
!4 GENERAL PURPOSE -

OPERATOR INTERFACE

July 1979
8 . 7 c- ,,j'

Internatimal Society for
Mini and Plicrocoanputers
September 26-29, 1979
Wont~eal , Canada

HAWORD EN61NEERIW6 D f f W)PYE#T UBORAiORY
Bgsrabd by WcotEn#hoasa Hanford Company, a rubsidiafy of
WestiRgbuw Electrk Cerporotian, under the Department of

Energy Contact EY-76.ClC2170

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

A GENERAL PURPOSE OPERATOR INTERFACE

S c o t t I . Bennion

Hanford Engineering Development Laboratory

Richland,. Washington 99352

Abstract

The Hanford Engineering Development Laboratory i n Richland,
Washington i s developing a general purpose operator interface fo r con-
t ro l l ing set-point driven processes. The interface concept is being
developed around graphics display devices w i t h touch sensi t ive screens
fo r d i r ec t interaction with the displays. Additional devices such as
trackballs and keyboards a re incorporated fo r the operator 's convenience,
b u t a re not necessary fo r operation. The hardware and software a re
modular; only those capabi l i t ies needed for a .particular application
need t o be used. The software i s writ ten i n FORTRAN IV with minimal
use of operating system c a l l s t o increase portabi l i ty . Several ASCII
f i l e s generated by the user define displays and correlate the display
variables w i t h the process parameters. I t i s a lso necessary f o r the
user t o build an interface routine which t rans la tes the internal graphics
commands into device-specific commands. The interface i s suited fo r
both continuous flow processes and uni t operations. An especially use-
ful feature fo r controll ing u n i t operations i s the a b i l i t y to generate
and execute complex command sequences from ASCII f i l e s . This fea ture
re1 i eves operators .of many repe t i t ive tasks.

Introduction

Nearly a l l computer-based data acqusition o r process control app-
l ica t ions require an interface t o an operator who ultimately controls
the ac t iv i ty of the system. A considerable portion of the implementation
of such systems i s directed a t the development of a su i tab le operator
interface. I t i s important tha t these interfaces provide accurate,
timely information i n a concise, unambigious manner. Once these c r i t e r i a
have been met, i t i s then highly desirable f o r the interface to be both
standardized and expandable.

An e f f o r t to develop such a system i s presently underway a t t h e
Hanford Engineering Development Laboratory (HEDL) in Richland, Washington.
A general purpose operator interface is being developed which will be
sui table f o r most future needs. The basic system u t i l i z e s color graphics
displays f o r information display and touch sensi t ive screens on the dis-
play monitr,i:s f o r o v e ~ a t o r interaction. A number of hardware and sof t -
ware options provide considerable enhancerritnt and expansion capacity.

The user is afforded considerable l a t i t ude i n configuring an
operator 's console ta i lored t o his spec i f ic requirements. He can choose
from a number of options as shown i n Fig. 1. The system was designed to
allow addition of new hardware devices. That addition should simply be
a matter of providing a physical interface and ins ta l l ing an appropriate
software interface module.

Central Processor

r

Color Graphics

Display Sys tem

Figure l."Hardware'Options

I I 1

Touch Screen -

Device

I

One of the primary goals was to provide the user with the maximum
flexibility in his selection of each hardware device. Thus one user
might choose to install an inexpensive color graphics terminal while
another might opt for a powerful graphfcs processor. The two users will
realize markedly different operational characteristics due to the widely
divergent capabilities they paid for. However, both will be able to
make use of the basic software package and hardware configuration with
little or no change. Similarly, a user can upgrade to more powerful
hardware with minimal mdifications in the overall system.

A1 phanumeri c

Monitor
1

Programmabl e

Knob

A

The graphics display device is the principal element in the operator
interface. The software was developed in a general manner to allow the
use of most available .devices, including the case of limiting the "graphics"
to black and white alphanumeric displays. The intent at HEDL is to con-
centrate on the use of microprocessor-based color graphics terminal s. The
use of color graphics provides maximum flexibility to the system enyir~eer
in designing and implementing a data display and process control scheme.
Complex data relationships are communicated efficiently and clearly
through graphical displays. Adding color to the display greatly increases
the density of information which can be displayed and comprehended. The
use of color graphics essentially adds another dimension to the display
without significantly increasing the probability of operator confusion.

Trackball A1 phanumeri c
Keyboard

F

Graphics displays allow the operator to view all required process
data at a compact work station. Instead of having a control console con-
sisting of many dedicated signal indicators laid out in a large area, he
receives the information he needs in the form of graphic displays. During
steady-state operation., he monitors a summary display which shows the
key system parameters. During an alarm situation, he observes detailed
displays providing data related to the alarm. In all cases, he observes

the information he i s currently interested in. A compact console i s
capable of bringing a great deal of process information to a s ingle work
s tat ion. The t radi t ional control room requires tha t the opera tor travel
around the control room gathering the information he needs.

Another consideration to note here i s thatreconfiguring the signal
display in a t radi t ional control room i s a complex hardware modification
task. In the graphics approach, i t consists of simply reformatting the
displays.

The graphics display device must be capable of processing a small
s e t of displayable commands. All displayable commands from the software
package are sent as a s t r ing of characters conforming to the American
Standard Code fo r Information Interchange (ASCII). These ASCII s t r ings
are interpreted by the display terminal. The actual method of command
interpretat ion i s unknown to the operator interface software and could
be any one of several methods, including a separate software in te rpre ter
i n the host computer, firmware in the display terminal, or a hardware '

implementation i n a graphics processor.

A serious deficiency in the prevalent implementations of graphics-
, based display and control systems is the practice of requiring the

operator to communicate w i t h the control software through a keyboard using
standard commands. System operators a re highly sk i l led individuals
trained to perform a complex task. To also require them to be a sk i l led
typ i s t i s an undesirable s i tuat ion. D u r i n g system transients or off-
normal operations, where the i r s k i l l s and judgement a re most severely
taxed, they are also expected t o perform the manual command entry functions
most frequently. This conf l ic t requires tha t considerable time and e f f o r t
be expended in developing the i r manual ski 11s to a high level , resul t ing
i n the loss of otherwise qualified operators who do not happen to possess
the manual dexter i ty , required t o type quickly and accurately i n a s t r e s s
s i tuat ion. A decision was made a t HEDL t o u t i l i z e the concept of touch
sensi t ive screens (touchscreens) on the display devices to eliminate the
need for keyboard entry of commands.

For our purposes, a touchscreen i s defined as a device which reports
the position of an operator 's f inger on or near the screen of the display
device. 'The principal devices presently available a re based on one of
three general approaches. The f i r s t approach consists of imposing a
matrix of 1ight.beams over the display screen. When the operator touches
the screen, the broken beams a re detected, generating a position signal
to the host computer.

In the second approach, ultrasonic pulses a re periodically pro-
pagated along the screen in the horizontal and vert ical directions.
Touching the face of the screen produces an echo. The echo timing pro-
vides suf f ic ien t data to determine the location of the disturbance.
This location is determined by the device electronics and sent to the host
computer .

The t h i r d approach cons is t s o f generat ing a s tand ing vo l tage
wave on the sur face o f t he d i s p l a y device. When t h e screen i s touched,
a conduct ive ove r lay makes con tac t w i t h the screen, p i c k i n g off a pro-
p o r t i o n a l vo l tage which a l lows determinat ion o f t h e con tac t l o c a t i o n .
Each o f these approaches invo lves a se r ies o f design t radeof fs
i n v o l v i n g reso lu t i on , accuracy, re1 i a b i 1 i ty, and cost . The opera tor
i n t e r f a c e was designed t o a l l o w t h e system engineer h i s choice o f devices
based on the sys tem requ.i rements .

The touchscreen a l lows the opera tor t a d i r e c t h i s a t t e n t i o n a t t h e
d i s p l a y a t a l l t imes ins tead o f s h i f t i n g from t h e d i s p l a y t o t h e key-
board and back again. A l l c o n t r o l ac t i ons a re i n i t i a t e d by touching the
approp r ia te area on the d i sp lay .

I n a d d i t i o n t o the s igna l i n d i c a t o r s , a t r a d i t i o n a l c o n t r o l room
conta ins many manual i n p u t devices such as pushbuttons and knobs. A
means must be provided t o d u p l i c a t e t h e i r f unc t i ons f o r t he opera tor
i n t e r f a c e t o be e f fec t ive . An approach which has been used w i t h some
success i s t o prov ide a s e t o f general purpose pushbuttons which a r e
used as the i n p u t devices. The i r f u n c t i o n s a r e mod i f i ed under program
c o n t r o l t o prov ide mu1 t i p l e uses f o r each but ton. The c u r r e n t func t i on
o f each bu t ton i s i n d i c a t e d through a v a r i e t y o f means, i n c l u d i n g p l a s t i c
overlays, p ro jec ted over lays, back l i gh ted keys, o r a d isp layed menu of
func t ions .

By combining t h e touchscreen concept w i t h a small alphanumeric moni tor ,
t he opera tor .can be provided w i t h a very v e r s a t i l e s e t o f programmable
pushbuttons. The but tons a re c l e a r l y l abe led w i t h t h e i r f unc t i ons and
opera tor prompting i s a v a i l a b l e through t h e use o f b l i n k i n g and reverse
video. When t h e opera tor changes h i s c u r r e n t d i sp lay , t he programmable
pushbuttons on h i s alphanumeric moni to r a r e a l s o updated. The system
engineer has a g r e a t deal o f f l e x i b i l i t y i n the c o n t r o l scheme design by
dec id ing which i n p u t func t i ons w i l l be generated through the graphics
d i sp lays and which w i l l be generated through the programmable pushbuttons.

The opera tor must be provided w i t h a method o f a d j u s t i n g system para-
meters q u i c k l y and accura te ly . The c a p a b i l i t y f o r two types of i n p u t
a re provided. The f i r s t cons is t s o f " increase" and "decrease" but tons
on the d i sp lay . By touching a button, t h e parameter i s ad jus ted i n t h e
i n d i c a t e d d i r e c t i o n u n t i l t he des i red s e t p o i n t i s achieved. Th is o p t i o n
i s genera l l y used i n s i t u a t i o n s where adjustments can be an t i c ipa ted . I n
t h i s case t h e adjustment c a p a b i l i t y i s b u i l t d i r e c t l y i n t o the d i sp lay .
The second approach u t i l i z e s an incremental s h a f t encoder mounted i n
the c o n t r o l console. The c u r r e n t assignment o f t h e knob i s d isp layed
on one of t h e d i s p l a y devices. Under opera tor c o n t r o l , t he knob can be
assigned as t h e c o n t r o l device f o r any system parameter. This assign-
ment i s then i n d i c a t e d on the reserved d i s p l a y l i n e .

The parameter behavior under e i t h e r o p t i o n i s c o n t r o l l a b l e by t h e
operator . He has h i s choice o f l i n e a r , l o g a r i t h m i c o r incremental ad-
justments, choice o f sca le f a c t o r and cho ice o f p o s i t i v e and negat ive

values, posit ive only, or an interval . In a l l cases where adjustment
. huttons a re provided as par t of the display, he can override those

buttons and assign a programmable knob to the parameter.

Two other devices were made available d u r i n g the i n i t i a l system
design; a trackba1:l and keyboard. The trackball was provided a t the
request of potential system users involved i n the design of a control
system fo r a high-energy par t ic le accelerator. The use of t.rackballs
fo r operator i n p u t in th i s type of application i s widespread and well
accepted. Even though the trackball i s a redundant feature due to the
presence of the touchscreen, i t was f e l t tha t the addition of the track-
ball would ease the t ransi t ion period fo r trained operators.

Even though the system is completely operable without a keyboard,
the capabili ty of connecting a keyboard fo r use as an i n p u t device
was considered important. The keyboard i s par t icular ly useful d u r i n g
system integration and checkout. All inputs are presented to the sof t -
ware as s t r ings of ASCII data. This allows.any input device to ' be
checked out with,or replaced by,a keyboard. I t i s anticipated tha t
the keyboard will not normally be connected to the interface system;
rather i t will be used by hardware and software maintenance personnel to
diagnose system errors and to make modifications to the system .functions

Once the operator interface hardware i s configured and the system
engineer has designed the display fo.rmat and content, he must build
three f i l e s t o implement his system. These configuration f i l e s consis t
of the display f i l e , the background f i l e , and the symbol l ibrary . An
additional s e t of f i l e s , the command i n p u t f i l e s , a r e b u i l t once the
system i s operational i f the user wishes t o u t i l i z e the command i n p u t
capabi 1 i ty f o r u n i t operations.

The configuration f i l e s a re ASCII source f i l e s constructed according
to a specified format. This simplifies generation and checkout as well
as e r ror detection'and correction. This s t ruc ture also improves the
i n i t i a l software implementation e f f o r t since the data i s eas i ly read and
traced.

All display parameters a re assigned to a symbol type. Each symbol
type has a specified display format and s e t of valid values. Examples
of symbol types would.be a normalized bar graph w i t h associated percent
of fu l l scale and alarm s ta tus , a proportional value w i t h an open/closed
indication and percent.aae opcn, or a t ex t symbol fo r display nf alpha-
numeric dats.

The user defines his s e t of valid symbols by building a symbol l ibrary . .

The symbol l ibrary i s accessed by symbol name. Each symbol name has
associated w i t h i t a collection of records. Each record corresponds to
a valid symbol value or s ta tus . The current parameter value i s used to
access the correct record. Within each record a re the ASCII command
sequences necessary t o display the symbol i n the appropriate s t a t e .

These commands a l l plot the symbol re la t ive to the current cursor
position rather than a t an absolute 1 ocation.

For new applications, the user has access to a l l symbol l i b ra r i e s
previously created. Since they are source f i l e s , he can use these
l ib ra r i e s to assemble his own l ibrary quickly through the use of a t ex t
edi tor . He then completes his .l ibrary by defining any new display syrr~bols
he needs and adds his new symbols to a master l ib rary f i l e f o r the
benefit of fu ture users.

In most cases, the majority of .the display contains only s t a t i c
information, the display background. The variable portion i s a small
percentage of the total display. In addition, several d i f fe rent displays
often make use of the same background display. In order to reduce
redundancy i n the f i l e system, these background displays are stored
separately from the defini t ion of the dynamic portions of the display.
When a new display i s invoked, the appropriate background i s re treived
and displayed, then the variable data i s overlaid on the background.

The background f i l e i s accessed by background f i l e name to re t re ive
the executable command sequence needed to draw the s t a t i c background. This
command sequence is one of two types. When the display hardware has the
capabi 1 i ty f o r d i rec t memory access (DMA) , the command sequence i s simply
a memory restore command referencing the memory image f i l e of a previously
saved screen image. When DMA capabi l i ty i s not provided, the command
sequence necessary t o draw the background through the display command
interpreter i s retrieved.

The user generates his background f i l e in a manner appropriate to
the hardware capabi l i t ies he e l ec t s to provide. When DMA i s avai lable ,
he simply draws his background and saves the screen image under an appror
p r i a t e f i l e name. When DMA i s not available, he generates a sequence of
executable Lommands which will draw the background when they a re processed
by the command interpreter .

The display f i l e is the primary implementation f i l e . I t defines the
data content and format of the display as well as the response of the
touchscreen. The contents of the display f i l e a re used to s e t u p the
current display.and to load two dynamic f i l e s which change along w i t h
the displays, the parameter correlation f i l e and the screen vectors. ,

The display f i l e i s actual ly a collection of f i l e s . Each display has
a unique name which i s the access key t o the proper f i l e . Each f i l e con-
ta ins a collection of records. Each record contains a vari , ible name, a
parameter name, a symbol name, and x- and y-coordinates,and i f the defined
screen location has an associated touchscreen response, one or more
tokens, (a token i s a syntact ic en t i ty such as a keyword, i den t i f i e r o r
opera tor .)

The variable name i s the internal label assigned t o a referenced
external parameter. A1 1 internal references to 'data a re made throygh
variable names.

Whenever a new display i s invoked, the display f i l e i s accessed
to re t r ieve the description of the new display. When t h i s takes place,
a dynamic f i l e , the parameter correlation f . i le , i s updated. The para-
meter correlation f i l e consists of a ser ies of records keyed on the
parameter name. Within each record i s a l i s t of a l l variable names
currently associated w i t h tha t parameter name. Note tha t a l l valid
parameter names a re contained . i n the f i l e even though they may not a l l
have a variable name currently associated w i t h them. Whenever a command
i s received vhich refers to a parameter name, the name i s ver if ied
using the paraliieter correlation f i l e . If the name i s n o t found, a n
e r ror condition exis t s and the user i s notified of an inconsistency in
his display defini t ions.

Whenever data i s received from the external process, i t i s ident-
i f i ed by parameter name. The parameter correlation f i l e i s used to
associate the data with the proper internal variables. Note tha t several
internal variables can refer to the same parameter name b u t t ha t the
converse is not true. In th i s way, the same external parameter can be
tracked on several d i f fe rent displays i n several d i f fe rent formats.

Each internal variable has associated with i t a symbol name. This
symbol name, as previously described, defines the display format of the
variable and i t s allowable values. .

As was also previously mentioned, the executable commands i n the
symbol l ibrary are a l l r e l a t ive commands f o r plott ing i n re lat ion to
the i n i t i a l cursor position. The x- and y-coordinates associated w i t h
each variable name specify the screen location f o r the cursor when
plott ing the symbol.

For those internal variables with an associated touchscreen response,
the display f i l e contains one or more tokens. These tokens cons t i tu te
a l l o r par t of a system command. A t the same time tha t the parameter
c o r r e l a t i o n . f i l e i s updated, the screen vectors a re also updated. The
screen vectors consist of a screen position and associated tokens. When
the screen i s touched, the location i s sensed and the tokens a re sent
to the command interpreter . In t h i s way, the touchscreen replaces the
keyboard by composing commands as i f they, were from the keyboard b u t
without the operator needing to be aware of the specif ics of the syntax.

A very powerful capabi l i ty which is provided f o r the .user i s the
command.input f i l e . These f i l e s a re sequences of valid commands which
are processed without operator involvement. This allows the user t o
s e t u p f i l e s to perform repet i t ive or well-defined operations, freeing
the operator t ~ . ~ a y , a t t e n t i o n t o . t h e overall process. T h i s feature i s
par t icular ly useful i n d i scre te operations where.a se r i e s of identi-
f i ab le operations takes place and ' i n directing a continuous flow system
through a predetermined process cycle.

The command input f i l e i s an ASCII source f i l e containing valid process
commands, Once the f i 1 e begins operation, i t continues without operator

i n t e r a c t i o n . Each t ime a command i s s a t i s f i e d , t he nex t command i s
read f rom the f i l e and executed; A d d i t i o n a l f ea tu res i n c l u d e n e s t i n g
o f f i l e s w i t h mu1 t i p l e passes and c o n d i t i o n a l operat ions.

An execut ing command i n p u t f i l e can i n i t i a t e t h e execut ion o f
another command i n p u t f i l e . That f i l e can i n t u r n invoke y e t o the rs
t o a n e s t i n g depth determined o n l y by t h e amount o f memory t h e user
wishes t o a l l o c a t e t o t h e s tack area. When an invoked f i l e completes
i t s operat ion, commands a r e accepted f rom the c a l l i n g f i l e s t a r t i n g
w i t h t h e nex t sequent ia l command. Th is f e a t u r e a l l ows t h e rrser t o
b u i l d h i s c o n t r o l f i l e s i n a systemat ic manner and share common opera-
t i o n s w i t h a s i n g l e command i n p u t f i l e , much as t h e use o f subrout ines
a l lows shar ing o f common processes.

The n e s t i n g f e a t u r e a l so a l lows t h e u s e r , t o s p e c i f y t he number o f
t imes the invoked command i n p u t f i l e i s t o be executed. Each t ime t h e
f i l e has been executed, the number o f passes i s incremented and com-
pared w i t h a t a r g e t count. When the t a r g e t count i s reached, c o n t r o l
r e t u r n s t o t h e c a l l i n g f i l e .

Another f e a t u r e o f t h e command i n p u t f i l e which improves i t s versa-
t i l - i t y i s t h e c o n d i t i o n a l command. The c o n d i t i o n a l command a l lows
groups of commands t o be skipped o r repeated depending upon t h e s t a t u s
o f an ex te rna l parameter. When a c o n d i t i o n a l command i s encountered
d u r i n g t h e execut ion o f a f i l e , t he c u r r e n t va lue o f t h e s p e c i f i e d para-
meter i s requested f rom the ex te rna l process. Th is va lue i s then compared
t o a s p e c i f i c va lue us ing one o f t h e a l lowed l o g i c a l operators. If the
t e s t i s t rue , then the f i l e p o i n t e r i s moved forward o r backward by the
i n d i c a t e d amount. I f t h e t e s t i s f a l s e , then t h e nex t sequent ia l command
i s executed. The a l l owab le l o g i c a l opera tors a re :

- l e s s than (<) - g r e a t e r than (>)

- equal t o (=) - n o t equal t o (o)

. - l e s s than o r equal t o (<=) - g r e a t e r than o r equal t o (=>)

To f a c i 1 i t a t e the t e s t i n g o f , command i n p u t f i l e s , two a d d i t i o n a l features
are provided. The F i r s t i s a s ing le -s tep f e a t u r e . I n t h i s mode, t he
opera tor i n t e r f a c e prompts the user f o l l o w i n g t h e complet ion o f each command.
The n e x t command.is n o t executed u n t i l t h e ope ra to r acknowledges t h e prompt.
This a l l ows t h e process t o be v e r i f i e d s tep by s tep . The second f e a t u r e
i s a . t e s t mode f l a g . When the i n t e r f a c e i s i n t e s t mode, a f l a g i n d i c a t i n g
t h i s s t a t u s i s passed t o the e x t e r n a l process. I f the user has prov ided
a s i m u l a t i o n c a p a b i l i t y i n h i s e x t e r n a l process, he can s imu la te the
e n t l r e operat . ior~ of h i s process, i n c l u d i n g the c o n t r o l f u n c t i o n .

Software

The d e c i s i o n was made e a r l y i n t h e p r o j e c t t o u t i l i z e FORTRAN I V
as t h e programming language f o r t he development o f t he ope ra to r i n te r face .
The languages g i ven se r ious cons ide ra t i on were BASIC, FORTRAN I V Y and
PASCAL. BASIC was considered because o f i t s s i m p l i c i t y and s t r i n g

processi,ng capabi l i ty; FORTRAN IY because of i t s r e l a t ive speed and
general ava i l ab i l i t y ; PASCAL because of i t s v e r s a t i l i t y and read-
ab i l i t y . FORTRAN IV was f ina l ly chosen because of i t s general avai l -
a b i l i t y and speed. Since the interface was supposed to be trans-
portable, PASCAL had to be eliminated f o r the time being even though
i t was highly rated on i t s technical merits.

Because the software package should run on any host computer w i t h
l i t t l e or no modification, i t was important to r e s t r i c t the use of
extensions to the language. Any use of a non-standard feature was dis-
couraged. This e f f o r t toward por tab i l i ty included the use of operating
system c a l l s . Even though the original development was done on a DEC
PDP-11/40 computer running under the RSX-11M operating sys tern, i t
was expected tha t the software would be used on a number of d i f fe rent
processors under a variety of operating systems. Therefore, i t was
important to r e s t r i c t the usage of operating system c a l l s to the mini-
mum necessary and i so la t e those tha t were used. When operating system
ca l l s were used f o r functions such as inter task handshaking and f i l e
system c a l l s , they were isolated into subroutines which served tha t
s ingle function. This resulted i n additional processing overhead f o r
any s ingle application b u t improved por tab i l i ty considerably. The
specif ic subroutines must be modified fo r the host operating system
once for each type of ca l l ra ther than a t each occurance of the ca l l
throughout the code.

The software fo r the operator interface was designed to support
a wide range of hardware capabi l i t ies and operating modes. I t i s
t h i s software which provides a t ru ly general purpose interface. An
e f f o r t was made to develop the system as a col lect ion of well-structured
modules i n a transportable language. The upper 1 eve1 software s t ruc ture
is shown i n Fig. 2.

Note: PDP-11/40, DEC, and RSX-11M a r e registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts

I PHYSICAL (
I DEVICE I

COMMAND u
COMMANDS

COMMAND EXTERNAL

PROCESSOR PROCESS

1 ?'-I DISPLAY

GRAPHICS

DISPLAY I
I DRIVER I

GRAPH I CS

DISPLAY

DEYICE

Figure 2:~Operator:Tnt~rfAC:E!'S1,ftware'strirctc!re

The COMPOSE COMMAND .module receives information from the input
devices incorporated in to the operator interface and generates valid
commands to be sent to the DISTRIBUTE COMMANDS module. The three
principal i n p u t devices a re the keyboard, touchscreen, and programmable
knob. Even though the keyboard i s not intended fo r use during routine
operations, a l l commands are handled internal ly as i f they came from
the keyboard. Since i t i s l ike ly tha t commands generated ,from the key-
board will occassionally contain e r rors , they must be checked f o r
correct syntax and valid references.

Incoming keyboard commands are parsed into tokens. A l l tokens
which are c9.c 'keywords or operators a re checked against the parameter
correlation f i l e to verify that they refei; to valid parameter names. If
an invalid reference occurs, the command i s ignored and the operator is
notified of the unmatched parameter name. As the tokens a re validated,
they are passed'to a module which builds an array of tokens. Upon
detection of a carriage return, the token array i s arranged according
to the syntax rules found in a command l ibrary. I f the command i s
syntact ical ly correct , i t i s then sent out f o r d is t r ibut ion; otherwise,
the operator i s not i f ied of the error . All information available about
the error condition i s displayed to the operator. Recall tha t a t t h i s
time the u s e r ' i s probably an applications programmer and would be
expected to be familiar w i t h the command structure.

An expandable command l ibrary i s provided as par t of the operator
interface software. Should a user wish to modify or expand the command
s t ruc ture , he simply makes the necessary modification o r addition to the
command l ibrary. In t h i s case i t will be necessary f o r h i m to check the
a f fec ts generated in other sect ions 'of the software. The most l ike ly
modifications will be the addition of commands f o r the external process.
In t h i s case, there will be no s ide e f fec ts elsewhere i n the software.

When the operator input comes from the touchscreen, the information
i s received as a se r i e s of tokens, making parsing unnecessary. Each time
the operator presses the touchscreen the screen vectors a re accessed using
the screen location as the access key. The tokens associated w i t h that
location a re then..added to the token array. In addition, each time an
entry i s found, the operator is notified through some form of audiovisual
feedback through the display device. Likely forms of feedback include
generating a tone or changing the color or shape of the corresponding
symbol on the display. This action i s performed' by changing the value
of the internal . variable associated w i t h the location touched. The feed-
back% specified by the user as part of the symbol 1 ibrary he generates.
If the screen location pressed does not have a token associated w i t h i t ,
no action is taken.

Input from the programmable knob i s r epe t i t i ve in nature. That i s ,
the same command i s issued many times w i t h only the value of the
operand changing. In order to reduce the processing required i n an
operation of this . type, the command i s saved in a buffer. Whenever another

numerical value +s received from the programmable knob, tha t value i s
subst i tuted. in to the command and the command issued.

Once a command i s issued, i t i s routed to the appropriate section
of the software by the DISTRIBUTE COISMANDS module. The routing depends
upon the type of command issued. The fundamental command types are:
display command; process command; and command input f i l e command.

Display commands ins t ruc t . t he FORMAT DISPLAY module to modify the
current display, usually by cal l ing u p a new display. No additional
processing of display collilnands 'takes place i n t h i s module.

Process commands are si.mply sent to the external process and a re
not interpreted by the operator interface. In the case of a command to
change a parameter,value using the programmable knob, however, the
command' i s modified according to one of two options. The f i r s t option
allows the operator to use the knob to control the absolute parameter
value. The parameter i s assigned a value determined by applying a
transformation algorithm to the value read from the knob.

The second option allows the operator t o make the knob a r e l a t ive
adjustment t o , t h e parameter value. The knob value i s again operated
on by the selected transformation a1 gori t h m to determine a setpoint

*-

value. Then the ' parameter value i s inaremented by the new value.

After modifying the input from the programmable knob i n one of
the two possible ways,, the parameter s e t command i s sent t o the external
process with no fur ther interpretat ion.

Command input f i l e commands undergo considerable processing in
th i s module. In addi'tion to processi'ng the f i 1 es , the nested operations
a re performed and the conditional commands contained i n the i n p u t f i l e
a re evaluated.

Command input f i l e commands.perform one of the following functions:
- S t a r t s command input f i l e executing
- Place a command i n p u t f i l e i n single-step mode
- Place a command input f i l e i n t e s t mode
- Issue the next command.when in single-step mode
- ' Enter learn mode

Commands to execute a f i l e simply invoke the f i l e by name. Similarly,
commands to place the execution of a f i l e i n t e s t mode or . s ingle-s tep
mode simply name the f i l e . Note tha t a s ingle console can be executing
more than one command i n p u t f i l e a t the same time, hence the f i l e name
must always be specified. Note also tha t a command input f i l e can be i n
single-step mode and t e s t mode a t the same time.

When a f i l e i s i n single-step mode, the execution of each command
i s delayed unti1:the operator acknowledges a prompt. Following the
completion of a command, the next command i s displayed as a prompt to
the operator.

An addi t i onal ' capabi 1 i ty provided fo r the operator 's convenience
is the learn mode. After placing the console in learn mode, he then
issues process commands as i f he were performing an operation. The
commands a re intercepted and used to b u i l d a command i n p u t f i l e . This
feature allows him to build command input f i l e s to a s s i s t him i n per-
forming his tasks. Learn mode does not a1 low the operator t o execute
conditional commands nor does i t support nesting of f i l e s .

The interface with the external process i s the COMMAND PROCESSOR
module.. I t not only sends out the process commands, b u t a lso receives
data fo r display purposes or as input fo r an ' in te rna l decision. The
commands a re sent and received as ASCII character s t r ings through a pair
of c i rcu lar buffers.

The command types sent to the process include. parameter change
commands, parameter val ue requests, and h i s tory requests.

Parameter change commands can be e i the r absolute or re la t ive as
previously discussed and are used to s e t a specified parameter such as
a process set-point. Parameter value requests a r e used t o request data
f o r display to the :!perator or to resolve a conditional command i n a
corrul~and i n p u t f i l e . In the case of a corditional command, the value i s
requested once and sent once. In the ,case of display data , the request
can specify an update frequency such tha t the request i s made once, b u t
the data i s sent a t specified intervals . The reporting frequency of each
parameter i s a user selected value, allowing . - the user t o optimize the
update time of each parameter;

In order to minimize the communications burden between the operator
interface and the external process, data i s only reported when a change
occurs. Therefore, the reporting frequency specified serves to s e t the
maximum reporting r a t e rather than an absolute rate.

History requests a re made to acquire trend data on a specified
parameter f o r presentation to the operator. This feature of the inter-

- face assumes the existence of a data storage and retr ieval function i n
the external process.

The external process returns e i the r acknowledge responses, alarm
responses, data. responses, o r history responses.

Parallleter change commands a re acknowledged when they are writ ten t o
the c i r cu la r buffer unless they were issued from a command input f i l e .
In tha t case, they a r e not acknowledged unt i l the command has been success-
fu l ly completed. Requests f o r process or history data a re not acknowledged.

unti l the data i s provided. Requests fo r periodic data reporting a re
only acknowledged when the f i r s t s e t of data i s received.

Warning and alarm conditions a re determined by the external process.
When an al'arm report. i s received, the COMMAND PROCESSOR module inser t s
i t in to an alarm f i ' l e f o r processing. All displays have a section reserved
f o r brief alarm messages. Further de ta i l i s provided on alarm summary
disp1ays;generated by the user. Since the alarm message contains the
time of . the a.larm, the alarm f i ' le i s maintained in chronological order
based on alarm time ra ther than time received. T h i s eases the burden
on the user i n displaying information on the alarm sequences.

Respo~s2s . to datz requests a r e handled in one of two ways, depending
on the reason the data was requested. Dat3 which was requested to resolve
a conditional conmand,is sent d i r ec t ly back to the DISTRIBUTE COMMANDS
module and i s not. stored in terna l ly .

All other data i s placed into the internal variables table. The
parameter cor,re.lation f i l e i s accessed t o determine the names of the
internal variables currently assigned t o tha t parameter. The parameter
value i s then pl.aced in the value f i e l d of those internal variables.
Since the periodic data reporting from the process i s performed on an
exception basis, a f lag is s e t i n the internal variables indicating
t h a t the var3able: has',changed value.

Data provided i n response to a history request i s placed in to a
temporary f i l e called the history buffer. This history buffer i s then
used by the FORMAT DISPLAY module t o present the trend data to the
opera tor .

- - . . . - . . . - , - - -
The FORMAT DISPLAY module issues the displayable commands to the

display device software driver. I t updates display-dependent f i l e s
and tables , processes alarm and h.istory data, and updates the display.

When a command invoking a new display i s received, several functions
a re performed. The display File i s accessed t o update the parameter
correlation f i l e and the screen .vectors previously discussed. In addition,
the current interna1,variables table i s updated. The internal variables
table , unlike the parameter correlat ion f i l e , only contains en t r ies
f o r the variables currently being displayed.' Thus, when a new display
i s invoked, the en t r ies must be updated to correspond with the new display.
The internal v a r i a b l e s t a b l e contains a l l information needed t o display
the condition,of an external parameter, including the type of display
symbol, current value, and alarm status..

Once the f i l e s and tables a r e updated, the background f i l e i s
accessed t o re t r ieve the proper background f o r the 'new display. The
background displ a.y contains a1 1 s t a t i c information presented on the
current display, . . .

If a display was invoked t o present trend data on a parameter
value, then the display command i s processed fur ther following completion
of the update functions. The history buffer i s accessed to re t r ieve
the data relat ing t u the parameter name specified. This data i s then
normalized f o r display t o the operator and the internal variables tab le
i s loaded with the hi'story data. Each reading contains . the normalized
parameter value and the time the reading was taken.

All other processi,ng i n . t h e DISPLAY FORMAT module takes place on
a periodic.bas.is ra ther than i.n response t o a display command. The
internal variables table i s ' scanned. fo r a f lag indicating tha t a variable
has changed value. Once tha t f lag i s found, the value of the variable
i s read along w i t h the symbol name. The f lag i s cleared and the infor-
mation processed to update the display. The symbol l ibrary i s accessed
to .determine the commands required to display the condition of the
variable. These commands' a re then sent to the GRAPHICS DISPLAY DRIVER
module f o r processing.

Additional asynchronous processing takes place to process alarm
conditions. When a new entry i s found i n t h e alarm f i l e , the alarm
information i s i n s e r t e d , i n t o , t h e internal variables tab le and the alarm
correlation f i l e i s accessed. This f i l e contains additional information
to be added t o the screen vectors i n the event of an alarm. These new
screen vectors a re user generated prompts f o r additional alarm infor-
mation. For example, i f an alarm i s received on an external parameter,
new pushbuttons may. appear on the display device o r the .alphanumer.i;c . ' :
monitor to prompt the operator to ca l l u p cer tain key displays. These
key displays might include the control loop parameters fo r the affected
loop, the trend data f o r the affected parameter, a display summarizing
a l l s imilar parameters i n the process or an alarm surnmary,display.

The graphics display dr iver 'implements a standard s e t of displayable
commands f o r the graphics display device. This standard s e t of commands
i s su f f i c i en t t o generate al.1 figures needed fo r operator communication.
In order t o improve the por tab i l i ty of the software, a s ingle s e t of
commands i s used i n a l l 1 i b r a r i . e ~ . When the physical device i s selected,
the user must provide f o r the t ranslat ion of the standard commands in to
device specif ic commands. For. a sophisticated device, t h i s consitutes
a simple table look-up while l e s s capable devices could require extensive

. processing.

A1 1 coordinate references assume a resolution of 1024 horizontal (X)
by 1024 vert ical (Y) display elenents. This was f e l t t o be the maximum
resolution which would be required fo r m0s.t appl icat ions. Consequently,
the dr5ver module must a l so scale a l l coordinates to the actual resolution
of the hardwa.re.

The fo l l owing commands const i tute ' the s e t of di spl ayabl e commands
implemented in the operator interface. Since the software does not
in te rpre t the commands, the creation of additional commands is simply a
matter of adding then ?o the user defined f i l e s . T h i s action would

r e su l t in res t r ic ted por tab i l i ty however.

BCOLOR' (NAME) - Sets the current display background color to
one of the eight colors specified by NAME (.BLACK, BLUE, CYAN,
G R E E N , MAGENTA, RED, WHITE, YELLOW)

' B C I ~ K (S T A T U S) - A l l fur ther information plotted will blink i f
STATUS i s on and will not blink i f STATUS i s OFF

CIRCLE (X,Y,RADIUS - Draws a c i r c l e with the specified radius centered m d
CURSOR' (.X,Y) -. Moves the graphics cursor to the point (X,Y)

DEVICE ' (NUMBER) - Directs a1 1 fur ther gkaphi cs commands to the
display device w i t h the logica1,uni t number NUMBER

FCOLOR' (NAME) - Sets ' the current display foreground color in the
same manner as BCOLOR s e t s the background.

FILL (x,.Y) - F i l l s the polygon containing the point (X,Y) with the
current foreground color

HBAR'(XO;YO;X;WIDTH) - Plots a horizontal bar graph WIDTH units
wide, s t a r t ing a t the point (X0,YO) and extending to the point (X,YO)
i n the current foreground color

POINT' (X;Y) - Plots the point (X,Y) in the current foreground color

RESTORE'(FILE) - Performs a DMA t ransfer of a previously saved display
image, named F X E , from.the mass storage device t o the memory of the
graphics display device

SAVE'(F1LE) - Performs a DMA t ransfer of the current display image
from the memory of the graphics display device to the mass storage
device under t.he name FILE

SYMBSC ' (.X;Y ,TY ?tj. - Draws a symbol defined as TYPE referenced to
the point (X,Y) i n the current fore~round color

T E X T X , Y ,STRING - Displays the character s t r ing STRING beginning
i n the cur rent foreground color

TONE ' (TIME - Generates .a tone from the display device 1 a s t i ng
d l I i seconds

VBAR' (xO;YO,Y,WIDTH) - Plots a ver t ical bar graph WIDTH units
wide, s t a r t i n s a t the point (X0,YO) and extending to the point (X0,Y)
i n the current foreground color

VECTOR (XO,YO;Xl,Yl) - Generates a vector from the point (X0,YO) to
the point (XI , Y i -) T the current foreground color

VIDEO' (STATE.) - Special command used fo r black and white monitors
to s e t the video to the condition of STATE (,NORMAL or REVERSE)

Coricl Qsion

A need exis t s fo r a general purpose operator interface which i s
usable i n a variety of applications w t ' t h l i t t l e o r no,. modification.
This paper describes the implementation of one approach t o providing
. that interface through the use of color graphics display devices with
touch sensi t ive screens.

The interface involves a portable software package designed to
support a variety of hardware options. The approach taken provides the
user w i t h ease of implementation, both in terms of in s t a l l a t ion i n his
environment and the application programming. .Machine dependent features
of the software a re well isolated t o simplify modifications required by
a new environment. Applications programming i s performed by constructing
simple source f i l e s defining the displays and interact ions.

The implementation described r e su l t s i n a 'campiict,"efficient control
console. 'The anticipated savings;both in hardware requirements and
reduced design and implementati'on e f f o r t , over a conventional control
scheme a r e substant ial . '

The approach taken resu l t s in a minin~um configuration requirement.
This minimum configuration .makes'.the application of t h i s interface t o
very small s2stems expsnsive. However, the ease of maintenance and
modification make i t an option. worth cons'dering even f o r those small
sys terns.

Th.e speed of response of the system has not been measured since
the interface i s s t i l i being i'mplemented. I t was des,igned f o r acceptable
response time and no major problems a re anticipated. A follow-on e f f o r t
i s planned, i n any event, to improve the response time.

A s e t of f i l e preprocessors i s planned which will t r ans l a t e the
user ' s source f i l e s into a format which can be processed more quickly.
The user would not lose the s implici ty .of constructing source f i l e s b u t
would gain an improvement in system operation. A s imilar preprocessor
could be developed to el iminate the need f o r the GRAPHICS DISPLAY DRIYER
module. I t would replace the standard displayable commands i n the source
f i l e s with device specif ic commands. This would eliminate the need f o r
on-1 ine t ranslat ion.

Another option which will be explored i s the poss ib i l i ty of imbedding
several microprocessors in the operator ' s consol e. Each m i croprocessor
would perform' the functions. of one.of the software modules, achievi,ng an
improvement i n response time due t o the resul t ing paraqlel processi,ng.

BIBLIOGRAPHY

~lar, D. E. ; "Plant Operator's Computer Interface," Instrumentation
Techno1 ogy, October 1975, pp. 29-34.

,Brewer, S. C.; "Interactive Graphics: A Powerful Tool Supplants Large
Control.Panels," Control Engineering_, September 1978, pp. 54-57.

Crook, K. ; "CRT Touch Panels Provide Maximum Flexibility in Computer
Interaction," Control Engineering, July 1976, pp. 33-34.

Dallimonti, R.; "Future Operator Consoles for Improved Decision-making
and Safety," Instrumentation Technology, August 1972, pp. 23-28.

Dallimonti, R.; "Human Factors in Control Center Design," Instrumentation
techno lo^, May 1 a75, pp. 39-44.

' Dall imonti , R. ; "New Designs for Process Control Consoles ," Instrumentation
Technology, November 1973, pp. 48-53.

Dallimonti, R.; "Operator Interfaces: Past, Present, and Future,"
Advances in.Instrumentation, Instrument Society of America, 1977.

Uyetani , A. ; Yoshizaki , K. ; Nagakawa, K. ; "Standardized Operator Interfaces
for Distrjbuted Control.Systems," Instrumentation Technology, December 1978,
pp. 43-47.

Zey, R. B. ; "Using Interactive Color CRTs as Operator Interfaces,"
Instrumentation Technology, December 1978, pp. 49-51.

