Verification of Secure Distributed Systems
in Higher Order Logic
A Modular Approach Using Generic Components

Jim Alves-Foss
Karl Levitt
Division of Computer Science
University of California, Davis

1991 IEEE Symposium on
Security and Privacy
Oakland, CA

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.
Verification of Secure Distributed Systems* in Higher Order Logic: A Modular Approach Using Generic Components

Abstract

In this paper we present a generalization of McCullough's restrictiveness model as the basis for proving security properties about distributed system designs. We mechanize this generalization and an event-based model of computer systems in the HOL (Higher Order Logic) system to prove the composability of the model and several other properties about the model. We then develop a set of generalized classes of system components and show for which families of user views they satisfied the model. Using these classes we develop a collection of general system components that are instantiations of one of these classes and show that the instantiations also satisfied the security property. We then conclude with a sample distributed secure system, based on the Rushby and Randell distributed system design and designed using our collection of components, and show how our mechanized verification system can be used to verify such designs.

1 Introduction

This paper is concerned with mechanizing the verification of distributed system design. Following the work of McCullough and his colleagues at Odyssey Research Associates [8, 9, 10, 13, 14], we characterize the security of components of a design using the restrictiveness model: A user of the component is prevented from observing any outputs dependent on inputs outside his view. McCullough also provides a definition of hook-up, where two components, each satisfying the restrictiveness model, are connected in a way that guarantees their composition also satisfies restrictiveness. This way a system can be created that is guaranteed to satisfy the security model as long as each component and their connections satisfy the model.

We extend the McCullough model by writing specifications for a class of generic building blocks, the class including filters of various kinds. Next we define a large class of components that are instantiations of these filters and show that the instantiations satisfy restrictiveness. These components include queues, transformers, multiplexors, de-multiplexors and switches. To establish the generality of the class of components, we show they can be connected to produce the Rushby-Randell distributed system design.

All proofs are mechanically checked using the Higher Order Logic (HOL) system developed at Cambridge University [5]. HOL was selected for this project based on its support for higher-order logic, generic specifications, and polymorphic type constructs - all in support of writing and reasoning about general classes of components.

Section 2 of this paper gives an overview of the HOL theorem proving system. Section 3 describes how to use the HOL system to develop the theories for the sequence and event system abstract data types. Section 4 presents a generalized definition of restrictiveness and theorems that have proven about it. It also presents a definition of composability and shows how it relates to restrictiveness. Section 5 presents a description of generic system component classes and the verification of the security property applied to them. It discusses how the classes are developed in the HOL system, and shows how the generic components can be instantiated to system components. Finally section 6 presents an example distributed secure system and how the generic components can facilitate its specification and verification. General conclusions of this work and plans for future work are also presented.

* Sponsored by Lawrence Livermore National Laboratory
2 The HOL System

To formally model the security properties of a secure distributed system, and to ensure the accuracy of our proofs, we felt that it was necessary to develop the proofs and properties using a mechanical verification system. This prevents proofs from containing logical mistakes, and assures that the foundations on which the work is based are sound. Due to the nature of the proofs, which include quantification over sets of objects, we felt that a system which supports higher-order logic and a typed lambda calculus would facilitate our efforts. The HOL system was selected for this project due to its support for higher-order logic, generic specifications and polymorphic type constructs. Furthermore its ready availability, local support, and a growing world-wide user base made it a very attractive selection. Since the HOL system is the theorem proving environment used in this work, we will describe it in more detail in the remainder of this section.

HOL is a general theorem proving system developed at the University of Cambridge [5, 1] that is based on Church's theory of simple types, or higher-order logic [3]. Although Church developed higher-order logic as a foundation for mathematics, it can be used for reasoning about computational systems of all kinds. Similar to predicate logic in allowing quantification over variables, higher-order logic also allows quantification over predicates and functions thus permitting more general systems to be described.

HOL grew out of Robin Milner's LCF theorem prover [6] and is similar to other LCF progeny such as NUPRL [4]. It's proof style can be tailored to the individual user, but most users find it convenient to work in a goal-directed fashion. HOL is a tactic based theorem prover. A tactic reduces a goal into one or more simpler subgoals and provides a justification for the goal reduction in the form of an inference rule. Tactics perform tasks such as induction, rewriting, and case analysis. At the same time, HOL allows forward inference and many proofs are a combination of both forward and backward proof styles. Any theorem proving strategy a user employs in connection with HOL is checked for soundness, eliminating the possibility of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem prover. Using the metalanguage, tactics can be put together to form more powerful tactics, new tactics can be written, and theorems can be combined into new theories for later use. The metalanguage makes the HOL verification system extremely flexible.

In HOL, all proofs, even tactic-based proofs, are eventually reduced to the application of inference rules. Most non-trivial proofs require large numbers of inferences. Proofs of large devices such as microprocessors can take many millions of inference steps. In a proof containing millions of steps, what kind of confidence do we have that the proof is correct? One of the most important features of HOL is that it is secure, meaning that new theorems can only be created in a controlled manner. HOL is based on 5 primitive axioms and 8 primitive inference rules. All of high-level inference rules and tactics do their work through some combination of the primitive inference rules. Because the entire proof can be reduced to one using only 8 primitive inference rules and 5 primitive axioms, an independent proof checking program could check the proof syntactically.

HOL is not an automated theorem prover but is more than simply a proof checker, falling somewhere between these two extremes. HOL has several features that contribute to its use as a verification environment:

1. Several built-in theories, including booleans, individuals, numbers, products, sums, lists, and trees. These theories contain the five axioms that form the basis of higher-order logic as well as a large number of theorems that follow from them.
2. Rules of inference for higher-order logic. These rules contain not only the eight basic rules of inference from higher-order logic, but also a large body of derived inference rules that allow proofs to proceed using larger steps. The HOL system has rules that implement the standard introduction and elimination rules for Predicate Calculus as well as specialized rules for rewriting terms.

3. A collection of tactics. Examples of tactics include \texttt{REWRITE_TAC} which rewrites a goal according to some previously proven theorem or definition, \texttt{GEN_TAC} which removes unnecessary universally quantified variables from the front of terms, and \texttt{EQ_TAC} which says that to show two things are equivalent, we should show that they imply each other.

4. A proof management system that keeps track of the state of an interactive proof session.

5. A metalanguage, ML, for programming and extending the theorem prover. Using the metalanguage, tactics can be put together to form more powerful tactics, new tactics can be written, and theorems can be aggregated to form new theories for later use. The metalanguage makes the verification system extremely flexible.

3 Formal System Model

The work presented in this paper involves the specification and verification of secure distributed systems. This requires the development of the system specifications in a formal framework, the definition of certain security properties for the system, and validation that these properties are held true for the system.

We define a secure distributed system using an event-based model. This model is derived from the one presented by McCullough in [10, 8], which is based on the processes of Milner [11] and Hoare [7].

This model defines systems in terms of sequences of events where each event is either a communication event (input or output), or an internal transition event. McCullough's model of event-systems requires a 4-tuple representation consisting of the set of events, set of inputs, set of outputs, and set of valid traces for the system. A valid trace of the system is a sequence of events that is a possible event history for the system. Any two event systems will be considered identical if there exists no difference in their behavior; that is, if the set of traces for the systems are identical.

To use the HOL theorem proving system we had to formally specify the theory of event systems and the theory of restrictiveness. This work is similar to other work on mechanizing event based systems and restrictiveness [13, 14, 2]. Once these theories were complete we could then use them to develop the basic system.

The event system model consists of a collection of four sets. These four sets are the component fields of the event system that represent the events, inputs, outputs and traces of the event system. The theory of event systems in the HOL system combines these sets into a 4-tuple representation and enforces relationships between the fields. The relationships ensure that the inputs and outputs of the event system are disjoint subsets of the set of events and that the set of traces of the event system are event-separable sequences of events. We also developed many operations and theorems

\footnote{Also known as the trace model.}
\footnote{The HOL system comes with a growing collection of theories. These theories define different data types and contain theorems about elements of those data types. The list, set and natural number data type theories were used as a basis for the work presented here.}
for the theory of event systems. We have included a partial description of the HOL event-system theory in Appendix B.

A major portion of the event system model is the set of system traces. To model these traces in the HOL system we first had to develop a theory of sequences (very similar to lists). The abstract data type specification we developed for sequences is a polymorphic abstraction. A sequence thus consists of an ordered collection of objects of some single type. Any particular sequence is either the empty sequence or is some sequence with an entry appended to the end of the sequence. HOL allowed us to define many operations on sequences to ease their manipulation. Given these operations one can develop a library of useful theorems relating to the operations and then use them in subsequent proofs. We have included a partial description of the HOL sequence theory in Appendix A.

These sequences and event system theories are used as the basis for the rest of our work. We develop a security property and generic component specifications for event systems. The security property and generic specifications rely on the existence of the data types described above.

4 Formal Security Property

This section describes a formal security property that is a generalization of McCullough's Restrictiveness property. This property is true if the event system does not enable a user to deduce any information from events that the user is not authorized to see. For a classical military system to be restrictive, it must prohibit, for example, a Secret level user from being able to deduce any information from Top-Secret level events in the system.

In general, proving that a system satisfies restrictiveness is difficult. To simplify this proof, we have shown that restrictiveness is a composable (hook-up) property. Thus, if components of a system are restrictive, we can use that information in the proof that the system is restrictive.

4.1 Restrictiveness

The security property we present here is based on the restrictiveness property defined by McCullough in [8, 9, 10]. Figure 1 presents the HOL version of McCullough's restrictiveness for event systems and an auxiliary predicate, SAME-VIEW. This auxiliary predicate is true if two traces (sequences of events) are the same when restricted to the events in a particular view (i.e. When ignoring events outside the view, the sequences are the same).

Consider a set of events representing a user's view of the system \(v \), an event system \(es \), and a valid trace of the event system \(a \). Let \(b_1 \) and \(b_2 \) be sequences of inputs of the event system such that they appear the same with respect to the view \(v \). We know, due to the fact that this definition assumes the event system is input total, that \(a \) concatenated with either \(b_1 \) or \(b_2 \) is a valid trace of the system. Since these traces will appear the same with respect to the view \(v \), the system will be secure only if the sets of possible future events, for each trace, appear the same with respect to the view \(v \). Thus, if we let \(g_1 \) be a sequence of future events for the trace \(a \ SEq_CONC b_1 \), the event system will be restrictive, with respect to \(v \), if there exists a sequence of future events \(g_2 \) for the trace \(a \ SEq_CONC b_2 \) that appears the same as \(g_1 \) with respect to the view \(v \).

We began our work trying to duplicate the proofs presented in [8]. Two of these proofs involve showing that restrictiveness is a composable property, and that a delay-queue specification is restrictive. Working with this definition requires induction over the sequence representing the differences
between the input sequence b_1 and b_2. Although we have been able to use this induction scheme in HOL we came to the conclusion that this particular definition was very difficult to work with. The requirement that we look at future sequences of events and sequences of inputs presented a great deal of overhead.

In [8] McCullough stated this difficulty and proceeded to present definition and proofs based on a state-machine model. In the state-machine definition he changed his perspective and only considered single state transitions instead of a sequence of events as in the event system definition. This change in perspective greatly reduces the complexity of the proofs and the overhead required for sequences of events.

As we stated earlier, we wanted to change our perspective and rework the definition of restrictiveness for event systems based on single events instead of sequences of events. This definition appears in Figure 2.

Our definition does not insist that the event system be input-total, only that for any two traces t_1 and t_2, that appear the same in a user's view, if an input event following t_1 is a legal trace then that same event following t_2 must be a legal trace. This expanded definition permits us to explore component specifications which cannot be input-total. Rosenthal in [14] presents other approaches to expanding the definition of restrictiveness to deal with non input-total systems.

Our definition considers a system to be restrictive with respect to a user's view if, for two traces t_1 and t_2 that appear the same in the view, and an event e such that t_1 followed by e is a legal trace of the system, then:

- If e is in the user's view and e is an input event, t_2 followed by e is a legal trace for the system.

Figure 1: Restrictiveness as defined by McCullough.
Figure 2: Our definition of Restrictiveness

\[
\begin{align*}
\text{RESTRICT} & \overset{\text{def}}{=} \forall v \ es. \\
& \text{RESTRICT} v \ es = \\
& \begin{cases}
\forall t_1 t_2 e.
& \begin{align*}
& \text{let } EV = \text{EVENTS } es \text{ and TR = TRACES } es \text{ and IMP = INPUTS } es \\
& \text{and seq} _ e = \text{ENTRY } e \text{ NULL_SEQ and } I_U_V = (\text{INPUTS } es) \text{ UNION } v \text{ in} \\
& (t_1 \text{ IN TR } \land \\
& t_2 \text{ IN TR } \land \\
& \text{SEQ}_\text{IN}_\text{SET}_\text{STAR} t_1 \text{ EV } \land \\
& \text{SEQ}_\text{IN}_\text{SET}_\text{STAR} t_2 \text{ EV } \land \\
& e \text{ IN EV } \land \\
& (\text{ENTRY } e \text{ t1}) \text{ IN TR } \land \\
& \text{SAME}_\text{VIEW} v \text{ t1 t2 } \Rightarrow \\
& (e \text{ IN IMP } \rightarrow \\
& (\text{ENTRY } e \text{ t2}) \text{ IN TR } | \\
& (\exists g_1 g_2. \\
& (t_2 \text{ SEQ}_\text{CONC} (g_1 \text{ SEQ}_\text{CONC} (seq} _ e \text{ SEQ}_\text{CONC} g_2))) \text{ IN TR } \land \\
& (g_1 \text{ SEQ}_\text{RESTRICT} I_U_V = \text{NULL_SEQ}) \land \\
& (g_2 \text{ SEQ}_\text{RESTRICT} I_U_V = \text{NULL_SEQ})) | \\
& (\exists g. \\
& (t_2 \text{ SEQ}_\text{CONC} g) \text{ IN TR } \land \\
& (g \text{ SEQ}_\text{RESTRICT} I_U_V = \text{NULL_SEQ})))
\end{cases}
\end{align*}
\end{align*}
\]

Figure 3: Theorem that states for input-total systems our definition implies McCullough's.

- If \(e \) is in the user's view and is a non-input event, there exists a sequence of events, containing \(e \), and not containing any input events or events in the user's view, such that \(t_2 \) followed by this sequence is a legal trace of the system.

- If \(e \) is not in the user's view, there exists a sequence of events (possibly the NULL sequence) not containing any input events or events in the user's view, such that \(t_2 \) followed by this sequence is a legal trace of the system.

Proving properties with respect to this definition can be accomplished using induction on the length of the traces \(t_1 \) and \(t_2 \). This induction naturally falls out of the recursive definition of sequences presented in Appendix A, and works well with our definition based on single events. Using the HOL system we have proven that for input-total systems our definition implies McCullough's original definition, thus assuring that our definition relates to McCullough's. This theorem is presented in Figure 3.
4.2 Hook-Up of Restrictiveness

The hook-up of two event systems to create a third event system is used in the construction of complicated systems. The system specification can be decomposed into a collection of simpler components that behave as the system when they are hooked-up. An advantage of this decomposition is that for some predicates (hook-up predicates) one can show that if the components of a system satisfy the predicate, then the hook-up of those components will also satisfy that predicate. This enables one to prove the predicate for a simple component specification and use the hook-up property to prove the predicate for the hook-up of the components.

If the two event systems es1 and es2 are running in parallel and communicate by sharing some events then the combination of these two component systems is their hook-up. The two component systems only share events that are an input of one component and an output of the other component. Figure 4 presents a block diagram showing the hook-up of two event systems.

Figure 5 contains the HOL definition of the hook-up predicate presented in [8]. There are several clauses in this predicate to determine if es is the hook-up of the component systems es1 and es2.

- The events of es are the events of es1 and es2.
- The inputs of es are the inputs es1 and es2 that are not shared events.
- The outputs of es are the outputs of es1 and es2 that are not shared events.
- The input output pairs of es1 and es2 are the only shared events.
- The traces of es are all sequences of events of es such that when restricted to the events of any component system it is a trace of that component system.

This predicate is adequate for a system consisting of two input-total components, which are always ready to receive new input events. To expand the predicate to non-input-total components we only need to add the two clauses in Figure 6, which state that for shared events, if it is possible for one component to send an output then the other component must be ready to receive it.

We have proven that our definition of restrictiveness is a composable property, using our modified definition of hook-up for non input-total systems. This theorem appears in Figure 7.

Using this proof we can show that any event system that is the hook-up of two event systems is restrictive if it's components are restrictive. Taking this a step further we can show that any system that is a hook-up of a collection of event systems is restrictive if all the components are restrictive.
Figure 5: Predicate that determines if an event system is the composition of two given event systems.

Figure 6: Clauses for Hook-Up predicate to handle non input-total components.

Figure 7: Theorem that states our definition of restrictiveness is a composable property.
5 Specifying and Verifying System Components

In this section we discuss the development of system components. When we first started work on this phase of our research, we attempted to formalize the delay-queue specification and proofs presented by McCullough [10]. We quickly confirmed that McCullough's claims about the complexity of the proofs. Attempting to repeat proofs of this complexity for several different components with simple specifications was not appealing.

We decided that the development of generic building blocks would simplify the proof process. We decided to classify the system components into four classes. Three of the classes are sequential (ie. "first come first serve") and the last is scheduled. All of the components described in this paper are input-total, if we expand on the work in [14] we can specify non-input total or input limited versions of these classes. We name these classes based on the way they relate inputs to non-inputs, on a one-to-one, one-to-many, many-to-one or many-to-many basis.

- 1-1 (Set Filter). This class consists of components that process messages on an first-come first-serve basis. Each input event is either ignored or transformed by a simple constant function and sent as an output event.

- 1-M (Generator). This class consists of components that process messages identically to the 1-1 class except that each input event generates a sequence of non-input events according to the function.

- M-1 (Programmable Filter). This class consists of components that process messages on an first-come first-serve basis. Each input event is considered either a control event or a data event. Control events do not generate any additional events, but can change the future behavior of the system. Data events are transformed based on the history of previous events, and sent as a non-input event.

- M-M (Scheduled Programmable Filter). This class is the catch-all. It will take input events, and process them based on the history of events. The inputs are not necessarily processed on a first come first serve basis, and the transformations are not necessarily constant.

Once we defined these classes of components we developed a generic specification for components in each class. Every specific component can be instantiated from the generic definition. Not only does this standardize and simplify the specification of components, it also aids in the proof of properties about the components. Since each component is a specific instance of the generic component, a proof of a property about the generic component will automatically apply to the specific instance. For each of our classes we proved, for a collection of views, that the generic specification is restrictive for those views.

To demonstrate our techniques we also instantiated a collection of parameterized components for each class, and showed which parameters give us valid components. The remainder of this section presents in detail the steps necessary for developing the set filter class of components.

The set filter consists of components that take inputs one at a time, process them and then send an output if necessary. We can summarize the set filter with the following properties:

1. Input-total. The components are always ready to receive inputs.
2. FIFO. The components process inputs on a first-come first-serve basis.
3. Filter. Each input message is either ignored or transformed into a single output.

To define the filter we created a predicate in the HOL logic, IS-SET-FILTER shown in Figure 8. This predicate is parameterized by a set of events, a function and an event system. The event system is considered a filter if:

- The events of the system are only inputs or outputs.
- The function maps inputs in the set to outputs.
- The component maps inputs in the set to outputs.
- The set of traces of the event system are the traces of the filter.

```plaintext
IS_SET_FILTER_DEF =  
\[\text{\texttt{def\ }\texttt{Ves\ }\texttt{fn\ }s\texttt{et1}\texttt{.}}\]  
\[\text{\texttt{IS_SET_FILTER\ }es\ \texttt{fn\ }s\texttt{et1} =}\]  
\[\text{\texttt{(let\ }\texttt{EV = EVENT sentinel and INP = INPUTS in}}\]  
\[\text{\texttt{and OUT = OUTPUTS in TR = TRACES in}}\]  
\[\text{\texttt{((\forall x.\ }\texttt{x \in (INP \ }\texttt{INTER\ }s\texttt{et1) \Rightarrow (\texttt{fn x) IN OUT}) \land}}\]  
\[\text{\texttt{(EV = INP UNION OUT}) \land}}\]  
\[\text{\texttt{(Vseq.\ }\texttt{seq IN TR = IS_SET_FILTER_TRACE seq es fn set1))})}\]  
```

Figure 8: Predicate that tests if an event system is a filter.

The definition in Figure 8 defines the predicate that determines if an event system is a filter. Although we have explicitly defined three of the fields of the event system, we still need to elaborate on the fourth field, the traces. The three definitions in Figure 9 allow us to define a trace of the filter. One can see that a sequence is a legal trace of the filter if:

- The sequence is the Null sequence.
- The sequence is of the form ENTRY e seq and e is a legal next event for seq. This means that e is either an input event or it is the correct output event for the next unserviced input event.

Note that we keep track of the unserviced input events through use of the function SET-FILTER-MSGS. This function takes an entire sequence as a parameter and recursively builds a sequence of unserviced messages. All inputs are added to the end of the sequence while outputs remove an input from the front of the sequence. This function only handles the bookkeeping while the predicate IS-SET-FILTER-NEXT-EVENT handles checking whether the output events actually are correct for the next input event.

Now that we have defined what we mean by a filter we can use it in our proof of security properties. The theorem in Figure 10 was proven in the HOL system. It relies on the definition VISIBLE-OUT-IMP-INP which determines if all the outputs in the view are derived from inputs also in the view. Thus if a view satisfies this predicate, a filter is restrictive with respect to that view.

\[\text{3Intuitively we don't want a system to permit a user to see an output event that was generated from inputs the user was not permitted to view.}\]
Figure 9: Predicates needed to define a legal trace of the filter.

```
SET_FILTER_MSGS =
  ⊢ \forall x s \in seti. SET_FILTER_MSGS NULL_SEQ es seti = NULL_SEQ \land
  SET_FILTER_MSGS(ENTRY x s) es seti =
    (x \in INPUTS es) \land
    SET_FILTER_MSGS s es seti \land
    ENTRY x(set_FILTER_MSGS s es seti) \land
    SEQ_TAIL(set_FILTER_MSGS s es seti))

IS_SET_FILTER_NEXT_EVENT =
  ⊢ \forall seq es fn seti.
  IS_SET_FILTER_NEXT_EVENT e seq es fn seti =
    e \in INPUTS es \lor
    e \in OUTPUTS es \land
    \neg (SET_FILTER_MSGS seq es seti = NULL_SEQ) \land
    (e = fn(SEQ_FIRST_ENTRY(set_FILTER_MSGS seq es seti)))

IS_SET_FILTER_TRACE =
  ⊢ \forall fn seti. IS_SET_FILTER_TRACE NULL_SEQ es fn seti = T \land
  \forall seq es fn seti.
  IS_SET_FILTER_TRACE(ENTRY e seq es fn seti =
    (IS_SET_FILTER_NEXT_EVENT e seq es fn seti \land
    IS_SET_FILTER_TRACE seq es fn seti) \land
    \neg (IS_SET_FILTER_TRACE(seq es fn seti))
```

Figure 10: Theorem that states a filter satisfies restrictiveness for a particular class of views.

```
VISIBLE_OUT_IMP_INP
  ⊢ \forall e s fn.
  VISIBLE_OUT_IMP_INP \wedge es fn =
    (\forall x.
     x \in v \land x \in OUTPUTS es) \land
    (\forall x'. x' \in INPUTS es \land (x = fn x') \land
    x' \in v))

SET_FILTER_IS_RESTRICTIVE
  ⊢ \forall x seti es fn.
  VISIBLE_OUT_IMP_INP v es fn \land IS_SET_FILTER es fn seti =
  RESTRICT v es
```

5.1 Filter Components

In this section we describe several components that have been instantiated from the set filter specification. Each of these components is defined through a predicate that determines if an event system behaves like that type of components. We then prove a theorem which determines which parameter values are legal for which this predicate is true. Once this is done one can easily instantiate these components with specific parameters that satisfy the conditions.

We have also shown that each component satisfies the restrictiveness property for the views described for generic filters. All the components discussed in this section share some similar properties that are a product of the event system model, the filter specification or exists for convenience.

- All external events are labeled pairs. The first element of the pair is the name of the I/O channel where the message occurs, and the second element of the pair is the actual message.
- The names of the input and output channels are disjoint.
- There exist output messages for all possible input messages.
- The components are generic enough that the actual messages and names of the I/O channels can be specified.

We have defined six different components that are instantiations of the set filter classification. Each of these components has been formally specified, and verified as being restrictive for a set of views.

The Delay Queue is the simplest of the filter instantiations. It receives messages through an input port, and at some later time sends them out an output port. It is parameterized by the names of the two ports and the set of messages that it handles.

The Simple Filter component is very similar to the delay queue component with an additional set of messages as a parameter. Any input message received by the simple filter that is not in this set is ignored and does not generate any output message.

The Transformer component is also very similar to the delay queue component with a function as an additional parameter. This function maps the input messages to corresponding output messages.

The Multiplexor component is a slightly more complicated device. It receives input messages on many channels, and places them, in order received, on a single output channel. It is parameterized by a set of input port pairs and an output port name. Each input port pair consists of the input port name and the set of messages that can arrive at that port.

The De-multiplexor component receives input messages on a single channel and places them on one of many possible output channels. It is parameterized by an input port name and a set of output port pairs. Each output port pair consists of an output port name and a set of messages that can be sent on that port. Each output port has a unique set of messages. Each input message is then uniquely routed to a particular output port.

The Switch component is effectively a combination of the multiplexor, de-multiplexor and transformer components. It receives messages on many input ports and sends a corresponding output to one of many output ports. The switch is parameterized by a set of input port pairs, a set of output port pairs and a transformational routing function. Each pair consists of the port name and the set of messages that can occur on that port. The routing function generates an output message for each input message and determines the correct output port for that message.

\footnote{Recall that all events are separate so no two inputs can arrive at the exact same time}
5.2 Specifying Components

Each component is specified following a standard methodology. In this section we present the methodology as it was applied to the delay queue component. The specification of the delay queue is given in Figure 11. This set of specifications is the first step of our specification methodology.

```
DELAYQ_FN
\texttt{def} \ V_0 \text{. port} \ x . \ \text{DELAYQ} \_F N \ o \text{. port} \ x = o \text{. port} , \text{SN} D \ x

DELAYQ_P
\texttt{def} \ \forall \text{. msgs} \ i \text{. port} \ o \text{. port} .
\text{DELAYQ} \_P \ \text{es} \ \text{msgs} \ i \text{. port} \ o \text{. port} =
(\forall \text{x} \ \text{IN} \ \text{INPUTS es} = \ (\text{FST x} = i \text{. port}) \ \wedge \ (\text{SN} D \ x) \ \text{IN} \ \text{msgs}) \ \wedge
(\forall \text{x} \ \text{IN} \ \text{OUTPUTS es} = \ (\text{FST x} = o \text{. port}) \ \wedge \ (\text{SN} D \ x) \ \text{IN} \ \text{msgs}) \ \wedge
\neg (i \text{. port} = o \text{. port}) \ \wedge
\text{IS} \_\text{SET} \_\text{FILTER es} \text{. (DELAYQ} \_F N \ o \text{. port}) \text{. (EVENTS es)}

DELAYQ_DEF
\texttt{def} \ \forall \text{. msgs} \ i \text{. port} \ o \text{. port} .
\text{DELAYQ} \ \text{msgs} \ i \text{. port} \ o \text{. port} =
(\exists \text{. es} \text{. DELAYQ} \_P \text{. es} \text{. msgs} \ i \text{. port} \ o \text{. port})
```

Figure 11: Specification of the Delay Queue.

For this first step we present any auxiliary definitions, which for the delay queue is the function DELAYQ-FN. This function maps input events to output events5. This mapping is accomplished by changing the I/O port identifier of the event to the output port identifier \textit{o-port}.

These auxiliary definitions are used to simplify the main predicate, in this case DELAYQ-P6. This predicate determines if an event system satisfies a relationship with the set input parameters. For the delay queue those parameters are a set of messages \textit{msgs}, and I/O port identifiers \textit{i-port} and \textit{o-port}. As can be seen in the definition, an event system is considered a delay queue if:

- The set of inputs consists of pairs, where the first element of the pair is the input port identifier \textit{i-port}, and the second element of the pair is a message. There exists a pair for each message in the parameter \textit{msgs}.
- The set of outputs consists of pairs, where the first element of the pair is the output port identifier \textit{o-port}, and the second element of the pair is a message. There exists a pair for each message in the parameter \textit{msgs}.
- The port identifiers are different.
- The event system is a filter.

The characteristic predicate is then used in the creation function. This function generates an event system, based on a set of parameters, that satisfies the characteristic predicate. For the delay queue, this function is defined in DELAYQ-DEF. Note that the definition uses the Hilbert Choice operator which will return an arbitrary event system if none satisfy the characteristic predicate.

5For simplicity the function is defined for all events, although we only use it when mapping input events.

6We use the notation \textit{comp-name-P} for the components characteristic predicate, \textit{comp-name-DEF} for the component creation function.
To avoid the arbitrary choice of an event system we develop an existence theorem that states under which conditions there exists an event system that satisfies the characteristic predicate. Figure 12 contains the \texttt{DELAYQ-EXISTS} theorem which states that when the input and output port identifiers are distinct, there exists an event system that satisfies the characteristic predicate of a delay queue. Using this theorem we can now prove an existence lemma, \texttt{DELAYQ-MEMBER-LEMMA}, which states that if the input and output port identifiers are distinct, then the creation function \texttt{DELAYQ} always returns an event system which satisfies the characteristic predicate \texttt{DELAYQ-P}.

\begin{verbatim}
\texttt{DELAYQ_EXISTS}
\begin{align*}
\forall \text{msgs } \text{i_port } \text{o_port}. \\
\neg (\text{i_port } = \text{o_port}) \Rightarrow (\exists \text{. } \text{DELAYQ-P } \text{as } \text{msgs } \text{i_port } \text{o_port})
\end{align*}
\end{verbatim}

\begin{verbatim}
\texttt{DELAYQ_MEMBER_LEMMA}
\begin{align*}
\forall \text{msgs } \text{i_port } \text{o_port}. \\
\neg (\text{i_port } = \text{o_port}) \Rightarrow \\
\text{DELAYQ-P}(\text{DELAYQ } \text{msgs } \text{i_port } \text{o_port}) \text{msgs } \text{i_port } \text{o_port}
\end{align*}
\end{verbatim}

Figure 12: Existence theorems for a Delay Queue.

Now that we know when a delay queue exists, we need to show when it satisfies the security property. Figure 13 contains the theorem that states when a delay queue is restrictive. Here we once again use the predicate \texttt{VISIBLE-OUT-IMP-INP} since a delay queue is an instantiation of a filter.

\begin{verbatim}
\texttt{DELAYQ_RESTRICTIVE}
\begin{align*}
\forall \forall \text{msgs } \text{i_port } \text{o_port}. \\
\text{let } \text{DQ } = \text{DELAYQ } \text{msgs } \text{i_port } \text{o_port} \\
\text{in} \\
(\neg (\text{i_port } = \text{o_port}) \land \text{VISIBLE-OUT-IMP-INP } \land \text{DQ(DELAYQ-FN } \text{o_port}) \Rightarrow \\
\text{RESTRICT } \land \text{DQ})
\end{align*}
\end{verbatim}

Figure 13: Theorem that states a Delay Queue is restrictive.

The restrictiveness theorem, in this case \texttt{DELAYQ-RESTRICTIVE}, is generated from the existence theorems and the generic class restrictiveness theorem. In Figure 13 one can see that we define the event system component, in this case \texttt{DQ}, using the creation function. Using this component we develop the two clauses of antecedent of the implication. The first clause consists of the antecedent in the component existence theorem, in this case the requirement that the input and output port identifiers are different. The second clause consists of the view restriction predicate from the generic class restrictiveness theorem. In this case the predicate is \texttt{VISIBLE-OUT-IMP-INP}, parameterized by the component \texttt{DQ} and its output function \texttt{DELAYQ-FN}. Given that these conditions hold we then know that the component \texttt{DQ} is restrictive.

Although the work presented here was generated interactively in the HOL system, several of the theorems and predicates presented in this section, such as the restrictiveness theorem and existence lemma, can be automatically generated and proven in the HOL system. Given a formalized format for the steps presented above one could create a more automated system that would guide the user through this process, automatically generating the necessary proof goals, theorems and definitions as they are needed. We are currently developing such a format and generation techniques for our
collection of generic classes and components. The Ulysses system [13] provides this automatic generation for specific instances of components.

6 The Rushby Randell Distributed System

This section contains a description of a real system specification that was proven using the generic classes and components developed with the methodology presented above. The specification we use is based on the Distributed Secure system presented in [15].

This system consists of a collection of untrusted single level hosts, a network and a multilevel file server. A diagram of such a system, without the file server is shown in Figure 14. The major component of this system is the Trusted Network Interface Unit (TNIU). This device is an intermediary that sits between hosts on a network and the actual network. The TNIU prevents information on the network from reaching the host if the information does not come from another host with the same security classification level, the exception being the Multi-Level file server. This server is actually a collection of single level servers and a trusted intermediary that routes the messages to the servers.

The implementation of the TNIU requires that there exist a collection of security partitions. Each host and its corresponding TNIU belong to exactly one partition.

To specify the system one needs to define the scope of the system. This includes the set of data messages, security partitions, host ids, and user view's. One also needs to define functions that determine the security classification level for host ids, system events, and data messages.

Following the methodology presented in this paper, events must be characterized as pairs. The first element of the event pair is the name of the I/O channel on which the event occurs, the other element is the message. For a network system each message must consist of at least three components. The first component is the source host ID, the second component is the destination host ID and the third component is the data message. One can define functions that will return the correct component for a given message.
Views in this system correspond to the security partitions. There is one view per partition. That view contains all events such that the classification level of the event is dominated by the view’s classification level. One determines the classification level of an event based on the classification level of the source host.

Using our methodology we have developed a high level specification of the system and shown that it satisfies restrictiveness⁷. Describing this system in our classification system is straightforward.

The TNIU consists of two components, a transformer that places the messages on the network and a filter that pulls messages off the network. The network is a broadcasting device that takes single input messages and places them on every single output port (a 1-M generator). The file server is a simple database (a M-1 programmable filter).

6.1 TNIU

In this section we describe how we specify a single TNIU for the the system and show that it satisfies restrictiveness. After accomplishing this for all components of the system it is a simple matter to hook them up and show that the whole system satisfies restrictiveness.

The predicate TNIU-P presented in Figure 6.1 is the HOL characteristic predicate for a TNIU. This predicate is true if the TNIU is the hook-up of a filter component and a transformer component. The theorem TNIU-RESTRICTIVE in Figure 6.1 state that a given event system that satisfies the TNIU characteristic predicate is restrictive.

```
TNIU_P
\[ def \] \forall es host_id. 
TNIU_P es host_id = 
(\exists es1 es2. 
(IS_HOOK_UP es es1 es2) \land 
(TNIU_FILTER_P es1 host_id) \land 
(TNIU_TRANS_P es2 host_id))
```

Figure 15: TNIU characteristic predicate.

```
TNIU_RESTRICTIVE
\[ def \] \forall es host_id. 
(TNIU_P es host_id) \land 
(VISIBLE_OUT_IMP_INF v es (TNIU_OUT_FN host_id)) \Rightarrow 
RESTRICT v es
```

Figure 16: Theorem that states that a TNIU event system is restrictive.

The theorem TNIU-RESTRICTIVE depends on two TNIU specific definitions. The first, TNIU-P, is the TNIU characteristic predicate defined in Figure 6.1, while the other, TNIU-OUT-FN, is a function that returns the output function for the TNIU of a given host id. This output function is used to ensure that all outputs in the view are derived from inputs in the view.

⁷Due to limitation of the security model we are using, we do not include any of the encryption requirements in our specification.
The proof of the theorem TNIU-RESTRICTIVE is based directly on the composability of the restrictiveness property. Given that the TNIU is the hook-up of two components, if one has already shown that these components are restrictive then the TNIU is restrictive.

The actual decomposition of the TNIU into these components is shown in Figure 17. Here we have both the filter and the transformer components of the TNIU hooked-up (although not sharing any communication channels) into a single TNIU.

TNIU Filter. The filter component of the TNIU allows messages to pass through if the destination of the message is the TNIU host and if the classification of the source host is equivalent to the classification of the destination host. This filter is a direct instantiation of the simple filter component described previously. The set of messages that parameterizes the simple filter consists of all messages whose destination host id is the TNIU host ID and whose source host id has a classification level equivalent to that of the TNIU host.

The predicate TNIU-FILTER-P presented in Figure 6.1 is the HOL characteristic predicate for the TNIU filter component. This predicate is true if a given event system is the filter component of the TNIU for a given host id. This TNIU filter component is actually an instantiation of the generic 1-1 simple filter component.

```plaintext
TNIU_FILTER_P
\def \text{host_id}.
TNIU_FILTER_P \text{es host_id} =
SIMPFLP \text{es (TNIU_SET host_id) TNIU_MSGS}
(TNIU_HOST_IN host_id) (TNIU_NET_OUT host_id)
```

Figure 18: The TNIU filter component characteristic predicate.

In Figure 6.1 the instantiation of the simple filter includes four TNIU specific parameters. TNIU-SET is the function that returns the set of all possible system messages sent to a given host id. TNIU-MSGS is the set of all possible system messages. TNIU-HOST-IN is the function that returns the I/O channel name of the input port for a given host id. TNIU-NET-OUT is the function that returns the I/O channel name of the network output port that connects to the TNIU for a given...
The theorem, TNIU-FILTER-RESTRICTIVE, presented in Figure 6.1 states that the TNIU filter component is restrictive. It depends on two TNIU specific definitions. The first, TNIU-FILTER-P, is the TNIU filter component characteristic predicate defined in Figure 6.1, while the second, TNIU-FILTER-OUT-FN, is a function which returns the output function of the TNIU filter component for a given host id. This output function is a simple identity function that is used to ensure that all outputs in a view are derived from inputs in that view.

\[
\text{TNIU_FILTER_RESTRICTIVE} \\
\vdash \forall_v \text{host}_id. \\
\text{TNIU_FILTER_P} \text{ host}_id \land \\
\text{VISIBLE_OUT_IMP_INP} \text{ host}_id \land \\
\text{RESTRICT} \text{ host}_id
\]

Figure 19: Theorem that states that a TNIU filter component is restrictive

TNIU Transformer. The transformer portion of the TNIU places the TNIU host ID in the source host field of the message. This ensures that the data in that field is correct regardless of what the host placed in the message. This transformer is a direct instantiation of the transformer component described previously. The transformation function that parameterizes the component is a function that places the TNIU host ID in the source field of the message and redirects the message to the network.

The predicate TNIU-TRANS-P presented in Figure 6.1 is the HOL characteristic predicate for the TNIU transformer component. This predicate is true if a given event system is the transformer component of a the TNIU for a given host id. The TNIU transformer component is actually an instantiation of the generic 1-1 transformer component.

\[
\text{TNIU_TRANS_P} \\
\vdash \text{host}_id. \\
\text{TNIU_TRANS_P} \text{ host}_id = \\
\text{TRANS}_P \text{ TNIU_MSGS} \text{ TNIU_SET_SRC_FN} \text{ host}_id \\
\text{ TNIU_HOST_OUT} \text{ host}_id \text{ TNIU_NET_IN} \text{ host}_id
\]

Figure 20: The TNIU transformer component characteristic predicate.

In Figure 6.1 the instantiation of the transformer includes four TNIU specific parameters. TNIU-MSGS is the set of all possible system messages. TNIU-SET-SRC-FN is the function that returns the transformation function for a given host id. This transformation function ensures that the source host id in the message is the host id. TNIU-HOST-OUT is the function that returns the I/O channel name of the output port for a given host id. TNIU-NET-IN is the function that returns the I/O channel name of the network input port that connects to the TNIU for a given host id.

The theorem, TNIU-TRANS-RESTRICTIVE, presented in Figure 6.1 states that the TNIU transformer component is restrictive. It depends on two TNIU specific definitions. The first, TNIU-TRANS-P, is the TNIU transformer component characteristic predicate defined in Figure 6.1, while
the second, TNIU-TRANS-OUT-FN, is a function which returns the output function of the TNIU transformer component for a given host id. This output function is a simple identity function that is used to ensure that all outputs in a view are derived from inputs in that view.

\[
\text{TNIU_TRANS_RESTRICTIVE}
\begin{aligned}
\forall v \in \text{host}_id. \\
\text{TNIU_TRANS}_P \in \text{host}_id \wedge \\
\text{VISIBLE_OUT}_\text{IMP}_\text{IMP} v \in \text{TNIU_TRANS_OUT_FN host}_id \Rightarrow \\
\text{RESTRICT} v \in
\end{aligned}
\]

Figure 21: Theorem that states that a TNIU transformer component is restrictive

6.2 Network

The network can be specified as a broadcasting device. It receives input messages from one of the TNIUs in the system. This message is the duplicated and sent to all the other TNIUs in the system.

Using the 1-M generator classification one can specify a generic component broadcasting device that behaves in this manner. This component can then be shown to satisfy the restrictiveness property. One then instantiates the broadcasting component for the particulars of this system. Due to the fact that the generic component satisfies restrictiveness one can easily show that this instantiation satisfies restrictiveness.

6.3 File Server

The file server is the most complicated component of the system, but can be specified as a simple database device. It receives messages from its TNIU and sends responses back through the TNIU. The responses are determined by previous messages received by the server. Possible messages from hosts of the system include publish and acquire request for access to files in the server.

The server originally described by Rushby and Randell consists of a simple switch (multiplexor, demultiplexor pair) and a collection of untrusted single level file servers. This configuration can easily be defined using a 1-1 filter switch component for the switch and a simple M-1 programmable filter database component for the file servers. Unfortunately this does not define the possible behavior of untrusted file servers, in that it requires the file servers perform as expected. An untrusted file server can change the contents of a file based on the history of acquire requests it has received.

To define the system as it should behave one defines the whole file server as a M-1 programmable filter database component. This component receives publish and acquire messages from the network. It will then respond as defined by the security policy. If a Secret level host publishes a file \textit{File1} a Top Secret level host can acquire \textit{File1} but an Unclassified level host cannot.

7 Conclusions

In this paper we presented a generalization of McCullough's restrictiveness model. We used this generalization and an event-based model of computer systems defined in the HOL system [5] to prove
the composability of the model and several other properties about the model. This composability permits us to use modular specification techniques in the development of a system, and then when all components are shown to satisfy restrictiveness we automatically know that their composition satisfies restrictiveness. We then developed a set of generalized classes of system components and showed for which families of user views they satisfied restrictiveness. Using these classes we developed a collection of general system components that are instantiations of one of these classes and showed that they also satisfied the security property. These proofs were easy to develop due to the existence of proofs showing that the general models satisfying We then defined a sample distributed secure system, based on the Rushby and Randell TNIU, and showed how our mechanized system could be applied to reasoning about it.

Continuing this work, we plan to incorporate some of the ideas presented by Rosenthal in [13, 14] to expand our mechanized system classifications to include non-input total systems. Using these expanded classifications we will apply our to a network mail server [12] and a secure labeler [16]. Once we have developed an adequate library of generic system component specifications and used them to specify sample systems, we will apply our methodology to a kernel for a secure distributed system. The methodology we have developed, and the composability of the security model we are using will enable us to fragment this task into several simple components. We expect all of these components to fit into one of our generic component classifications.

References

A The Sequence Theory

The HOL definition for the sequence data type abstraction is shown in Figure 22.

```haskell
let sequence = define_type 'sequence'
  'sequence = NULL_SEQ | ENTRY * sequence';
```

Figure 22: The HOL recursive definition of the sequence data type.

In Figure 22 one can observe that a sequence is defined as either as NULL-SEQ or as a sequence with an entry appended to it. This is similar to a Lisp cons operation except that the entry is added to the end of the sequence. The “*” in the second disjunction of the definition is a place holder for a type specifier, it permits us to define sequences as a ordered collection of objects of type “*”. We can later instantiate a sequence to consist of objects of a specific type (i.e. int, bool, lists, or even more sequences). The HOL system automatically generates the abstraction and representation axioms for the sequence data type, permitting us to deal with the abstraction and ignore the internal representation.

Once we define the recursive data type we need some simple definitions for manipulating elements of the sequence type. As seen in Figure 23 we defined four simple extractors, which take a sequence as a parameter and returns a component of the sequence. SEQ-LAST-ENTRY returns the last element added to a sequence and is undefined for the NULL sequence. SEQ-HEAD is the opposite of SEQ-LAST-ENTRY in that it returns the sequence that existed prior to the last element being added and returns the null sequence for a NULL sequence. SEQ-FIRST-ENTRY returns the first element added in a sequence and is undefined for the NULL sequence. SEQ-TAIL is the converse of SEQ-FIRST-ENTRY in that it returns the sequence that exists after the first entry and returns NULL sequence for the NULL sequence.

We have defined several functions on elements of the sequence abstract data type. We present three of these functions in Figure 24. SEQ-LENGTH is a simple recursive function that takes a sequence as a parameter and returns its length. SEQ-CONC is an infix operator that takes two sequences as parameters and returns their concatenation (similar to a Lisp append operation). SEQ-RESTRICT is an infix operator that takes a single sequence and a set of elements as parameters and returns the sequence with elements not in the set removed from the sequence.
SEQ_LAST_ENTRY
\[\vdash_{def} \forall x. \text{SEQ-LAST_ENTRY}(\text{ENTRY} x s) = x \]

SEQ_HEAD
\[\vdash_{def} (\text{SEQ_HEAD NULL_SEQ} = \text{NULL_SEQ}) \land (\forall x. \text{SEQ_HEAD}(\text{ENTRY} x s) = s) \]

SEQ_FIRST_ENTRY
\[\vdash_{def} \forall x. \text{SEQ_FIRST_ENTRY}(\text{ENTRY} x s) = \rightline{(\langle s = \text{NULL_SEQ} \rangle \rightarrow x \mid \text{SEQ_FIRST_ENTRY} s)} \]

SEQ_TAIL
\[\vdash_{def} (\text{SEQ_TAIL NULL_SEQ} = \text{NULL_SEQ}) \land \rightline{(\forall x. \text{SEQ_TAIL}(\text{ENTRY} x s) = \rightline{(\langle s = \text{NULL_SEQ} \rangle \rightarrow \text{NULL_SEQ} \mid \text{ENTRY} x(\text{SEQ_TAIL} s))}} \]

Figure 23: Selectors of sequences.

SEQ_LENGTH
\[\vdash_{def} (\text{SEQ_LENGTH NULL_SEQ} = 0) \land \rightline{(\forall x. \text{SEQ_LENGTH}(\text{ENTRY} x s) = \text{SUC(SEQ_LENGTH} s)) \rightline{}\]

SEQ_CONC
\[\vdash_{def} (\forall s. \text{SEQ_CONC NULL_SEQ} = s) \land \rightline{(\forall s x 1 s. \text{SEQ_CONC}(\text{ENTRY} x s) = \text{ENTRY} x(s \text{SEQ_CONC} s))} \]

SEQ_RESTRICT
\[\vdash_{def} (\forall s. \text{NULL_SEQ} \text{SEQ_RESTRICT} e = \text{NULL_SEQ}) \land \rightline{(\forall x s e. \rightline{(\langle \text{ENTRY} x s \rangle \text{SEQ_RESTRICT} e = \rightline{(\langle x \ \text{IN} \ e \rightarrow \text{ENTRY} x(s \text{SEQ_RESTRICT} e) \mid s \text{SEQ_RESTRICT} e) \rangle}}} \]

Figure 24: Functions on sequences.
We have also defined some useful predicates based on sequences. We present four of these in Figure 25. \texttt{PREFIX} is an infix operator which is true if the first sequence is a prefix of the second sequence. \texttt{PPREFIX} is an infix operator which is true if the first sequence is a proper prefix of the second sequence. \texttt{SEQ-IN-SET-STAR} takes a sequence and a set and is true if all elements of the sequence are members of the set.

\begin{align*}
\text{PREFIX} & \quad \vdash_{df} \left(\forall a. \text{PREFIX NULL_SEQ} = (a = \text{NULL_SEQ}) \right) \land \\
& \qquad \left(\forall a \, b \, x. \right. \\
& \left. \quad \text{PREFIX} \left(\text{ENTRY} \times b \right) = ((a = \text{ENTRY} \times b) \rightarrow T \mid \text{PREFIX} \, b) \right) \\

\text{PPREFIX} & \quad \vdash_{df} \forall a \, s1. \text{PPREFIX} \, s2 = \neg(s1 = s2) \land s1 \, \text{PREFIX} \, s2 \\

\text{SEQ-IN-SET-STAR} & \quad \vdash_{df} \left(\forall \text{set}1. \text{SEQ-IN-SET-STAR} \text{NULL_SEQ set}1 = T \right) \land \\
& \quad \left(\forall x \, s \, \text{set}1. \right. \\
& \quad \left. \text{SEQ-IN-SET-STAR} \left(\text{ENTRY} \times s \right) \text{set}1 = \\
& \quad \left(x \, \text{IN set}1 \rightarrow \text{SEQ-IN-SET-STAR} \, s \, \text{set}1 \mid F \right) \right)
\end{align*}

Figure 25: Some predicates for sequences.

In the course of our research, we have developed a large library of function and predicates for the sequence abstract data type. To aid our proof efforts, we have also proven many theorems related to sequences and their selectors, predicates and functions. To describe the complete library is beyond scope of this paper.

\section{The Event system Theory}

The event system is a polymorphic structure consisting of four fields. Three of the fields are sets of elements, and the fourth is a set of sequences of elements. These fields represent the set of events of the system, set of input events of the system, set of output events of the system, and the set of all valid traces (sequences of events) of the system. The inputs and outputs must be subsets of the set of events and traces must be sequences of the events. The valid traces represent all the possible sequences of events that could have occurred in the history of the event system.

To develop the event system abstract data type we need to first define a characteristic predicate that will determine the relationship between the components of the event system and a predicate that determines our representation of the abstract data type. These predicates are presented in Figure 26.

The predicate \texttt{IS-EVENT-SYSTEM} determines if a collection of sets can be combined into an event system. This is true only if the inputs and outputs are disjoint subsets of the events, and the traces are event separable (i.e., \((\text{ENTRY} \, e \, s) \text{ IN traces} \iff \forall s \, \text{IN TRACES})\) sequences of events.\footnote{Events are considered separate, such that no two can occur at the same time. Thus for a sequence of events to be a trace, all prefixes of that sequence must also be a trace.} The predicate \texttt{IS-EVENT-SYSTEM-REP} determines if a four-tuple of sets represents a valid event system. This is true only if the components of the four-tuple map to the four fields of the event system and satisfy the characteristic predicate. These two predicates are used to define the event system.
system abstract data type in the HOL system. The theorems and definitions that resulted from this are presented in Figure 27.

To complete the creation of the abstract data type we need to prove an existence theorem that states that there exists a value that represents an element of the abstract data type. The first definition in Figure 27, EMPTY-EVENT-SYSTEM-REP is a representation of the EMPTY event system. EMPTY-ES-REP-IS-REP is the theorem that proves that this definition represents an event system. We use this theorem to prove the existence theorem ES-EXISTS-THM. The HOL system then automatically generates the abstract data type axiom event-system-AXIOM. It also generates mapping operators between events systems and their representations.

To access the fields of the abstract data type one needs selectors. The operators enable the user to access the fields of the event system while ignoring the actual representation being used. The four field selectors are presented in Figure 28.
EVENTS	def	Yes. EVENTS es = FST(REP_event_system es)
INPUTS	def	Yes. INPUTS es = FST(REP_event_system es))
OUTPUTS	def	Yes. OUTPUTS es = FST(SND(REP_event_system es)))
TRACES	def	Yes. TRACES es = SND(SND(REP_event_system es)))

Figure 28: Selectors for the fields of an event system.

This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
END

DATE FILMED

04/03/91