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ABSTRACT 

Motivated by recent attempt* to solve the cosmological constant problem, 
we examine the observational consequences of a vacuum energy density which 
decays in lime, For alt times later than t ~ 1 sec, the ratio of the vacuum to the 
total energy density of the universe must be small. Although the vacuum cannot 
provide the "missing mass" required to close the universe today, ita presence 
earlier in the history of the universe could have Important consequences. We 
discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, 
the microwave and gamma ray background spectra, and galaxy formation. A 
small vacuum component at the era or nucleosynthesis, 0.01 < /w/prad < 0.1, 
increases the number of allowed neutrino species to N¥ > 5, but in some cases 
would severely distort the microwave spectrum. 

invited talk presented by J. Friemm at the ACS Symposium on Origin and 
Distribution of the Elements, New Orleans, LA, August 31-September 4,1987 

j * Work Supported In part by Iht National Sclera Foundation, grant PHYS2-17853 (UCSB) 
and by tie Department of Energy, contract DE-AC03-76SF0051S (SLAC). 

-% 



The cosmological constant has alternately been the most maligned and the 
roost neglected of the constants of Nature. The seeds of this mistreatment lay 
in its early history: it is well known that Einstein introduced it purely to obtain 
steady state cosmological solutions to general relativity. When Hubble subse­
quently discovered the universe was expanding, the original motivation for the 
cosmological term was removed, and Einstein recommended with embarrassment 
that it be dropped as an ugly blemish on his theory. Except for occasional aber­
rations, as a rule, cosmologists have been happy to follow Einstein in forgetting 
about tt. With the advent of unified gauge theories, this is no longer possible. 

In the standard cosmological model, the early universe is thought to have 
passed tiuough a series of symmetry breaking phase transitions at various en­
ergy scales Mx. As the temperature drops below \fx, the vacuum energy di-nsJty 
associated with the order parameter {e.g., a Higgs field) changes by 0[M*}. It 
is therefore puzzling that the upper bound on the present value of the vacuum 
energy 'ensity, pvac < (0.004 eV)*, is much smaller than any of the energy scales 
associated with particle physics. Even if such a cancellation can be arranged 
classically, there is at present no known low energy symmetry which pre\ents 
quantum corrections from inducing a luge value for pvae- Since the stress en­
ergy of the vacuum is T^u — PuaeSpi/t i-c., pvae ~ -/>LBCI it enteri Einstein's 
equations precisely as a cosmological constant A = &xGpva,c. The upper bound 
above, which is equivalent to n U B C = Puae/perit £ 3, comes from the limit on Lhe 
cosmDlogical constant from measurements of the Hubble constant and the age 
of the universe[l], A & 9H$ a 10~ 5 f l o n 5 , or h/m?pl £ 1 0 " ' I 9 in gravitational 
units. Thus, the problem: the cosmological constant is known to be tiny in any 
natural scale of units, but in the context of particle physics it does not appear 
to be a naturally small parameter. 

The hope is sometimes voiced that a fundamental quantum theory of gravity 
will require pmc = 0, but such a theory must in fact give rise to a cosmological 
term (say, at the Planck scale) which is precisely cancelled by all lower energy 
contributions (e.g., at the electrowcak scale and below) to one part in 10 ' i e ! 



Thus, the cosmologies! constant problem is essentially a difficulty of physics at 
very 'low1 energies, suggesting that its solution will come instead from new physicB 
which is manifest at low energies, or large distance- and thnescales. 

Along this line, several authors have recently discussed mechanisms for dy­
namically reducing p U Q C to a very email value over cosmological timcficalca(2,3|. 
The simplest example|2| is a classical scalar field with a potential which depends 
on the spscetime curvature, V[4>) = VQ — £ W , where pvac = Vo = AO/SJTG 

is the initial vacuum energy density and £ > 0. Neglecting the scalar field ki­
netic energy, Einstein's equations give R ~ 8xGV(<t>), If the field starts near 
the origin, then initially R — Ao and the field begins to roll down the potential 
exponentially fast. This reduces both V(<j>) and, by Einstein's equation, the Ricci 
scalar R over time. But this implies that the slope of the scalar field potential 
is also decreased, so the field slows down. Asymptotically, <f> ~ t and the effec­
tive vacuum energy redshifts away, fiuae *- *~ 3- This simple 'feedback' model is 
indicative of the classical relaxation mechanisms which have been proposcd[2]. 
It is also possible that the dynamical effects of quantum fields may render de 
Sitter space (the spacetime dominated by a cosmological constant) unstable to 
conformal perturbations [3]. At present, thot significance for cosmology of such 
an instability is unclear, since it is not known how the system would evolve away 
from the initial de Sitter solution. 

These ideas suggest the intriguing possibility that the universe evolves to a 
state in which the effective cosmological terra {fiuac) i> small and continues to 
decrease with time. In this talk, I summarise the consequences for observational 
cosmology of such a continuously dteaying vacuum energy density|4,5]. Such sce­
narios are interesting because a redshifting vacuum energy can have effects over 
many expansion times, while a constant vacuum density (the usual cass) could 
only have become dynamically important at very recent epochs. Our major con­
clusion is that dynamical models of decaying vacuum energy of a rather general 
variety'are consistent with observational cosmology; however, the deviation from 
the standard model must be small. 
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Suppose that in addition to ordinary matter and radiation, there is an energy 
density associated with the vacuum which is time dependent, pv{t). This addi­
tional component enters the Einstein equation Tor the Robertson-Walker scale 
factor a(t), 

where we have assumed flat spatial sections (k = 0). The pressure or the vacuum 
is assumed to have the usual form p„ = ~pv, while p m = 0, p r = pr/3. 

The conservation equation for energy-momentum takes the Form 

We notice immediately that if pv jt 0, at least one of the ordinary adiahatic 
relations pr »- a - 4 , pm — a - 3 ceases to be valid. If pv < 0 then enLropy or 
matter mu«tbe generated in the expansion. In this talk, 1 focus on the radiation-
dominated epoch (pm < Pr), in which case the second term in Eqn.(2) is small 
and can he neglected. That is, we are only concerned with the coupling of the 
vacuum to mass less radiation, and shall further assume the coupling to massive? 
particles is suppressed, e.g. due to threshold effects. (In the dynamical decay 
scenario of refs.2,3, the only lengthscale in the problem appears to be the Hubble 
radius or possibly the Coropton wavelength associated with a very small mass, 
so we expect the radiation emitted to be peaked at very long wavelengths or 
ultralow energies. For a discussion of vacuum decay to massive particles, see 

Kf.|4].) 

It is useful to define a new parameter which characterizes these models, 

X = pv/{[pr + Pv) (3) 

From Eqn.(2), we obtain[5] the evolution equation 

x pv a 
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There arc three possibilities for the behavior of z[t) at large i: (i) for i - » l , the 
vacuum term dominates, and the universe becomes de-Sitter-Iike as the radiation 
is redshifted away. This case is ruled out at the level of the bounds of Ref, 1; 
(ii) the vacuum density falls more rapidly than the radiation density, i.e., x -* 0, 
and we recover the standard cosmological model; (iii) the only genuinely new 
cosmology is obtained if x approaches a non-zero constant betwen 0 and 1, which 
corresponds to the vacuum and radiation densitiea redBhlfting at the same rate. If 
the vacuum and the radiation are coupled by particle creation or if the relaxation 
mechanism is of the 'feedback1 form discussed above (i.e., the scalar field responds 
to the tolat curvature, which gets a contribution from the radiation), one may 
expect behavior of the form (iii) to be generic. We consider only this case in the 
following. 

From Eqn.(4), we find 

,„(,)= (_4-)p p ~ f l -<i->l . ( 5 ) 

As expected, the radiation density drops more slowly as a function of the scale 
factor than in the standard cosmology, whereas the matter density approximately 
redshifts in the usual way, pm ~ a~ s , if matter creation is negligble. With this 
scaling of the two components, the constraint that an early radiation epoch be 
followed by a matter dominated era requires that x < \ In both the matter and 
radiation epochs. Eqns,(l) and (5) are easily solved to yield 

a ~ (srrtiT , pv = 3x/32irG[l - x)3t3 (6) 

Increasing x towards unity speeds up the expansion rate of the universe in the 
radiation era. 

As long as the created radiation reaches thermal equlibrium, it can be char­
acterized by its temperature, with p, = fsfl.jrT4; here 0.<j is the number of 
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relativistk degrees of freedom. In this case, from Eqns.(5,6), we find 

T{t) 
r i 6 T r 3 C g e f f ( i - i ] 
[ 45 * - * , (7) 

for the radiation temperature as a function of time in the radiation-dom nated 
epoch. The electromagnetic radiation created by vacuum decay thermalizes com­
pletely up to at least a time f r ~ 10B sec (and, in particular, throughout primor­
dial nucleosynthesis); thus it makes sense to describe the radiation by a Planck 
spectrum with a temperature given by (7). The assumption of thermal equi­
librium determines how the radiation number density and energy per particle 
change with time. From Eqn.(5), as long as the photons remain in thermal equi­
librium, we have T -~ a * - 1 . To maintain a Planck distribution, the energy per 
particle must redshifl like the temperature, so Ey ~ a 1 " 1 as well. From Eqn.(o), 
this implies the photon number density scales as n 7 ~ a - 3 ' 1 - 1 ) . 

The assumption that photons are created in vacuum decay also implies that 
the baryon to photon ratio, ns /n - j , decreases as the universe expands. 
Since baryans are not created, tig «- a - 3 , and the baryon to photon ratio thus 
scales as 

»? = !̂ E ~ „-** ~ r f t (8) 
n . 

at least up to IT. (We have not considered the case where the vacuum decays, in 
whole or in part, into ncnintcracting, nonthermal particles Buch as gravitons, or 
shadow photons but our treatment does include mass lees neutrino production.) 

i) Nucleosynthesis 

Since a non-zero vacuum component changes both the expansion rate through 
Eqn.(6), the temperature-time relation, Eqn.(7), and the baryon to photon ratio 
(8), it can alter the delicate balance with nuclear reaction rates at the time of 
helium and deuterium synthesis that holds in the standard cosmology. (For a 
review of standard big bong nucleosynthesis, see the talk by Steigman in this 
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volume and references therein.) At the high temperatures in the early universe, 
the ratio of neutrons to protons is determined by its thermal equilibrium value, 

n/p = t-QtkT, T£TF (9) 

where the neutron-proton mass difference Q = 1.293 MeV and k is Boltzmann's 
constant. Neutrons drop out of equilibrium below a freeze-out temperature 7>, 
where the weak interaction rates can no longer keep up with the expansion of the 
universe. Below 2> the n/p ratio continues to fall due to /3-decay on the time 
scale of the neutron half-life r n r In the standard model, nucleosynthesis begins 
at a temperature approximately given by 

Once TJJ is reached, deuterium becomes stable against photodissociation and 
nucleosynthesis takes place very rapidly, efficiently converting essentially all of 
the available neutrons Into *He. In this approximation, the primordial helium 
abundance Yp is given by 

Y' '{&).- G & ) , - |-r ,'»" ">' - i+Z£w l"> 
where the final approximation is valid since T - 1 = r„/ln 2 > IF — 1 sec. 

In the presence of a small vacuum component x <L 1 (we will see from the 
numerical results that x must be less than 0.1), we can illustrate heuristically 
the deviation from the standard model. Recall that freeze-out occurs when a 
typical n *> p weak Interaction rate T ~ CFTF is equal to the expansion rate 
H " [G[pr + p«)]fr, Since />„ + pr = p P /(l - *) and p f ~ T*t we have N -
T a/(1 - * ) " , / J . Equating r a H, we obtain 

Tr = Tr(l - *)~* (12) 

where an overbar indicates the standard model value ( i = 0). By itself this would 
tend to increase Yp by increasing the n/p ratio at freeze out. However, Eqns,(7) 
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and (10) indicate that 

t o = F I > ( 1 - * ) - * , ( "J 

which increases the available time for neutrons to j9-decay. This turns out to be 

the larger effect in the domain of interest, BO that Yp is a dttrtasing function of 

x. 

The numerical analysis, using Wagoner's[6j nucleosynthesis code modified to 
include a nonzero vacuum term, does indeed follow this general trend, although 
the results differ quantitatively. One of the most dramatic changes from the stan­
dard model (not included in the discussion above) is the behavior or the entropy, 
which in the standard model is constant throughout and aflcr nucleosynthesis 
(except for the infusion of e + e~ pairs). In the decaying vacuum model the en­
tropy per baryon can change drastically through nucleosynthesis and continues 
to change afterward according to Eqn.{8). 

We present our results graphically for 4 He and D abundances in Figs. 1-3 for 
Nu — 3,4, and 5 neutrino species. For comparison with observation we have 
chosen a temperature T# = 10B K to signal the end of nucleosynthesis; after 
this time, element abundances from the code no longer change significantly even 
for nonzero x, although the entropy continues to drop according to Eqn.(S). 
Requiring that 0.22 < Yp < 0.26 and 10" s < D/H < 10~ ,[7], we find the 
(n , i ) plane at Ttf is restricted aa shown. For fixed number of light neutrino 
species JV"„, the constraints on the vacuum component are: x < D.0B[Ar„ = 3), 
x < 0.09(AV =* 4), and x < 0,10(AV = 5). Although at most Tour neutrino 
(or equivalent numbers of light) species can be accommodated in the standard 
model, for x > 0.01 five neutrinos {or more) are consistent with the observed 
element abundances (see Fig.3). 

We have also confirmed consistency with observation of the TLi abundance 
obtained from the code for this range of parameters. The abundant es of *He, 
D, and 7Li are all lower than in the standard model, whereas the H Sundance 
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is slightly higher. The constraints on 17 (TV) become more restrictive in the 
presence of a nonmo x, but remain within the same range as in the standard 
model (10~ 1 0 < n(7je) < 10"*),. Thus we reach these conclusions regarding 
nucleosynthesis: 

1) Primordial nucleosynthesis in the presence of a vacuum component with 
x < 0.1 ta consistent with observations of abundances of *He, D and the 
other light nuclei. 

2) If * > 0, the preferred values of tj at nucleosynthesis lie within the same 
range as in the standard model. 

3) If x > 0, Yp decreases. Observational estimates or the 4Hc abundance in 
Hit regions have decreased recently, and may make even 3 light neutrinos 
uncomfortable for the standard nucleosynthesis model {See the contribu­
tion by Page] In these proceedings.) If these observations hold up and if 
N* > 3 neutrinos are found at the SLC (or if JV„ > 4 neutrinos are found, 
regardless), the standard model would be in difficulty. This could be re­
solved by the presence of a small vacuum component at nucleosynthesis. 
We also note that non-standard scenarios (with baryon diffusion or late 
hadronic decays) with a large baryon density, fie r= 1, rely on reducing 
an initial overproduction of 4 Hc Since our model underproduces yHe, the 
constraint on the vacuum component cannot be evaded by invoking such a 
scenario, 

ii) Microwave Background Distortions 

An interesting feature of models with z =const. and pu ~ l/* 4 Is that some 
fraction of the microwave background photons in the present universe was created 
by the decay of the vacuum. The spectrum of radiation emitted by the decaying 
fiu is model-dependent: in general it may be quite different from the Planck 
distribution appropriate for fully equilibrated radiation. If this is the case, and if 
the processes involved In the relaxation of the injected photon spectrum toward 
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equilibrium are not 100% efficient, then distortions of the Planck spectrum may 
arise|8). 

In this section we explicitly assume that the vacuum does not decay into pho­
tons fully equilibrated to a Planck spectrum. As mentioned above, the most likely 
possibility seema to be that the emission is peaked at long wavelengths (E-, < kT), 
In that case the photons would be efficiently absorbed by the free electron plasma 
via inversebremsstrahlung, since the cross section for this process rises like 1/w3, 
At frequencies lower than the plasma frequency, any electromagnetic radiation 
produced by the decaying vacuum is rapidly damped and itc energy transferred La 
the plasma by ohmic heating, (However, a zero-frequency magnetic component 
may survive; one can speculate that vacuum decay may produce large-scale pri­
mordial magnetic fields.) The result in either case would be to increase the elec­
tron energy density relative to the radiation density. However, at very early times, 
i.e., for redshifts greater than *r — 6-3 X I04[righi)~i, the injected energy is 
completely thermalized by double Compton and brcmsstrahlung process: no dis­
tortions survive. [In this and alt the following we take HQ = lOO/i km/sec Mpc~ 
for the present value of the Hubble parameter, To = 2.7 "K for the present radi­
ation temperature and we assume 3 masslcss neutrino species;!! s is the density 
parameter for the ionized gas. We also neglect the small z-dependent factors in 
all redshifts defined in this section.] 

When z < «?, the injected radiation energy heats the electron plasma, and 
photon production by the electron gas continues in the far Rayleigh-Jcans region 
[tiu> <: kT). At higher .energies, however, photon production by the hot electrons 
becomes inefficient, and Compton scattering cannot redistribute the excess low 
energy radiation toward the peak. Thus, except at the very low end of the 
spectrum, we have Tt > Tr, and multiple scattering off the electrons shifts the 
background radiation to higher frequencies without changing the total number 
of photons. The spectrum then takes on a Bose-Cinstein form, with a nonzero 
chemical potential /i. If ^ y 7 * <; 1, the resulting value of ft {also small compared 
to kTT) depends only on the total amount of energy injected into photons, Ap r , 
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and is independent of their initial frequency distribution: 

/i = 1.4 M V — (14) 
Pr 

For a continuous Injection of photons by vacuum decay, £**• SB the time integral 
of - jja {the contribution of neutrinos to pT cancels from the integral), 

Pr } fit At 1 - 1 \/»r(*/)/ 

= 4 l t o f e ) (15) 

by Eqn.(5). Thermalization to a Bose-Einstein spectrum requires multiple photon 
scattering, but the average number of scatterings per photon decreases as the 
universe expands. For times later than t\ S I 0 1 1 sec (or redshifts less than z\ = 
8.5 x 1 0 3 ( n s * 3 ) - l ) , multiple scattering becomes inefficient, and the background 
subsequently evolves too slowly to relax to a Bose-Einsteln spectrum. So we take 
Si — ZT and zj - z\ for these (t distortions. Since observations of the microwave 
background spectrum require /i < O.OlJtT, |9] we obtain the bound an x: 

« < 4 X 10~ 4 (16) 

where we haTe taken fish* = 2.5 x 10~ a here and below. 

At later times t > (i, energy injected and efficiently absorbed by the electron 
plasma produces a different distortion of the microwave background spectTum. 
Compton scattering shifts the photons to higher energies, creating an excess in 
the Wien region and a shortage in the Rayleigh-Jeans part of the spectrum. 
The resulting spectrum is parametrized by a new variable y, which can again be 
related to the total energy injected: 

»-£?-" "(5) (1" 
by Eqn.(l5). 
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If wc assume that the injected photons are too low in energy to reionizc the 
gas after it has recombincd, then tf for this distortion should be taken to be of 
the order of the redshift of recombination, £3 = 10 3 . For ( > ( j , energy injecLion 
will continue to raise the temperature of the residual ionized gas and heat the 
intergalactk medium, without distorting the microwave spectrum. 

Taking z, ~ 21 and zj = zt in Eqn.(17) and using the observational bound 
if < 0.02 [9] yields the following bound on x: 

x < 5 X 1 0 - 3 (I8J 

BO that the fj bound is the most stringent constraint on x we have obtained. These 
constraints are so severe because the background radiation is being subjected to 
the injection *>f energy over many expansion times, when the processrs responsible 
for restoring equilibrium are inefficient. We reiterate that the key assumptions 
used in deriving these bounds are (i) that the vacuum produces photons which 
are out of equilibrium with the pre-existing radiation and (ii) that essentially all 
of the energy injected by the vacuum decay goes into heating the electron gas to 
Tt > Tr. If the vacuum decays into some non-interacting form of dark matter 
instead, then (ii) need not be true and we would again lose the very stringent 
bounds of Eqns.(16,18). 

Hi) Entropy Generation 

Since entropy is produced by the decay of the vacuum, n decreases with tem­
perature according to Eqn.{8). The vacuum energy density can be constrained by 
the evolution of n after nucleosynthesis. The most stringent bound is obtained if 
the vacuum decays to a thermal spectrum of radiation for a]] time. In this case, 
Eqn.(7) applies through the present epoch, 

( 2 7 K \ " ^ ~ ^ J - (19) 
Taking r?(2.7 K) J> 2 x l 0 - 1 1 |7]for a conservative lower bound today and ri{Tf/) < 
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10~B at nucleosynthesis, we find 

x < 0.07 (20) 

On the other hand, if, as considered above, the radiation produced by vacuum 
decay only Uiermalizes up to a time (?, then n remains constant for T < TT =* 
^3.3 x lQ^nA'J-M 2.7 K. In this case, we obtain the less stringent bound 

X < 0.15. (21) 

Additional model-dependent bounds on x from the evolution or n arise from 
consideration of big bang baryogenesis; the limits are comparable to those above. 

We have investigated the cosmological constraints on and consequences of 
a vacuum energy density which dynamically decays in time. We conclude that 
such a scenario can be consistent, but the universe cannot be vacuum-dominated 
for times later than about t — late. For vacuum decay to a non-thermal radi­
ation distribution, the microwave background spectrum provides the strongest 
constraint, x < 4 x 10~*. On the other hand, If the radiation produced by the 
vacuum retains a Planch spectrum for all time, the requirement that the baryon-
to-photon ratio not drop too low alter nucleosynthesis gives the strongest bound, 
x < 0.07. Vacuum decay appears to be a promising framework for solving the 
cosmologkal constant problem, but more work needs to be done in constructing 
realistic particle physics models. For example, the simplest 'feedback' relaxation 
models suggest values of x ~ 1, It would be interesting to see if more sophis­
ticated models can naturally generate the requisite smaller values of x reported 
here, without fine tuning. 

We thank Bill Hiscock, Rocky Kolb, Joe Silk, Albert Stebbins, Mike Turner 
and Bob Wagoner for helpful discussions.and Hardy Bodges, for aid in running 
the nucleosynthesis code. We especially thank Albert Stebbins for enlighten­
ing discussions about microwave background distortions. K.F, especially thanks 
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FIGURE CAPTIONS 

1) Element abundances as a function of the vacuum energy density parame­
ter i and the baryon-to-photon ratio at TN, n • Tf_iolO"10 Tor Nu ~ 3 
neutrino species. The primordial 4He abundance satisfies 0.22 <YP< 0.26 
and the ratiw ID" 5 < DfH < 10" 4 . Ciora-hatchrog indicates the allowed 
region. 

2) Same as Fig.l for Jtf„ = A neutrino species, 

3) Same as Fig.l for N* m & neutrino species. Note that models with x > Q 

can accomodate Nv > 4. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service fay trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, lecom-
mendation, or favoring fay the United States Government or uny agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United Stales Government or any agency thereof. 
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