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A MODEL EVALUATION METHODOLOGY APPLICABLE TO 
ENVIRONMENTAL ASSESSMENT MODELS 

D. Lynn Shaeffer 

ABSTRACT 

A nmdel evaluation methodology is presented to provide 
a systeratic framework within which the adequacy of environ
mental cssessment models might be examined. The necessity 
for such a tool is motivated by the-widespread use of models 
for predicting the environmental consequentes of various 
human activities and by the reliance on these model predic
tions for deciding whether a particular activity requires the 
deployment of costly control-measures. Consequently, the 
uncertainty asraclated with prediction must be established for 
the use of such models. The methodology presented here consists 
of six major tasks: model examination, algorithm examination, 
data evaluation, sensitivity analyses, validation stuoies, and 
code comparison. This methodology is presented in the form of 
a flowchart to show the logical interrelacedness of the various 
tasks. Emphasis has been placed ou identifying those param
eters which are most important in determining the predictive 
outputs of a model. Importance has been attached to the pro
cess of collecting quality data. A method has been developed 
for analyzing multiplicative chain models when the input param
eters are statistically independent and lognormally distributed. 
Latin hypercube sampling has been offered as a promising candi
date for Hoing sensitivity analyses. Several different ways 
of viewing ihe validity of a model have been presented. Criteria 
are presenter fcr selecting models for environmental assessment 
purposes. 

INTRODUCTION 

A model evaluation methodology has been developed to provide a 
systematic framework within vhich -the adequacy of environmental assess
ment models might be examined. This task is motivated by the widespread 
use of mathematical models developed as tools for predicting whether 
various human activities (such as the deployment of nuclear - other 
industrial facilities) might result in violation of policies set forth 
by the National Environmental Policy Act (NEPA) oi 1969 and the various 
requirements of the Environmental Protection Agency (EPA), the Nuclear 
Regulatory Commission (NRC), and other Federal and state agencies. 
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Often these models are utilized without any•foreknowledge of the 
confidence viiich can be placed in their predictive capabilities. Such a 
course of action may result in potentially serious^ consequences. For 
example, environmental assessments which are cverly conservative may 
result in the needless.prohibition of industrial expansion due to the 
prediction of deleterious effects on humans ,or the environment. Con
versely, irreversible environmental degradation and/or serious threat to 
human :.ea'th may result from the decision based on incorrect model 
predictions to permit certain ;4tt4«strial e^ansibn. ^A teo^edg%yp^, the 

Z-'- unccrtaintv in the model predictions onay t.averthe\^ffect of 
L to either of these decisions^. ThereiEore,: it ts.-dSmp 

uncertainties-associated with "the predictions of - en^Tonmfental assess
ment models be identified and also quantified if^possible.c ' * ' 

A systematic approach is needed to effectively accomplish this task 
of model evaluation because of the complexity of the various subsidiary 
issues vhich must be addressed in answering the question of model adequacy 
In addition, the diversity of types of existing models, along with their 
associated data, are not all amenable to one universal method of analysis. 
Consequently, a variety of approaches is required for scrutinizing the 
different kinds of models. Although many of the examples provided in 
the following discussion are radiological assessment models, this method
ology is suitable for the evaluation of all assessment models. 

The model evaluation methodology depicted in Fig. 1 consists of six 
major tasks: (1) model examination, (2) algorithm examination, (3) data 
evaluation, (4) sensitivity analyses, (5) validation studies, and (6) 
code comparison studies. Model examination involves questioning whether 
anything fundamental was omitted in the initial conceptualization of the 
model. Algorithm examination attempts to determine whether appropriate 
numerical schemes have been adopted to represent the model in the form 
of a computer code. Data evaluation is intended to ascertain the quality 
and the quantity of the data available for use with the model. Sensi

tivity analyses are studies directed toward identifying those parameters 
which are most influential in determliting model predictions. The identi
fication of these key parameters enables priorities to be established 
for performing experiments. Validation refers to the attempt to determine 
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Fig. 1. Flowchart of a methodology for evaluating environmental 
assessment models. 
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the degree to which model predictions agree with field or laboratory 
measurements of those same quantities. Code comparison is the process 
of comparing the strengths and weaknesses of various codes designed to 
perform similar tasks. 

Often there are more than one model.or computer code available for 
application tc a particular kind of assessment. In this case the 
assessor may desire to know the advantages and disadvantages of using 
one model as opposed to another. As a result, the capabilities of the 
.available models and codes must be compared and evaluated. This analysis 
requires +he existence of a model and code inventory. Hoffman et al. 
(1977a, 19?7b) have ̂ pe., naed a survey for models u-ied in environmental 
radiological assessments. Espey et al. (1978) have tabularized models 
of potential use in hydroiogic assessments. Once an initial inventory 
of models exists the six major tasks of the model evaluation methodology 
may be applied in an attempt to provide information which will allow a 
decision maker to select those models best suited for the application 
being considered. 

MODEL EXAMINATION 

Model examination is concerned with determining whether a model 
adequately represents the phenomena, processes, and actions that are of 
interest to model users. This determination involves answering such 
questions a--- Are all the relevant physical, chemical, and biological 
phenomena properly included in the equations? Are the equations repre
senting the various parameters valid within the intended range of 
applicability of the model? Are the equations mathematically well-
behaved within the intended range of model applicability? Are the 
boundary conditions and initial conditions appropriate? Is the approach 
to the solution the most appropriate one for the intended model 
appplication? 

Note that the model examination process is aimed at determining the 
adequacy of the model only over the intended range of model applicability. 
This range of applicability is defined by the documentation cf the model 
and its associated computer code. This approach differs from that 
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adopted by those modelers who construct models for the purpose of 
understanding the fundamental behavior of a system being modeled and who 
often desire to know the behavior of the model when subjected to abnormal 
input conditions. F̂rom the point, of view of the methodology presented 
here, "abnormal conditions" will mean any condition outside the realm of 

" c 
applicability of the model and will therefore not be of interest. 

The model examination procedure may uncover deficiencies in the 
model. If these deficiences are deemed serious, a recommendation might 
be made to submit -the model to major conceptual modifications. However, 
often a model may appear to be seriously deficient 4>ut nevertheless is 
not adversely affected by such deficiencies when applied to Specific v" 
situations.. Some models, such as linear systems models and other lumped 
parameter models, often work quite well for no apparent reason (O'Neill, 
1971"). If the model being examined is judged to adequately represent 
the phenomena of interest, the model is selected for inclusion within 
the final model inventory. Any model included in this final inventory 
which is not represented by a computer code, but tor which one is needed, 
must then enter the code development stage. On the other hand, if the 
model is already represented by a code, then the model is subjected to 
the algorithm examination stage. 

The manner in which the input data are used in the sensitivity and 
validation studies will depend upon the kind of model being evaluated. 
Three different kinds of environmental assessment models have been iden
tified. Thess are the multiplicative chain models (MCMs), linear systems 
models, and complex models. A multiplicative chain model may be defined 
as one describable by a mathematical relationship of the form 

XiXo • • . X 
A m z = A , 
yiy?. • • • y n 

(i) 

where z might be a pollutant concentration or a measure of impact on 
health (such as dose), A is a constant, and the x,'s and y/s represent 
measurable environmental quantities such as concentration. Also, the 
ratio x,/y, might be a bioaccumulation factor or a concentration 

1 A. 
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ratio* (Vanderploeg et al., 1975). The MCMs are frequently used to 
estimate the transport of pollutants through terrestrial and aquatic 
environments. In the radiologicil field, the computer code FOOD (Baker 
et al., 1976; Baker, 1977) is an example of the former and the computer 
code ARRRG (Scldat et al., 1974) is an example of the latter. 

The liner systems models are characterized by a system of first-
order, linear, coupled differential equations which describe transfers 
with time of mass or energy froiu one environmental compartment to another. 
The coefficients in the differential equations represent transfer rates 
which are generally assumed to obey first-order kinetics. The solution 
of a linear systems model describes the content (or concentration) =of a 
given compartment as a function of time. Sometimes this kind of model 
may be solved analytically by resorting to the techniques of ordinary 
differential equations or Laplace transforms. More frequently, however, 
the model must be solved numerically on a computer. The existence of 
convenient software packages, such as CSMP (IBM, 1975), i.e., Continuous 
System Modeling Program, jliminates the need for developing detailed 
numerical scht-rces of solution and therefore makes the programming task 
easier. An example of a lii.ear systems model which describes the trans
port of radionuclides through a terrestrial environment is the computer 
code TERMOD (Booth et al., 1971; Booth and Kaye, 1971). 

Finally, a complex model is defined as one which does not fall into 
either of the other two categories. These may be, but not necessarily, 
characterized as nonlinear models, distributed systi-m parameter models 
(Polis and Goodson, 1976), or models for which thcve exists no tractable 
analytic solution relating the inputs to the outputs. Examples in the 
radiological field are the computer codes ADPIC (Lange, 1973), AIRDOS 
(Moore, 1977) and SERATRA (Onisbi 1977a, 1977b). 

* 
The bioaccumulation factor is defined as the ratio of the concentration 
per unit weight of a substance contained in one entity (e.p., fish) to 
the concentration per unit weight or volume in a different entity (e.g., 
water). 
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ALGORITHM EXAMINATION 
S r S ^ 

Algorithm examination involves ques t ion ing whether themin^iericaX 
technique se lec ted for the computer code i s the most £|$r«n^iafce^oi>e f̂Sfir"; 
the monel appl ica t ion and whether t he re a re anv inherent WiH^i j ra l r 
problems. Care roust be exercised t o ensure tha t Che 

, ; - «^j»'^v- -" - "~ !«£"?£?' '-""*-'.-•' 

obtained is a unique one. There are many codes- which $ ^ capable: laff ̂**ApL"' -
giving almost any answer depending c-n bow various p^a^tirs^go' 
the execution of the routine are adjusted.;/Specia^pyo|^" 
techniques designed for solving differ^p^a.l v^^tiog|^^^^ ^"~^' 
some methods are known to produce ̂  

-S3 

mass and numerical stability are prpplel^^M^;frequently require 
meticulous attention and often cgMp^,Se..6ati»fied; simultaneously. .' - c. 
Special methods are generally required for solving differential equations 
which are 'stiff," that is, where the eigenvalues range over many orders 
of magnitude because of numerical instabilities which are often enco mtered 
in some of the simpler methods such cs the ""ige-Kutta algori hm. 

Selection of an algorithm may involve trade-c£is-. Is an increase 
in computational time worth the gain in accuracy? Some numerical tech
niques commonly used in the solution of partial differential equations 
(PDE) have been extensively studied, and their associated pitfalls have 
been documented (Long and Pepper, 1976). The finite element method 
(Mitchell, 1977; Pinder and Gray, 1977> for solving PDEs has come into 
use over the last few years and appears to be superior to the finite 
difference method in many applications (Lee et al., 1976; Vinokur, 1976; 
Long and Pepper, 1976). 

The final code inventory consists of those codes which have been 
developed in the code development stage and those codes which were 
judged adequate in tne algorithm examination stage. 

DATA EVALUATION 

Data Quality 

The menninfifulness of the sensitivity analyses and validation 
studies will b<- determined by che quality of the available data. Two 

-a 
% 
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be available only in the literature. information is usually lose and 
the data may have suffered degradation in this data handling and trans
mittal process. ihe model user should not use data blindly but should 
attempt to ascertain all tha. is known about the quality of the data. 

r)ata handling may fall into four differed' categories, data collec
tion (i.e., the experimental stage), data reduction (mathematical manipu
lation^, data presentation (journal articles, reports, etc.), and data 
usage. In the contex" of these four categories, the following considera
tions should be given to evaluating data. 

Wich regard to data collection the following questions should be 
rsked. Are the experimental methods acceptable: Have data been measured 
foi the range of conditions for which the model was designed? Is there 
any indication that systematic errors are present or that blunders have 
been committed? Is there a significant bias in tre data resulting from 
an experimental detection litr.it? Aro field conuitions realistically 
replicated in laboratory experiments? For example, there exists evid
ence in the literature showing that yegetation-to-soi1 concentration 
ratios for plutonium and americium measured in the laboratory may differ 
by as much as four orders of magnitude from actual field measurements 
(Romney et al., 19 76; Schulz et al., 1976). Hydrologic dispersion 
effects measured in the laboratory tend to be significantly different 
from field measurer,ents (Schwartz, 1977; Staley et al., 1977). Atmos
pheric deposition velocitv measurements undor laboratory conditions have 
HOL successfully duplicated field situations because of the difficulty 
o! simulating meteorological and biological phenomena (Heinemann et al., 
1976). 

Concerning data reduction, the following questions are important. 
What was the quality of the data used to determine an appropriate form 
for the probability density function? What was the sample size? Have 
proper tests of significance been applied? Was a frequency distribution 
derived from just a few data points' What data were thrown away? What 
are the confidence intervals? How were data averaged? There appears to 
be confusion in the minds of many researchers concerning the difference 
between the arithmetic mean and geometric mean (median) when dealing, 
with lognormal statistics (Aitrhison and Brown. 1969). The formei is 

http://litr.it
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always larger than the latter. The difference in the tw_ may be large 
depending on the variance of the data. The statistics of data are 
sometimes abused when statistical quantities are combined to form 
algebraic relationships. Atchley et al. (1976) have revealed some 
problems involved with forming the ratio of statistical quantities. In 
addition, a significant bias may occur when forming the ratio or two 
variables having censored probability density functions resulting from 
experimental detection limits (Shaeffer and Little, 1978). This bias 
may le?.d to the calculation of an average value for the ratio which is 
significantly different from the true average of tne ratio. 

Lata presentations in Journal articles, reports, etc., are sometimes 
very ambiguous or misrepresentative of other data. The author may fail 
to indicate whether a datum is the result of a single measurement or the 
average of a number of measurements. Sometimes a mathematical represen
tation of a frequency distribution is given without showing the data. 
In other cases data are presented without any statement about error bars 
and the uncertainty of the measurements. Additionally, a researcher may 
justify the use of a certain value for a particular parameter with the 
citation of a reference in which either there is no such parame r value 
or there is a lack of evidence that the cited value is applicable to the 
researcher's purpose. Such inaccuracies need to be clarified before a 
judgment can be made about the quality of the data. 

Data usage is often inconsistent. Information contained in a data 
base for a computer code should be cross-checked with other data bases 
and with data in the literature. Not only can copying mistakes be made 
but sometimes data are used in ways for which they were not intended. 
An attempt should also be made to discern whether a model developer may 
have a bias toward particular data. Sometimes a model is developed at a 
particular installation in such a way as to take advantage of data which 
are collected at that installation. Other institutions may have different 
kinds of data available and therefore adopt a different modeling approach. 
This kind of situation may lead to the development of conflicting philo
sophical approaches to modeling, in addition, researchers sometimes 
become emotionally attached to their own models, a condition which obscures 
-objectivity and hampers the attempts of others to properly evaluate such 
models. 
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Finally, if data required by a particular model are unavailable, 
then a recommendation that experiments be performed to gather the appro
priate data may be required. Without such data the model may have to be 
rejected in favor of a less desirable model, but one for which all the 
necessary input data exist. On the other hand, if a less desirable 
model does not exist and if these experiments prove to be prohibi>iveiy 
expensive, then the model may have to be redesigned to eliminate those 
parameters for which data do not exist. If the elimination oi all these 
parameters is not possible without destroying the model itself, then 
perhaps the model should be preserved by restructuring it to require the 
minimum number of parameters for which data are nonexistent. Hopefully, 
the redesigning of the model will not lender it inapplicable to those 
situations for which it was originally developed. 

Statistical Treatment and Description of the Data 

The amount of data available will often determine how the data are 
described and subsequently used co perform sensitivity and validation 
studies (Fig. 2). The availability of statistical information sometimes 
permits the development of a probability density function (p.d.f.). If 
a range of values is available for the data but not enough datii points 
exist to define a p.d.f., it may be possible to assume a p.d.f. and 
calculate a mean and variance from the given data. Most environmental 
data may be described by either a lognormal, Weibull, or normal distri
bution function (Finder and Smith, 1975; Speer and Waite, 1975; Toy and 
Lindeken, 1975). Pinder and Smith (1975) investigate*! the frequency 
distribution of l^ 7Cs concentrations in soils, plants, and animals tor 
thirty-three different cases and found that the lognormal was the best 
fit of the three p.d.f. \s mentioned above in about 55% of the cases. 
The Weibull distribution function, which occurred in 36% of the cases, 
was the next most prevalent fit. Apt (1976) fit the Weibull distribution 
function to the temporal and spatial distribicions of atmospheric radio
activity data. Shaeffer and Hoffman (1979) have shown that short-term 
averages of deposition velocities for ! '''!> appear to be lognormaily 
dist.-ibuted. Kllett and Browne 11 (1964) conclude that the g;imm.-.» 
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distribution is better than the lognormal as a model for the frequency 
distribution of concentrations of 1 3 7 C in muscle samples. However, 
Eberhardt and Gilbert (1973) show that in food chain kinetics there is 
no practical difference between the lognormal and gamma distributions. 

Occasions may arise in whic.. there are insufficient data to develop 
a p.d.f. and insufficient information about the characteristics of an 
environmental parameter to permit the adoption of any particular p.d.f. 
Tiwari and Hobbie (1976b) used a method based on the principle of maximum 
entropy to develop p.d.f.'s when only a limited amount of information is 
available. This procedure leads to a p.d.f. which agrees with the 
available data but which is maximally noncommital to missing information. 

SENSITIVITY ANALYSIS 

The purpose of a sensitivity analysis is to determine the amount of 
variation in one or more model output quantities caused by a variation 
of a model input parameter. This kind of study makes possible the 
identification of those key parameters which are most important in 
determining model predictions. These key parameters are the parameters 
for which the greatest accuracy and precision are needed to reduce the 
uncertainty in model predictions. Thus experiments might be recommended 
because of a lack of data for a key parameter and/or because the data 
manifest large imprecision. Also, a model might be simplified mathematic
ally if a sensitivity study reveals that model predictions are unaffected 
by a particular input parameter. 

Two general approaches, analytic and numerical, may be taken in a 
sensitivity analysis. The analytic approach is possible only if the 
exact mathematical relationship between the inputs and the output*, oi a 
model are known. However, even if this functional rexdtionship is 
known, the analytic approach may not be a tractable one. In the 
analytic approach, the functional dependence of the output quantities on 
the input variables i:; examined to ascertain the strength of this depend
ence. Perturbation theory (Tomovic, 1963) is the usual analytic method
ology adopted. Aoyama et al. (1977) have applied perturbation theory to 
a sensitivity analysis of a model for predicting the transport to the 
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ocean surface of radioactive waste* disposed deep in the ocean. An 
analytic statistical treatment is possible tor certain simple models 
(Bevington, 1969; O'Neill, 1971). In the next section a method is 
developed for investigating ^rror propagation through models involving a 
multiplication of several factors which are statistically independent 
and lognornally distributed. 

If an analytic approach is not possible, then a numerical approach 
must be adopted. The numerical procedure may be either statistical or 
nonstatistical. The most common method used is the nonstatistical 
procedure of varying the value of an input paraiteter by a certain per
centage on either side of a nominal value while holding all other param
eters constant (Miller et al., 1976; Vithayathil and Hirsch, 1975). 
Values of a sensitivity coefficient are then calculated to express the 
sensitivity of an output quantity to each input quantity. 

In order to calculate a sensitivity coefficient, a fractional 
deviation D is first determined, 

y.(x., t u) - yjx°, t k) 
- — , (2) 

1J 4 Mx?. L„) 

where 

D. = sum of the fractional deviations over the discrete 
times t. of the output variable y. due to a perturbation 
in the input variable x.. (Time independei 

1 
will not require the summation over time); 
value of the ith output variable at t 
the perturbed input variable x.; and 

in the input variable x.. (Time independent outputs 
i mi 

y,(x., t.) = value of the ith output variable at time t. due to 

o J 

y.(x , t, ) = value of the ith output variable at time t. due to 
the unperturbed input variable x.. 

The relative sensitivity coefficient is then defined as 

*Dij 
hi * • • <-> 
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where u. is related to the perturbation in the nominal value of the j*' 
input by 

x. - x°(l + u.) . <4) 

Equation (3) can be rewritten as 

_11 _ 1 (5) 
Xj oX. dU. 

. 1 3 

iD. . 
= x° - U - . (6) 

Substitution of Eq. (2) into Eq. (6) ftives 

o 

S. . = > - * - ~ , (7) 
1J *L, O JX. 

k v i J 

where 

'± = y i ( x j » V ' (8 ) 

and 

o , o n - y i ( x r V • ( 9 ) 

The disadvantages of using this Method are essentially fourfold. 
First, if the range of values for an input parameter x. is unknown then 
the percentag variation to be chosen for the study is completely 
arbitrary. However, a complete understanding of the nature of the model 
response requires a knowledge of that response at all perturbation 



levelJ over which the parameters are likely to range. Second, a code 
having a large number of input parameters will require a large number of 
computer runs when each input variable is individually perturbed vhile 
holding all other input parameters constant. Third, misleading results 
may be obtained when the output is a nonlinear function of the input. 
Fourth, correlation between the various input parameters Is not taken 
into account. -

An attempt has been made by McKay et al. (1976) and McKay and 
Bruckner (1976) to "overcome the second and third difficulties. Their 
research has in̂ 'jjved the use of Latin hypercube sampling (LBS) to study 
the statistical output of a computer code as s result of- statistical, 
inputs. The LHS procedure involves dividing each input variable into 
equal probability intervals. For each run, one interval from each input 
variable is sampled according to the p.d.f. of that variable. Thus all 
innut variables are changed simultaneously and each interval of an input 
is sampled only once. 

Computer studies show (McKay et al., 1976, Fig. 2.6) that LHS 
offers approximately four times the precision afforded by random sampl
ing. In other words che same precision can be obtained by LHS with one-
fourth the number of runs required by random sampling. Consequently, 
the utilization of LHS may result in considerable savings of total 
computer run time required for sensitivity studies or computer codes 
which have a large number of inputs and outputs. 

A nonparametric partial rank correlation coefficient (PRCC), such 
as Spearman's (Conover, 1971; Siegel, 1956), may be used as a sensitivity 
coefficient. This type of coefficient has the advantage "f removing the 
effects of all but one input parameter on a given output variable even 
though all input parameters are varied simultaneously from one run to 
another. 

Although the correlation coefficient is a concept derived from 
linear regression analysis, the use of the PRCC appears to work quite 
well in cases for which the output is a nonlinear function of the input. 
L'ifficulties may be encountered when the output has a singularity or 
when the output is not a monotonic function of the input. Under these 
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circumstances one may not be able to claim that IMS is superior to 
random sampling (M. D. McKay, personal communication, 1977). 

Neither the nonstatistical sensitivity coefficient nor the PFCC 
gives an absolute measure of key parameters. Rather, the coefficients 
relating the various inputs to a particular output must be evaluated 
according to their relative magnitude. In other words^ the relative 
importance of the input quantities nay be determined by ranking the 
values of the sensitivity coefficients. Sometimes, the use of intuition, 
occasionally referred to as face validity (Beroann, 1967), isjhelpful'in 
evaluating whether a coefficient is as large or as small as it should 
be. Often a particular input is known to be isportant. A value of the 
sensitivity coefficient which indicates the contrary may have resulted 
from a programming error. Thus intuition, or face validity, may be 
i.fclpful in identifying programming errors through the use of sensitivity 
coefficients. - ., 

Weber (1976), Bohac* et al. (1974) and Miller et al. (1978) have 
performed sensitivity analyses of the Gaussian plume atmospheric model. -
Onishi (1977a, 1977b) performed a sensitivity analysis of a stream-flow 
and an estuary model. Garten (1978) presents results of a sensitivity 
analysis of the terrestrial model found in Nuclear Regulatory Guide 1.109. 

Propagation of Statistics through Multiplicative 
Chain Models 

The fact that the values for many of the input parameters of a 
model are statistical in nature means that model outputs are frequently 
statistical quantities. Therefore, model predictions do have uncer
tainties associated with them. A realistic assessment of the effects of 
a postulated set of actions such as a release from a nuclear facility on 

the environment or on humans requires a knowledge of the uncertainties 
of the predictions of the models designed to simulate these actions. In 
fact, it would be nice if these uncertainties could be obtained 

For a response to the work of Bohac et a 1. (1974) the reader is referred 
to Gifford (1974). 
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analytically rather than through the use of a computet. Unfortunately, . 
linear systems models and complex models are not amenable to analytically 
propagating the statistics through the equations. O'Neill (1971JF used 
Monte Carlo computer techniques to study the uncertainty in model pre
dictions of several kinds of models as a result of systematic bias due., 
to model complexity and to measurement errors associated «Jl|D;«^dei 
parameters. Tiwari and Hobble (1976a) performed a Mont^j^l^Sjgiqla-
tion of a simple aquatic ecosystem. Gardner et al. £l$M 

LftSS5S§g5 , ^^a^Cafi9/s^mi|at^ni technique to analyze the-i^ai 

î ;fi-£« 

E JHlk 
? ;P^:f>S«ltiva|:iate normal dteWitttttgM^ 

|i^; 1iwf*e^_^it:is" possible to analytically pr^ 
through.the multiplicative chain models. As discussed al 
environmental parameters do appear to obey lognormal"statistics. .The 
statistical concepts developed below haze been applied to determining -
the uncertainties in the model predictions of the concentration of 1 3 1 I 
in cow's milk due to transport via the pasturc-cow-milk pathway for 
short-term (hours or days) and long-term (weeks or months) releasee from 
nuclear facilities (Shaeffer and Hoffman, 1979). 

The confidence that can be placed in a giveu parameter, either 
input or output, is determined from the concept of confidence interval, 
which is simply a probability statement, 

P(z x < z < z u) = 1 - a , 0 < a < 1 , (10) 

-where z, and z are determined by the confidence level a and all the 1 u ' 
statistical quantities involved in the determination.of z. Equation 
(10) states that the probability is 1 - o that- the interval from z. to 
z includes the value z. [the confidence intervals for the input data 
and the comparison data are determined in the data treatment stage (Fig. 
1); confidence intervals for the model outputs may be determined in 
either the sensitivity or validation studies.] Equation (10) can also 
be written as 

- I, 
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The parameters y and a are determined by the correspondiag parameters 
wx ' and p °y*' d e f i n i ° 8 t n e lognornal distributions of vhe x 's "i xi J± J i ana y ^ s , respectively, in Eq. (1). The relationship between *11 theae 
quantities is given (Aitchison and Brown, 1969) by c f - -

IS,-, 

li • In A 
i-1 i-1 * 

<-W -:* ?, 

(13) 

«n n 
y oi + y 02 . 
^ x i ^ v i 
i-1 i«l -

(14) 

Substitution of (12) into (11) gives 
l 

1 - o - 1/2 (erf.t - erX t.) , 
M 1 

f 

(15) 



where 

20 

' ' • & " " - - " ' 
(16) 

h - . _ . , (In z, - p ) % CI?) 

and Che notation erf t refers to the error function (Abiamovitz and-
- -- cT , 

<~1 

Stegun, 1972), the values of which are £ 
(17) permit the calculation of the confi 
given interval of z. 

e Equations (I5^?f he 
el associated With-a 

X _ ^ !. J3 ->~'-~S -*.^ .̂1 

Frequently there is a need to know the probability P (z < z ) that 
a contamination level will not exceed a certain limit z .c This limit 

u < 
may be associated with a regulatory standard or with a decision as to 
what level of ecological or health effect is socially tolerable. Mathe
matically this probability may be expressed as 

P(z < z ) = 1/2 (1 + erf t ) , u u (18) 

which is obtained from Eqs. (15) through (17) by setting z.. to zero. 
The limit z is the contamination limit which must not be exceeded, u 
Alternatively, P (z < z ) may be considered as the probability of not 
over-predicting a particular contamination level (e.g., radiological 
dose). 

In assessment work th2 average or most probable value of each of 
the parameters involved in a calculation is often chosen. The average, 
median, and most probable values are all equal for a variable which is 
normally distributed. However, all three values are different for a 
variable which has a lognormal distribution. Aitch'--»n and Brown (Ko9) 
give formulae for the arithmetic average (mean) z,~the median (geometric 
mean) z^, and the most probable value (mode) z for a variable z which 
is lognormally distributed. The arithmetic average z is 
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exp(. -) . (19) 

The median z is 
m 

z = exp(w) 
m 

The most probable value z is 

z = exp(u - c') -

Which of these three quantities is most appropriate for doir»g 
assessment calculations? Th^ answer is obtained by investigating the" 
probability of a contamination level not exceeding each of these three 
quantities. Substituting z, z , and z from F.qs. (19) through (21), 

m p -
respectively, for z in Eq. (16) tne following result is obtained from fWk 
Kq. (18): 

l'(z < z) = 1/2 

P(z 

1 + erf 
m 

(22L# 

2J 1/2 , and <23>"; $ 

!'(> >- ) = 1/2 P 1 - erf [--- (24) 

Thus the probability of not exceeding contamination levels associated 
with z and z if, dependent entirely on the standard deviation a, ; 

P . 
As the data become more precise and a decreases toward zero, all 

three probabilities approach 50%. As r, becomes large the probability of J• <j 
not exceeding the average contamination level approaches 100%. The - ;-*l 
median (geometric mean) contamination level always gives a 50% probability 
of not being exceeded. The maximum probability of not exceeding the 
most probable value is 507.. If a is very large, then the probability of^% 
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not exceeding z approaches zero. If a probability greater than 50% of 
not exceeding a contamination limit is desired then the median and most 
probable values are inappropriate choices. In fact, depending on the 
magnitude of a, a 99% probability may be achievable only for some con-
tamiuation considerably greater than the m<_an (Shaeffer and Hoffman, 

1979) • 
. - - c 

In many applications the contamination z is proportional to a 
concentration x of the contaminant in a given environmental media. 

' Therefore, z, z , and z are also dependent on x* Consequently, a 

>JiR«* 

permissible concentration x M is associated with the contamina
tion limit. This x M is, different for z, z , z , and z Q Q„ (the value for 
\which"'there is a 99% probability of^not being exceeded). The relation
ship-between these maximum allowable concentrations associated with z , 
z . z, and z f t o_ aay be showa to be, respectively, 

, -a 2 -3a2/2 -(2.326+o)a V^^W'^ = 1;-e *e :e C>5) 

-Thus there can be a large difference between x ai»d XQQv> depending on a. 
- < The results of an analysis by Shaeffer and Hoffman (1979), using 

the above method, show.that there is considerable imprecision in the 
"values of parameters used to predict doses to an individual's thyroid 
resulting from the ingestion of milk contaminated following releases of 
modecular iodine, 1 3 1 l 2 , from nuclear power facilities. Consequently, 
the values of dose predicted with a simple multiplicative chain model 
exhibit considerable spread.' This analysis indicates that if short-term 
(hours or days) averaged values for the pasture- cc'-milk pathway param
eters are used to calculate annual doses, then the maximum allowable air 
concentration associated with the most probable dose must be reduced by 
a factor of 19 to obtain a 99% probability of no', exceeding a Jose 
limit. On the other hand, the use of long-term (weeks or months) 
averiged values implies that the maximum allowable air concentration 
associated with the moat probable dose must be reduced by a factor of 10 
to obtain a 99% probability of not exceeding a dose limit, such as the 
EPA dose Unit of 75 Millirems per year to an individual's thyroid (U.S. 
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EPA, 1976). However, because of the quality of the data available for 
the analysis, these numbers should be treated with caution. A fuller 
delineation of this point is given by Shaeffer and Hoffman (1979). 

VALIDATION 

The validation of models and computer codes has been a subject of 
considerable discussion In the literature, "ne issue revolves around 
the question of whether there is any meaningfulness in ancattempt to 
validate a model. The problem stems from the fact that a model is an 
abstraction and <. mathematical representation of reality. As such a 
model can never completely duplicate reality under all conditions. In 
fact some models predict quantities which are not measurable and there
fore excluded from possible validation. Also, some models are not meant 
to be validated and are designed for the purpose of guiding research. 
However, many models are designed for predictive purposes and often may 
be compared against historical data. Some of these models are intended 
to more fully understand fundamental processes, and others exist to 
predict the consequences of a postulated set of actions. 

Mankir. et al. (1975), in their treatment of the validity of eco-
logica. models from the point of view of set theory, define all models 
as being invalid but consider a model to be "useful" if it faithfully 
predicts some of the behavior of the system being modeled. House (1974), 
in a discussion of models used for forecasting, contends that validation 
of social science models is an impossibility because of Heisenberg's 
Uncertainty Principle, which implies that a complete picture of reality 
is unobtainable. Such an argument is an excursion into the realm of 
epistemology.^ Caswell (1977) makes a distinction betveen corroboration 
and validation. The former term is applied to models designed to increase 
understanding of the laws of nature. In this regard Caswell raises the 
question as to how one can infer the truth of a universal statement from 
observations of particular phenomena. He maintains that a scientist's 
efforts should be directed toward invalidating theories rather than the 
contrary. Caswell also maintains that the important issue to be settled 
with predictive models is the range of conditions over which they give 
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meaningful results. Validity, a tens applied by Caswell only to 
predictive models, is a matter of degree and depends on the intended use 
of the model and the validity criteria imposed by the model user. 

.The users of models designed for assessment purposes are probably 
aligned with Caswell's thinking. Modeling for the sake of enhancing the 
understanding of nature has a need for invalidity in order to allow room 
for additional fundamental research (or funds) to discover new truths 
and guide further experimentation.' Environmental assessment modeling 
has a need for validity, in order to':pr6v£3e:confidence in the predic-
tions of the impact of technology on iafr-'and his environment. 

Only those routines or: .formulae which predict results that are 
measurable and are; not dependent upon inputs unsupported by data can be 
validated. In other words, predicted results will have meaning only if 
they depend on experimentally measured parameters. The degree of the 
meaningfulness may be checked only by comparing the predicted quantities 
with experimental data. Also, the validity must be determined only for 
those circumstances for which the model is intended, as stared or implied 
in the model or computer code documentation. If a model or any of its 
subcomponents cannot be validated due to a lack of data then the model 
examination procedure must be relied upon to make a judgment as to the 
reasonableness of the assumptions and the structure of the model. 

Validity Types 

The kind of validity concept to be applied to a given parameter 
will depend upon the amount of data available. Three types of validity 
are defined here: statistical, deviative, and qualitative validity. 
These concepts are applicable to single output quantities. If the 
output is statistical in nature, the accuracy and precision of the 
predicted and measured quantities should be similar. Conceivably, model 
predlcticns could yield a statistical average which is acceptably close 
in value to the average of the data against which the predictions are 
being compared and yet exhibit a variance which is unacceptably larger 
than the variance of the comparison data. The converse situation is 
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also conceivable. Consequently, two statistical tests are needed, that 
is, one for the average value and one for the variance. 

Various statistical procedures IZar, 1974) are available for test
ing whether the accuracy or precision of two different distributions are 
in agreement. If application of these tests leads to the conclusion 
that the cwo distributions are equivalent, then we say chat the model is 
statistically valid. For certain quantities (e.g., air or water concen
tration of pollutants) of interest to environmental assessments, the 
predicted quantity x is required to be greater than the ueasured quantity 
y, that is, x > y. This ia typically considered to be a conservative 
approach. The statistical tests given by Zar can be Adjusted co allow 
for the desired conservatism. The acceptable degree of discrepancy 
between predicted and measured quantities must be determined by the 
decision makei. 

If sufficient data are unavailable to characterize the output as 
statistical, a test of deviative validity might be applied. The devia
tion of a predicted value from a measured value might be evaluated in 
terms of a deviation coefficient defined as 

D = *-=_2L . (26) 

A model is said to possess deviative validity if the model passes the 
test D < e ,, where f. , is a deviative validity criterion supplied by a a 
subjective judgment, such as that provided by a decision maker concerned 
with compliance to a regulatory statute. 

More frequently, however, the concept of qualitative validity is 
applied. This simply means that the agreement (or disagreement) between 
model predictions and observed data is rated on a qualitative scale. 
Foi example, such a scale might consist of the validity levels: excellent, 
good, fair, poor, and unacceptable. Such a refined scale may not be pos
sible in reality. Again, the satisfactory degree of validity must be 
determined by the decision maker. From this discussion comes the con
clusion that validity is a matter of degree, depends on the information 
available, a.u6 is subject to the requirements established by a decision 
maker. 
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There may be a requirement to select the best model among many 
which are designed to predict the same quantities under similar situa
tions. In this case the models or codes might be ranked according to 
theit degree of validity. This ranking may be referred to as "compara
tive validity." In other words, one model or code may appear to be more 
valid than another. This kind of validity does not indicate whether 
either model is sufficiently valid. Goodall (1972) provides an excellent 
discussion of model comparison. 

The appropriate test of validity depends upon the output, which in 
turn depends on the input. The output from a computer code will be 
statistical in nature if it depends on at least one statistical input 
parameter. Therefore, a statistical test of validity may be applied to 
an output quantity only if it is a function of some statistical parameter. 
If the output ia nonstatistical, the deviative and qualitative tests of 
validity may be applied. If comparison data are nonexistent or if a 
quantity of interest is not one of the outputs of a model, a validity 
test cannot be performed. 

Global Validity 

The validity tests mentioned above are applicable to single output 
variable:*. However, there may be occasions when the overall judgment of 
validity of the code may be desirable. For example, a model may have 
several output juantities, such as concentration and temperature, as a 
function of distance from the releasa point. In any given situation one 
of the quantities might pass a test of validity and the other might not. 
If all the outputs of a model pass a validity test for a given set of 
circumstances, the model is considered to be globally valid. If the 
model is not globally valid, each output quantity must be separately 
identified as being '.id or invalid. 

Validity Consistency 

"Validity consistency" refers to the variation of validity among 
calculations having different input and/or comparison data sets. A 



model may "»e valid under one jet of conditions but invalid under another. 
Here, only the ran;;e of conditions for which the model is supposedly 
applicable, as determined from the model or code documentation, is of 
concern. This concept is similar to that of model "adequacy"' developed 
by Mankin et al. (1975). 

The author is aware of at least one model which gave an excellent, 
fit to some observed data and therefor*:- was deemed valid. However, nn 
alternative test performed under different conditions would undoubtedly 
have proven the model to be invalid because ot the inclusion of some 
incorrect physical assumptions. The model proved to be valid for one 
set of conditions only because the incorrectness of the physical assump
tions was not important in that situation. Thus, a model proven to be 
valid for on"> set of input parameters may be invalid for another. There 
may exist in the model some unreasonable or reruted theories which have 
no effect in o\e predictive situation hut which surface in anotht-r. 
Hopefully, some of these problems might be uncovered in the model examin
ation process. 

Application of Validity 'lests and Concents 

Frequently, environmen'.al assessment niLoils are developed without 
any validation attempt be ng made. This is particularly true ot large 
systems models which incl ide biotic as well as abiotic processes and 
which are often used for the develon^-^pt <n environmental impact state
ments. These models may never be subject to validation because o\ the 
lack v)f understanding on how to perform the appropriate experiments. 
The veracity of the predictions of these large systems models is judged 
primarily by intuition and the reasonableness of these predictions. For 
those models which have been validated to some extent, very few have 
been subjected to a large number of validation experiments performed 
under different environmental, conditions, that is, Vt_-ry few mod-Is have 
been tested for validity consistency. In addition, many models can onlv 
be partially validated because of the limited data available. V.xampies 
are the environmental transport models of hraslan ei aJ. (19/7) and the 
ground-water transport models of Duguid and Reeves (I'J/'h) and Keeves and 
Duguid (197b). Only [tortious of these models can present ly be validated. 
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The model of Jackson and Yotsukura (1977) for predicting thermal 
loading of natural streams was found not to be globally valid, due to 
the fact that the transport (convjctive-dif fusion) aspect of the model 
gave satisfactory agreement with field data but the decay (surface 
dissipation) of waste heat did not. Additionally, the Jackson-Yotsukura 
two-dimensionai model for excess temperature was tested for validity-
consistency and found to give satisfactory agreement with data obtained 
from several different streams. However, some cases were found for 
which the agreement was not satisfactory. Yotsukura and Sayre (1976) 
tested for validity consistency their steady state two-dimensional model 
for solute concentration in a meandering nonuniform natural channel and 
obtained excellent agreement between model predictions and measurements 
made in several streams. 

A simple multiplicative model for atmospheric transport (Manna, 
1971; Hanna, 1973) has been applied to several different environmental 
situations (Hanna, 1975; Koch and Fisher, 1976; Hanna and Gifford, 
1977). Miller et al. (1976) have applied a combination of a deviation 
coefficient, similar to Kq. (2), and a qualitative validity scale to the 
validation of an ecological system model used to predict pollutant 
transfer in an aquatic ecosystem. The authors contend that model valida
tion and sensitivity analyses should °,e an integral part of the model 
development process. These parallel activities facilitate in guiding an 
experimental program. 

Nappo (1974) presented a methodology for validating air pollution 
models. This methodology involves the calculation of temporally and 
spatially averaged linear vjrrelation coefficients. Nappo also uses 
time-averaged and space-averaged ratios of predicted concentrations to 
observed concentrations of pollution in air. 

The correlation coefficient o is a useful concept but is not suffi
cient for determining the accuracy of a model, which Nappo realizes. 
This fact may be seen from the definition of the correlation coefficient: 

p ™ELZ*£ZL ^ ( 2 ? ) 

[Nix2 - (Ex) 2! 1'* IHEy' - (Sy) ?) l / ? 
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where x is the predicted quantity, y is the measured quantity, N is the 
total number of predictions (or measurements), and - represents the sun 
over all predictions and/or ajeasurements. If all the data y. are su. -
iected to a linear transformation of the form vf = av, + b, where a is 
•• 0 and b is any real number, then the correlation coefficient remains 
unchanged. If a is < 0, the magnitude of . stays the same but the value 
of c changes sign. These facts simply illustrate that two different 
sets of model predictions can be linearly transformed with respect to 
each other and still have the same value fcr the correlation coefficient. 
Thus model predictions may be off by a factor < f 100 (or any ether 
number) and still produce a statistically significant correlation with 
the data. The correlation coefficient is therefore a measure of trend, 
but not of accuracy. Consequently, another te3t is needed lor deter
mining accuracy. Nappo supplies such a test in the form ot the averaged 
ratios of predicted to observed air concentrations mentioned above. 
However, such ratios may be statistically biased if the data come from a 
censored distribution of values (Shaeffer and Little, 1978). 

Nappo fails to mention that the linear correlation coefficient is 
derived from Gaussian statistics. This is particularly important in 
view of the fact that air pollution data are often lognormally distributed 
(Gifford, 1972). If such a situation is anticipated, the model predic
tions and the comparison data should all be log-transformed before the 
correlation coefficient is calculated (Miller, 1978). Additionally, 
nonparametiic correlation coefficients such as Spearman's may be more 
appropriate than the linear correlation coefficient when the data are 
suspected of obeying neither normal nor lognormal statistics. 

Alternative methods to those of Nappo are such statistical tests as 
the faired-sample t tests (Zar, 1974). The two-tailed hypothesis could 
be used to test whether there is any significant difference between 
model predictions and the observed data. The one-tailed hypothesis 
could be useful in ascertaining whether model predictions are higher or 
lower than the values of the comparison data. If the data are suspected 
of being nonnormal (even if they are log-transformed), then perhaps the 
Wilcoxon paired-sample test, a nonparametric analogue to the paired-
sample t test, would be appropriate. Generally, the performance of more 
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than one type of statistical test is advisable to ensure that errors of 
Type I or Type II (Zar, 1974) are not committed. Many other statistical 
tests not uentioncd here are available. In addition, there is no sub
stitute for visually inspecting the data rather than blindly going 
through a lot of numerical calculations. 

CODE COMPARISON 

The existence of several computer codes that perform similar tasks 
may require an evaluation of the relative merits of these codes to 
enable the user to select which ones might be most appropriate for use 
in a given analysis. This evaluation will involve comparing the outputs 
of different codes with each other, including actual values and the 
general character of any time-dependent behavior. In addition, a com
parison should be made of the differences in validity among computer 
codes, if any of the model outputs are statistical, the differences in 
the confidence intervals of the predicted quantities must be ascertained. 
A comparison must also be made of the input data requirements, program
ming needs (i.e., debugging and algorithm improvement), computer require
ments (e.g., special compilers, macros, overlays, double precision, 
etc.), sufficiency of documentation, and the sufficiency and readability 
of the printed output. Finally, the time and cost required for execution 
of each of the codes must be compared. Hopefully, a combination of a 
-knowledge of the structure of the models and codes and the results of 
the sensitivity studies will reveal the reasons for the differences 
among the codes and will identify needed programming and modeling 
improvements. 

MODEL SELECTION 

Models chose;1, for environmental assessment purposes should be ones 
which rely upon available data. Many models include detailed physical, 
chemical, or oiologicnl mechanisms for which there are no data. The 
usefulness of such models is subject to question. Often certain com
plexities may be omitted such that the model depends only on available 
data, A model which lacks input data cannot be validated in its entirety 
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A model should also be validated not just for one situation but for 
many (i.e., a model should be tested for validity consistency). If more 
than one such model is available, one may have to determine the trade
offs of choosing one model over another. Perhaps more than one model 
should be selected. Many of these decisions involve scientific and 
engineering judgment. The simplest model which can be acceptably vali
dated is deemed more suitable than a more complex model. This suggests 
that an.attempt should be made to validate the simplest model first. If 
this attempt fails then the validity of the models representing the next 
higher level of complexity should be examined, providing Chat sufficient ' •-

data exist to permit such an attempt. The validation procedure should 
be applied to models of progressively increasing complexity until one is 
found to satisfy the validity criteria. However, failure to validate a 
simple model does not guarantee that a more complex model can be validated. 

CONCLUSIONS 

A generalized conceptual approach to the evaluation of environmental 
assessment models has been presented. This approach consists of six 
major tasks: model examination, algorithm examination, data evaluation, 
sensitivity analyses, validation studies, and code comparison studies. 
Each of these tasks is helpful in determining the capabilities of a 
model. Data evaluation is perhaps the most neglected step. Often the 
experimentalist does not report all the errors associated with a given 
measurement and/or the user will place more weight on the accuracy of a 
model prediction than is warranted by the data on which that prediction 
depends. The quality of a model prediction is no better than the quality 
of the data available for the input parameters to that model. Consequently, 
environmental assessors should attempt to ascertain the quality of the 
data used in assessment models. Sensitivity analysis is helpful in 
determining whether the uncertainty in an input parameter has any effect 
on the variation of a model prediction. 

Models are often developed without any thought given to the per
formance of validation experiments from which the accuracy of model 
predictions might be determined. Although validation studies cannot 
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even be attempted on some models, such as the ecological systems models 
which include biotic and abiotic processes, the literature reveals that 
too little effort has been devoted to validating models for which such 
studies are possible. Validation is an important process whereby con
fidence in the predictive capability of a model might be enhanced. In 
the event that validation experiments are not possible then an attempt 
should be made t-> quantify the uncertainties in the model predictions 
due ro the error associated with each of the input parameters. A method
ology was presented above for performing this kind of analysis on multi
plicative chain models having parameter values which are statistically 
independent and lbgnormally distributed. '•"^•'¥'--

Several different wayt^of viewing the validity ofjjgjjp|ijfel have been 
presented and validity has been seen to be a matter of degree, dependent 
on the information available and subject to the requirements established 
by the decision maker. In addition, the validity of a model should be 
determined by comparing model predictions to data obtained from several 
different environmental situations. The process of selecting suitable 
models for environmental assessment purposes should give weight to those 
models which have a minimum need for unknown parameter values. Finally, 
the simplest model which can be acceptably validated is deemed most 
suitable for environmental assessment purposes. 
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