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Introduction

The subject of beam-beam instability has been studied since the invention of the
colliding beam storage rings. Today, with several colliding beam storage rings in
operation, it is not yet fully understood and remains an outstanding problem for the
storage ring designers. No doubt that good progress has been made over the years,
but what we have at present is still rather primitive.

It is perhaps possible to divide the beam-beam subject into two areas: one on lumi-
nosity optimization and another on the dynamics of the beam-beam interaction. The
former area conceras mostly the design and operational features of a colliding beam
storage ring, while the later concentrates on the experimental and theoretical aspects
of the beam-beam interaction. Although both sreas are of interest, our emphasis will
be on the second area only. In particular, we will be most interested in the various
possible mechanisms that cause the beam-beam instability. More complete reviews
can be found in Ref=. 1-5.
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1. The Strong-Weak Picture

Figure 1(a) shows a storage ring in which two oppositely charged particle bunches
circulate and collide at two opposite locations. As our first beam-beam picture, let
us assume one of the bunches consists of a single particle (weak beam), while the
other bunch is a dense gaussian charge distribution {strong beam). The strong beam
is assumed to be a smooth cloud of charge rather than a collection of many point

charges.
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Fig. 1. The “strong-weak” and the
“gtrong-strong” cases of beam-beam in-
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As the weak beam passes through the on-coming strong beam, it receives 8 trans-
verse impulse. The strong beam, on the other hand, is unperturbed. In this “strong-
weak” picture, the weak beam acts as a “probe” into the beam-beam force of the
strong beam. The issue bere is whether the weak beam motion will be stable under
the beam-beam perturbation.



More specifically, let us specify the weak beam by its horizontal and vertical dis-
placements, z aud p, and their slopes 2/ and y'. Then as the weak beam passes through
the strong beam at the collision point, its displacements are unchanged but its slopes
change by amounts related to z and y according to®7

AY = —"—U‘;:’—”l and Ay = -"’Ug:: )] 1)

where U(z, y) is an equivalent potential-well produced by the strong beam space charge
and current,

Ve =-22[ "at G @
’ Ve + 005 + 1)

with N the number of particles in the strong beam, rg = ¢2/mc? the classical radius
of the particle, 4 the Lorentz energy factor of the weak beam and o; and oy the rms
beam sizes of the strong beam at the collision point.

Problem 1. Show that when the beam is round with @; = oy = ¢, Egs. (1)
and (2) reduce to
ar =20 Z[e-f’/'“’ - 1] (3)
9 r
The problem is one-dimensional in nature. Eq. (3) can also be obtained directly
from Gauss' law and Ampere's law.

After each collision, the weak beam executes a free betatron oscillation with its
(z, 2,9, /) being transformed linearly by the matrix®

€03 iz Bosinps 0 0
—goinas  cosps o 0
0 0 cos piy ﬂ;osm fty (@)
0 0 —tsin By cospy

where z; and puy are the betatron phase advances from one collision point to the next,
Pzp and ﬁ;o are the beta-functions at the collision point.

The weak beam motion is then described by a sequence of mappings on (z, &', y, ),
alternately representing free betatron oscillations and collisions — the former being
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linear and the latter being nonlinear. The problem of the weak beam motios is thus
equivalent to a mathematical problem of nonlinear mapping on the vector (z, 2, y, ¢/),
ie.
beam-beam problem = nonlinear mapping problem )
The question being asked is again if the weak beam motion is stable under repeated
application of the mapping procedure.
It should be emphasized here that the statement (5) is valid only if the strong-weak
picture is adopted. Figure 1(b) shows the more realistic case of two stzong beams. In
this strong-strong picture, statement (5) is no longer valid. In this sense, (5) represents

only a rather limited view of the beam-beam problem. We will postpone the discussions
of the strong-strong case and this point until later.

2. Linearized Strong-Weak Motion

Some insight is to be gained by considering a weak beam that executes a small
amplitude motion with & 0, y € ¢.? Equation (1) becomes

2Nry 2Nrg
—_— 2 -y
wz(0: +oy) voyloz + oy)
In this csse, the z and y motions are decoupled and the problem is linear and can be
readily solved by a matrix technique.

Ad =~ and Ay = (8)

After linearization, we need to consider one dimension only. Let it be the y di-
mension. The transformation of the {y, ) vector through the beam-beam collision is
described by the matrix

1 0
A S
-} 1 I oyoz+0y)
where [ is the equivalent beam-beam focal length.

As a numerical example, a round beam with 10!2 particles, 0.2 mm radius and
5 em length produces at its edge a2 magnetic field of 10 kilogauss. If linearized, the
beam-beam kick is equivalent to a quadrupole of gradient* 50 KG/mm, which is a

* More correctly, the gradient should to doubled since the electric field also con-
tributes. But then the length of interaction should be halved to 2.5 ¢m because both
beams move and they move in opposite directions.



strong gradient indeed. For a 10 GeV particle, the corresponding focal length is about
13 em. This beam-beam quadrupole is of course focusing in both z and y planes.

For symmetry reasons, we will split the beam-beam kick in the middle and observe
the weak beam there. The transformation from one collision to the next is then

cos{u+ Ap)  A'sin(u + Ap)
—gesin(p + Ap)  cos{u + Ap)

[y W e " [y 0]

where 3° is the perturbed beta-function at the eollision point, Ap is the perturbation
on the phase advance.

@)

As the weak beam circulates around, its (z,2’,y, ) is transformed repeatedly by
the matrix (8). If the net motion is stable, the mattix can be parameterized as Eq. (8)
with the perturbed quantities related to the unperturbed ones through

cos(p + Ap) =cosp — ﬁsmu

Bt __sinp
Ay sin(u+Ay)

®

Note that in the linear approximation, the entire problem is specified by the two
scaling parameters u (more specifically, g modulus 27) and

ﬂo Ni foﬂ&

anf 2ryoy(oz + oy) (10)

&=
where £ is the famous beam-beam parameter? that specifies the beam-beam strength.
The beam-beam parameter in the x-motion is obtained from Eq. (10) by exchanging
z and 9.

Figure 2 shows the stable region in the (g, £) space. Outside of the stable region,
the absolute value of the trace of matrix (8) is larger than 2; Eq. (9) then does not
have a solution. The dividing boundary between the stable and the unstable regions
is

=1 ok
5—2——00';5 (12)
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Figure 2 shows that the weak beam is most unstable if the tune advance p/2x
between collision points is slightly below a half-integer and is most stable just above a
hall-integer. (Signs switch for two beams with same sign of charges.)
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Fig. 2. Stability region for & weak beam Unstable

executing small oscillations. g is the beta- 0.2 1
tron phase advance between collision points.
The disgram repeats with period g =x €
and shows a periodic sawtooth behavior

which is typical of beam-beam models. oa b 4
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Ip case p is not close to a multiple of , the tune shift Ap/2r is approximately
equal to £ if £ € 1. This is why sometimes § is (somewhat loosely) also identified as
the beam-beam tune shift per collision point.

The linear strong-weak model described above is our first beam-beam instability
model. Unfortunately, it does not explain the observed beam-beam instability. it pre-
dicts a much too high value for the stability limit. Even worse, such linear instability
can in principle be removed by simply readjusting the unperturbed storage ring optics
and consequently can not constitute a fundamental limitation on the maximum beam
intensity.

3. A Strong-Weak Simulation

In case the weak beam does not have small amplitudes, the linearization breaks
down and the beam-beam force must be considered in its full glory. Such s nonlinear
mapping problem is extremely difficelt to handle analytically. One must then seek



the help of the almighty computer. (See for example Refs. 10 and 11 which also
contain interesting analytical techniques.} The hope is, of course, that by taking into
account of the nonlinear terms in the beam-beam kicks, we could readily explain the
beam-beam instability.

To simulate the weak beam motion with a computer, we launch the beam with
initial conditions {zp, z, yo. ¥h) and apply the transformations (1) and (4) alternately
and repeatedly. As an illustration, we assume a round strong beam (see problem 1)
2nd launch the wesk beam with zp = 0 and z}, = 0. The weak beam will then stay in
the y plane. After each transformation the beam eequires a new set of values for ¥ and
¢/, which is then represented as a discrete point in the (y,4’) phase space. Repeated
application of the transformations then traces out the weak beam trajectory in the
phase space. The motion is stable if the trajectory dves not migrate away from the
origin.

Figures 3(a)-(d) are the results of four strong-weak simulation runs. Figure 3(a) is
the result if we ignore the beam-beam force. Not surprisingly, the weak beam traces
out an elliptical trajectory in the phase space and the motion is stable.

In Fig. 3(b), we take into account of the linear term (i.e. the first term in the
Taylor expansion of Eq.(3)) of the beam-beam force. The weak beam traces out still
a stable ellipse, although now the ellipse is distorted. The stability is assured by the
fact that we are in the stable region of Fig. 2.

Figure 3(c) takes into account the next octupole term in the Taylor expansion of
the beam-beam force. We find that some trajectories trace out stable islands while
some others show “stochastic” behavior in the phase space.!? The trajectories that
show stochastic behavior finally get outside the scope of the figure. By including the
octupole term of the beam-beam force, the beam has thus become unstable.

Had we stopped here, we would say that we have found the explapation for the
beam-beam instablity. But Fig. 3(d) shows the case when the complete beam-beam
foree is included. What is striking is that the stable islands we saw in Fig. 3(c) are
still there, but the stochastic regions have basically disappeared!

This means that the nonlincar beam-beam foree alone does not destablize the
beam, at lcast for the patameters considered. This is in sharp contrast to the resonance
instabilities driven by magnpetic field imperfections, as Fig. 3(c) would be an example
of. The reason for such a behavior has been explained apalytically.?® The point is thai




the beam-beam force diminishes quickly once the weak beam acquires an amplitude
larger than the size of the strong beam. In fact, in the limit of very large amplitudes,
the weak heam acts as if unpertorbed and is mecessarily atable. The beam-beam force
therefore produces islands in the phase space but not yet an instability.
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Fig. 3. Weak beam trajecteries in the normalized phase space (u, v), where
# = gfa, v =3y /0. We assume p/2x = 0.23. (a) ignores the beam-beam
force. (b) includes only the linear term of the beam-beam force. (¢} includes
the linear and the octupole terms and {d) takes into account of the complete
beam-beam force. In each diagram, trajectories of the same five sets of initial
conditions sre followed. Note the gualitative difference between (c) and (d).




4. Tune Spreads

Befare proceeding on to more sophisticated beam-beam pictures, let us first intro-
duce one of the most prominent nonlinear effects of the beam-beam interaction — the
tune spreads,14.15

We already know that if a particle executes small oscillations, its tunes will shift by
&; and & in the horizontal and the vertical motions. We also learned that a particle
with very large oscillation amplitudes experiences little beam-beam perturbation —
and consequently little tune shifts - since it simply stays outside the range of beam-
beam fore~ most of the time. Therefore the tune shifis are functions of the oscillation
amplitudes of the particle. (This behavior is called detuning.) If now & weak beam
contains a distribution of particles of various amplitudes, it will end up with tune
spreads.

The horizontal and vertical tune shifts are directly related to the slopes of the
beam-beam force f/dz and @f/@y.* For given z and y ampliiudes, the tune shifts
of a weak beam particle are calculated essentially by averaging the slopes of the beam-
beam force over the range reached by the particle. In case the particle executes a
one-dimensional y-mntion, the situation is illustrated in Figs.4(a)-(d). In the general
case, with a gaussian strong beam, the tune shifts per collision point as functions of
amplitudes are found by the averaging procedure to bel4:15:.18

Bre =€(L;j)[ow (1+u)‘7§(l+1)7_ (“"‘) z( "‘5")

avy =€(lzﬂ) / 0°°(l + u):‘ﬁ%lu + a2 zz(' "“"“) ( + )

with functions

(12)

Z\(x) =c [ lolz) - h{z)}

Zo(z) =¢™ " Iy(z)
where /@7 and /G, are the amplitudes normalized by o, and gy, respectively, ¢ =
oy [0z is the aspect ratio of the strong beam distribution and Jy and f; are Bessel

* After al), a quadrupole magnet changes the tune because it produces a force with
nonzero slope.



functions. In Eq. (12), we have assumed that the beam-beam parameters in z and y

are equal, je. & =& =¢.

Fig. 4. Schematic illustration of the beam-
beam tune shift mechanism. (a) shows
the beam-beam force. (b is the slope of
this force. Before averaging, the tune shift
is proportional to —3f/dy in such a way
that Ar = £ at the origin, as shown in
{¢). We then perform an averaging of this
Av(y) over the range reached by a given
amplitude. (¢} also shows two such ranges,
one for a small amplitude particle and one
for a large amplitude particle. The result
after averaging gives the detuning curve
which looks like (d).
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Fig. 5. Beam-beam tune spreads. We assume the two beams have opposite charges.
(#20, #;0) is the unperturbed working point. With beam-beam collisiors, the working
point extends into a working area. The dotted lines are the contours for particles
with amplitudes satisfying z2/o2 + yzlof =n?. We assume £; = §y = 0.05. Case
(a) is when the aspect ratio is a = 1, i.e. a round beam. Case (b) is when a = 0.1,
i.e. a flat beam. Case (c) gives the result in the limit a = 0. (d) shows fitting the
working area (shaded region) into a resonance free region in the tune space.
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We bave come across ar, mportant iesult in passing. The tun¢ spread of the beam
is equal to the tune shift of small amplitude particles and both are equal to £:

tune spread = small amplitude tune shift = £ (13)

In other words, the parameter £ has now acquired a second physical meaning of the
strong-beam induced tune spread.

Figures 5(a)-{c} show the tune spreads in the ¥z — vy space. Without beam-beam
collisions, the weak beam has tunes v;g and vp. When the beams collide, particles
with small amplitudes hav  eir Lunes shirted to vz0+ £; and wyg+ &, while particles
with large amplitvdes keep their unperturbed tunes. The weak beam ay a whole then
occupies an area in the vz — vy space. The "working point™ thus exiends in the upper
right direction into a "working area” in the tune space. Note that in both z and y
motions, Eq. {13} is independently satisfied.

Problem 2. Find the tune shifts as functions of amplitude if the strong
beam bas (a) a round gaussian distribution, (b) a ubiform disk distribution.
Draw the working area m both cases. In case (b), the weak beam does not have
tune spread until it goes beyond the boundary of the strong beam. Then, the
weak beam motion is entirely linear.

5. The Single-Resonance Model

The calculation of tune spreads described above assumes there is no destructive
reschance

pvz+quy=n , (p,g,n == integers) (14)

trespassing the working area. Otherwise particle motions will be seriously perturbed
by the resonance. One then argues that these resonances - at least the lower order
ones — must be avoided. Note that the resonances can be driven by the beam-beam
force itself as well as by the storsge ring nonlinearities.

In order to avoid resonances, the tune spread must Lot be too large. Cne possible
picture of the beam-beam instability then emerges: the tune spread £ must be small
enough that the working area can be fitted into a tight resonance free region as sketshed
in Fig. 5(d). Tbis is the single-resonance model of the beam-beam stability Limit.

12



It is aot clear how small £ must be because is not clear to what order the reso-
nances must be avoided. The conventional wisdom has it that the maximum tolerable
€ is about 0.05 for electron rings and 0.005 for proton rings. In the single-resonance
picture, the difference is atéributed to the fact that there is radiation damping in elec-
tron rings but not in sroton rings; as a result, the available resonance free region is
larger for elecirons than for protons because protons are vulnerable to resonances up
to order, say, 10, while electrons need to avoid resonances only up to order, say, 5.

For ete™ storage rings, the aspect ratio tends to bu small, say, ¢ == 0.1. An
inspection of ths shape of the working orea in Fig. 5(b) shows that it is better to
choose the unperturbed working point to lie on the lower right side of the destructive
resonances than on the upper left side. For example, when applied to the diagonal
2y, — 2vy = n resonsnce, this means thai the unperturbed working voint should be
below {he resonance line, as was first pointed out by Montague;" Note, isowever, that
the principle applies to other resonances as well.

Bout there is a problem. As Fig. 3{d) showed, although » low order resonance near
the working area perturbs particle motion, its main effect is to produce a set of islands
in the chase space and not really to cause any instability, The beam-beam instability
is therefore still lacking a mechanism. To reconcile this apparent difficulty, several
rossibilities have been suggested. A few such examples will be given in the next two
sections.

8. Trapping Model and Enhanced Diffusion Model

The single-resonance model described above assumes all parameters such as tune
and £ stay constant in time. In this section, we will first describe a trapping model
in which the tune is modulated more or less sinusoidally in time with a certain slow
frequency and, while doing so, repeatedly crosses a resonance value n/q. Unlike the
static single resonances, this provides a mechanism!8 which continuously brings parti-
cles from small to l:rge amplitndes. A physical aperture limitation on the amplitude
then potentially explains the observed lifetime limitation in colliding beams.

In the static model, s particle moves along a constant Hamiltonian contour and, as
shown in Fig. 3(d), some contours form islands i the phase space. Since the distance
of the islands from the phase space origin is proportional to v — n/g, islands in phase
space move in and out as the tune oscillates. Phase space area elements, together with
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the particles enclosed in them, are distorted and relocated by this island motion. In
particular, pasiicles may be trapped by the islands as ¢hey move out in phase space
(small oscillations around the island centers are stable.). This then causes particle loss
to the aperture limit. The process is schematically shown in Fig. 6.

Physical Aperture

Fig. 6. The trapping model. Some
particles are being trapped and moved
outwards to an aperture limit. How
many particles are trapped depends on
the resonance strength and the island
moving speed.

Maving
Islands

4824A6

One possibl: source of tune oscillation comes from the synchrotron oscillation of
a particle's energy coupled with a chromatic dependence of the tune. In this case, the
tune is modulated at the synchrotron frequency.

We now turn to a second variation of the single-resonance model. This time the
parameters are time-independent, but in addition to the beam-beam force there is a
diffusion effect on particle motion. Although a beam-heam induced single resonance
does not directly cause particle loss, it does enhance the diffusion process and cause
particle loss indirectly.19:20,21

In electron rings, the diffusion caused by the syrchrotron radiation noise and the
radiation damping provided at the acceleration cavities counteract each other; an
equilibrium beam distribution is reached when the two effects are in balance. The beam
lifetimz is then determined by the particle diffusion rate at the physical aperture limit.
The larger the aperture, the longer the lifetime. Clearly the distortion of phase space
by the presence of a single rescnance will also distort the equilibrium distribution. As

14




a result, the effective physical aperture limit is reduced by an amount of the order
of the width of the phase space islands. The beam lifetime will then be shortened
accordingly.

For proton rings, candidates for the diffusion effects are intra-beam scattering,
residual gas scattering, power supply noise, ete. These diffusion effects will also be
enhanced by the presence of single resonances.

7. Overlapping Resonances

The ephanced diffusion and the trapping models described above are not the only
possible explanations of the beam-beam instabiiity by way of strong-weak single reso-
nances. We now describe still another possibie ¢lternative in this seetion,

To do this, we need to take into account resonances of not just the lower orders but
all orders. The working area is then covered densely by resonance lines. Although the
higher order resonances have narrower widths, the fact that there are infinite number
of them may still add up to a significant effect. Indeed, as suggested by Chirikov,22
if these high order resonances are wide enough that they overlap into a continuum in
the tune space, particle motion will be unstable even if the working area is free of low
order resonances.

Computationally what we do is to first calculate the widths of beam-beam res-
onances of all orders as if they are separated single resonances and thea add these
widths up to obtain a total width. If this total width is comparable or larger than the
available tune space, we will have reached a stability limit. This procedure is called
the Chirikov criterion. Since the total width of all resonances is proportional to £,
the Chirikov criterion sets a stability limit on £, which is referred to as the stochastic
limit.

Figure 7(2) shows again the detuning curve shown before in Fig. 4(d) except that
here we have indicated two rescnant tune values within the tune spread range, one
of the 5th order and another of the 8th order. The 5th order resonance occurs at a
smaller amplitude than the 8th order resonance.

Below the stochastic limit, particles move along closed smooth contours in the
phase spacc like Fig. 7{b) and there is no instability. The two strings of islands corre-
spond to the two resonances at two separated amplitudes. If £ excesds the stochastic

15




limit, however, the two sets of islands overlap each other, as illustrated in Fig. 7(c).
But particle trajectories do not intersect in the phase space; as a result, not knowing
which set of islands to follow, particles car only move stochastically from one island
region to another, yielding what is shown in Fig. 7(d). Although each resonance is
stable if considered alone, overlapping resonances make it possible for a particle to
rap'dly gain amplitude within the stochastic region.

{a)

Fig. 7. Sketches of siagle-
resonances o4 ovzclapping
resunenies. (a)is the detun-

veré
. . 2/5
ing curve showing the tune /8

spread is covering two single
resonances, (b) shows two
isolated separated single res-

onances in the phase space.
(¢} shows two overlapping res-
onances which actually end
up looking more like (d). In
(d}, the shaded area repre-
sents the region of stochas-
tic motion.

s-83  Overlgpping Resonances 152047

More quantitatively, the resonance width is obtained by first compnting the width
of the phase space islands (8a in Fig. 7(b)) and then translating this width into r-units
by Eq. (12).22:23.24 For the one-dimensional case near the resonance v = n/fy, 8a is
approximately given by

s 26 S0l ' 9

where
Gyla) = q—2--2:—l e (1 + 20} yo(@) + 20-13,2(0)] , ¢=even

1

is a term that appears in the Hamiltonian that drives the resonancel®; ag is the

13



amplitude at which the island centers are located and Aw is the tune shift in the
one-dimensional case with its derivative given by

a(a) = —€ 2 h(a) (16)
The corresponding resonance width in v-units is therefore
oy 2z ba - |AV)
e 1n
7= 4(2€|Gqlao) - A/(a))
and the Chirikov criterion for beam-beam stability reads
bvit= Y, ¢w<1. (18)

g==cven
where §vpo is the sum of the widths of all resonances that oceur in one urit range of
tune space. Only even ¢'s are summed over because the beam-beam interaction does
nol excite odd ¢'s. The quantity vy, is proportional to §.
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Fig. 8. The total beam-beam resonance
width as a function of particle emittance.
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Fig. B shows 81, /€ as a function of a. It has 3 maximum at a =~ 8, where it
has the value of about 10.6 §. Fig. 8 tells us that the most likely area for stochastic
motion to occur is eround an emplitude of about /8¢. In this region of the phase
space, the beam-beam stochastic limit is found from Eq. (18) to be roughly

1
Elimit ~= 106 == 0.095 . (19)
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The limit (19) is much higher than what has been reached experimentally, One
perhaps could explain this discrepancy by adding a time modulation to the tune or by

adding a diffusion to particle motion, as we did on the static

single-resonance model.

Note, however, also that we have included resonances of & one-dimensional motion

only; all coupling resonances have been ignored.
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Fig. 9(a) shows what happens to Fig. 3 if £ = 0.2.* Particle motion exhibits
clearly a stochastic behavior, apparently leading to an instability. One difficulty of
this, however, is shown in Fig. 9(b), which is the same as Fig. 9(a) but with an
expanded scale. Here we see that the stochastic region is limited to the region arounu
a few sigma’s and outside this region, the motion is bounded again by smooth curves.
The physical reason for this is of course that the beam-beam force diminishes at large
distances, as explained already when we discussed Fig. 3(d). In other words, unless we
are interested in the Bne details of a single particle motion {dependence on the initial
conditions, ete., to several digits) the gross beam behavior does not depend sensitively
on whether the stochastic limit has been exceeded or not

The difficulty of Fig. 9(b) aside, the stochastic instability causes a rapid growth
of particle amplitudes in the stochastic region. For electron storage rings, since the
radiation damping would damp out any instabiity that does not grow much in 103
revolutions or so, we need not to worry about other possible weaker instabilities. For
proton rings, there is no radiation damping, particles need to be stable in the lifetime
of the beam, i.e., 101! revolutions or so. Therefore instabilities much weaker than
the overlapping resonances need to be dealt with. One such weak instability is called
the Arnold diffusion. 252627 What it says is that, long before resonances overlap in the
(v, ¢} phase space, particles can acquire large amplitudes by slowly channeling through
the very thin stochastic layers surrounding the islands in a multiple dimensional phase
space. This phenomenon requires sometimes long term numerical trackings and is
typically rather intrieate to study.

8. The Incompressible Fluid Model

An interesting alternative view of the Chirikov criterion was suggested by Teng.2®
The idea starts with the analogy between particle motion in the phase space of 2 Hamil
tonian system and the motion of a viscous incompressible fluid. (After all, according
to the Liouville theorem, phase space area is incompressible.) By writing down the
Hamiltonian equation on the one hand and the fluid equation on the other, it is possi-
ble to establish the analogy as given in Table 1. Chirikov criterion is then equivalent
to the Reynolds condition in fluid dynamics that the viscosity must be large enough

* p/2x = 0.23 and £ = 0.2 is in the unstable region of Fig. 2. This shows up in
that the origin is an unstable fixed point in Fig. 9.
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in order to prevent turbulence from occurring. This offers an alternativc derivation of
the Chirikov criterion.

Table 1. Analogy Between the Overlapping
Resonances and an Incompressible Fluid

Ovetlapping Resonances Incompressible Fluid
particle motion in phase space fluid motion in real space
Hamiltonian equation Navier-Stokes equation
smooth contours laminar flow

stochastic behavior turbulence

Chirikov criterion Reynolds’ condition

9. Dynamic Beta

So far we have been talking about strong-wesk case. For the strong-strong case,
beam-beam interaction becomes much more complicated since perturbation on one
beamn in turn influences the other beam. For instance, it would be invalid to preassume
a gaussian disiribution since the distribution must come from solving self-consistently
a dynamic system that contains both beams.

Nevertheless, if we consider a linearized strong-strong case, the beam distribution
would still remain gaussian. The only effect is that the rms beam size at the collision
point is pow proportional to \/B*, where 8° is the perturbed beta-function. Since,
according to Eq. (9), B* depends on &, which in turn depends on the beam size, this
means the beam size, §* and £ depend on one another and need to be found self-
consistently for any given value of beam intensity N. Such a behavior is called the
dynamic-beta effect.2% It is the simplest of the strong-strong models.

One can also study the effect of dynamic-beta on the luminosity £. For a gaussian
beam, L is given by

2
[ NB

T dxoz0y (20)

where f is the revolution frequency, B is the number of bunches per beam.*

* From the beam dynamics point of view, luminosity is not 2 very interesting quantity.
It is simply a geometrical quantity representing the transverse beam area.



In Figs. 10(a)-(c), we show the dynamic beta behavior of 8°, £ and L, respectively.
In the range of N of interest, the beam-beam force pinches 8* — and consequently
the beam size at the collision point — to a smaller value if uf2r < 0.1. For larger
p/2m, the reverse is true. This behavior repeats with period s/2x == 1/2. This means
the luminosity would benefit from having /2 slightly above a half-integer and would
suffer if p2/2x is slightly below a half-intcger. Note also that there is always a saturation

behavior on [ versus N.

Fig. 10. Dynamic-beta behavior of 3°,
€ and L. p/2r is the unperturbed tune
advance between collision points (modu-
lus 1/2). The dashed lines in (b} and (¢}
are the reference vaiues when dynamic-
beta effect is ignored. We have chosen
the normalization that Ly = 1032 em—2
sec™! and £ = 0.05 at N = 102,
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In Fig. 10, we have assumed a round beam and p; = p; for simplicity. In this
simplified case, the self-consistent solution is given by
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B* 185 =1+ (2x€o cscp)? — 2x€g cot
£ =6bo/s’ (21)

L =Lof3/8"
where Sy, & and Lg are the quantities in the absence of dynamic-beta.

Tt is not clear whether there is experimental evidence of the dynamic beta effect.
There are some indications of increased luminosity as p/2x is lowered toward slightly
above an half-integer, see Fig. 11.3? The fact that luminosity levels off at high beam in-
tensities agrees with dynamic-beta although almost any reasonable beam-beam model
could have predicted the same.
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One may also ask the question what if the strong-strong case is not linearized,
and what will be the equilibrium beam distribution now that it is no longer gaussian.
This is an important practical question since it directly relates to the luminosity but
unfortunately it is also a very difficult one. Some progress has been made on the weak
beam distribution in the strong-weak case,3132 but as it stands now, more effort is

needed in this research area.




10. Low-5" Insertion

The beam-beam parameter {, as explained in Eq. {13), has the meanings of the
beam-beam induced tune spread and the small amplitude tune shift. In Eq. (19), it was
vsed to set the stochastie limit. These studies, together with what we will see later,
indicate that £ has the meaning of simply being the dimensionless s:aling parameter
of the beam-beam problem. It is the parameter that specifies the linear as well as the
nodlinear beam-beam strength.

This observation has one extremely important practical consequence ~ the inven«
tion of low-3* insertions.*33¢ According to this scaling property, it would be beneficial
to make £ as small as possible and an inspection of Eq. (10) shows that a small 5*
would do the job.

Today, low-£* insertions are implemented on all colliding beam storage rings. As
a result, luminosities have increased by one to two orders of magnitude, And yet this
is not the end. Ideas of how to make 3* smaller are still actively in progress and bring
success every time chey are tried as evidenced by the fact that people are now talking
about “mini-3*" and even “micro-J*" insertions, 363837

In a low-3° insertion, a few strong quadrupoles are inserted in the interaction
region to pinch A* to a small value. Figure 12 illustrates the difference between a
low-3* insertion and a normal cell structure.

The low-8"* insertion quadrupoles can not be too close to the collision point since
the detector solenoid has compensating solenoids on its both sides. This puts a limit
on the smallest beta achievable at the collision point. In & mini-f® insertion, the
compensating solenoids are removed to make room for the insertion quadrupoles (at
the cost of some complications in ring optics) so that 2* can be made smaller. One
can even go one step further and contemplate the possiblity of having the insertion
quadrupoles inside the detector to produce a micro-3*. These micro-§* quadrupoles
need to be permanent magnets. The various small §* schemes are shown i Fig. 13,

It is incorrect to say that the benefit of low-3* comes from the fact that the beam
size at the collision point is pinched to a smaller value. Although the laminosity does
increase when beam size is made smalfer, the idea of low-g* actually tends to ask for
s large beam size. The reason is basically described by




Fig. 12. Difference between (a) a
normal cell structure and (b) 2 low-
#* insertion. In each case, two
typical trajectories are drawn. In
(a), the effect of focusing and defo-
cusing magnets tend to cancel each
other. The net effect is focusing
but the focal length is long and the
displacement of a particle changes
sign only afer the particle passes
through several magnets. In (b),
a strong quadrupole magnet “over-
focuses” the particle trajectories so
that all displacements change sign
near the low-3 point. Such an over-
focussed confignration is usually to
be avoided in a normal cell struc-
ture.

Fig. 13. (a) Low-8*, (b) mini-3° and

{¢) micro-8* insertions.
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&aN/A®
(22)
LaN% A

where A® is the beam area at the collision point and we have assumed o 3P o. Since
beam-beam limit is believed to associate with a maximum allow.d value in £, the
maximum beam intensity is given by

NaA® . {23)

This leads to the conclusion that
LaA® (24)
which means we want to have A* as large as possible, in contrast to what one might

have expected.*

The question is therefore how to insist on a small #* while at the same time ask
for a large beam size at the collision point. There have been several clever ideas of
how to do this. Some of them are listed below without much explanation:

— weaker focusing, i.e. smaller tune

—  wigglers®

— mismatched dispersions in the ring latticet?
— finite dispersion at the collision point

Among these, the first three involve artificially enlarging the beam emittance.
Clearly these ideas are restricted by the fact that they imply large beam sizes — and
therefore large vacuum chamber — not just at the collision point but also everywhere
else around the ring, which is a very expensive thing to do. The fourth idea does not
have this problem; but there the problem is that the beam-beam force may excite the
harmful synchro-betatron resonances. d!

* We are ignoring the subtlety that there are two {'s, §; and §;, involved in the
beam-beam limit. The complete story is more involved, as always. See Rel. 38.
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11. Cptimum §*

One might ask what sets the limit in going to smaller and smaller values of §°.
One limit comes from the fact that the beams collide over n region of finite length,
while §* is only the value of 3 at the center of this collision region.**%3 For bunzned
beams, the collision region is of course given by the length of the bunches. We will
explaio in this section how the finite bunch length introduces an optimal value for 5°.
It would not be beneficial to make £° smaller than this optimal value.

Let us adopt a simplified model in which tiie bunches have uniform longitudinal
distribution with full length 2L. We will assume a flat beam and study the effect of
making fy small, leaving 82 unchanged. We will show that in this model, the optimum
£* is about equal ta 1/4 of the full bunch length.

As we move away from the center of the collision region by distance s, the 8-
function increases quadratically according to

Byle) =B}t +(,—;-’;)2] (25)

We see that as 3* is pinched to a small value, the beams eo'lide with 2 geomeiry that
looks like Fig. 14 (remembering beam size at s is proportional to \/ﬁ(a)). We see that
too small a value of 3* is harmful due to two effects:

1. The parameter § is effertively increased since a particie has to traverse the
collision region with @ > 8*. This means a stronger limit on the collidible
beam intensity.

2. For a given beam intensity, parts of the beams collide with large cross-rectional
area, leading to a degradation on luminosity.

Since &y is proportional to Jy/oy and oy iz proportional to \fﬂ_ , the effective £ is
given by averaging £ over the collision region, i.e.,

t=to o [ d\TXGIRE
_—_%‘! [\/1 Ful+ f(u)}

(26)
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Fig. 14. Colliding beams when §* is too small.
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where

u=L/s*

fiw) =$cn(u+\/1+uﬂ

#nd §o is the unperturbed value which is proportional to N/ /u. This means that if
we dernand £ to be less than some constast value, then the maximum beam intensity
allowed by beam-beam interaction satisfies

va
Na Vituisflu) @)

The maximum fuminosity then bebaves according to
=T
oL L iveiB?E B
where N is given by Eq. {27).

In Fig. 15 we have ploited the beam-beam limited beam intepsity and the lumi-
nosity as a function of L/§;. We find that boih /V and L resch maximum when Jj is

La (28)
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about equal to 1/4 of the collision region length 2L. Further decreasing §* does not
help the luminosity.
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It should be pointed out that we have considered only the geometrical implications
of a small B*. There are other considerations. One is that a small 3°* necessarily
requires 4 large f at the quadrupoles. This means these quadrupoles need to have
large apertures to clear the beam, which in turn means they need to be very strong
in order to produce the peeded gradient. In addition, a large § at theése quadrupoles
1neans extreme sensitivity to errors in their construction and installation.



Another effect associated with small 8* is the possibility of exciting synchro-
betatron resonances.®* A particle executing synchrotron oscillation sees the beam-
beam kicks away from the collision point. The kicks are applied to the betatron
mnotion of the particle. If §* is too small, this leads to a strong modulation of the
kicks at twice the synchrotron frequency, which then becomes a source of synchro-
betatron coupling.

12. Coherent Oscillation of Rigid Beams

The next strong-strong model we will look at is the coherent oscillation of the
bunches. As a first step, 454047 we represent all bunches by rigid distributions so
that only their center-of-mass motions are allowed. The bunches, in addition to the
simple harmonic motion in the storage ring, now receive beam-beam kicks when they
pass through each other at the collision points. All bunches (in both beams) are then
coupled together through the beam-beam kicks to form a dynamic system in which all
bunches oscillate in time.

Note that no such coherent motion is allowed in the strong-weak picture, This,
in fact, is one serious drawback of the strong weak picture, especially since the coher-
ent motions, as we will soon see, can potentially set tighter stability limits than the
incoherent motion.

Let us first consider a storage ring with two oppositely cireulating bunches that
collide alternately at two collision points as shown in Fig. 1(b). The two bunches are
specified by indices 1 and 2 respectively. Let the two bunches have small center-of-mass
motions in the y-direction. The kicks given to the two rigid bunches are computed
by averaging the kicks over the bunch distribution. In the linear approximation, the
result is

Ay = —}(yn —yz)J\/;
(29)

Ayh= —}(ﬂz - !ll)%

where y; and yo are the displacements of the two bunch centers at the moment of
crossing, f is the focal length defined in Eq. (7) and 1/ +/2 comes from a gaussian form
factor. See problem 3. .
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Problem 3. Eq. (20) gives the coherent kicks for gaussian beams. More
generally, show that the kicks are given by

Ay =-Ah = —ii?r—o(m - 1) / _: dy¥?(y) (30)

where () is the normalized beam distribution and a flat beam is assumed.
Show that (30) become {29) for a gaussian beam. Show also that for a uniform
beam, the factor 1/ /2 in Eq. (29) is absent.

Equation (20) can be written in a matrix form. Defining the vector (yy, 4/}, ya, ¥}),

the matrix that describes the beam-beam transformation is
1 0 0 0

~_1 1 1 0

voTj v} an
0 0 1 0

_1 -

w AT

After collision, the bunches execute free betatron motion for half a revolution. The

transformation is

cos g By sin p 0 0
—Asinpg  cosp 0 0
Tp=| % .. (32)
0 0 cos pt By sinp
— L si
0 0 ggsing  cosp

where p is the betatron phase advance between two collision points.

Let Ty be the product of the two matrices (31) and (32). The coherent motion
is stable if all eigenvalues of Tj,: have absolute value equal to 1. In the case of two
colliding bunches, the motion consists of two modes: a “0-mode” in which the two
bunches move up and down together, and a “r-mode” in which the two bunches move
out of phase. The 0-mode is always stable because as they move up and down together,
there is no beam-beam force acting on the bunch centers. The x-mode is stable if

1 1]
——ecot— . 33
€< oty (33)
Note that this is /2 times more stringent than . ae strong-weak stability limit described
by Eq. (11). This is more clearly seen in the sawtooth diagram Fig. 18(a).
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Fig. 16. Stability region for two strong rigid beams executing
small center-of-mass oscillations for {a) two colliding bunches
and (b) six colliding bunches. ¥ is the total tune of the storage
ring. The figures are periodic in v; the periods are 1 in (a) and
3 in (b). The dashed lines are the strong-weak stability limit
reproduced from Fig.2.

The picture becomes more complicated, although still straightforward, if there are
more bunches in the storage ring. For instance, when there are 6 bunches (3 per
beam), there will be 6 modes of coberent oscillations. The stability region is obtained
by requiring all 6 modes be stable. Fig. 16(b} shows the sawtooth diagram. The
stability region is much smaller then the incoherent case,

There is a possibility that the strong-strong coherent instability is more relevant
than the strong-weak incoherent instability (i.e. the nonlinear mapping studies) in set-
ting the observed beam-beam instability limit. The reason of this possibility basically
comes from the fciiowing observation: in coherent motions, the separation between
one piece of the beam and the corresponding piece of the on-coming beam is effec-
tively twice the separation when one of the beams does not move, as would be the
case in the strong-weak case. As a result, the beam-beam kicks are effectively stronger
for coherent motions. This observation applies not only to the rigid dipole motions
described in this section but also to motions of higher order modes to be described in

the next section.
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Center-of-mass beam motions induced by beam-beam collisions have been observed
in storage rings for the case of 2 colliding bunches. 4849 The measurements are less
clean when there are more bunches. The rigid beam oscillations are not damped by
the feedback systems because in the unstable region the growth rate is very fast.

13. Higher Order Beam-beam Modes

In case we relax the condition that all bunches are rigid, the calculation becomes
mote difficult. In addition to the inter-bunch modes associrted with the coupling
among bunches, the motion of an individual bunch can be described only as a super-
position of modes in its transverse distribution. For instance, the lowest of such modes
would be the dipole mode we just considered; and then there have to be quadrupole
mode, sextupole mode, etc.

For small beam-beam parameters, coupling among different transverse modes is
weak; it is possible to study the coherent beam-beam effect by considering each trans-
verse mode separately. Our calculation of the dipole coherent instability then still
applies. In particular, the stability region will be a sawtooth diagram with instability
occuring near ¥ =integers, as shown in Fig. 16.

One can also perform a stability analysis on, say, the quadrupole mode and obtain
its stability limit. Then, as we will see, there is instability if v is clese to half-integers,
Similarly, sextupole modes are unstable if » is close to 1/3, etc.

To study the coherent quadrupole modes, * let us consider the case of two bunches
as sketched in Fig. {b). In this ease, both bunches have gaussian distributions but
the second moments of these gaussian distributions oscillate in time around some
equilibrium values. Each bunch will be described by a & matrix5! whose elements are
the second moments

<z?> <z > 0 0
5 <z?> <> 02 0 34)
0 0 <yi> <yw>
0 0 <w> <y¥>

Let us designate the equilibrium sigma matrix as £g. On top of X4, each bunch has a

* The work described in this section is done in collaboration with Y. Kamiya.5¢




si il time-depeisdent perturbation, i.e.,

W =54 + Azl

. 35
£ —x, + AT (&)

We have assumed that the bunch distribution is not tilted in the £ — y phase space.
The stability of the coherent quadrupole modes will be determined by the stability of
ihe two matrices ALV and AL(2).

The free betatron motion between collision points can be desctibed by the trans-
formation
ast) Az T,
. 5 (36)
as® —nas?f,

where Tp is the matrix (32). Matrix elements of AX(!) znd AT(?) each transforms
among themselves (without coupling to each other) arcording to Eq. (38).

The beam-beam transformation is more complicated. Beam 1, for example, will
be transformed according to

- ofl) 3
’39..)1 = ‘ME!’,.) Tw {37)
where
T =Too + AT

is the beam-beam transformation matrix and

1 0 0 ¢
-L 1 0 o

_ i
Two=|0 o0 1 o
0o © —}; 1

the time-independent part of Tj. The matrix AT}, comes from the fact that beam
2 is executing quadrupole motion so that its distribution is ot the equilibrium one.
The matrix AT}, that acts on beam 1 therefore depends on AE(?). This provides the
coupling between the two colliding bunches. Note that we have linearized the beam-
beam force.
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In terms of the perturbation quantities, Eq. (37) reads
ALY, = ATySgin To + TmAE!-:) Ty + TyoToinA Ty (38)

The coupling among elements of AE(") and AR is linear. That suggests we form a
12-dimensional vector

[azl) ax{) azf) ax axf) asf) s ax) axf) a5 a5§] 2] 0

and compute the two 12 X 12 matrices that transform this vector through the free
betatron region and the collision point. The product of these two matrices, Ty, then
gives the stability of the quadrupole motions.

Among the 12 eigenvalues of Tj,, 4 are associated with constants of the motion
and are always equal to unity. The remaining 8 correspond to 4 dynamic inter-bunch
modes. Fig. 17(a) shows the region of stability in which all 4 quadrupole modes have
stable eigenvalues.
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Fig. 17. Stability region for two strong beams executing small
quadrupole oscillations. # is the total tune of the storage ring.
The figures are periodic in v; the periods are 1 in (a) and 3 in (b).
A round beam at equilibrium has been assumed.
Figure 17(b) shows the stability region for the case of 6 bunches in the two beams.
In this case, there are 12 dynamic modes and they all have to be stable in order for
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the colliding beam system to be stable. We see from Fig. 17 that quadrupole coherent
modes impose additional constraint on the parameters ¥ and §.
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Fig. 18. Coherent instability region in the vz, space for the storage ring DCL

There is an instability when a resonance condition, Eq. (14), is met. The value of
£ is taken to be 0.05.

There are other approaches to study the higher order coherent beam-beam
modes.52 53,54 The result of one such attempt®® is reproduced in Fig. 18. For given ¢,
shaded area represents unstable region in the {7, vy) space. The calculation is made
for the very special case of the storage ring DCI, in which the two colliding bunches
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each is composed of electrons and positrons of equal intensity so that the net charge
is meutral.

The idea of DCI is of course to eliminate the incoherent beam-beam force. But
this did not help the luminosity and, according to Fig. 18, one possible reason is
that although the strong-weak instabilities are in principle eliminated, the coherent
instabilities are actually enhanced.

Also should be mentioned is that more recently several advances have been made
on the strong-strong csse of beam-beam interaction in the form of numerical simula-
tions 44565758 These results generally agree quite well with the experimental obser-
vations that they simulate. (It is not clear if these simulations agree with one another
since they attribute the beam-beam instability to different mechanisms. Nevertheless,
they all seem to agree with observations.) In some cases, they were even used success-
fully to find working points that yield better luminosities.

14. Is tke Beam-Beam Limit Given by £ < Universal Constant?

We mentioned before that £ is the scaling parameter of the beam-beam interaction
effects. This ides has led to the invention of the low-8* insertions. In this section,
we will discuss the question as to whether the beam-beam stability limit is indeed
correctly given by the simple condition

£ < universal constant . (40)

We should point out that the ides of having £ as the scaling strength parameter
is not challenged. Rather we are asking if there are other parameters in addition to €
that may also play a role.

The question can also be asked in a different way. We mentioned previously that,
according to the conventional wisdom, the beam-beam limit is given approximately by
£ == 0.05 for electrons and & = 0.005 for protons. We then attributed the difference
to the radiation damping. But a moment’s reflection suggests that these ideas can not
be a complete description of the bezam-beam limit. If we consider an electron storage
ring with beam-beam limit £ = 0.05 and imagine that we slowly remove its radiation
damping, then the difference between electron and proton diminishes and the beam-
beam limit will decrease toward £ = 0.005. If so, £ limit is clearly not given by a




universal constant; the radiation damping rate has to play a role - at least during the
transition from & = 0.05 to 0.005.

One sensitive control on the radiation damping rate in an electron storage ring is
the beam energy. The radiation damping time 7,4 is proporticnal to 43, To see
if radiation damping plays a role in determining the beam-beam limit, therefore, one

way is to examine the energy dependence of the luminosity.
First let us assume condition (40) does correctly describe the beam-beam limit,
then Eq. {10) would predict
Na-? (41)
since the beam dimensions oz and o are proportional to 7 in electron rings.’? Inserting

this into Eq. (20) then gives

Laot (42)
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The prediction (42) does not seem to agree with the messurements. Fig. 19 is a
compilation of luminosity versus beam energy for the storage ring SPEAR.%0 According
to Fig. 19, luminosity depends on beam energy like

LaA07£01 (43)
It has been suggested5!:52 that the discrepancy between (42) and (43) can be ex-

plained by a phenomenological “diffusion model” that incorporates the radiation damp-
ing into the beam-beam instability mechanism. More on this model will be discussed

next.
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15. The Diffusion Model

The model begins with the assumption that the beam-beam kicks contain a “ran-
dom” part in the sense that this part of the beam-beam kicks assumes a random value
from one kick to the next. Clearly the linearized kicks described in Eq. (6) are totally
correlated from one collision to the next and are not of interest here. The same applies
to kicks considered in the single-resonance model.

It may be instructive to demonstrate that the random part of the beam-beam
kick, if exists, must be much less than the kick itsell. To see this, note first that the
magnitude of a typical beam-beam kick is of the order of Ay = oy/f, where [ is
the beam-beam focal length defined in Eq. (7). Sincc the rms beam divergence at the
collision point, oy, is equal to oy/Py, we find

Ay _ By
oy [ (44)
= 47r€

If € = 0.05, this means Ay is about equal to 0.6 times Oy In other words, one
single beam-h.eam kick is comparable to the natural divergence of the beam! If these
kicks are uncorrelated from one collision to the naxt, the beam-beam interaction would
not allow the beams to be stored in the storage ring at all.

Let the random part of the beam-beam kicks be written as

Ay:'andom — 41'.6" (45)
oy

wiiere n is a phenomenological constant yet to be determined from experimental data.
We will consider a flat beam.

The beam-beam random kicks contzibute to a diffusion in the beamn size just like
the random contribution from the synchrotron radiation noise. These random con-
tributions are counteracted by the radiation damping and in balance this gives an
equilibrium rms beam size

rrf = ag[l + %(4#6011)2] (46)

a8



where 0y is the beam size in the absence of beam-beam collisions, Tp is the time
between collisions ard & is the beam-beam parameter caleulated without beam-beam
blow-up.

To get a rough idea, let us say that the beam size is doubled at the beam-beam
limit of §y = 0.05. If we then take 7,,4 = 10 msec and Tp = ] gsec, we find p = 0.03,
i.e. about 3% of the beam-beam kick strength is :andom at the beam-beam limit,

If the beam-beam instability is caused by an aperture limitation, then the beam-
beam limit is reached when oy is equal to a certain defined fraction (say, 1/10) of the
aperture. In case the beam-beam blow up is significant, the beam-beam limit will be
determined by

operture (M /2
G o Ty 1xon (47)
Assuming that g is energy independent and remembering that o9 & 7 and 7,9 & 773,
we find, at tha beam-beam limit,

o« /2
fa ,13/2

(48)
N

L a:fy6

where § is the beam-beam paremeter calculated with the blown-up beam. Note that
the luminosity is proportions! to 49, in reasonable agreement with Eq. (43).

The beam-beam diffusion model just described has other implications. For exam-
ple, it predicts that the main beam-beam effect is a simple blow-up of the beam size
rather than some dynamical instability. It does not have any sensitive dependence on
the tunes of the storage ring. It ako predicts that the beam-team blow-up deper.is
on the number of coliision points according to oa /N.

Partly due to the ad hoc natur: of the diffusion model, one problem with it is that
it is not clear how exactly the random par* can be extracted from the beam-beam
force. One possible source of randomness may be attributed to the stochastic motion
when resonances ot erlap. 52




There is another , ssible source of randomness which can be shown to be a very
weak effect but 1 will include it for amusement purpase. It comes from the fact that
the beam is really not a smooth distribution of charges. Instead, it is a collection of
a large number of discrete point charges. One can imagine that every time a particle
collide with an on-coming beam, tl.> average distribution of the on-coming beam is the
same but the detailed distribution of the point charges within this average distzibution
has been randomly re-arranged.

Consider then a Coulomb collision between the particle and a particle in the op-
coming beam with an impact parameter . The kicking angle is giver by

_2r
A#-;E (49)
M the impact parameter is Jess than a certain minimum value §,,;,,, the collision
would be so strong that both particles will be ejected from the storage ring acceptance
due to this single Coulomb collision. The quantity b,,;, is given by

2rp

bmin = W (50)

where A § is the maximum value of y at the collision point that can be accepted by
the storage ring acceptance.

These violent Coulomb collisions cause a continuous loss of particles. The beam
lifetime 7 due to this effect * is determined by the probability of a particie finding
itself within a distance d,,;, from a particle in the on-coming beam. We then find
N

min :
Toooa, (1)

l—
—=

It we take N = 10'2, A§/ = 5 mrad, 0z = 2 mm, gy = 0.05 mm, Tp = 1 psec and
a beam energy of 10 GeV, we find that b,,;, =86 X 10~17 m and the beam lifetime is
about 8000 hours.

* Another perhaps more serious lifetime restriction comes from the Bremstrahlung
scattering of the two electrons. The present consideration, however, is sufficient to
illustrate the point.



For those particles that remain within the storage ring acceptance, there is a
diffusion effect on the beam size. Very roughly,* each collision will contribute to the
beam divergence by an rms amount of Ay’/ /N, where Ay is the typical beam-beam
kick given by Eq. (44). The growth rate for this diffesion process is therefore

1 (4m€)?
TS NTy {(52)
which is a much weaker growth than the radiation damping. Compared with the
diffusion process described by Eq. (45), this cliect is equivalent to replacing g by
1/VN.
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