholtz

unstable, and gravity waves propagate out along the interface.

Figures 3(a) and 3(b) show the interaction for an interface that is weaker still. Again, the interface

deforms, and the bar_x:linic vorticity robs the primary vortex of much of its strength. The ring

Ix:netrates much furl.her into the light fluid before collapsing, however, and the backflow jet appexlrs to
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be dominated by a strong vortex ring of opposite sign (evolved from the interfacial vorticity) which

entrains a large pocket of light fluid as it descends.

In Run 4, the interface is weakest; the path of the vortex ring is hardly _fffected at all. lt travels

t

through the interface and into the light fluid undisturbed. A nascent backflow jet is observed. These

results show good qualitative agreement with the experiments and numerical simulations of Dahm et al

[1].

Figures 5-8 show the L" (max) norm of the primary vorticity (initially associated with the ring)

and the counter-sign vortic.ity (generated by interfacial effects) for Runs 1-4, respectively. The solid line

indicates the primary vorticity; the counter-sign vorticity is represented by the dashed line. This not

only provides a measure of the decay of the ring vortex and the growth of baroclinic and boundary-

layer vorticity, it offers a striking visual representation of the degree of mixedness in the region affected

by the interaction.

In Figure 5 (corresponding to Run 1), we see the rapid growth of a viscous boundary layer as the

ring approaches the stiff interface. The large amplitude fluctuations in the counter-sign vorticity

correspond to the ejection of secondary rings from the layer. These are clearly observed in Figure 1.

The magnitudes of the positive and negative vorticity approach a common value, suggesting a well-

mixed region.

For Run 2 (Figure 6), we observe a similar decay in the ring vorticity and rise in the counter-sibm

vorticity, lt is difficult here to distinguish viscous effects from those due to baroclinicity, but again (as

Figure 2 also indicates) the support of the vorticity is fairly well-mixed.

In Figures 7 and 8, the decay in the primary vorticity is steeper, and the counter-sign vorticity

production more gradual. The tendency towards large-amplitude fluctuations is reduced, and the curves

appear increasingly independent, suggesting a weaker interaction and less mixing.

,t

4. Anticipated results

In the final version of the paper, we will di_uss the effects of variation in viscosity on the

interaction, the symmetry-breaking characteristics of the non-Boussinesq regime, and the full three-
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dimensional interaction, with particular emphasis placed on the phenomenon of vortex reconnection at

the interface.

p
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List of Figures

Figure 1. Vorticity and density contours',Run 1.

Figure 2, Vorticity and density contours; Run 2,

Figure 3(a)-(b). Vorticity and density contours; Run 3, J

Figure 4. Vorticity and density contours; Run 4,

Figure 5. Magnitude of maximum vorticity vs, time, Solid line: primary (ring) vorticity, dashed line:
counter-sign (interfacial) vorticity; Run 1.

Figure 6. Magnitude of maximum vorticity vs. time, Solid line: primary (ring) vorticity, dashed line:
counter-sign (interfacial)vorticity; Run 2.

Figure 7. Ivlagnitude of maximum vorticity vs, time, Solid line: primary (ring) vorticity, dashed line:
counter-sign (interfacial) vorticity; Run 3,

Figure 8. Magnitude of maximum vorticity vs, time. Solid line: primary (ring) vorticity, dashed line:
counter-sign (interfacial) vorticity; Run 4,
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