Scintillation properties of lead sulfate

PDF Version Also Available for Download.

Description

We report on the scintillation properties of lead sulfate (PbSO{sub 4}), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm{sup 3}, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO{sub 4} crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer ... continued below

Physical Description

Pages: (6 p)

Creation Information

Moses, W.W.; Derenzo, S.E. (Lawrence Berkeley Lab., CA (United States)) & Shlichta, P.J. (Crystal Research, San Pedro, CA (United States)) November 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We report on the scintillation properties of lead sulfate (PbSO{sub 4}), a scintillator that show promise as a high energy photon detector. It physical properties are well suited for gamma detection, as its has a density of 6.4 gm/cm{sup 3}, a 1/e attenuation length for 511 keV photons of 1.2 cm, is not affected by air or moisture, and is cut and polished easily. In 99.998% pure PbSO{sub 4} crystals at room temperature excited by 511 keV annihilation photons, the fluorescence decay lifetime contains significant fast components having 1.8 ns (5%) and 19 ns (36%) decay times, but with longer components having 95 ns (36%) and 425 ns (23%) decays times. The peak emission wavelength is 335 nm, which is transmitted by borosilicate glass windowed photomultiplier tubes. The total scintillation light output increases with decreasing temperature fro 3,200 photons/MeV at +45{degrees}C to 4, 900 photons/MeV at room temperature (+25{degrees}C) and 68,500 photons/MeV at {minus}145{degrees}C. In an imperfect, 3 mm cube of a naturally occurring mineral form of PbSO{sub 4} (anglesite) at room temperature, a 511 keV photopeak is seen with a total light output of 60% that BGO. There are significant sample to sample variations of the light output among anglesite samples, so the light output of lead sulfate may improve when large synthetic crystals become available. 10 refs.

Physical Description

Pages: (6 p)

Notes

OSTI; NTIS; INIS; GPO Dep.

Source

  • IEEE nuclear science symposium, Santa Fe, NM (United States), 5-9 Nov 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE92010301
  • Report No.: LBL-31456
  • Report No.: CONF-911106--89
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 5474011
  • Archival Resource Key: ark:/67531/metadc1093749

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1991

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • April 25, 2018, 7:09 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moses, W.W.; Derenzo, S.E. (Lawrence Berkeley Lab., CA (United States)) & Shlichta, P.J. (Crystal Research, San Pedro, CA (United States)). Scintillation properties of lead sulfate, article, November 1, 1991; [Berkeley,] California. (digital.library.unt.edu/ark:/67531/metadc1093749/: accessed July 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.