-

“\\3\“\

A GENERAL PURPOSE
OPERATOR INTERFACE

S. I. Bennion

July 1979

International Society for
Mini and Microcomputers

September 26-29, 1979
Montreal, Canada

[H £ b L-SA-1822-FP
Lok = ’"(QC)C‘ S '

NOTICE

This report was prepared as an account of work
sponsored by the United States Govenment. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

b or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the Y p
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

HANFORD ENGINEERING DEVELOPMENT LABORATORY
Operated by Westinghouse Hanford Company, a subsidiary of
Westinghouse Electric Corporation, under the Department of

Energy Contract No. EY-76-C-14-2170

COPYRIGHT LICENSE NOTICE

By acceptance of this article, the Publisher and/or recipient acknowledges the U.S.
Government's right to retain a nonexclusive, royalty-free license in and to any copyright)(y

covering this paper.

)i
L8 TN}

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

A GENERAL PURPOSE OPERATOR INTERFACE

Scott I. Bennion

Hanford Engineering Deyelopment Laboratory'

Richland,. Washington 99352

Abstract

The Hanford Engineering Development Laboratory in Richland,
Washington is developing a general purpose operator interface for con-
trolling set-point driven processes. The interface concept is being
developed around graphics display devices with touch sensitive screens
for direct interaction with the displays. Additional devices such as
trackballs and keyboards are incorporated for the operator's convenience,
but are not necessary for operation. The hardware and software are
modular; only those capabilities needed for a particular application
need to be used. The software is written in FORTRAN IV with minimal
use of operating system calls to increase portability. Several ASCII
files generated by the user define displays and correlate the display
variables with the process parameters. It is also necessary for the
user to build an interface routine which translates the internal graphics
commands into device-specific commands. The interface is suited for
both continuous flow processes and unit operations. An especially use-
ful feature for controlling unit operations is the ability to generate
and execute complex command sequences from ASCII files. This feature
relieves operators of many repetitive tasks.

Introduction

, Nearly all computer-based data acqusition or process control app-
lications require an interface to an operator who ultimately controls
the activity of the system. A considerable portion of the implementation
of such systems is directed at the development of a suitable operator
interface. It is important that these interfaces provide accurate,
timely information in a concise, unambigious manner. Once these criteria
have been met, it is then highly desirable for the interface to be both
standardized and expandable.

An effort to develop such a system is presently underway at the
Hanford Engineering Development Laboratory (HEDL) in Richland, Washington.
A general purpose operator interface is being developed which will be
suitable for most future needs. The basic system utilizes color graphics
displays for information display and touch sensitive screens on the dis-
play monitces for onerator interaction. A number of hardware and soft-
ware options provide considerable enhancement and expansion capacity.

The user is afforded considerable latitude in configuring an
operator's console tailored to his specific requirements. He can choose
from a number of options as shown in Fig. 1. The system was designed to
allow addition of new hardware devices. That addition should simply be
a matter of providing a physical interface and installing an appropriate
software interface module.

Color Graphics Touch Screen- Alphanumeric
Display System Device Monitor

L] b 4
) 8

Central Processor

- } i
Programmable Trackball Alphanumeric
Knob Keyboard

Figure 1. "Hardware Options

One of the primary goals was to provide the user with the maximum
flexibility in his selection of each hardware device. Thus one user
might choose to install an inexpensive color graphics terminal while
another might opt for a powerful graphics processor. The two users will
realize markedly different operational characteristics due to the widely
divergent capabilities they paid for. However, both will be able to
make use of the basic software package and hardware configuration with
little or no change. Similarly, a user can upgrade to more powerful
hardware with minimal madifications in the overall system.

The graphics display device is the principal element in the operator
interface. The software was developed in a general manner to allow the
use of most available .devices, including the case of 1limiting the "graphics
to black and white alphanumeric displays. The intent at HEDL is to con-
centrate on the use of microprocessor-based color graphics terminals. The
use of color graphics provides maximum flexibility to the system engineer
in designing and implementing a data display and process control scheme.
Complex data relationships are communicated efficiently and clearly
through graphical displays. Adding color to the display greatly increases
the density of information which can be displayed and comprehended. The
use of color graphics essentially adds another dimension to the display
without significantly increasing the probability of operator confusion.

Graphics displays allow the operator to view all required process
data at a compact work station. Instead of having a control console con-
sisting of many dedicated signal indicators laid out in a large area, he
receives the information he needs in the form of graphic displays. During
steady-state operation, he monitors a summary display which shows the
key system parameters. During an alarm situation, he observes detailed
displays providing data related to the alarm. In all cases, he observes

the information he is currently interested in. A compact console is
capable of bringing a great deal of process information to a single work
station. The traditional control room requires that the operator travel
around the control room gathering the information he needs.

Another consideration to note here is that reconfiguring the signal
display in a traditional control room is a complex hardware modification
task. In the graphics approach, it consists of simply reformatting the
displays.

The graphics display device must be capable of processing a small
set of displayable commands. A1l displayable commands from the software
package are sent as a string of characters conforming to the American
Standard Code for Information Interchange (ASCII). These ASCII strings
are interpreted by the display terminal. The actual method of command
interpretation is unknown to the operator interface software and could
be any one of several methods, including a separate software interpreter
in the host computer, firmware in the display terminal, or a hardware °
implementation in a graphics processor.

A serious deficiency in the prevalent implementations of graphics-
~based display and control systems is the practice of requiring the
operator to communicate with the control software through a keyboard using
standard commands. System operators are highly skilled individuals
trained to perform a complex task. To also require them to be a skilled
typist is an undesirable situation. During system transients or off-
normal operations, where their skills and judgement are most severely
taxed, they are also expected to perform the manual command entry functions
most frequently. This conflict requires that considerable time and effort
be expended in developing their manual skills to a high level, resulting
in the loss of otherwise qualified operators who do not happen to possess
the manual dexterity required to type quickly and accurately in a stress
situation. A decision was made at HEDL to utilize the concept of touch
sensitive screens (touchscreens) on the display devices to eliminate the
need for keyboard entry of commands.

For our purposes, a touchscreen is defined as a device which reports
the position of an operator's finger on or near the screen of the display
device. The principal devices presently available are based on one of
three general approaches. The first approach consists of imposing a
matrix of light beams over the display screen. When the operator touches
the screen, the broken beams are detected, generating a position signal
to the host computer.

In the second approach, ultrasonic pulses are periodically pro-
pagated along the screen in the horizontal and vertical directions.
Touching the face of the screeni produces an echo. The echo timing pro-
vides sufficient data to determine the location of the disturbance.

This Tlocation is determined by the device electronics and sent to the host
computer,

The third approach consists of generating a standing voltage
wave on the surface of the display device. When the screen is touched,
a conductive overlay makes contact with the screen, picking off a pro-
portional voltage which allows determination of the contact location.
Each of these approaches involves a series of design tradeoffs
involving resolution, accuracy, reliability, and cost. The operator
interface was designed to allow the system engineer his choice of devices
based on the system requirements.

The touchscreen allows the operator tu direct his attention at the
display at all times instead of shifting from the display to the key-
board and back again. A1l control actions are initiated by touching the
appropriate area on the display.

In addition to the signal indicators, a traditional control room
contains many manual input devices such as pushbuttons and knobs. A
means must be provided to duplicate their functions for the operator
interface to be effective. An approach which has been used with some
success is to provide a set of general purpose pushbuttons which are
used as the input devices. Their functions are modified under program
control to provide multiple uses for each button. The current function
of each button is indicated through a variety of means, including plastic
overlays, projected overlays, backlighted keys, or a displayed menu of
functions.

By combining the touchscreen concept with a small alphanumeric monitor,
the operator can be provided with a very versatile set of programmable
pushbuttons. The buttons are clearly labeled with their functions and
operator prompting is available through the use of blinking and reverse
video. When the operator changes his current display, the programmable
pushbuttons on his alphanumeric monitor are also updated. The system
engineer has a great deal of flexibility in the control scheme design by
deciding which input functions will be generated through the graphics
displays and which will be generated through the programmable pushbuttons.

The operator must be provided with a method of adjusting system para-
meters quickly and accurately. The capability for two types of input
are provided. The first consists of "increase" and "decrease" buttons
on the display. By touching a button, the parameter is adjusted in the
indicated direction until the desired setpoint is achieved. This option
is generally used in situations where adjustments can be anticipated. In
this case the adjustment capability is built directly into the display.
The second approach utilizes an incremental shaft encoder mounted in
the control console. The current assignment of the knob is displayed
on one of the display devices. Under operator control, the knob can be
assigned as the control device for any system parameter. This assign-
ment is then indicated on the reserved display line.

The parameter behavior under either option is controllable by the
operator. He has his choice of linear, logarithmic or incremental ad-
Jjustments, choice of scale factor and choice of positive and negative

values, positive only, or an interval. In all cases where adjustment
buttons are prov1ded as part of the display, he can override those
buttons and assign a programmable knob to the parameter.

Two other devices were made available during the initial system
design; a trackball and keyboard. The trackball was provided at the
request of potential system users involved in the design of a control
system for a high-energy particle accelerator. The use of trackballs
for operator input in this type of application is widespread and well
accepted. Even though the trackball is a redundant feature due to the
presence of the touchscreen, it was felt that the addition of the track-
ball would ease the transition period for trained operators.

Even though the system is completely operable without a keyboard,
the capability of connecting a keyboard for use as an input device
was considered important. The keyboard is particularly useful during
system integration and checkout. A1l inputs are presented to the soft-
ware as strings of ASCII data. This allows: -any input device to be
checked out with,or replaced by,a keyboard. It is anticipated that
the keyboard will not normally be connected to the interface system;
rather it will be used by hardware and software maintenance personnel to
diagnose system errors and to make modifications to the system functions.

Once the operator interface hardware is configured and the system
engineer has designed the display format and content, he must build
three files to implement his system. These configuration files consist
of the display file, the background file, and the symbol library. An
additional set of files, the command input files, are built once the
system is operational if the user wishes to utilize the command input
capability for unit operations.

The configuration files are ASCII source files constructed according
to a specified format. This simplifies generation and checkout as well
as error detection-and correction. This structure also improves the
initig] software implementation effort since the data is easily read and
traced.

A1l display parameters are assigned to a symbol type. Each symbol
type has a specified display format and set of valid values. Examples
of symbol types would be a normalized bar graph with associated percent
of full scale and alarm status, a proportional value with an open/closed
indication and percentage cpcn; or a text symbel for display nf alpha-
numeric data.

The user defines his set of valid symbols by building a symbol library.
The symbol library is accessed by symbol name. Each symbol name has
associated with it a collection of records. Each record corresponds to
a valid symbol value or status. The current parameter value is used to
access the correct record. Within each record are the ASCII command
sequences necessary to display the symbol in the appropriate state.

These commands all plot the symbol relative to the current cursor
position rather than at an absolute location.

For new applications, the user has access to all symbol libraries
previously created, Since they are source files, he can use these
libraries to assemble his own library quickly through the use of a text
editor. He then completes his .1ibrary by defining any new display symbols
he needs and adds his new symbols to a master library file for the
benefit of future users.

In most cases, the majority of the display contains only static
information, the display background. The variable portion is a small
percentage of the total display. In addition, several different displays
often make use of the same background display. In order to reduce
redundancy in the file system, these background displays are stored
separately from the definition of the dynamic portions of the display.
When a new display is invoked, the appropriate background is retreived
and displayed, then the variable data is overlaid on the background.

The background file is accessed by background file name to retreive
the executable command sequence needed to draw the static background. This
command sequence is one of two types. When the display hardware has the
capability for direct memory access(DMA), the command sequence is simply
a memory restore command referencing the memory image file of a previously
saved screen image. When DMA capability is not provided, the command
sequence necessary to draw the background through the display command
interpreter is retrieved.

The user generates his background file in a manner appropriate to
the hardware capabilities he elects to provide. When DMA is available,
he simply draws his background and saves the screen image under an appro-
priate file name. When DMA is not available, he generates a sequence of
executable commands which will draw the background when they are processed
by the command interpreter.

The display file is the primary implementation file. It defines the
data content and format of the display as well as the response of the
touchscreen. The contents of the display file are used to set up the
current display.and to load two dynamic files which change along with
the displays, the parameter correlation file and the screen vectors.

The display file is actually a collection of files. Each display has
a unique name which is the access key to the proper file. Each file con-
tains a collection of records. Each record contains a variable name, a
parameter name, a symbol name, and x- and y-coordinates,and if the defined
screen location has an associated touchscreen response, one or more
tokens, (a token is a syntactic entity such as a keyword, identifier or
operator.)

The variable name is the internal label assigned to a referenced
external parameter. A1l internal references to data are made through
variable names.

. Whenever a new display is invoked, the display file is accessed’
to retrieve the description of the new display. When this takes place,
a dynamic file, the parameter correlation file, is updated. The para-
meter correlation file consists of a series of records keyed on the
parameter name. Within each record is a 1list of all variable names
currently associated with that parameter name. Note that all valid
parameter names are contained in the file even though they may not all
have a variable name currently associated with them. Whenever a command
is received vhich refers to a parameter name, the name is verified
using the parameter correlation file. If the name is not found. an
error condition exists and the user is notified of an inconsistency in
his display definitions.

Whenever data is received from the external process, it is ident-
ified by parameter name. The parameter correlation file is used to
associate the data with the proper internal variables. Note that several
internal variables can refer to the same parameter name but that the
converse is not true. In this way, the same external parameter can be
tracked on several different displays in several different formats.

Each internal variable has associated with it a symbol name. This
symbol name, as previously described, defines the display format of the
variable and its allowable values.-

As was also previously mentioned, the executablie commands in the
symbol library are all relative commands for plotting in relation to
the initial cursor position. The x- and y-coordinates associated with
each variable name specify the screen location for the cursor when
plotting the symbol.

For those internal variables with an associated touchscreen response,

the display file contains one or more tokens. These tokens constitute

all or part of a system command. At the same time that the parameter
correlation .file is updated, the screen vectors are also updated. The
screen vectors consist of a screen position and associated tokens. When
the screen is touched, the location is sensed and the tokens are sent

to the command interpreter. In this way, the touchscreen replaces the
keyboard by composing commands as if they were from the keyboard but
without the operator needing to be aware of the specifics of the syntax.

A very powerful capability which is provided for the user is the
command. input file. These files are sequences of valid commands which
are processed without operator involvement. This allows the user to
set up files to perform repetitive or well-defined operations, freeing
the operator to pay -attention to. the overall pracess. This feature is
particularly useful in discrete operations where.a series of identi-
fiable operations takes place and 'in directing a continuous flow system
through a predetermined process cycle.

The command input file is an ASCII source file containing valid process
commands. Once the file begins operation, it continues without operator

interaction. Each time a command is satisfied, the next command is
read from the file and executed. Additional features include nesting
of files with multiple passes and conditional operations.

An executing command input file can initiate the execution of
another command input file. That file can in turn invoke yet others
to a nesting depth determined only by the amount of memory the user
wishes to allocate to the stack area. When an invoked file completes
its operation, commands are accepted from the calling file starting
with the next sequential command. This feature allows the user to
build his control files in a systematic manner and share common opera-
tions with a single command input file, much as the use of subroutines
allows sharing of common processes.

The nesting feature also allows the user-to specify the number of
times the invoked command input file is to be executed. Each time the
file has been executed, the number of passes is incremented and com-
pared with a target count. When the target count is reached, control
returns to the calling file.

. Another feature of the command input file which improves its versa-
.tility is the conditional command. The conditional command allows

groups of commands to be skipped or repeated depending upon the status

of an external parameter. When a conditional command is encountered

during the execution of a file, the current value of the specified para-

meter is requested from the external process. This value is then compared

to a specific value using one of the allowed logical operators. If the

test is true, then the file pointer is moved forward or backward by the

indicated amount. If the test is false, then the next sequential command

is executed. The allowable logical operators are:

- less than (<) - greater than (>)
- equal to (=) - not equal to (<>)
.- less than or equal to (<=) - greater than or equal to (=>)

To facilitate the testing of command input files, two additional features
are provided. The first is a single-step feature. In this mode, the
operator interface prompts the user following the completion of each command.
The next command-is not executed until the operator acknowledges the prompt.
This allows the process to be verified step by step. The second feature
is a test mode flag. When the interface is in test mode, a flag indicating
. this status is passed to the external process. If the user has provided
a simulation capability in his external process, he can simulate the
- entire operation of his process, including the control function.

Software

The decision was made early in the project to utilize FORTRAN Iv
as the programming language for the development of the operator interface.
The languages given serious consideration were BASIC, FORTRAN Iy, and
PASCAL. BASIC was considered because of its simplicity and string

processing capability; FORTRAN IV because of its relative speed and
~general availability; PASCAL because of its versatility and read-
ability. FORTRAN IV was finally chosen because of its general avail-
ability and speed. Since the interface was supposed to be trans-
portable, PASCAL had to be eliminated for the time being even though
it was highly rated on its technical merits. -

Because the software package should run on any host computer with
Tittle or no modification, it was important to restrict the use of
extensions to the language. Any use of a non-standard feature was dis-
couraged. This effort toward portability included the use of operating
system calls. Even though the original development was done on a DEC
PDP-11/40 computer running under the RSX-11M operating system, it
was expected that the software would be used on a number of different
processors under a variety of operating systems. Therefore, it was
important to restrict the usage of operating system calls to the mini-
‘mum necessary and isolate those that were used. When operating system
calls were used for functions such as intertask handshaking and file
system calls, they were isolated into subroutines which served that
single function. This resulted in additional processing overhead for
any single application but improved portability considerably. The
specific subroutines must be modified for the host operating system
once for each type of call rather than at each occurance of the call
throughout the code.

The software for the operator interface was designed to support
a wide range of hardware capabilities and operating modes. It is
this software which provides a truly general purpose interface. An
effort was made to develop the system as a collection of well-structured
modules in a transportable language. The upper level software structure
is shown in Fig. 2.

Note: PDP-11/40, DEC, and RSX-11M are registered trademarks of Digital
Equipment Corporation, Maynard, Massachusetts

PHYSICAL
DEVICE

-

COMPOSE
COMMAND

L 4

¥

DISTRIBUTE
COMMANDS

¥

COMMAND
PROCESSOR

-

/

EXTERNAL
PROCESS

1

> FORMAT
DISPLAY

GRAPHICS
DISPLAY
DRIVER

GRAPHICS
DISPLAY
DEVICE

The COMPOSE COMMAND module receives information from the input
devices incorporated into the operator interface and generates valid
commands to be sent to the DISTRIBUTE COMMANDS module. The three
principal input devices are the keyboard, touchscreen, and programmabie
knob. Even though the keyboard is not intended for use during routine
operations, all commands are handled internally as if they came from
the keyboard. Since it is likely that commands generated from the key-
board will occassionally contain errors, they must be checked for
correct syntax and valid references.

Incoming keyboard commands are parsed into tokens. All tokens
which are not keywords or operators are checked against the parameter
correlation file to verify that they refer to valid parameter names. If
an invalid reference occurs, the command is ignored and the operator is
notified of the unmatched parameter name. As the tokens are validated,
they are passed to a module which builds an array of tokens. Upon
~ detection of a carriage return, the token array is arranged according
to the syntax rules found in a command library. If the command is
syntactically correct, it is then sent out for distribution; otherwise,
the operator is notified of the error. Al1l information available about
the error condition is displayed to the operator. Recall that at this
time the user 'is probably an applications programmer and would be
expected to be familiar with the command structure.

An expandable command library is provided as part of the operator
interface software. Should a user wish to modify or expand the command
structure, he simply makes the necessary modification or addition to the
command Tibrary. In this case it will be necessary for him to check the
affects generated in other sections of the software. The most likely
modifications will be the addition of commands for the external process.
In this case, there will be no side effects elsewhere in the software.

When the operator input comes from the touchscreen, the information
is received as a series of tokens, making parsing unnecessary. Each time
the operator presses the touchscreen the screen vectors are accessed using
the screen location as the access key. The tokens associated with that
location are then.added to the token array. In addition, each time an
entry is found, the operator is notified through some form of audiovisual
feedback through the display device. Likely forms of feedback include
~generating a tone or changing the color or shape of the corresponding
symbol on the display. This action is performed by changing the value
of the internal. variable associated with the Tocation touched. The feed-
back is specified by the user as part of the symbol library he generates.
If the screen location pressed does not have a token associated with it,
no action is taken.

Input from the programmable knob is repetitive in nature. That is,
the same command is issued many times with only the value of the
operand changing. In order to reduce the processing required in an
operation of this. type, the command is saved in a buffer. Whenever another

-10-

numerical value is received from the programmable knob, that value is
substituted. into the command and the command issued.

Once a command is issued, it is routed to the appropriate section
of the software by the DISTRIBUTE COMMANDS module. The routing depends
upon the type of command issued. The fundamental command types are:
display command; process command; and command input file command.

Display commands instruct the FORMAT DISPLAY module to modify the
current display, usually by calling up a new display. No additional
processing of display commands takes place in this module.

Process commands are simply sent to the external process and are
not interpreted by the operator interface. In the case of a command to
change a parameter value using the programmab)e knob, however, the
command s modified according to one of two options. The f1rst option

~allows the operator to use the knob to control the absolute parameter

value. The parameter is assigned a value determined by applying a
transformation algorithm to the value read from the knob.

The second option allows the operator to make the knob a relative

‘adjustment to the parameter value. The knob value is again operated

on by the selected transformation algorithm to determine a setpoint
value. Then the parameter value is incremented by the new value.

After modifying the input from the programmable knob in one of
the two possible ways, the parameter set command is sent to the external
process with no further interpretation.

Command input file commands undergo considerable processing in
this module. In addition to processing the files, the nested operations
are performed and the conditional commands contained in the input file
are evaluated.

Command input file commands .perform one of the following functions:
- Start s command input file executing
- Place a command input file in single-step mode
- Place a command input file in test mode
- Issue the next command when in single-step mode
- Enter Tearn mode
Commands to execute a file simply invoke the file by name. Similarly,

commands to place the execution of a file in test mode or single-step
mode simply name the file. Note that a single console can be executing
more than one command input file at the same time, hence the file name
must always be specified. Note also that a command 1nput file can be in
single-step mode and test mode at the same time.

-11-

When a file is in single-step mode, the execution of each command
is delayed until ‘the operator acknowledges a prompt. Following the
completion of a command, the next command is displayed as a prompt to
the operator.

An additional capability provided for the operator's convenience
js the learn mode. After placing the console in learn mode, he then
issues process commands as if he were performing an operation. The
commands are intercepted and used to build a command input file. This
feature allows him to build command input files to assist him in per-
forming his tasks. Learn mode does not allow the operator to execute
conditional commands nor does it support nesting of files.

The interface with the external process is the COMMAND PROCESSOR
module. - It not only sends out the process commands, but also receives
data for display purposes or as input for an 'internal decision. The
commands are sent and received as ASCII character strings through a pair
of circular buffers. ’

The command types sent to the process include. parameter change
commands, parameter value requests, and history requests.

Parameter change commands can be either absolute or relative as
previously discussed and are used to set a specified parameter such as
a process set-point. Parameter value requests are used to request data
for display to the cperator or to resolve a conditional command in a
command input file. In the case of a corditional command, the value is
requested once and sent once. In the case of display data, the request
can specify an update frequency such that the request is made once, but
the data is sent at specified intervals. The reporting frequency of each
parameter is a user selected value, allowing the user to optimize the
update time of each parameter, -

_ In order to minimize the communications burden between the operator
interface and the external process, data is only reported when a change
occurs. Therefore, the reporting frequency specified serves to set the
maximum reporting rate rather than an ahsolute rate.

History requests are made to acquire trend data on a specified
parameter for presentation to the operator. This feature of the inter-

face assumes the existence of a data storage and retrieval function in
the external process.

The external process returns either acknowledge responses, alarm
responses, data responses, or history responses.

Parameter change commands are acknowledged when they are written to
the circular buffer unless they were issued from a command input file.
In that case, they are not acknowledged until the command has been success-
fully completed. Requests for process or history data are not acknowledged.

until the data is provided. Requests for periodic data reporting are
only acknowledged when the first set of data is received.

Warning and alarm conditions are determined by the external process.
When an alarm report is received, the COMMAND PROCESSOR module inserts
it into an alarm file for processing. All displays have a section reserved
for brief alarm messages. Further detail is provided on alarm summary
displays generated by the user. Since the alarm message contains the
time of the alarm, the alarm file is maintained in chronological order
based on alarm time rather than time received. This eases the burden
on the user in displaying information on the alarm sequences.

Responses‘td datz requests are handled in one of two ways, depending

" on the reason the data was requested. Data which was requested to resolve

a conditional command is sent directly back to the DISTRIBUTE COMMANDS
module and is not stored internally.

A11 other data is placed into the internal variables table. The
parameter correlation file is accessed to determine the names of the
internal variables currently assigned to that parameter. The parameter
value is then placed in the value field of those internal variables.
Since the periodic data reporting from the process is performed on an
exception basis, a flag is set in the internal variables indicating
that the variable: has changed value.

Data provided in response to a history request is placed into a
temporary file called the history buffer. This history buffer is then
used by the FORMAT DISPLAY module to present the trend data to the
operator.

) The FORMAT DISPLAY module issues the disp]ayab]e-commanas to the"
display device software driver. It updates display-dependent files
and tables, processes alarm and history data, and updates the display.

When a command invoking a new display is received, several functions
are performed. The display file is accessed to update the parameter
correlation file and the screen vectors previously discussed. In addition,
the current internal variables table is updated. The internal variables
table, unlike the parameter correlation file, only contains entries
for.the variables currently being displayed. Thus, when a new display
is 1pvoked, the entries must be updated to correspond with the new display.
The internal variables table contains all information needed to display"
the condition of an external parameter, including the type of display
symbol, current value, and alarm status. '

Once the files and tables are updated, the background file is
accessed to retrieve the proper background for the new display. The
background display contains all static information presented on the
current display. ' '

-13-

If a display was invoked to present trend data on a parameter
value, then the display command is processed further following completion
of the update functiors. The history buffer is accessed to retrieve
the data relating tu the parameter name specified. This data is then
normalized for display to the operator and the internal variables table
is loaded with the history data. Each reading contains the normalized
parameter value and the time the reading was taken.

A11 other processing in the DISPLAY FORMAT module takes place on
a periodic ‘basis rather than in response to a display command. The
internal variables table is scanned for a flag indicating that a variable
has changed value. Once that flag is found, the value of the variable
is read along with the symbol name. The flag is cleared and the infor-
mation processed to update the display. The symbol library is accessed
to determine the commands required to display the condition of the
variable. These commands are then sent to the GRAPHICS DISPLAY DRIVER
module for processing.

Additional asynchronous processing takes place to process alarm
conditions. When a new entry is found in the alarm file, the alarm
information is inserted into-the internal variables table and the alarm
correlation file is accessed. This file contains additional information
to be added to the screen vectors in the event of an alarm. These new
screen vectors are user generated prompts for additional alarm infor-
mation. For example, if an alarm is received on an external parameter,
new pushbuttons may appear on the display device or the alphanumeric
monitor to prompt the operator to call up certain key displays. These
key displays might include the control loop parameters for the affected
loop, the trend data for the affected parameter, a display summarizing
all similar parameters in the process or an alarm summary display.

The graphics display driver implements a standard set of displayable
commands for the graphics display device. This standard set of commands
is sufficient to generate all figures needed for operator: communication.
In order to improve the portability of the software, a single set of
commands is used in all libraries. When the physical device is selected,
the user must provide for the translation of the standard commands into
device specific commands. For a sophisticated device, this consitutes
a simple table Took-up while less capable devices could require extensive
processing.

A11 coordinate references assume a resolution of 1024 horizontal(X)
by 1024 vertical(Y) display elements. This was felt to be the maximum
resolution which would be required for most applications. Consequently,
the driver module must also scale all coordinates to the actual resolution
of the hardware.

The following commands constitute the set of displayable commands
implemented in the operator interface. Since the software does not
interpret the commands, the creation of additional commands is simply a
matter of adding them to the user defined files. This action would

-14-

result in restricted portability however.

BCOLOR (NAME) - Sets the current display background color to
-one of the eight colers specified by NAME (BLACK, BLUE, CYAN,
GREEN, MAGENTA, RED, WHITE, YELLOW)

'BLINK(STATUS) - A11 further information plotted will blink if
STATUS is on and will not blink if STATUS is OFF

CIR%LE*§X,Y,RADIUS)_- Draws a circle with the specified radius centered
at (X,

CURSOR (X;Y) - Moves the graphics cursor to the point (X,Y)

"DEVICE (NUMBER) - Directs all further gfaphics commands to the
display device with the logical unit number NUMBER

FCOLOR (NAME) - Sets the current display foreground color in the
same manner as BCOLOR sets the background.

FILL (X,Y) - Fills the polygon containing the point (X,Y) with the
current foreground color

HBAR (X0,Y0,X.WIDTH) - Plots a horizontal bar graph WIDTH units
wide, starting at the point (X0,Y0) and extending to the point (X,YO0)
in the current foreground color

POINT (X,Y) - Plots the point (X,Y) in the current foreground color

RESTORE (FILE) - Performs a DMA transfer of a previously saved display
image, named FILE, from the mass storage device to the memory of the
graphics display device

SAVE (FILE) - Performs a DMA transfer of the current display image
from the memory of the graphics display device to the mass storage
device under the name FILE

SYMBGL (X.Y.TYPE). - Draws a symbol defined as TYPE referenced to
the point (X,Y) in the current foreground color

"TEXT (X,Y.STRING) - Displays the character string STRING beginning
at the point (X,Y) in the current foreground color

TONE‘(TIMEZ - Generates a tone from the display device lasting
for TIME milliseconds

VBAR (X0,Y0,Y,WIDTH) - Plots a vertical bar graph WIDTH units
wide, starting at the point (X0,Y0) and extending to the point (X0,Y)
in the current foreground color

VECTOR (X0,Y0,X1,Y1) - Generates a vector from the point (X0,Y0) to
the point (XT,Y1) in the current foreground color

-15-

"VIDEQ (STATE) - Special command used for black and white monitors
to set the video to the condition of STATE (NORMAL or REVERSE)

“'Conclusion

A need exists for a general purpose operator interface which is
usable in a variety of applications with Tittle or no modification.
This paper describes the implementation of one approach to providing
‘that interface through the use of color graphics display devices with
touch sensitive screens.

The interface involves a pertable software package designed to
support a variety of hardware options. The approach taken provides Fhe
user with ease of implementation, both in terms of installation in his
environment and the application programming. ‘Machine dependent features
of the software are well isolated to simplify modifications required by
a new environment. Applications programming is performed by constructing
simple source files defining the displays and interactions.

The implementation described results in a compact, efficient control
console. ‘The anticipated savings, both in hardware requirements and
reduced design and implementation effort, over a conventional control
scheme are substantial.

The approach taken results in a minimum configuration requirement.
This minimum configuration makes the application of this interface to
very small systems expensive. However, the ease of maintenance and
modification make it an option worth considering even for those small
systems. ‘

The speed of response of the system has not been measured since
the interface is still being implemented. It was designed for acceptable
response time and no major problems are anticipated. A follow-on effort
is planned, in any event, to improve the response time.

A set of file preprocessors is planned which will translate the
user's source files into a format which can be processed more quickly.
The user would not lose the simplicity.of constructing source files but
would gain an improvement in system operation. A similar preprocessor
could be developed to eliminate the need for the GRAPHICS DISPLAY DRIVER
module. It would replace the standard displayable commands in the source
files with device specific commands. This would eliminate the need for
on-1ine translation.

Another option which will be explored is the possibility of imbedding
several microprocessors in the operator's console. Each microprocessor
would perform the functions. of one of the software modules, achieving an
improvement in response time due to the resulting parallel processing.

-16-

~
‘e

BIBLIOGRAPHY

-~

Blar, D. E.; "Plant Operator's Computer Interface,“ Instrumentation
echno]ogg October 1975, pp. 29-34.

‘Brewer, S. C.; "Interactive Graphics: A Powerful Tool Supplants Large

Control. Panels," Control Engineering, September 1978, pp. 54-57.

Crook, K.; "CRT Touch Panels Provide Maximum Flexibility in Computer
Interaction," Control Engineering, July 1976, pp. 33-34.

Dallimonti, R.; "Future Operator Consoles for Improved Decision-making
and Safety," Instrumentation Technology, August 1972, pp. 23-28.

Dallimonti, R.; "Human Factors in Control Center Design,” Instrumentation
Technoloay, May 1972, pp. 39-44.

' Da1]imonti, R.; "New Designs for Process Control Consoles," Instrumentation
Technology, November 1973, pp. 48-53.

Dallimonti, R.; "Operator Interfaces: Past, Present, and Future,"
Advances in' Instrumentation, Instrument Society of America, 1977.

Uyetani, A.; Yoshizaki, K.; Nagakawa, K.; "Standardized Operator Interfaces
for Distributed Control Systems,” Instrumentation Technology, December 1978,
pp. 43-47.

Zey, R. B.; "Using Interactive Color CRTs as Operator Interfaces,"
Instrumentation Technology, December 1978, pp. 49-51.

