Advanced nuclear data for radiation-damage calculations

PDF Version Also Available for Download.

Description

Accurate calculations of atomic displacement damage in materials exposed to neutrons require detailed spectra for primary recoil nuclei. Such data are not available from direct experimental measurements. Moreover, they cannot always be computed accurately starting from evaluated nuclear data libraries such as ENDF/B-V that were developed primarily for neutron transport applications, because these libraries lack detailed energy-and-angle distributions for outgoing charged particles. Fortunately, a new generation of nuclear model codes is now available that can be used to fill in the missing spectra. One example is the preequilibrium statistical-model code GNASH. For heating and damage applications, a supplementary code called ... continued below

Physical Description

Pages: 7

Creation Information

MacFarlane, R.E. & Foster, D.G. Jr. January 1, 1983.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Accurate calculations of atomic displacement damage in materials exposed to neutrons require detailed spectra for primary recoil nuclei. Such data are not available from direct experimental measurements. Moreover, they cannot always be computed accurately starting from evaluated nuclear data libraries such as ENDF/B-V that were developed primarily for neutron transport applications, because these libraries lack detailed energy-and-angle distributions for outgoing charged particles. Fortunately, a new generation of nuclear model codes is now available that can be used to fill in the missing spectra. One example is the preequilibrium statistical-model code GNASH. For heating and damage applications, a supplementary code called RECOIL has been developed. RECOIL uses detailed reaction data from GNASH, together with angular distributions based on Kalbach-Mann systematics to compute the energy and angle distributions of recoil nuclei. The energy-angle distributions for recoil nuclei and outgoing particles are written out in the new ENDF/B File 6 format. The result is a complete set of nuclear data that can be used to calculate displacement-energy production, heat production, gas production, transmutation, and activation. Sample results for iron are given and compared to the results of conventional damage models such as those used in NJOY.

Physical Description

Pages: 7

Notes

NTIS, PC A02/MF A01; 1.

Source

  • 3. topical meeting on fusion reactor materials, Albuquerque, NM, USA, 19 Sep 1983

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE84001343
  • Report No.: LA-UR-83-2628
  • Report No.: CONF-830942-50
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5530211
  • Archival Resource Key: ark:/67531/metadc1093956

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1983

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • March 20, 2018, 8:31 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

MacFarlane, R.E. & Foster, D.G. Jr. Advanced nuclear data for radiation-damage calculations, article, January 1, 1983; United States. (digital.library.unt.edu/ark:/67531/metadc1093956/: accessed April 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.