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&E??z por ts  t o  be u t i l i z ed  f o r  beamline un i t s  one and two. 
It should be noted tha t  the in jec tors  a r e  not aimed 

Doublet I11 is  a la rge  noncircular tokamak (R 1.4 a t  the mid-plane of t he  torus  but ra ther  above and 
m, a - 0.45 m, plasma elongation 3:l). It has a toroi- below. This alignment is a consequence of the  Doublet 
da l  magnetic f i e l d  of 2.6 T, an ohmic heating f lux  swing geometry and a des i re  t o  i n j ec t  equal amounts of 
of 5 V-sac and should de l iver  plamna currents  of up t o  energy i n t o  the  upper and lower lobes of the  machine. 
$3 &hi f o r  a 300 msec f l a t  top. An upgrade t o  BT % 4 T, In jec tors  a r e  therefore added i n  pairs .  
A0 10 V-sec, Ip a 5 MA with a 1 sec f lat- top is cur- 
ren t lv  underwav. 

I n  order t o  f u l l y  exploit  Doublet 111 capabi l i t ies  
and t o  atudy new plaoma physics regimes, a Neutral Beam 
Injector  System has been constructed. I n i t i a l l y ,  a two 
beamline systesn w i l l  supply 7 MW of heat t o  the plasma. 
The spstem is currently being expanded t o  i n j e c t  %20 MW 
of power (6 bsmlinnn). Each beamlina i a  equipped with 
two L,aw*encs Be,rke,ley Laboratory type rectangular ion 
sources with 10 cm x 40 cm extract ion gr ids .  These 
sources w i l l  acce lera te  hydrogen ions t o  80 keV, with 
e~ptpgpfqd beam ourrP-nts I n  exrean nf 80 A per source 
apeceod. The f fmr 1-tnnyleLcd auurcr is wrreatly 
being tested and conditioned on the  High Voltage rest 
Stand a t  Lawrence Livermore Laboratory. 

This paper p i c to r i a l l y  reviews the  as-built Doublet 
111 neut ra l  beamline with emphasis on component rela- 
t i on  and configuration r e l a t i v e  t o  s p a t i a l  and source 
hposed design constraints .  

Figure 2. Phatograph of the  Doublet I11 Tokamak 
I l l u s t r a t i n g  In jec t ion  Ports. 

Figure 1. Plan and Elevation Views of the  Doublet I11 
Neutral Inject ion Beamline. 

The layout of the  Doublet 111 beamline is  shown i n  
Figure 1. The major as-buil t  ccmponents and assemblies 
t o  be reviewed i n  t h i s  paper a r e  schematically depicted. 
The design was haairally ffxed by the  anticipated 
parameters of the  ion source and by constraints  imposed 
by the  Doublet I11 machine and space about the  machine 
i t s e l f .  A photograph of the  Doublet 111 machine is 
8 M ~ n  In  Figure 2 wlrh irrruws i ~ ~ J L ~ a L i f i g  the  in jec t lon  

The anti-torque s t ruc ture  exter ior  t o  the  B-coils 
cons t ra in ts  t he  azmuthal posi t ion f o r  e i t he r  upper o r  
lower inject ion.  The beamlines (for quasi-perpendi- 
cular  inject ion) w i l l  be located a t  120° in t e rva l s  on 
each of the upper and lower in jec t ion  planes, and 60' 
out of phase from upper t o  lower; 

The Doublet 111 entrance apertures f o r  neut ra l  in- 
jectcon a re  defined by the  location of the  toro ida l  
f i e l d  co i l s  CB-coils) and the  plasma fieldrehaping 
c o i l s  (F-coils~.  A s  can be seen i n  Figure 2, the  
maximum c l ea r  aperture i n  the horizontal  plane f o r  
the beam is about 32 cm wide between the  B-coils. The 
horizontal  focus of t he  ion  source is chosen t o  be here, 
48 m from the  accelerat ion grids.  The ion source is 
focused ve r t i ca l ly  a t  5.5 m where the  F-coils l i m i t  
the  aperture t o  18 cm. The beams from the  two sources 
i n t e r sec t  i n  t h i s  plane. 

The overa l l  length of the  beamline assembly and 
foca l  length of the  source a r e  d d i n e d  by the proximity 
of the p i t  wall  a t  t he  270° location a s  i l l u s t r a t e d  i n  
Figure 3. This f igure  i l l u s t r a t e s  t he  Doublet 'I11 
f a c i l i t y  with s i x  C6) beamlines located about t he  
machine. The arrows again indica te  t he  posi t ion of 
tho f i r o t  two C2) beamlinee. 



ION SOURCE ASSEMBLY 

DOUBLET Ill, NEUTRAL BEAM 
INITIAL INSTALLATION 

Figure 3. Doublet 111 Faci l i ty  Diagram I l lu s t r a t ing  
B e d i n e  Configuration. 

BUMLINE AS-BUILT 

The neutral  beam in jec tor  includes a l l  components 
needed t o  produce and transport neutral  beame t o  the 
entrance port  of Doublet 111. Each in jec tor  contains 
two (2) source l inea f i t t e d  with Lawrence Berkeley 
Laboratory (LBL) type rectangular aperture ion sources 
with 10 cm x 40 cm extraction gr ids ,  The extracted 
energetic ions a re  neutralized by electron capture i n  
a gas neutral izer .  Unneutralized ions a r e  swept out 
of the beam with a . ref lec t ing  magnet and deposited on 
an ion dump. The neutralized cumpuncmt 1s e l the r  in- 
tercepted by the  beamline calorimeter o r  transported 
through a se r i e s  of collimators t o  the ta rget  plasma 
i n  Doublet 111. To mininize neut ra l  beam losses due 
t o  reionization a f t e r  exit ing the  neut ra l tzar  c e l l  
nnd tn autahliuh the  i n i t i a l  vacuum cmditiona. la rge  
cryopump arraye a r c  located and baffled Ln a manner 
which allowe fo r  differentdo1 pump in^, The physical 
arraogement of che cumponruLs clLed Icr LllunLrclLwl 1u 
F i g y e  1. 

The remind*+ of this paper w t l l  present a brief 
dearmptron and ae-arlilt pharograph of each companenr 
o r  ui~b-aaaemhly contained in the beinnline. The ~ r d e r  
a f  areaentrt ion A 8  n ~ t  ~ B F ~ B B M ~ ~ Y  o c c ~ r d l a a  CQ func- 
tson, as outlinad i n  the preaeding pnrqrrrph, but 
rather according t o  its geometrical placement within 
the beamline. The order  of presentation is prompted 
by cumpunmt axxembly connlderclLluun. 

The beamline in jec tor  as depicted i n  Figure 1 i e  
assembled i n  three (3) stand-alone spools, each of 
which f o r  ease of maintenance, can be disconnected and 
ro l led  away from the others on tracks. There a re  no 
connections between spools other than a cryogenic 
feed l i n e  which connecta the fore  and a r t  cryopanels. 
Sub-assemblies a r e  thereiore grouped and asscrmbled 
according t o  spools and a r e  most eas i ly  i l l u s t r a t e d  i n  
t h i s  cantent. The order ~f prassntat ian w i l l  begs 
a t  the ion aource and proceed through opools numberad 
one, two and three. 'l'he spool nlmbef Llequence 1s 
from r ight  t o  l e f t  a s  viewed i n  Figure 1 .  The nose 
cone section and d r i f t  duct, which mates the beamline 
t o  the machine injection port ,  is the f i n a l  segment t o  
be discussed. 

A s ide  view of t he  completed ion source assembly 
is shown i n  Figure 4.  Depicted a r e  the  plasma gener- 
a tor ,  the accelerator s t ruc ture  and the adjustable base 
assembly which allows for  source s teer ing  and align- 
ment. The design parameters of t he  Doublet I11 Ion 
Source a r e  given i n  Table I. 

TABLE I 
NohfINAL DESIGN PARAMETERS FOR THE 

DOUBLET 111 ION SOURCE 

Extraction voltage 
Extracted beam current 
Accelerated ions 
Pulse length 
Duty cycler 

plasma heating pulse 
source conditioning 

pulse 
Extraction g r id  s i z e  
Grid transparency 
Brtracted current density 

Extracted species m i x  
Hydrogen gas input 
Hydrogen gas ef f lux  
Extracted beam divergence 

@I /el 
Focal length of source 

C40 cm direction) 
Focal length of source 

U O  ca direction) 

80 kV 
85 2 15A 
Hydrogen 
0.5 sec. min. 

Figure 4. Side View Photograph of the Doublet 111 
Ion Source. 



i z B u A L  
Spool number one (1) contains the a f t  cryopanel, 

LLe aautralimor eaL1 end i t ~ n  dump raambly, pnrtinna ni 
the magnetic shielding and the d i f fe ren t i a l  pumping 
baffle. The spool i t s e l f ,  which serves a s  a portion 
of the vacuum tank, is a cylindrical aluminum struc- 
ture  about 2 m i n  diameter with walls approximately 
1.9 cm thick. Aluminum was selected fo r  t h i s  structurt 
based on magdtic perturbation analyses (induced f i e ld  

ertrrr = 1 x 1 o - ~  T with time constant r = 450 msec. 1. I 
The at. cylindrical, cqopauel uaae a modified 

"Santeler" type of l iquid nitrogen cooled shield 
gmnmatPy. The LS( #211~1$ 1s marl= huui extruded a l d -  
n m  BLtBp~ea welded in to  a c ~ l l u d e r .  These a t ruoiono 

tubes. Flow paths a re  tubular and spaced i n  such a Figure 6. Neutralizer and Dump Assembly With Magnetic manner that  there is ample opportunity fo r  penetrations shielding Fingers 
for  beam diagnostic ports and mechanical support for 
internal components. The pumping surface presented is - - -  

2 The posit ive ion dumps which a re  part  of the same 'b8.0 m with a calculated hydrogen pumping speed of 
5 

subassembly a re  approximately 2 cm thick copper p la tes  
7.8 x 10 Rlsec. used a s  i n e r t i a l  targets with heat removed via  water 

cooling during the interpulse period. The target 
The aft cryopanel* in in surfaces are  inclined t o  the beam by 7 . 9  to  reduce 

is shown i n  Figure 5, as  seen from the upstream end. 2 the peak power density t o  'b2 kW1cm . This power den- 
s i t y  assures that  copper w i l l  remain below its melting 
point fo r  a pulse of 1.0 eec duration. each of the 
dump plates is instrumented with thermocouples and the 
cooling water input and return l ines  are  f i t t e d  with 
flow meters and AT blocks. 

The magnetic shielding fingers, a lso  i l lus t r a t ed  
i n  Figure 6, extend from the end of the neutralizer-ion 
dump assembly t o  the gas baffle. The shielding reduces 

the anticipated tokamak fringe f i e ld  from $2 x 10 '~  T 

to  a value of (2-5) x l f 4  1. h e  f iqprrs  a re  
AST-A253, Alloy 2 s t e e l  structures about 6 cm x 3 cm 
cross section and %50 cm long spaced on 12 cm centers. 
This configuration allows fo r  the f i e l d  attenuation 
required while minimizing gas flow impedance t o  the 
cryopumps - 

I The di f ferent ia l  pumping baffle, shown i n  Figure 5, 
i e  a simple aluminum pla te  which spans the ent i re  cross 

Figwe 5. Spool #I Assembly Viewed Fron Upstream 
End. Cryopanel and Gas Baffle Shown. 

section of the spool downstream of- the f i r s t  s e t  of 
magnetic shielding fingers. Beam apertures f i t t e d  with 
collimators have been cut in to  the surface a t  the 

The neutralizer and ion dump assembly is  positioned 
inside the a f t  cryopanel. The cappleted assembly with 
magnetic shielding fingers mounted i n  shown outside the 
spool i n  Figure 6. The neutralizer c e l l  is  a rectangu- 
l a r  duct (15 cn x 45 cm), 105 cm long. Excees thermal 
hydrogen gae eacaping froln the source is used as  the 
charas -change medium fo r  par t ia l ly  neutralizing the 
positive ion beam. The neutralizer i a  fabricated aa 
a double she l l  structure. The exterior she l l  is made 
of AST-A253, Alloy 2 s t e e l  to magnetically shield the 

a t e t i o r  Cu a value of l e s s  than 2 l!f4 T. 

appropriate locations. 

SPOOL (22 

Spool number two (2) which is i t s e l f  a continuation 
of the vacuum envelope contains the reflecting magnet, 
the continuation of the magnetic shielding fingers, and 
a devious ion shield. The magnetic shielding fingers 
a re  the same as  those described fo r  Spool dil. 

The ions remaining i n  the beam.after passage thru 
the neutralizer are  wep t  out of the beam by a 180' 
reflecting magnet. The magnet is shown i n  Spool 2 i n  
Figure 7. This echeme also  has the advantage of k e e p  
ing the gas load due to  the reflected ions i n  the high 
pressure section of the beamline, i.e., upstream of 
the gas baffle. The magnet hae two 18 cm gaps for  
the twin source beamline, each operable up to  M.1 T 
for  80 keV injection and capable of being operated a t  
f u l l  f i e l d  when the other gap is off.  A beam collimator 
is mounted a t  the  ex i t  plane of each gap. Field clamps 
a re  used to  reduce fringing f i e lds  between the magnet 
and neutralizer. 



Figure 7 .  Spool 12 Aesenbly Viewed Prom Downstream 
Bnd. Mqpet and ~ o u s  Ion Shields Shown. 

but not reflected, by the magnet. These plus about 
30 kW of negative ions a re  stopped on water cooled c o p  

which is not troublesome. Other so f t  iron components 
give much smaller contributions. 

SPOOL (3) 

The third and f i n a l  spool contains the forward 
cryopanel and the movable beam calorimeter. 

The forward cryopanel is a 3-layer disk shaped 
structure wMch acts  as a baff le  as  well a s  supplying 
pumping capability on two sides. The two outer sur- 
faces are  a l ~ i n u m  weldment, LN cooled chevrons. 
Liquid nitrogen Olowe around the outer rings and along 
the internal frames. The helitno cooled copper panel is  
mounted between the two chevron panels. Stainless 
s t e e l  tubes which carry the liquid helium a re  brazed 
to  the copper panel. The to ta l  pumping surface pre- 

2 
sented is *6 m with a calculated hydrogen pump speed 

5 of 5.8 x 10 !t/sec. The cryopanel is shown mounted i n  
Spool 13 i n  Finure 9. 

per surfaese which ohicld the weset and forward kryo- 
panel. Ae a group these surfaces are  called the devi- 
oue >ion shisdde. The devious ten ehinlrla are s h m  
mounted on the magnet i n  Figure 7. I 

The magnetic shielding fingers a re  sh6wn mounted 
to  the magnet in  Figure 8. The magnet is viewed from 
the upstream end as  opposed t o  the view shown i n  
Figure 7, which is the downstream end which mates to  I 
Spool #3. 

I The rectangular hole in the center of the cryo- 
panel is designed t o  accommodate a movable calorimeter 
or t o  allow fo r  beam passage into  the d r i f t  duct region 
and f inal ly  in to  Doublet III. The calorimeter is litre- 

I 
wise shown in-place i n  Figure 9. Like the positive ion 
beam dumps, the calorimeter8 a re  made of approximately 
2 cm thick copper plates which a re  water cooled via  
tubes brazed t o  thei r  back surface. The target sur- 
faces ere inclined t o  the beam by 4.6O t o  reduce the 

2 
peak power density to  l e s s  than 1.5 kw/cm . Again, 
each of the plates is instrumented with thermocouples 

Figure 8. Spool #2 Assembly Viewed From Upstream and t o t a l  beam energy monitors (AT blocks and flow 
End. Hagnetic Shielding Fiagaxo Attaohed t o  m e t .  meters). 



Spool C3 is again shown i n  Figure 10, th i s  time The bellows a lso  i so la te  the injection system from the 
from the upstream side. The cryopanel mounts a re  very high accelerations which the torus experiences 
clearly vis ib le  about the circumference. during pulses. A ceramic break is incorporated i n  the 

d r i f t  tube to  i so la te  the torus e lect r ica l ly  from ground. 

~ i ~ u r e  10. Spool $3 ~s'sembly Viewed From Downstream 
End. Cryopanel Supports Shown. 

NOSE CONE AND DRIFT DUCT 

The contoured nose cone and d r i f t  duct assembly 
serve to  mate the neutral beam injector  to  the Doublet 
I11 device. The nose cone, which was fabricated from 
304 s ta inless  s tee l ,  is shown i n  Figure 11. 

The complex shape of the nose cone resul ts  from 
two (2) c r i t e r i a ,  namely, 1) to  position the  beamline 
a s  close t o  Doublet I11 as  possible, thereby reducing 
the length of the d r i f t  duct, and 2) to  maximize the 
pumping conductance of the structure so a s  to  minimize 
beam reionization losses. A f i n a l  double picture frame 
collimator is mounted within the structure. The sec- 
t ion attaching the snout of the nose cone to  the 
Doublet 111 device is called the d r i f t  duct (not shown 
i n  Figure 11). 

The d r i f t  duct is made of s ta in less  s t e e l  to  
minimize imagaetic f i e ld  perturbations a t  the plasma. 
It incorporates f lexible  metal bellass t o  allow fo r  
the thermal expansion of the Doublet I11 vacuum vessel 
under bakeout and discharge cleaning conditions. 

Figure 11. Nose Cone Structure. Contoured f o r  Maximum 
Pumping Cond. and Close Positioning t o  Doublet 111. 

STATUS 

Fabrication of the f i r s t  beamline fo r  Doublet I11 
is completed. The beamline is assembled i n  the beam- 
l i n e  t e s t  area and attached t o  the t e s t  tank fo r  check- 
out and f u l l  power source testing before being mounted 
on Doublet 111. A mock-up of the d r i f t  duct and 
entrance port t o  Doublet 111 has been fabricated and 
ins ta l led  on the t e s t  tank. A rectangular aperture 
magnet i s  being designed to  simulate s t ray  tokamak 
f i e lds  near the entrance aperture. 

System tes t ing of the power supplies, ion sources, 
beamline and instrumentation and control systems is 
scheduled to  commence i n  early 1980. Components of 
the eecond beamline a re  in various stages of, fabrica- 
tion. Drawing packages fo r  beamlines three and four 
a re  being readied fo r  review and vendor quotation. 

* 
Work supported by DOE Contract DE-AT03-76ET51016. ** 
Work supported by WE Contract W-7405-eng-48. 
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