
p0P- Q £&.& 
jfi'' SLAC-PUB--3660 -/oft ~7 

J,**"*'^ DE85 0 1 3 0 5 1 
SUPERCONVERGBNT TRACKING AND INVARIANT SURFACES IN PHASE SPACE* 

R, D. RUTH, T . RAUBENBEMER / I A | / J L . S?F?AK/lA 
Stanford linear Accelerator Center, Stmjord ttueemly, Stanford, CA. 0430s Utf* J" $ QUOO*^ 

R. L. WARNOCK * 
Lamtnct Btrktltg Lahortlarv, Vnivtnity «/ California, Bttitlty, CA, WISO J 

INTRODUCTION 
The question of long term beam stability in very lute stor-

age rings presents an extraordinary challenge in nonlinear dy­
namics. Since current computational methods Mem less than 
adequate on the long time scales involved, we have undertaken 
a program of evaluating several methods that either are new 
or have not been tried in accelerator problems heretofore. 

The methods we investigate fall into two categories: (1) 
iteration of maps describing concatenated machine elements , 
for tracking of single particles, and (2) infinite-time methods 
for direct computation of invariant surfaces in phase space. 
Our various proposals can be described briefly u follows: 

1. Tracking, finite time 
(a) tatpereottwrgent tracking', an adaptation of 

Kolmogorav-Amoi'd-MoMr (XAM) perturbation 
theory to the finite time problem. 

(b) Local integration of the Hamilton-Jacob! (HJ) equa­
tion with respect to the time, the equation being 
viewed as a system of ordinary differential equations 
for angle-variable Fourier modes of the generating 

2. Invariant surfaces, infinite time 
(a) The original KAM supereonvergent perturbation 

theory, 
(b) Iterative solution of the HJ equation stated as a sys­

tem of algebraic equations for the Fourier modes of 
the generating function. 

{<) Solution of the equation of (2b) by Newton's method. 
Items (la) and (2b) may he realized in two ways, either in a 
conventional quasl-analy: x fashion or by a new numerical tech­
nique in which complexity dees not increase as the caltnlstinn 
is carried to higher orders. The present report is concerned 
with item (la) in the quasi-analytic realisation, and with item 
(2b). 

INVARIANT SURFACES THROUGH ITERATIVE 
SOLUTION OF THE HAMIITON-JACOB1 EQUATION 

In action-angle variables [3,4) the Hamittonian of a per­
turbed integrabte system is written as 

J?W,J,») = ib{J) + f ( » \ J , » ) , (i) 
where the perturbation F is periodic with period 2* in e) and 
9, the latter being the machine azimuth. We seek a canonical 
transformation (J,«\) — (K,t» in the form 

J = K + G,(a\X,*0, (2) 
* = + +GK(6,K,9), (3) 

such that the Hamlltonian becomes a function oF "C alone. Bold 
face characters denote ((-dimensional vectors and subscripts in­
dicate partial differentiation. The new action K will be invari­
ant, and the new angle if will advance linearly with 9. The 
HJ equation to determine G is the requirement that the new 
HatuiHouiaa B indeed depend only on K; namely, 

ffofK + G # ) + f (» \K + G #,*) + G, = .H,(K). W 

* Work supported by the Department of Energy, contracts 
DE-AC03-76SF00515 and DE-AC03-76SF00098. 

Once O is known, the Invariant surfaces 3 a 3[a),t) may 
be plotted directly from (2), with the constant K as an input 
parameter. 

We look for periodic solutions of Eq. (4) in the form 
+00 

Gt*\K,«}= £ ft-^Kya*"*-'-' . (S) 
m,a*»-oa 

Let HI rewrite Eq. (f), by adding and subtracting the first two 
terms In the Taylor series of Wo(K + G4): 
v G^ + Ot = 

- |J«>(K + G() - tfo(K) - 1 / • G + + F(«S,K + C#.*)l 
+ l lMK)-*f v {K, | . 

where V la the teroth-order tune. (6) 

(?) 

Ifwenow take the Fourier transform of Eq. (v), the result 
faran^Oia 

Sum 
1 ¥ 

I .-({m-f-nllx 
( m . i / - n ) r » < + 1 

[flb(K + G # ) - flb(K) - i » . G + + *"r>,K + G^.fl)] 
(8) 

Since m 5* 0 in Eq. (8), the t) - independent term H> - Bo of 
Eq. (6) does not contribute. Furthermore, since C4 does not 
have an m = 0 component, Eq. (8) constitutes a closed set 
of equations for the o n a for m ?f 0. We solve this system by 
simple iteration, taking C^ — 0 on the right-hand side at the 
first step. 

Once G^ is known, A can be obtained by averaging the 
left-hand aide of Eq, (4) over e\ and * since Gi averages to 
sera, The fully perturbed tune is then 

(9) 
which gives the evolution of the new angle variable, 

* = »S, + *1». (10) 
Finally, pan for n fl 0 is determined by the Fourier transform of 
Eq. (4) for m = 0. The single coefficient goo remains as a free 
parameter and can be set to zero without loss of generality. The 
detailed time evolution of the system, usually of less interest 
than invariant surfaces, can be obtained by solving Eq, (3) for 
4, as a function of $ and 9 and then substituting into Eq. (2). 

For numerical calculations we truncate the Fourier series in 
Eq, (6) and diseretlze the integrals over «S and S. All sums are 
then performed as Fast Fourier Transforms, Since m • V - n is 
a potential email divisor in Eq. (8), V must he chosen so that 
the divisor is sot too small in comparison to the corresponding 
numerator, if convergence is to be achieved. 

Currently we have two computer programs that perform 
the iteration, one for a single degree of freedom and the other 
for two degrees of freedom; each accepts a general Hamiltonian. 
We have tested the programs on the isolated resonance model, 
an integrable example in which a complete act of invariants 

m 
ys 

~m 
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(not identical to K above) can be written down explicitly. 
Checking that til* Invariants an indeed constant (to a Intl 
of awurscyconsoi^tvrith the accuracy in solving Eq. (•))!• 
a nontrivial tat of the computation, which U passed success­
fully. 

In Fig. la we anew ratiilts in one degree of freedom for the 
isolated resonance nodal, 

£f-«^+o^/3+«,' , ,^eos(m*Wn«) (11) 
for m = 4 and n = 1. jVain* u plotted against jV«eos«i 
for two different value* of K, where J it obtained as » function 
of * (at fixed f e f f l from Eq. (2). The parameters wen 
chosen to illustrate that the method can handle large orbit 
dwtottVnavejy close to a resonance. The- two curves, which 
hug the Kparetrix on «Wier aide of the resonance Hand, hem 
p = vt + otlf • MIH2, Ml*. At such CIOK. proximity to a 
resonance, the value «f t chosen is dose to the nwdrmo that 
will allow converger** of Ae Iteration; farther from Tsaonaaca 
much MSBST values of t can he tolerated (lor Instance varans 
such that the iM»tm»m of F is about 20% of Bo). In the 
example of Fig. la, 12 Iterations sufficed to solve Eq. (8) to 
an accuracy * ».001 where at the p" iteration 

,_ | | B (Hi ) - .M| | 

the norm g || being the sum of absolute value* of the compo­
nents of a = IffnuT- The mode truncation for this cats was 
|m| < 32, |n| <J 32; however, with only 8 modes each for m 
and n the graphs appear the same to the eye, The analytic 
invariant was constant to about 3 digits. Farther from reso­
nance, say one full resonance width away, one obtains a much 
smaller I with fewer iterations. 

(U) 

Fig. 1 (a) Invariant curves at I = u for Eq. (11) with m = 
4, 11 = 0,^,-0.24, a-0.01, « = 255x10-*. (b) Invariant 
curves at • = 0 for Eq. (13) with n> = 1.28333, a a 0.05, t — 
7.4 x 10-*. (c), (d) Surfaces cf section for Eq. (14) with 
«! = 0.68411, n = 0.4*313, s = 0.01, Jfc = ».» = 1-0. 

Fig. lb is a aon-integreble case with an «* perturbation, 
Jff«^J + oJ i /2+€j 5 /»co.Vsin < #, (13) 

evaluated near a third order resonance n/m = 4/3, Then are 
fairly strong modes (m,n) - (1,0), (1,2) in addition to the 
dominant mode (3,4). The figure shows the typical behavior of 
a third order resonance with strong nonlinear detuning. Mote 
that the curvet shewn ones again follow the separatrix. 

In Figs. 1c and Id we plot remits la two degress of rrewtim. 
for the 'difference coupling resonencs' model, 

H = nJ l+ i»A + f-^Jieos(S«1 - » # » - » ) , (M) 
for a single choice of the pair of invariants Ki and K%. The 
plots are "surfaces of section' for «\ = 0 m 0, tot for I = 1, then 
for •" = 3. Such plot* promise to be quite WonnatWe, providing 
information that cannot be obtained by trading if then is 
more than one degree of freedom; (In tracking, it Is difficult 
to choose initial conditions so as to populate appreciably the 
section 4f = 0 m 0), Our experience regarding convergence 
and mode truncation In Figs. lb,c, and d I* similar to thr 
deeerlbed above for Fig. la. 

STOERCOWERGENT TftACKINO 
The aha of suporcoavoigeut tucking hi to calculate a map 

which take* the initial condition* at ooe point la a magnetic 
lattice to final condition at *ome other point. For a circular 
accelerator or along* ring, one would like to calculate the map 
for a significant fraction of an entire turn. Once this map is 
obtained, it can be iterated numerically to discover long term 
behavior. This complements the infinite time approach to that 
stochastic behavior end Instability can be studied. 

The map is generated by a sequence of canonical transfor­
mations so that the Hamiltonian after n steps Is tero through 
same order in the perturbation strength. If the Hamiltonian 
b eero, then the new variable* are simply constant and can 
be used as initial conditions. The map is then obtained by 
applying the transformations In reverse order. This, In effect, 
solves the Himlltonlan-Jaeobl equation for a finite interval in 
the independent variable. 

We begin with the Hamiltonian for linear motion perturbed 
by a small nonlinear part: 

B = v-J + F&,3,i). (IS) 
It is most convenient to work in the 'interaction representation' 
which is accomplished with the transformation 

t:r.-
and the new Hamiltonian is given by 

B = *•(*> + **.Jo, I) s ft(*,, Jo.0 . (17) 
FQ is of course periodic in «V, the angle variables, but it is not 
periodic in 0. 

Now we perform the first of a sequence of canonical trans­
formations which an close to the identity, 

* - J t + tV«Wi .* l <!«) 
•S = eV,+Gj,(*,.J„»). (») 

which yield* the new HainlrUmlan 
ft - *0v*>.J. + G^.0) + C, . (20) 

This in turn can be written in the suggestive form 
Bl H*Crv,'l + <?*..«) - F«f*>- J"*)l 

+ (<7i+A(*Wi,*)| • 
Note that the Hamiltonian has temporarily been left in the 
same mixed variables as G. 

Now we would like to find a C so that the Hamiltonian is 
of higher order in the perturbation strength. If we solve for G 
such that the second bracket in Eq. (21) is sen, and If F» is of 
order c, then the new Hamiitdaian is of order •'. Completing 
the substitution, we an left with 

£fl =«>(*>,* + «*,.•) - AC**.*.') 
eflWi.Ji.l) • 

(21) 

(22) 
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At taw point we can return to Eq. (17) to repeat the 
Stopping after n steps, we find 

«•-«.(#.. *..»)-Of/*), 
and from HamUton's equations ' 

*V» constant-I-0(0 
3% B constant + 0{c*"). 

the main resonance to 
Beth Scant show the 

(23) 

(M) 

Thus, provided that t la sufficiently (mill, eV end J . can be 
wed as Initial conditions. 

To illustrate the technique let n = 1 and conrider the firit 
otder transformation. The eolation for G fa 

* 
O ^ . a j . ^ - . - y j r o t d o . J H ' l ^ - (25) 

Note that the limits I m been chosen to that G -* 0 aa ( -» e\. 
Than («S, J») we the initial conditions at $ •= #, with an error 
of order e*. Given (•>,, JJ at #<. we can nee Eos. (16). (18) 
and (19) to calculate j«V,J) at • with an error of order a*. In 
addition there it another parameter which moat not be too 
large, t - »j a At. From Eq. (IS) there will, hi general, be 
secular term* 1st G, namely term* that Increase linearly with 
Ae\ Then mutt be controlled by keeping At sufficiently email. 

This method hit bean canted out through second order for 
one dimension and through first order for two dimenaioni. Our 
approach la to perform the transformations analytically with 
the aid of an algebraic manipulation program, REDUCE 3.1, 
which then directly writes FORTRAN subroutine* to evaluate 
the map numerically. Since the map it an implicit one, it is 
inverted by Newton's method. 

lb illustrate we first present the first order method applied 
to the csseoftheisolated resonance LnEq. (11). Figures2aand 
2b show one dhnsasional phase space at J = 0 for the fourth 
and sixth order resonance respectively. For the At chosen, the 
calculated points are essentially identical to the exact solution. 

+++-H I I I I I 

Fig. 2 (a) First Order tracking for Gq. (11) with (m,n) = 
(4,1). (b) First order tracking for Eq. (11) with (m.n) = 
(6, l). (c) Second order tracking for a textupole perturbation, 
(d) Second Order tracking for an octupole perturbation. 

Tb ahtttrete the second order method we show e> eeztupok 
perturbation with a sinusoid ally varying strength 
[B ~ tiz^cos*) in Fig. 2c, and am octupole perturbation 
with a periodtedetofuwtiraotrength (A ~M*^(s)) in Fig. 
2d. b both cases the tone has been adjusted to be close to 

the effect of the nonlinr.rity. 
behavior and agree well with 

t ebow the two dimensional, first order method 
api>liedto1hecaeec4atextDpokB«rtarbatlonintheDeigh-
bwhtmd of a miring resonance 2 » ) - * , =fc. Since in this 
case, the two phase space ptota are bard to interpret, we plot 
the points (*i,*j,Jl) in perspective at 4 = 0. Fig. 3a shows 
the plotted points while Fig. 3b thews a ruling of the two-
dimensional surface on which the point* lie. The existence of 
the surface (a 3 torus) reflects the presence of two invariants in 
a neer-tntegreble system, and the fact that all plotted paints 
evolved from one initial State. Figs. 3b and 3c show phase 
space for the two degrees of freedom separately. We feel that 
the three-dimensional plot may be quite useful in displaying 
tracking data. 

Fig. 3 (a) Fointa plotted in (*i,cWi) space near a cou­
pling resonance, (b) A ruling of the data in (a), (c), (d) Phase 
space plots of a subset of the data in (a). 

We are presently working on a two dimensional, second 
order program (error ~ (*) which will use the output of any 
standard lattice program to calculate the map for some arbi­
trary fraction of a full turn. In doing so we find integrals of 
the form 

» 
W«) = / M / W ^ « * W * > * M W , (28) 

»» 
its well aa higher order integrals such as 

j 

y«V*l(*,)fl(s,)™/»e«"t*t',l-*Wl/wr(a<). (27) 
« 

Here i ((s) is the strength of a 21-nole field component, 0{t) 
is the beta function, and *)(«) is the linear betatron phase 
advance. Because fcj and ft are both periodic with period C, the 
circumference, the integrals are invariant if we shift both t and 
so by C. Tina, they are calculated once for a lattice and then 
used to generate the nonlinear map. They also bear a striking 
resemblance to the integrals which yield nonlinear dfatortions 
of invariant carves in standard perturbation theory. This is 
quite useful in making the connection between the coefficients 
in a nonttnesr map and the distortions of the invariant curves 
generated by iterating the map. 
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