Optimization of next-event estimation probability in Monte Carlo shielding calculations

PDF Version Also Available for Download.

Description

In Monte Carlo radiation transport calculations with point detectors, the next-event estimation is employed to estimate the response to each detector from all collision sites. The computation time required for this estimation process is substantial and often exceeds the time required to generate and process particle histories in a calculation. This estimation from all collision sites is, therefore, very wasteful in Monte Carlo shielding calculations. For example, in the source region and in regions far away from the detectors, the next-event contribution of a particle is often very small and insignificant. A method for reducing this inefficiency is described. (WHK)

Physical Description

Pages: 7

Creation Information

Hoffman, T.J. & Tang, J.S. January 1, 1983.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times , with 4 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In Monte Carlo radiation transport calculations with point detectors, the next-event estimation is employed to estimate the response to each detector from all collision sites. The computation time required for this estimation process is substantial and often exceeds the time required to generate and process particle histories in a calculation. This estimation from all collision sites is, therefore, very wasteful in Monte Carlo shielding calculations. For example, in the source region and in regions far away from the detectors, the next-event contribution of a particle is often very small and insignificant. A method for reducing this inefficiency is described. (WHK)

Physical Description

Pages: 7

Notes

NTIS, PC A02/MF A01.

Source

  • 6. international conference on radiation shielding, Tokyo, Japan, 16 May 1983

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE83012643
  • Report No.: CONF-830538-7
  • Grant Number: W-7405-ENG-26
  • Office of Scientific & Technical Information Report Number: 5975017
  • Archival Resource Key: ark:/67531/metadc1095851

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1983

Added to The UNT Digital Library

  • Feb. 18, 2018, 3:59 p.m.

Description Last Updated

  • May 15, 2018, 6 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hoffman, T.J. & Tang, J.S. Optimization of next-event estimation probability in Monte Carlo shielding calculations, article, January 1, 1983; Tennessee. (digital.library.unt.edu/ark:/67531/metadc1095851/: accessed September 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.