20 h@dﬁ- 0,
o

Gk

/070 -7

SLAC~PUB~=3660

~ 21313 DES5 013051

SUPERCONVERGENT TRACKING AND INVARIANT BURFACES IN PHASE SPACE®
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INTRODUCTION

‘The question of long l.mnbnmulbihlyhm'yhuenm-
age 2ings presents an extraordinary challenge in nonlinear dy-
nazaies, Since current computational methods seemn less than
adequate on the long time scales involved, we have undertaken
s pregram of evalusting several methoda that either are new
or have not been tried in accelerator problems heretofore.

The methods we investigate fall into two eategories: (1)
iteratien of mapa describing concatensted machine elements ,
for tracking of elngle particles, and (2) infinite-time methods
for direct computation of invariant surfaces in phase space.
Our various propoasls ean be desetibed briefly as follows:

1. Tracking, fnite time

(s) ‘superconvergent tracking’, an adaptstion of
Koknogorov-Arnol'd-Moser (KAM) perturbation
theory ¢o the finite time problem.

(b} Local integration of the Hamilton-Jacobi (RJ) equa-
tion with respect to the time, the equation being
viewed ap & system of ordinary differential equations
for angle-varinble Fourier modes of the generating

2. Invariant surfaces, infinite time

{s) The original KAM superconvergent pertutbation
theory.

(b) Iterative sclution of the HJ equation stated as a ays-
tem of algebraic equations for the Fourler modes of
the generating function.

{¢) Solution of the equation of (2b) by Newton's method.

Items (18) and (2b) may be realized in two ways, sither in a
canventional quasi-analy:ic fashion or by a new numerical tech-
nique in which complexity does not increase as the calenlation
is carried to higher orders. The present report ia comcerned
H;h itetn (1a) in the quasi-analytic realization, and with item

INVARIANT SURFACES THROUGH ITERATIVE
SOLUTION OF THE HAMILTON-JACOB} EQUATION
In action-angle variables (3,4) the Heamiltonian of a per-
turbed intagrable aystem is written as
B($,3,8) = Ho(3) + F{9.2,0) , (1)
where the perturbation F is periodic with period 2x in ¢ and
8 , the latter being the machine azimuth. We seek a canonical
transformation (J,¢) — (K,¥) in the form
J=XK+ G‘('bnl') + (2)
¢=¢+Gg(¢.K,0), (E)]
such that the Hamiltonian beccmes a function of *L alone. Bold
face characters denote d-dimensional veetors and lublenpr.s in-
dicate partial differentiation. The new action K will be invari-
ant, and the new angle ¢ will advance linearly with 8, The
HJ equation to determine G in the requirement that the new
Hamiltonian H indeed depend only on X; namely,
)

BolK + Gyg) + F($, X + Gy, 8) + Gp = Hy(K) .
¢ Wtk of Energy, contracts
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Once G in known, the invariant sutfaces 3 = J{$,§) may
be plotted directly from (2), with the conatant K as an input
parameier.

Wa look for periodic solutions of Eq. (4) in the form

Gi¢,K,6) = E ,_.(Kwtn-d--wl,

mae—0n
Let un sewrite Eq. (8), by adding and subtracting the first two
terms in the Tuylor series of Ho(K + Gy) :
v Gy+Ga=
- lHo[K + G‘) ~ Ho(K) - G‘ + F(¢.K + G‘|G)]
+ | H{K) - Bo(K)] . ®
where & I8 the seroth-order tune,
viie) = 2008) ™

1f we now take the Fonrier wansform of Eq. {6), the result
form#0is

o = T — nifir)‘“,/w“'

[0 + G4 = HaK) - v -Gy + PAK + Gy, a)]

Since m 3 O in Eq. (8), the § - independent term H) — Ho of
Eq. (6) does not contribute. Furthermore, since Gy does not
have an m = D component, Eq. {8) constitutes a closed set
of equations for the gme for m # 0. We solve this system by
simple iteration, taking G4 = 0 on the right-hand side at the
first atep.

Once Gy is known, H, can be obtained by averaging the
lefi-hand side of Eq, (4) over ¢ and ¢ since Gy averages to
zero, The fully perturbed tune is then

JH,(X)

{8)

=i{mn-¢=nd) x

i) = 8 ©
which gives the evolution of the new angle variable,
V=vp+ml. (10)

Finally, gpn for n 3 0 is determined by the Fourier transform of
Eq. (4) for m = 0. The single coefficient goo Temalng as a free
parameter and can be set ta zero without losa of genesality. The
detalled time evolution of the system, usually of less interest
than invariant susfaces, can be obtained by solving Eq, (3) for
¢ 25 a function of § snd # and then substituting into Eq. (2).

For pumerical calculations we truneate the Foutiar series in -

Eq. (5) and discretize the integrals over ¢ and &, All sums are
then perforined as Fast Fourier Transforms, Sincem v —nis
& potential emall divisor in Eq. (8), »» must be chosen so that
the divieor is not 100 small in comparlson to the corresponding
aumerstor, if convergence ia to be achieved.

Curtently we have two computer programs that perform
the [teration, one for a single degree of freedom and the other
for two degrees of freedom; each accepts a general Hamiltonian.
We have tested the programs on the jsolated resonance model,
an integrable example in which a complete eel of lnvariants
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(not identical to K abowe) can be written dewn explicitly.
Checking that the invariants are indesd constant {to & Jevel
of accuracy consonant with the accuracy in solving Eq. (8)) i
almtﬁvhl test of the computation, which is passed succams-
ly.
In Fig. 1a we snow pesults in one degree of freedom for the
Inolated resonance model,

H = ud + a2 {2+ (™ coa(mi — nt) (1)

form = ¢and n = 1. J¥Vuin¢ i plotted against JV/Tcong
for two different values of X, Where J is oblained as » function
of ¢ (st fixed ¢ = Q) from Eq. (2). The parameters were
chosen 1o illustrate that the method can handle large orbit
Tho two curves, which

(
such that the maximum of F Is about 20% of ). In the
example of Fig. 1a, 12 iterations sufficed to selve Eq. (8) to
an accuracy § = 001 where at the p!h iteration

& "’;:) -"9")" , {12)

the norm ) || the sum of absolute valuer of the compo-
vents of g = |gma). The mode truncation for this case was
Im| £ 82, |n| § 32; howsver, with only 8 modes each for m
and n the graphs appesr the same to the eye. The analytic
invariant was constant to about 3 digits. Farther from reso-
nance, say one full resonance width away, one obtains & much
smaller § with fewer iterations.

‘:I"i-tlll_rgi-
N\ AT ;
A

A I
Fig. 1 (s) Invariant corves at 8 = 0 for Eq. {21) with m =
4, R =0, 15 =024, a= ODL, =225 x 10~% (b) Iavariant
curves at # = 0 for Eq. (13) with 3y = 1.28333, &= 0.05, ¢ =
74 x 1073, (c), (d) Surfaces cf section for Eq. (14) with
vy = 0.68411, py =0,49313, ¢ =001, X; = F.3 =10,

Fig. 1b is a non-integrable caze with an z* perturbation,
Hmwgd +al {2+ eos 5 sin'e , (13)
evaluated near a third erder resonunce n/m = 4/3. There are
fairly strong modes (m,n) = (1,0}, (1,2) In addition to the
dominant mode (3,4). The figure shown the typical behavior of
a third order resonancs with strong nonlinenr detuning. Nota
that the curves shown oace again follow the sepatatrix.

In Figs. 1c and 1d we plot results 1n two degrees of freedsm.
for the ‘differsnce coupling resonance’ modal,

Bandi+uh+ i heol(sh -3 -8), (1)
for a single cholee of the palr of invarianis Ky aad Xy, The
plots are ‘susfaces of section’for ¢ = # m 0, firstfor i = 1, then
for i = 2. Such plots promise 1o be quite informative, providing
information that cannot be obtained by tracking if there is
more (han one degree of freedom; (In tracking, it is difficult
to choose inftial conditions so as to populate appreciably the
section ¢y = ¢ = D), Our experience ng convergence
and mode truncation ln Figs. 1b, und 4 ls simiiar to th:
described above for Fig. 1.

SUPERCONVERGENT TRACKING
‘The sl of supesconvergent tracking ls $0 caleulate & map
which takes the injtial conditions et one point in & nisgnetic
inttice to Bnal conditiows at some other point. For o cincular
accelerator or storage ring, one would Jike to calenlate the map
for a significant fraztion of an entivo turn. Once thie map fs
obtained, it can be Herated numerically to discovar long term
behavior. This complements the infinita time approach in that

stochastic behavior and Inatabllity can be studled.

The map is generated by a sequence of canonjea) transfor-
mations go that the Hamiltonian after n steps Is ero through
some order in the perturbation strength. U the Hamiltonian
In zero, then the new variables are simply constant and can
be used as initial conditions. The map Is then odtained by
applying the transfarmations in reverse order, This, in effect,
solves the Hamiltonlan-Jacobi equation for & finita interval in
the independent variable.

We begin with the Hamiltoniag for linear motion perturbed
by a emali nonlinear past:

H=v.J+F($,39). (18)
It is most convenient to work in the ‘interaction representation®
which iz accomplished with the transformation
dbo=9¢-1
Jo=J ,
and the new Hamiltonian is given by
$:4 SF(‘O'.'“tJﬂl‘) = ﬂ(*va(h” . (l']
Fp is of course periodic in ¢, the angle variables, but it ts not
periodic in 8.

Now we perform the first of a sequence of canonical trans-

forraations which are close to the identity,

(16)

Jo=Jy + Gy (. 31.9) {18}
$h= *)"' GJ; (h-’lv'] ] (l’)

which yields the new Hamiltonlan
B = Folén.3: + Gy, M) + Gy - (20)

This in turn can be written in the suggestive form
Hy =|FoldoJy + Gy ,0) ~ Fo($0,31,6)] ()
+(Gy + Foldo,J1.9)]

Note that the Hamiltoniun has temperarily been lelt in the
same mixed variables s G.

Now we would like to find » G so that the Hamiltontan is
of higher order in the perturbation strength. If we solva for
such that the secand bracket in Eq. (21) is sero, and If F in of
order ¢, then the new Hamiltuaien is of order «¥. Complating
the substitution, we are feft with

By =Fyéo,d1 + Gy ,0) — Fy(#0:71,)

< Alondid) . @)



At this point wo can return to Eq. (17) to repeat the process.
Stopping after n steps , wo find

By = Folfn dad) ~ 015 )
and from Samiiton's squations
#e = comstant + O(<") )
3, = constant + O(*) .

Thus, provided that ¢ & sufficiently small, ¢y and J, can be
used as initial conditiona,

To illustrate the technique let n = 1 and consider the first
order transformation, The solutlon for G &

4
Ol 31,0) == [ Rildodr, )08 . %)
&

Note that the lizoita have been chosenso that G —+ Qan @ — 8.
Thus ($1,J1) are the initlal conditions at @ = & with an error
of order . Given (¢, Jy) at &, we can uee Eqe. (16), (18)
M(l’)buhhu‘[r:)atﬁﬁumnfuduc’.h
addition there is another patameter which mnst not be too
large, # — & = A0, From Eq. (25} there will, in general, be
secular terms i G, namely terms that increase Linearly with
A?®. These must be controlied by keeping Af sufficiently small.

Thia method has been carried out through second order for
one dimension and through first order for two dimensions. Qur
approach Is to perform the transformations snalytically with
the aid of an uigebrale manipulation prograsa, REDUCE 3.1,
which then directly writes FORTRAN subrovtines to evaluate
the map numerically. Since the map is an implicit one, it is
inverted by Newton's methed. .

To illuatrate we first present the G1st order method applied
to the case of the 1solated rescnance ln Eq. (11). Figures 2a and
2b show one dimansional phase space at § = 0 for the fourth
and sixth order resonance raspectively. For the A# chosen, the
calculated points are essentinlly identical to the exact solution,

Fig. 2 (a) First Opder tracking for Eq. (11) with {m,n) =

4,1). (b) First order tracking for Eq. (11) with (m,n) =
6,1). (c) Second order tracking for a sextupole perturbation.
{d) Second Order trazking for an octupole perturbation.

To illusitate the second order method we show a sextupole
pexturbation with u einuscidally warying strength
(B ~ hzcosf) In Fig. 2c, and an octupole perturbation
with a periodic delta function steength (H ~ de2*h,(s)) in Fig.
2d4. In both casss the tune has been adjusted to be close to

the main resonance 10 enhance the effect of the nonline.sity.
Both figures show the expected behavior and agree well with
numerical integration.

Finally we sbow the two dimensional, first order methad
applied to the case of & sextopole perturbation in the peigh-
borbood of a cowpling sesonance 24y ~ 34 = k. Since in this
case, the two phase space plots are hard to interpret, we plot
the points ($1,#2,Jy) in perspective at # = 0. Fig. 3a shows
the plotted points whils Fig. 8b shows & ruling of the two-
dimenaional surface on which the points lie. The existence of
the surface (» 2 tarus) reflects the presence of two invariants in
& nerr-integrable system, and the fact that all plotied points
evolved from one initial state. Figs. 3b and 3¢ show phase
space for the two degrees of freedom separately. We feel that
the three-dimansional plot may be quite useful in displaying
tracking data.

Fig. § (a) Pointa plotted in (¢;, #2,J;) space near a con-
pling resonance. (b) A ruling of the data in (a). (c), (d) Phase
space plots of a subset of the data in [a).

We are presently working on u two dimensional, second
order program (ervor ~ ¢*) whith will use the output of any
standard Iattice program 1o calculate the map for some arbi-
mmmﬁmhdnfnlltm. In doing so we find integrals of

Tiele) = [ WSy | (20)
ns well as higher ord.et integrals such s
/ A ()B( NN (. (an)
”®

Here &(s) is the strength of & 3l-pole field component, §(s)
is the beta function, and ¢¥(s) is the linear betatron phase
sdvance, Because b; and 8 are both pesiodic with period C, the
circumference, the integrals are invariant if we shift both s and
% by C. Thus, they are calculated once for u lattice and the
used to generate the nonlinear map. They also bear a striking
i distortions

In a nonlinesy map and the distortions of the invariant cusves
generated by iterating the map.




