$$
I-682
$$

MASTER

VNAP2:

 A Computer Program for Computation of Two-Dimensional, Time-Dependent, Compressible, Turbulent FlowDISTRIBUTION OF THIS DOCUMENT IS UNLMTRTD

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This work was supported by the Propulsion Aerodynamics Branch of the National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia.

Edited by Patricia Metropolis
Phutucumpusition by IS-6 Composing Section

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

VNAP2:

A Computer Program for

Computation of

Two-Dimensional, Time-Dependent,
 Compressible, Turbulent Flow

Michael C. Cline

PAGES ii to iii

WERE INTENTIONALLY LEFT BLANK

CONTENTS

ABSTRACT 1
I. THE BASIC METHOD 1
A. Introduction 1
B. Discussion 2
C. Governing Equations 2
D. Physical and Computational Flow Spaces 8
E. . Numerical Method 10
F. Comments on the Calculation of Steady Subsonic Flows 19
G. Results and Discussion 22
II. DESCRIPTION AND USE OF THE VANP2 PROGRAM 24
A. Subroutine Description 24
B. Computational Grid Description 27
C. Input Data Description 28
D. Uutput Description 42
E. Computing System Compatibility 43
F. Artificial Viscosity Discussion 44
G. Sample Calculations 44
ACKNOWLEDGMENTS 46
REFERENCES 46
FIGURES 49
APPENDIX. FORTRAN LISTING OF THE VNAP2 PROGRAM 91

VNAP2: A COMPUTER PROGRAM FOR COMPUTATION
 OF TWO-DIMENSIONAL, TIME-DEPENDENT, COMPRESSIBLE, TURBULENT FLOW

by

Michael C. Cline

Abstract

VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, timedependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

I. THE BASIC METHOD

A. Introduction

VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 is a modified version of the VNAP code discussed in Ref. 1. Like the VNAP code, VNAP2 solves the two-dimensional (2D, axisymmetric), timc-dcpendent, compressible NavierStokes equations by a second-order-accurate finite-difference method. Unlike the VNAP code, VNAP2 allows arbitrary grid spacing, has two options to speed up the calculations for high Reynolds number flows, contains three different turbulence models, and can solve either single- or dual-flowing stream geometries. This last option allows the VNAP2 code to compute internal/external flows, such as inlets, and jet-powered afterbodies as well as airfoils.

Because of the variable grid and the options to speed up the calculations for high Reynolds number flows, VNAP2 computes high Reynolds number flows much more efficiently than VNAP. However, fullscale Reynolds numbers ($10^{6}-10^{8}$) still require fairly long run times (see Sec. I.G). In addition,
determination of a reasonable variable grid and selection of the best numerical scheme parameters for high Reynolds number flows require a certain amount of trial and error.

Although the VNAP code replaced the NAP ${ }^{2}$ code, VNAP2 is not necessarily intended to replace the VNAP code. Although VNAP2 can handle all the flows that VNAP is capable of solving, as well as many additional flows, VNAP2 is approximately double the size of VNAP and somewhat more complex. As a result, VNAP2 is more difficult to modify as well as to run on smaller computing systems. For these reasons, many users may prefer to use both codes.

B. Discussion

The VNAP2 code follows the philosophy of the VNAP code; that is, the boundary grid points are the most important. In addition, except for purely supersonic inflow and outflow, these grid points are generally the most difficult. For these reasons, the construction of boundary grid point routines is not left to the general user, and VNAP2 contains complete and accurate routines for calculating all boundary grid points. Several different boundary conditions are included as options, and all unspecified variables are calculated using a second-order-accurate, reference-plane-characteristic scheme, with the viscous terms treated as source functions. The code also continually checks for subsonic or supersonic flow, as well as inflow or outflow, to apply the correct boundary conditions. Most of the options for inflow and outflow boundary conditions include nonreflecting conditions to accelerate the convergence to steady state.

Like VNAP, VNAP2 employs the unsplit MacCormack scheme ${ }^{3}$ to compute the interior grid points. The governing equations are left in nonconservation form. For flows with thin boundary layers or free shear layers, the small grid spacing required for resolution greatly increases the computer time. To reduce this time, the grid points in the finer parts of the mesh are subcycled. In addition, an explicit modification to the MacCormack scheme (allowing the removal of the speed of sound from the C-F-L condition and thus increasing the time-step size) is also included. An explicit artificial viscosity model stablizes the computations for shock waves.

C. Governing Equations

The 2D time-dependent, compressible, Navier-Stokes equations for turbulent flow of a perfect gas can be written as

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\varepsilon v}{y}\right) \\
& \quad=\bar{u}\left[\frac{\partial}{\partial x}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial y}\right)+\frac{\varepsilon \mu_{T}}{\rho y} \frac{\partial \rho}{\partial y}\right] \tag{1}\\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial x}=\frac{1}{\rho} \frac{\partial}{\partial x}\left[(\lambda+2 \mu) \frac{\partial u}{\partial x}+\lambda \frac{\partial v}{\partial y}\right]+\frac{1}{\rho} \frac{\delta}{\partial y}\left[\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right] \\
& \quad+\frac{\bar{\alpha}}{\rho}\left[u \frac{\partial}{\partial x}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial x}\right)+v \frac{\partial}{\partial y}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial x}\right)\right]+\frac{\varepsilon}{\rho y}\left[(\lambda+\mu) \frac{\partial v}{\partial x}+\mu \frac{\partial u}{\partial y}+\frac{\bar{\alpha} \mu_{T} v}{\rho} \frac{\partial \rho}{\partial x}\right] \\
& \quad-\frac{1}{\rho} \frac{2}{3} \frac{\partial \rho q}{\partial x}, \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial y}=\frac{1}{\rho} \frac{\partial}{\partial y}\left[(\lambda+2 \mu) \frac{\partial v}{\partial y}+\lambda \frac{\partial u}{\partial x}\right]+\frac{1}{\rho} \frac{\partial}{\partial x}\left[\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right] \\
& +\frac{\bar{\alpha}}{\rho}\left[v \frac{\partial}{\partial y}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial y}\right)+u \frac{\partial}{\partial x}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial y}\right)\right]+\frac{\varepsilon}{\rho y}\left[(\lambda+2 \mu)\left(\frac{\partial v}{\partial y}-\frac{v}{y}\right)+\frac{\bar{\alpha} \mu_{T} v^{\prime}}{\rho} \frac{\partial \rho}{\partial y}\right] \\
& \quad-\frac{1}{\rho} \frac{2}{3} \frac{\partial \rho q}{\partial y}, \tag{3}\\
& \frac{\partial p}{\partial t}+u \cdot \frac{\partial p}{\partial x}+v \frac{\partial p}{\partial y}-a^{2}\left(\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}\right)=(\gamma-1)\left\{\left(\lambda_{M}+2 \mu_{M}\right)\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]\right. \\
& \quad+\mu_{M}\left[\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]+2 \lambda_{M} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y}+2 \mu_{M} \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right) \\
& \quad-\bar{\alpha} R T\left[\frac{\partial}{\partial x}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial y}\right)\right]+\frac{\varepsilon}{y}\left[\left(\lambda_{M}+2 \mu_{M}\right) \frac{v^{2}}{y}+2 \lambda_{M} v\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right. \\
& \left.\left.\quad+k \frac{\partial T}{\partial y}-\frac{\bar{\alpha} R T \mu_{T}}{\rho} \frac{\partial \rho}{\partial y}\right]+\rho e\right\}, \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{p}=\rho \mathrm{RT}, \tag{5}
\end{equation*}
$$

where ρ is the density; p is the pressure; T is the temperature; u and v are the velocity components; q is the turbulence energy; e is the turbulence dissipation rate; a is the speed of sound; R is the gas constant; $\mu=\mu_{M}+\mu_{T} ; \lambda=\lambda_{M}+\lambda_{T} ; \mu_{M}$ and λ_{M} are the first and second coefficients of molecular viscosity; μ_{T} and λ_{T} are the corresponding turbulent quantities; γ is the ratio of specific heats; $\mathrm{k}=\mathrm{k}_{\mathrm{M}}+\mathrm{k}_{\mathrm{T}} ; \mathrm{k}_{\mathrm{M}}$ is the coefficient of molecular conductivity; k_{T} is the turbulent value; x and y are the space coordinates; t is the time; $\bar{\alpha}$ is a constant; and ε is 0 for planar flow and 1 for axisymmetric flows. Equations (2)-(4) are written for the two-equation turbulence model. For the mixing-length and one-equation models discussed below, Eqs. (2)-(4) are slightly different. The density gradient terms, premultiplied by the constant $\bar{\alpha}$, on the right-hand side of Eqs, (1)-(4) are from turbulent density fluctuations and are, therefore, zero for laminar flows. Equation (1) is the conservation of mass or continuity equation, Eqs. (2) and (3) are the x and y momentum cquations, respectively, and Eq. (4) is the internal energy equation written in terms of pressure using the equation of state for a perfect gas, Eq. (5). Thus there is a system of five equations for the eight unknowns $u, v, p, \rho, T, \mu_{\mathrm{T}}, \lambda_{\mathrm{T}}$, and k_{T}. (In the two-equation turbulence model, there are two additional equations for the unknowns q and e.) To close this set of equations, the turbulence quantities $\mu_{\mathrm{T}}, \lambda_{\mathrm{T}}$ and k_{T} need definition. VNAP2 uses the following three turbulence models to accomplish this.

1. Mixing-Length Turbulence Model. The first model is an algebraic mixing-length model that can be written as

$$
\begin{align*}
& \mu_{\mathrm{T}}=\rho \ell^{2}\left[\left(\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]^{1 / 2}, \tag{6}\\
& \lambda_{\mathrm{T}}=\lambda \mu_{\mathrm{T}} / \mu \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{k}_{\mathrm{T}}=\gamma \mathrm{R} \mu_{\mathrm{T}} /(\gamma-1) \mathrm{Pr}_{\mathrm{T}} \tag{8}
\end{equation*}
$$

where ℓ is the mixing length defined below and $\operatorname{Pr}_{\mathrm{T}}$ is the turbulent Prandtl number. For free shear layer flows, the model follows Ref. 4. For monotonic velocity profiles, ℓ is defined as

$$
\begin{equation*}
\ell=C_{M L 2} \cdot\left|y_{2}-y_{1}\right| \tag{9}
\end{equation*}
$$

where $C_{M L 2}$ is a constant and

$$
\begin{aligned}
& y_{1}=y \quad \text { for } \quad \frac{u-u_{L}}{u_{u}-u_{L}}=0.1 \\
& y_{2}=y \quad \text { for } \quad \frac{u-u_{\mathrm{L}}}{u_{u}-u_{L}}=0.9
\end{aligned}
$$

and u_{L} and u_{U} are the lower and upper velocities of a monotonically increasing or decreasing velocity profile. For free shear flows with a velocity profile that has the minimum velocity u_{M} in the interior, ℓ is defined as

$$
\begin{equation*}
\ell=C_{M L 1} \cdot\left|y_{2}-y_{1}\right| \tag{10}
\end{equation*}
$$

where $C_{M L 1}$ is a constant and

$$
\begin{aligned}
& y_{1}=y \quad \text { for } \quad \frac{u-u_{L}}{u_{M}-u_{L}}=0.1 \text { and } y<y_{2} \\
& y_{1}=y \quad \text { for } \quad \frac{u-u_{M}}{u_{U}-u_{M}}=0.9 \text { and } y>y_{2}
\end{aligned}
$$

and

$$
\mathrm{y}_{7}=\mathrm{y} \quad \text { for } \quad \mathrm{u}=\mathrm{u}_{\mathrm{M}}
$$

The program continually checks to determine the type of velocity profile present. If u_{M} is within 5% of the minimum of u_{L} or u_{U}, then the monotonic profile is assumed. This check on the size of u_{M} is intended to stop small velocity variations, away from the shear region, from switching the velocity profile type. The 5% value is arbitrary and can be changed in subroutinc MIXLEN (see Sec. II. A). On the centerline or midplane, Eq. (6) is replaced by

$$
\begin{equation*}
\mu_{\mathrm{T}}=\rho \ell^{3}\left|\frac{\partial^{2} \mathbf{u}}{\partial \mathrm{y}^{2}}\right| \tag{11}
\end{equation*}
$$

For boundary-layer flows, the Cebeci-Smith' two-layer model is used. In the Inner layer, ℓ^{a} is defined a3

$$
\begin{equation*}
\ell=0.4 \mathrm{y}\left[1.0-\exp \left(\frac{-\mathrm{y} \sqrt{\rho_{\mathrm{w}}}}{26.0 \mu_{\mathrm{M}}}\right)\right] \tag{12}
\end{equation*}
$$

where y is the distance from the wall and τ_{w} is the shear stress at the wall. In the outer layer, Eqs. (6) and (12) are replaced by

$$
\begin{equation*}
\mu_{\mathrm{T}}=0.0168 \mathrm{\rho u}_{\mathrm{E}} \delta^{*}\left[1.0+5.5 \frac{\mathrm{y}^{6}}{\delta}\right]^{-1} \tag{13}
\end{equation*}
$$

where u_{E} is the velocity al the edge of the boundary layer, δ is the boundary-layer velocity thickness, and δ^{*} is the boundary-layer displacement thickness given by

$$
\delta^{*}=\int_{0}^{\delta}\left(1-\frac{\rho \mathrm{p}}{\rho_{\mathrm{E}} \mathrm{u}_{\mathrm{E}}}\right) \mathrm{dy}
$$

The switch from the inner-layer model, given by Eqs. (6) and (12), to the outer-layer model, given by Eq. (13), occurs when the inner μ_{T} is greater than the outer value. This model does not employ a relaxation or lag parameter. The values for $\mathrm{C}_{\mathrm{ML} 1}$ and $\mathrm{C}_{\mathrm{ML} 2}$ are 0.125 for planar flows and 0.11 for axisymmetric flows.

For this model, the last term on the right-hand side of Eqs. (2)-(4) vanishes. In addition, the viscosity coefficients λ_{M} and μ_{M} in the first four terms on the right-hand side of Eq. (4) as well as the first two axisymmetric terms, also in Eq. (4), are replaced by λ and μ.
2. One-Equation Turbulence Model. This model was developed at Los Alamos National Laboratory by Bart J. Daly. At present, this model has not been extensively proof-tested and, therefore, should be considered experimental. The model attempts to combine the best features of the algebraic mixing-length models and the two-equation models.

This model consists of the following transport equation for the turbulence energy q,

$$
\begin{align*}
& \frac{\partial q}{\partial t}+u \frac{\partial q}{\partial x}+v \frac{\partial q}{\partial y}=\frac{2}{3} \frac{q}{\rho}\left(\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}\right) \\
& \quad+\frac{\lambda_{T}+2 \mu_{T}}{\rho}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right] \\
& \quad+\frac{\mu_{T}}{\rho}\left[\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right]+\frac{2 \lambda_{T}}{\rho} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y}+\frac{2 \mu_{T}}{\rho} \frac{\partial v}{\partial x} \frac{\partial u}{\partial y} \\
& \quad+\frac{1}{\rho} \frac{\partial}{\partial x}\left[\left(\mu_{M}+\frac{\mu_{T}}{\sigma_{q}}\right) \frac{\partial q}{\partial x}\right]+\frac{1}{\rho} \frac{\partial}{\partial y}\left[\left(\mu_{M}+\frac{\mu_{T}}{\sigma_{q}}\right) \frac{\partial q}{\partial y}\right]-\frac{2 \mu_{M} q \Delta}{\rho S^{2}} \\
& \quad-\frac{2 \bar{a} q}{3 \rho}\left[\frac{\partial}{\partial x}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{\mu_{T}}{\rho} \frac{\partial \rho}{\partial y}\right)\right]+\frac{\varepsilon}{y}\left[\frac{\lambda_{T}+2 \mu_{T}}{\rho} \frac{v^{2}}{y}+\frac{2 \lambda_{T} v}{\rho}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right. \\
& \left.\quad+\frac{\mu}{\rho} \frac{\partial q}{\partial y}-\frac{2 \bar{\alpha} q \mu_{T}}{\rho^{2}} \frac{\partial \rho}{\partial y}\right], \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{S}=\mathrm{C}_{\mathrm{q}} \ell \tag{15}
\end{equation*}
$$

$$
\Delta= \begin{cases}5 & \text { for } \frac{S \rho \sqrt{2 q}}{\mu_{M}} \leqslant 5 \tag{16}\\ \frac{S \rho \sqrt{2} q}{\mu_{M}} & \text { for } \frac{S p \sqrt{2 q}}{\mu_{M}}>5\end{cases}
$$

ℓ is the mixing length from the first model, and c_{q} is a constant. The turbulent viscosity μ_{T} is defined as

$$
\mu_{T}=\left\{\begin{array}{lll}
0.1 \mathrm{C}_{\mu} \frac{\rho^{2} S^{2} q}{\mu_{M}} & \text { for } & \frac{S \rho \sqrt{2 q}}{\mu_{M}} \leqslant 5 \tag{17}\\
0.3534 C_{\mu} \bar{\rho} S \sqrt{q} & \text { for } & \frac{S \rho \sqrt{2 q}}{\mu_{M}}>5
\end{array}\right.
$$

where C_{q} is 17.2 for planar flows and 12.3 for axisymmetric flows and $C_{\mu}=0.09$. The quantities λ_{T} and k_{T} are determined from Eqs. (7) and (8), respectively.

For this model, the last term on the right-hand side of Eq. (4) is replaced with $2 \mu_{\mathrm{m}} \mathrm{q} \Delta / \mathrm{S}^{2}$.
3. Two-Equation, Jones-Launder ${ }^{6-9}$ Turbulence Model. This model employs two transport equations, one for the turbulence energy q and the second for the turbulence dissipation rate e. These equations can be written as

$$
\begin{align*}
& \frac{\partial q}{\partial t}+u \frac{\partial q}{\partial x}+v \frac{\partial q}{\partial y}=\frac{\lambda_{T}+2 \mu_{T}}{\rho}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]+\frac{\mu_{T}}{\rho}\left[\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] \\
& \quad+\frac{2 \lambda_{T}}{\rho} \frac{\partial u}{\partial x} \frac{\partial v}{\partial y}+\frac{2 \mu_{T}}{\rho} \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}+\frac{1}{\rho} \frac{\partial}{\partial x}\left[\left(\mu_{M}+\frac{\mu_{T}}{\sigma_{q}}\right) \frac{\partial q}{\partial x}\right]+\frac{1}{\rho} \frac{\partial}{\partial y}\left[\left(\mu_{M}+\frac{\mu_{T}}{\sigma_{q}}\right) \frac{\partial q}{\partial y}\right] \\
& \quad-e-\frac{2 \mu}{\rho}\left(\frac{\partial q^{1 / 2}}{\partial x}+\frac{\partial q^{1 / 2}}{\partial y}\right)^{2}+\frac{\delta}{y}\left[\frac{\lambda_{T}+2 \mu_{T}}{\rho} \frac{v^{2}}{y}+\frac{\partial \lambda_{T} v}{\rho}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{1}{\rho}\left(\mu_{M}+\frac{\mu_{I}}{\sigma_{q}}\right) \frac{\partial q}{\partial y}\right] \tag{18}
\end{align*}
$$

and

$$
\begin{aligned}
& \frac{\partial \mathrm{e}}{\partial \mathrm{t}}+\mathrm{u} \frac{\partial \mathrm{e}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{e}}{\partial \mathrm{y}}=\frac{\mathrm{C}_{\mathrm{I}} \mathrm{e}}{\mathrm{q}}\left\{\frac{\lambda_{\mathrm{T}}+2 \mu_{\mathrm{T}}}{\rho}\left[\left(\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{v}}{\partial \mathrm{y}}\right)^{2}\right]+\frac{\mu_{\mathrm{T}}}{\rho}\left[\left(\frac{\partial v}{\partial \mathrm{x}}\right)^{2}+\left(\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)^{2}\right]\right. \\
& \left.\quad+\frac{2 \lambda_{\mathrm{T}}}{\rho} \frac{\partial \mathrm{u}}{\partial \mathrm{x}} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}+\frac{2 \mu_{\mathrm{T}}}{\rho} \frac{\partial v}{\partial \mathrm{x}} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right\}+\frac{1}{\rho} \frac{\partial}{\partial \mathrm{x}}\left[\left(\mu_{\mathrm{M}}+\frac{\mu_{\mathrm{T}}}{\sigma_{\mathrm{e}}}\right) \frac{\partial \mathrm{e}}{\partial \mathrm{x}}\right] \\
& \quad+\frac{1}{\rho} \frac{\partial}{\partial \mathrm{y}}\left[\left(\mu_{\mathrm{M}}+\frac{\mu_{\mathrm{T}}}{\sigma_{\mathrm{e}}}\right) \frac{\partial \mathrm{e}}{\partial \mathrm{y}}\right]-\frac{C_{2} \mathrm{c}}{\mathrm{q}}\left[\mathrm{e}-\frac{2 \mu}{\rho}\left(\frac{\partial \mathbf{q}^{1 / 2}}{\partial \mathrm{x}}+\frac{\partial \mathbf{q}^{1 / 2}}{\partial \mathrm{y}}\right)\right. \\
& \quad+\frac{2 \mu_{\mathrm{M}} \mu_{\mathrm{T}}}{\rho^{2}}\left[\left(\frac{\partial^{2} u}{\partial \mathrm{x}^{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial \mathbf{x}^{2}}\right)^{2}+\left(\frac{\partial^{2} u}{\partial \mathbf{y}^{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial y^{2}}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\varepsilon}{y}\left\{\frac{C_{1} e}{q}\left[\frac{\lambda_{T}+2 \mu_{T}}{\rho} \frac{v^{2}}{y}+\frac{2 \lambda_{T} v}{\rho}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right]+\frac{1}{\rho}\left(\mu_{M}+\frac{\mu_{T}}{\sigma_{e}}\right) \frac{\partial e}{\partial y}\right. \\
& \left.+\frac{2 y \mu_{M} \mu_{T}}{\rho^{2}}\left[\left(\frac{1}{y} \frac{\partial u}{\partial y}\right)^{2}+\left(\frac{1}{y} \frac{\partial v}{\partial y}\right)^{2}+\frac{2}{y} \frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial y^{2}}+\frac{2}{y} \frac{\partial v}{\partial y} \frac{\partial^{2} v}{\partial y^{2}}\right]\right\} \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{C}_{1}=1.44, \sigma_{\mathrm{Q}}=1.0, \sigma_{\mathrm{e}}=1.3, \tag{20}\\
& \mathrm{C}_{2}=\overline{\mathrm{C}}_{2}\left[1.0-0.2222 \exp \left(-0.0278 \mathrm{R}_{\mathrm{T}}^{2}\right)\right],
\end{align*}
$$

and

$$
\mathrm{R}_{\mathrm{T}}=\rho \mathrm{q}^{2} / \mu_{\mathrm{M}} \mathrm{e} .
$$

The turbulent viscosity is calculated from

$$
\begin{equation*}
\mu_{\mathrm{T}}=\mathrm{C}_{\mu} \exp \left[-3.4 /\left(1+0.02 \mathrm{R}_{\mathrm{T}}\right)^{2}\right] \mathrm{pq}^{2} / \mathrm{e}, \tag{21}
\end{equation*}
$$

where $\mathrm{C}_{\mu}=0.09$. The quantities λ_{T} and k_{T} are determined from Eqs. (7) and (8), respectively. The solid wall boundary condition on e for this version of the Jones-Launder model is $\partial \mathrm{e} / \partial \mathrm{y}=0$.

For strongly separated flows, this model has two numerical problems. One problem is that the turbulence dissipation rate becomes extremely small near a reattachment point. To overcome this, a lower bound on q and e at a given y was added as an option to VNAP2 in the manner of Coakley and Viegas. ${ }^{10}$ The second problem is associated with the treatment of the convection terms in Eqs. (18) and (19). In the far field where $q \rightarrow 0$, the variations of q and e are such in some problems that extremely large values of μ_{r} occur. Using the donor cell scheme in the x direction and the MacCormack scheme in the y direction removes this problem for all cases tested so far. Also included is the following fourth-order smoothing term added to Eq. (18):

$$
\begin{equation*}
\mathrm{C}_{\mathrm{Q}}\left(\frac{(|\mathbf{u}|+\mathrm{a}) \Delta \mathrm{x}^{3}}{\mathrm{q}}\left|\frac{\partial^{2} \mathrm{q}}{\partial \mathbf{x}^{2}}\right| \frac{\partial^{2} q}{\partial \mathbf{x}^{2}}+\frac{(|v|+a) \Delta y^{3}}{\mathrm{q}}\left|\frac{\partial^{2} q}{\partial \mathbf{y}^{2}}\right| \frac{\partial^{2} q}{\partial \mathbf{y}^{2}}\right) \tag{22}
\end{equation*}
$$

where C_{Q} is a constant. A similar term, with e replacing q and C_{E} replacing C_{Q}, is added to Eq. (19). These smoothing terms were added as a possible alternative to the donor cell differencing. However, at this time, the donor cell differencing appears to be more satisfactory.
4. Artificial Viscosity Model. To stabilize the numerical method for shock wave calculations, an explicit artificial viscosity model is included. This model replaces the explicit fourth-order smoothing, usually employed by MacCormack. ${ }^{11}$ The procedure here is first to calculate artificial viscosity coefficients $\mu_{\mathrm{A}}, \lambda_{\mathrm{A}}$ and a thermal conductivity coefficient k_{A} and, second, to add these values to the molecular values. These quantities are calculated from the following equations:

$$
\begin{align*}
& \lambda_{A}=C_{C} \Delta x \Delta y \rho\left|\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\varepsilon \frac{v}{y}\right|, \tag{23}\\
& \mu_{A}=C_{\mu 1} \lambda_{A} / C_{\lambda}, \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{k}_{\mathrm{A}}=\gamma \mathrm{R} \mu_{\mathrm{A}} /(\gamma-1) \mathrm{Pr}_{\mathrm{A}}, \tag{25}
\end{equation*}
$$

where $C, C_{\lambda}, C_{\mu 1}$, and Pr_{A} are constants, with Pr_{A} representing an artificial Prandtl number, and Δx and Δy are the mesh spacing. The following artificial density smoothing term also is added to the right-hand side of Eq. (1).

$$
\begin{equation*}
\text { Equation }(1)=\frac{C_{\rho}}{\rho}\left[\frac{\partial}{\partial \mathbf{x}}\left(\mu_{A} \frac{\partial \rho}{\partial \mathbf{x}}\right)+\frac{\partial}{\partial \mathbf{y}}\left(\mu_{\mathrm{A}} \frac{\partial \rho}{\partial y}\right)+\frac{\varepsilon \mu_{\mathrm{A}}}{\mathbf{y}} \frac{\partial \rho}{\partial \mathbf{y}}\right] \tag{26}
\end{equation*}
$$

where C_{ρ} is a constant. When the divergence of the velocity is greater than zero (expansions), these artificial quantities are set equal to zero.

D. Physical and Computational Flow Spaces

Figure 1 shows the physical flow-space geometry, with flow from left to right. The upper boundary, called the wall, can be either a solid boundary, a free-jet boundary, or an arbitrary subsonic (normal to the boundary) inflow/outflow boundary. The lower boundary, called the centerbody, can be either a solid boundary or a plane (line) of symmetry. The geometry can be either a single-flowing stream or, if the dual-flow-space walls are present, a dual-flowing stream. The dual-flow-space walls may begin in the interior and continue to the exit (inlet geometry), may begin at the inlet and terminate in the interior as shown in Fig. 1 (afterbody geometry), or may begin and end in the interior (airfoil geometry). All of the above boundaries may be arbitrary curved boundaries provided the y coordinate is a single value function of x. If the dual-flow-space walls begin or end in the interior, then they must have pointed ends. The points can be very blunt, but there cannot be vertical walls. The left boundary is a subsonic, supersonic, or mixed inflow boundary, whereas the right boundary is a subsonic, supersonic, or mixed outflow boundary or a subsonic inflow/outflow boundary.

The x, y, t physical space is mapped into a rectangular ζ, η, τ computational space as shown in Fig. 1 . The mapping is carried out in two stages: the first maps the physical space to a rectangular computational space and the second maps the variable grid spacing to a uniform grid spacing. Because the single- and dual-flow-space mappings are different, they will be discussed separately.

1. Single-Flow Space. The x, y, t physical space, with variable grid spacing, is mapped into the $\bar{\zeta}, \bar{\eta}$, $\bar{\tau}$ space, which also has variable grid spacing, by the following transformation:

$$
\begin{equation*}
\bar{\zeta}=x ; \bar{\eta}=\frac{\mathrm{y} \cdots \mathrm{y}_{\mathrm{c}}}{\mathrm{y}_{\mathrm{w}}-\mathrm{y}_{\mathrm{c}}} ; \bar{\tau}=\mathrm{t}, \tag{27}
\end{equation*}
$$

where y_{c} is a function of x and denotes the centerbody y value and y_{w} is a function of x and t and denotes the wall y value. The quantity $\bar{\eta}$ varies between 0 and 1 . This variable grid $\bar{\zeta}, \bar{\eta}, \bar{\tau}$ space is mapped into a uniform grid ζ, η, τ space by the following transformation:

$$
\begin{equation*}
\zeta=\zeta(\bar{\zeta}) ; \quad \eta=\eta(\bar{\eta}) ; \quad \tau=\bar{\tau} ; \tag{28}
\end{equation*}
$$

that is, ζ is an arbitrary tabular function of $\bar{\zeta}$, etc. Using Eqs. (27) and (28), the derivatives become

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{x}}=\omega \frac{\partial}{\partial \zeta}+\alpha \frac{\partial}{\partial \eta} ; \quad \frac{\partial}{\partial \mathbf{y}}=\beta \frac{\partial}{\partial \eta} ; \quad \frac{\partial}{\partial \mathrm{t}}=\frac{\partial}{\partial \tau}+\delta \frac{\partial}{\partial \eta} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\frac{d \zeta}{d \bar{\zeta}} ; \quad \beta=\frac{d \eta}{d \bar{\eta}} \frac{1}{y_{w}-y_{c}} ; \quad \alpha=\beta\left[(\bar{\eta}-1) \frac{d y_{c}}{d x}-\bar{\eta} \frac{\partial y_{w}}{\partial x}\right] ; \quad \delta=-\bar{\eta} \beta \frac{\partial y_{w}}{\partial t} . \tag{30}
\end{equation*}
$$

The derivatives $d \zeta / d \bar{\zeta}$ and $d \eta / d \bar{\eta}$ are computed numerically using differences consistent with the MacCormack scheme.

This results in a physical space grid with the following properties: one set of grid lines is straight and in the y direction with arbitrary spacing in the x direction; the second set of grid lines approximately follows the wall and centerbody contours; the Δy spacing of these grid lines is arbitrary at one x location and is proportional to those values at any other x location; and the proportionality factor is based on the distance between y_{w} and y_{c}. For more details on the physical space grid, see the example shown in Fig. 2 as well as the computed results in Sec. I.G.
2. Dual-Flow Space. If part of the flow in the dual-flow-space example is a single-flow space, then the single-flow-space option discussed above is used in that part. In the dual-flow-space section, the procedure is to divide the dual-flow space into two single-flow spaces and then to use the single-flow-space transformations discussed above. Both the upper and lower dual-flow-space walls collapse to the same grid line in the computational space, as shown in Fig. 1. The flow variables at the grid points on the upper dual-flow-space wall are stored in the regular solution array, whereas the lower wall variables are stored in a dummy array. These flow variables are continually switched between the two arrays during the calculation. For the dual-flow-space example, Eq. (27) becomes

$$
\left.\begin{array}{lll}
\bar{\zeta}=x ; & \bar{\eta}=c \frac{y-y_{c}}{y_{L}-y_{c}} ; \quad \bar{\tau}=t & \text { for } \quad y_{c} \leqslant y \leqslant y_{L} \tag{31}\\
\bar{\zeta}=x ; & \bar{\eta}=c+(1-c) \frac{y-y_{U}}{y_{w}-y_{U}} ; \quad \bar{\tau}=t \quad \text { for } \quad y_{U} \leqslant y \leqslant y_{w}
\end{array}\right\}
$$

where y_{L} and y_{U} are functions of x and denote the lower and upper dual-flow-space walls, respectively. The parameter c is a constant and equals $\left(y_{L}-y_{C}\right) /\left(y_{w}-y_{U}+y_{L}-y_{C}\right)$ evaluated at a specified x location. For completely dual flows, c can be evaluated at any x and in practice is evaluated at the left boundary. However, for flows with both dual- and single-flow-space parts, c must be evaluated at the x location where the dual-flow-space walls either begin or end. This ensures that the single grid line that corresponds to the lower and upper dual-flow-space walls remains continuous as it extends into the single-flow-space section. If the dual-flow-space walls begin and end in the interior, as in the case of a planar airfoil, then the values of c must be equal at both ends of the dual-flow-space walls. This requirement means that if y_{c} and y_{w} are straight horizontal lines, then the airfoil must be at a zero angle of attack. If the upper boundary or wall is the arbitrary inflow/outflow option, then y_{w} can be adjusted to produce an angle of attack. However, if the upper boundary or wall is a fixed solid boundary, as in the case of an airfoil in a wind tunnel, then the angle of attack of the airfoil relative to the wall is fixed. For the axisymmetric case, the airfoil becomes a duct and the angle of attack discussion deals with the duct-axial area variation. For the dual-flow-space example, Eqs. (28) and (29) remain unchanged, and Eq. (30) becomes

$$
\begin{align*}
& \omega=\frac{d \zeta}{d \bar{\zeta}} ; \quad \beta=\frac{d \eta}{d \bar{\eta}} \frac{c}{y_{L}-y_{c}} ; \quad \alpha=\frac{\beta}{c}\left[(\bar{\eta}-c) \frac{d y_{c}}{d x}-\bar{\eta} \frac{d y_{L}}{d x}\right] ; \quad \delta=0 \\
& \text { for } y_{c} \leqslant y \leqslant y_{L}, \\
& \text { and } \tag{32}\\
& \omega=\frac{d \zeta}{d \bar{\zeta}} ; \quad \beta=\frac{d \eta}{d \bar{\eta}} \frac{1-c}{y_{w}-y_{U}} ; \quad \alpha=\frac{\beta}{1-c}\left[(\bar{\eta}-1) \frac{d y_{U}}{d x}-(\bar{\eta}-c) \frac{\partial y_{w}}{\partial x}\right] ; \\
& \quad \delta=\frac{\beta(\bar{\eta}-c)}{1-c} \frac{\partial y_{w}}{\partial t} \quad \text { for } \quad y_{U} \leqslant y \leqslant y_{w} .
\end{align*}
$$

3. Transformed Governing Equations. Using Eqs. (27) and (29), the original governing equation can be written in the ζ, η, τ variables. For example Eq. (1) becomes

$$
\begin{align*}
& \frac{\partial \rho}{\partial \tau}+u \omega \frac{\partial \rho}{\partial \zeta}+\bar{v} \frac{\partial \rho}{\partial \eta}+\rho\left(\omega \frac{\partial u}{\partial \zeta}+\alpha \frac{\partial u}{\partial \eta}+\beta \frac{\partial v}{\partial \eta}+\frac{\varepsilon v}{y}\right) \\
& \quad=\frac{\bar{\alpha}}{\rho}\left\{\left(\omega \frac{\partial}{\partial \zeta}+\alpha \frac{\partial}{\partial \eta}\right)\left[\mu_{T}\left(\omega \frac{\partial \rho}{\partial \zeta}+\alpha \frac{\partial \rho}{\partial \eta}\right)\right]+\beta \frac{\partial}{\partial \eta}\left(\mu_{T} \beta \frac{\partial \rho}{\partial \eta}\right)+\varepsilon \frac{\mu_{T} \beta}{y} \frac{\partial \rho}{\partial \eta}\right\}, \tag{33}
\end{align*}
$$

where

$$
\begin{array}{ll}
\bar{v}-u \alpha+v \beta+\delta, & \\
y=y_{c}+\eta\left(y_{w}-y_{c}\right) & \text { for the singie-liuw space }, \\
y=y_{c}+\frac{\bar{\eta}}{c}\left(y_{L}-y_{c}\right) & \text { for the lower dual-flow space } \tag{35}\\
y=y_{U}+\frac{\bar{\eta}-c}{1-c}\left(y_{w}-y_{U}\right) & \text { for the upper dual-flow space }
\end{array}
$$

and the u and v velocity components are the original values.

E. Numerical Method

The computational plane grid points are divided into interior and boundary points. The boundary grid points are further divided into left-boundary, right-boundary, wall, centerbody, and dual-flow-space wall points (see Fig. 1).

1. Interior Grid Points. The interior grid points are computed using the unsplit MacCormack scheme discussed in Ref. 3. This scheme is a second-order-accurate, noncentered, two-step, finite-difference scheme. Backward differences are used on the first step, forward differences on the second. The governing equations are left in nonconservation form. As an example of the basic scheme, the finite-difference equations for Eq. (2) for planar $(\varepsilon=0)$, laminar ($\bar{\alpha}=q=0$) flow are

$$
\begin{align*}
\bar{u}_{L, M}^{N+1}= & u_{L, M}^{N}-\Delta t\left[u_{L, M}^{N}\left(\frac{u_{L, M}^{N}-u_{L-1, M}^{N}}{\Delta x}\right)+v_{L, M}^{N}\left(\frac{u_{L, M}^{N}-u_{L, M-1}^{N}}{\Delta y}\right)\right. \\
& \left.+\frac{1}{p_{L, M}^{N}}\left(\frac{p_{L, M}^{N}-p_{L-1, M}^{N}}{\Delta x}\right)\right] \\
& +\frac{\Delta t}{\rho_{L, M}^{N} \Delta x}\left[(\lambda+2 \mu)_{L+1 / 2, M}\left(\frac{u_{L+1, M}^{N}-u_{L, M}^{N}}{\Delta x}\right)\right. \\
& +\lambda_{L+1 / 2, M}\left(\frac{v_{L, 1, M+1}^{N}+v_{L, M+1}^{N}-v_{L+1, M-1}^{N}-v_{L,, M-1}^{N}}{4 \Delta y}\right) . \\
& -(\lambda+2 \mu)_{L-1 / 2, M}^{N}\left(\frac{u_{L, M}^{N}-u_{L-1, M}^{N}}{\Delta x}\right) \\
& \left.-\lambda_{L-1 / 2, M}^{N}\left(\frac{v_{L, M+1}^{N}+v_{L-1, M+1}^{N}-v_{L, M-1}^{N}-v_{L-1, M-1}^{N}}{4 \Delta y}\right)\right] \\
& +\frac{\Delta t}{\rho_{L, M}^{N} \Delta y}\left[\mu_{L, M+1 / 2}^{N}\left(\frac{v_{L+1, M+1}^{N}+v_{L+1, M}^{N}-v_{L-1, M+1}^{N}-v_{L-1, M}^{N}}{4 \Delta x}\right)\right. \\
& +\mu_{L, M+1 / 2}^{N}\left(\frac{u_{L, M+1}^{N}-u_{L, M}^{N}}{\Delta y}\right) \\
& -\mu_{L, M-1 / 2}^{N}\left(\frac{v_{L+1, M}^{N}+v_{L+1, M-1}^{N}-v_{L-1, M}^{N}-v_{L-1, M-1}^{N}}{4 \Delta x}\right) \\
& \left.-\mu_{L, M-1 / 2}^{N}\left(\frac{u_{L, M}^{N}-u_{L, M-1}^{N}}{\Delta y}\right)\right], \tag{36}
\end{align*}
$$

for the first step and

$$
\left.\left.\left.\begin{array}{l}
u_{L, M}^{N+1}=0.5\left\{u_{L, M}^{N}+\bar{u}_{L, M}^{N+1}-\Delta t\left[\bar{u}_{L, M}^{N+1}\left(\frac{\bar{u}_{L+1, M}^{N+1}-\bar{u}_{L, M}^{N+1}}{\Delta x}\right)\right.\right. \\
\quad+\bar{v}_{L, M}^{N+1}\left(\frac{\overline{\mathrm{u}}_{L}^{N+M+1}}{N+1}-\bar{u}_{L, M}^{N+1}\right. \tag{37}\\
\Delta \bar{y}
\end{array}\right)+\frac{1}{\bar{\beta}_{L, M}^{N+1}}\left(\frac{\overline{\mathrm{p}}_{\mathrm{L}+1, M}^{N+1}-\bar{p}_{\mathrm{L}, \mathrm{M}}^{N+1}}{\Delta \mathrm{x}}\right)\right]+\mathrm{Q}\right\}
$$

for the second step, where the subscripts L and M denote axial and radial grid points, respectively, the superscript N denotes the time step, the bar denotes values calculated on the first step, and Q denotes the terms in the last two brackets on the right-hand side of Eq. (36), that is, the viscous terms. Equations (36) and (37) show that all viscous terms are calculated using center differences in the initial-value plane only, so that they are second-order accurate in space but first-order accurate in time. Raising them to second-order accuracy in time requires re-evaluating them using the $\bar{u}^{\mathrm{N}+1}$ values from the first step. For most problems, this greater accuracy does not seem worth the increased effort.
To improve the computational efficiency for high Reynolds number flows, the grid points in the fine part of the grid may be subcycled. This is accomplished by first computing the grid points in the coarse part of the grid for one time step Δt. Next, the grid points in the fine grid are calculated k times (where k is an integer) with a time step $\Delta t / k$. The grid points at the edge of the fine grid require a special procedure, because one of their neighboring points is calculated as part of the coarse grid. Except for the first subcycled time step, this point is unknown. However, the values at t and $t+\Delta t$ are known from the coarse grid solution, so that the values between t and $t+\Delta t$ are determined by linear interpolation.

To improve the computational efticiency further, a special procedure (called the Quick Solver) is employed to increase the allowable time step in the subcycled part of the grid. This procedure allows the removal of the sound speed from the time-step C-F-L condition. Procedures that accomplish this have been proposed by Harlow and Amsden ${ }^{12}$ and MacCormack. ${ }^{13}$ The procedure of Harlow and Amsden removes the sound speed, in both the x and y directions, by an implicit treatment of the mass equation and the pressure gradient terms in the momentum equations. MacCormack's procedure is explicit and removes the sound speed in only one direction. (It also includes an implicit procedure to remove the viscous diffusion restriction from the time-step C-F-L condition.) Because explicit schemes are easier to program for efficient computation on vector computers and because high Reynolds number flows usually require fine grid spacing in only one direction, a procedure similar to MacCormack's was chosen.

MacCormack's procedure is based on the assumption that the velocity component, in the coordinate direction with the fine grid spacing, is negligible compared to the sound speed. This allows the governing equations to be simplified. MacCormack then applies the Method of Characteristics to these simplified equations. However, for flows over bodies with large amounts of curvature as well as many shear flows, this assumption is questionable; and because VNAP2 is intended as a general code for solving a variety of problems, MacC'ormack's assumption seems too restrictive. Therefore, the main differences between MacCormack's scheme and the one presented below are that this restriction is removed and that the flow in the y direction is assumed to be subsonic.

The sound speed limitation is associated with the inviscid part of the Navier-Stokes equations. In addition, because the following procedure is used only in the y direction, it can be illustrated by using the following inviscid, one-dimensional (1D) equations

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+v \frac{\partial \rho}{\partial y}+\rho \frac{\partial v}{\partial y}-0 \tag{38}\\
& \partial v \tag{39}\\
& \partial t+v \frac{\partial v}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial y}=0
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathbf{p}}{\partial t}+v \cdot \frac{\partial p}{\partial y}+\rho a^{2} \frac{\partial v}{\partial y}=0 \tag{40}
\end{equation*}
$$

where v is the velocity, ρ is the density, p is the pressure, a is the speed of sound, y is distance, t is time, Eq. (38) is the continuity equation, Eq. (39) is the momentum equation, and Eq. (40) is the internal energy equation written in terms of pressure using the equation of state for an ideal gas. The time step for explicit methods used to solve Eqs. (38)-(40) is the C-F-L condition and can be written as $\Delta t \leqslant \Delta y /(|v|$ $+a)$. However, to improve the computational efficiency in the boundary layers, where Δy and v are small but a is large, a procedure that allows $\Delta t \leqslant \Delta y /|v|$ is developed. Writing Eqs. (38)-(40) in characteristic form yields

$$
\begin{align*}
& \frac{d p}{d t}=a^{2} \frac{d \rho}{d t} \quad \text { for } \quad \frac{d y}{d t}=v \tag{41}\\
& \frac{d p}{d t}+\rho a \frac{d u}{d t}=0 \quad \text { for } \quad \frac{d y}{d t}=v+a \tag{42}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{dp}}{\mathrm{dt}}-\rho \mathrm{a} \frac{\mathrm{du}}{\mathrm{dt}}=0 \quad \text { for } \quad \frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{v}-\mathrm{a} \tag{43}
\end{equation*}
$$

Therefore, Eq. (41) applies along the flow streamline and Eqs. (42) and (43) apply along Mach lines. Thus, if a time step $\Delta t \leqslant \Delta y /|v|$ is selected for some finite-difference method, the domain of dependence for Eq. (41) is included in the adjacent grid points, but the domain of dependence of Eqs. (42) and (43) is outside the adjacent grid points. This larger domain of dependence can be determined by solving for the intersection of the characteristics of Eqs. (42) and (43) with the initial-value surface. Using these intersection points allows differences to be calculated for the larger domain of dependence in much the same manner as for the adjacent grid points.

The final step is to determine which derivatives in Eqs. (38)-(40) depend on the streamline (the adjacent grid points) and which derivatives depend on the Mach lines (the characteristic initial-value surface intersection points). Following the procedure used by Kentzer ${ }^{14}$ in his boundary condition scheme and replacing the total derivatives along characteristics in Eqs. (41)-(43) with partial derivatives, while denoting the space derivatives in Eq. (42) with bars and Eq. (43) with hats give

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+v \frac{\partial \rho}{\partial y}-\frac{1}{a^{2}}\left(\frac{\partial p}{\partial t}+v \frac{\partial p}{\partial y}\right)=0 \tag{44}\\
& \frac{\partial v}{\partial t}+\frac{v+a}{2} \frac{\partial \bar{v}}{\partial y}+\frac{v-a}{2} \frac{\partial \hat{v}}{\partial y}+\frac{1}{\rho a}\left(\frac{v+a}{2} \frac{\partial \bar{p}}{\partial y}-\frac{v-a}{2} \frac{\partial \hat{p}}{\partial y}\right)=0 \tag{45}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathbf{p}}{\partial t}+\frac{v+a}{2} \frac{\partial \bar{p}}{\partial y}+\frac{v-a}{2} \frac{\partial \hat{p}}{\partial y}+\rho a\left(\frac{v+a}{2} \frac{\partial \bar{v}}{\partial y}-\frac{v-a}{2} \frac{\partial \hat{v}}{\partial y}\right)=0 \tag{46}
\end{equation*}
$$

The derivatives without bars or hats are calculated by the unsplit MacCormack scheme using the adjacent grid points, with backward differences on the predictor step and forward differences on the corrector step. For the bar derivatives the following procedure is employed: first, the values of the dependent variables at the point (denoted by 1 in Fig. 3) where the $v+a$ Mach line intersects the initial-value surface \mathbf{N} are determined by linear interpolation; then the bar derivatives, using v as an example, are evaluated by

$$
\begin{equation*}
\frac{\partial \bar{v}}{\partial y}=\frac{\left[C_{s} v_{M}^{N}+\left(1-C_{s}\right)\left(v_{M+1}^{N}+v_{M-1}^{N}\right) / 2\right]-v_{1}}{y_{M}-y_{1}} \tag{47}
\end{equation*}
$$

on the predictor step and

$$
\begin{equation*}
\frac{\partial \bar{v}}{\partial y}=\frac{v_{M}^{N+1}-v_{M-1}^{N+1}}{y_{M}-y_{M-1}}, \tag{48}
\end{equation*}
$$

on the corrector step. The hat derivatives are calculated by

$$
\begin{equation*}
\frac{\partial \hat{v}}{\partial y}=\frac{v_{2}-\left[C_{s} v_{M}^{N}+\left(1-C_{S}\right)\left(v_{M+1}^{N}+v_{M-1}^{N}\right) / 2\right]}{y_{2}-y_{M}} \tag{49}
\end{equation*}
$$

on the predictor step and

$$
\begin{equation*}
\frac{\partial \hat{\mathbf{v}}}{\partial \mathbf{y}}=\frac{\mathbf{v}_{\mathrm{M}+1}^{\mathrm{N}+1}-v_{M}^{N+1}}{y_{M+1}-y_{M}} \tag{50}
\end{equation*}
$$

on the corrector step. The coefficient C_{s} is usually set equal to $U . J$. If the intersection polnts 1 and 2 in Fig. 3 lie outside the computational grid, then reflection is used to obtain flow variables at these points from points inside the grid.
The above analysis used the 1D equations to illustrate the method. The actual equations used are derived from the $\zeta=$ constant reference-plane-characteristic scheme used at the wall boundary. The Mach line compatibility equations, without the viscous and ζ direction convection source terms, are computed on the large domain as discussed above. The streamline compatibility equation, including all source terms, is computed using the standard MacCormack scheme.

The above procedure for evaluating the terms that depend on the sound speed is only first-order accirate in space. Using the ideas of the λ scheme ${ }^{15}$ could probably produce second-order accuracy. However, this was not done because the procedure is used only in boundary and shear layers where the viscous terms dominate the sound speed terms and, in addition, the λ scheme increases the size of the domain ot dependentee of the difference scheme.
2. Left-Boundary Grid Points. The left boundary can only be an inflow boundary. For supersunic inflow, u, v, p, and ρ are specified. The temperaluie is determined from the equation of state. For suhsnnis inflow, therc are three different boundary condition options. The first specifies the total pressure p_{T}, total temperature T_{T}, and flow angle θ as proposed by Serra. ${ }^{16}$ The second and third, which are discussed by Oliger and Sundström, ${ }^{17}$ specify either u, v, and ρ or p, v, and ρ. For a discussion of the relative merits of these boundary conditions, see Sec. I.F. Following the ideas of Moretti and Abbett, ${ }^{18}$ all the unspecified dependent variables are computed using a second-order-accurate, reference-plane-characteristic scheme. In this scheme, the partial derivatives with respect to η in the convective terms are computed in the initial-value and solution surfaces using noncentered differencing as in the MacCormack scheme. In the viscous terms, the partial derivatives with respect to η are computed as in the interior point scheme and the derivatives with respect to ζ are calculated using reflection. The cross derivative viscous terms are set equal to zero. These convection and viscous term derivatives are then treated as source terms, and the resulting system of equations is solved in the $\eta=$ constant reference planes using a two-step, two-independent-variable characteristic scheme. The characteristic relation that couples the interior flow to the boundary is derived following the procedurc of Ref. 1 and can be written as

$$
\begin{equation*}
\mathrm{dp}-\rho a d u=\left(\psi_{4}+\mathrm{a}^{2} \Psi_{1}-\rho a \psi_{2}\right) \mathrm{d} \tau \text { for } \quad \mathrm{d} \zeta=\omega(\mathrm{u}-\mathrm{a}) \mathrm{d} \tau \tag{51}
\end{equation*}
$$

where the first equation is called the compatibility equation and the second is called the characteristic curve equation. The ψ terms follow the definitions in Ref. 1. Equation (51) may be written in finite-difference form by first replacing the differentials by differences along the characterisitic curve. The coefficients are either evaluated in the initial-value plane (first step) or considered as averages of the coefficients evaluated in both the initial-value and solution planes (second step). A discussion of the unit processes and details of the schemes are given in Ref. 1.
For the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary condition, the following equations that relate the stagnation or total conditions to the static conditions are required.

$$
\begin{equation*}
\mathrm{p}_{\mathrm{T}} / \mathrm{p}=\left[1+(\gamma-1) \mathrm{M}^{2} / 2\right]^{\gamma /(\gamma-1)} \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{\mathrm{T}} / \mathrm{T}=1+(\gamma-1) \mathrm{M}^{2} / 2, \tag{53}
\end{equation*}
$$

where γ is the ratio of specific heats, M is the Mach number, T is the temperature, and the subscript T denotes the stagnation or total conditions. The solution procedure is as follows: M is assumed, \mathbf{p} and T are calculated from Eqs. (52) and (53), ρ is calculated from the equation of state, u is calculated from Eq. (51), v is calculated from the specified flow angle, a new M is calculated from u, v, p, and ρ, and the process is continued until the change in M has converged to 10^{-3}.
For the u, v, and ρ boundary condition, there is only one unspecified variable, p, which can be calculated from Eq. (51). Likewise, the p, v, and ρ boundary condition has one unspecified variable, u, which also can be determined from Eq. (51). In both cases the temperature is determined from the equation of state.
Both the u, v, and ρ and the p, v, and ρ boundary conditions include a nonreflecting option based on the ideas of the outflow boundary condition of Rudy and Strikwerda. ${ }^{19}$ Rudy and Strikwerda use the following equation

$$
\begin{equation*}
\frac{\partial \mathrm{p}}{\partial \mathrm{t}}-\mathrm{pa} \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{C}_{\alpha}\left(\mathrm{p}-\mathrm{p}_{\mathrm{e}}\right)=0 \tag{54}
\end{equation*}
$$

to replace the outflow boundary conditon $p=p_{e}$, where p_{e} is the exit pressure and C_{a} is a constant. The first two terms of Eq. (54) can be interpreted as the 1D compatibility equation on the incoming characteristic (where this characteristic is parallel to the boundary) and the last term is included to asymptotically enforce the specification of the exit pressure. Forcing the incoming characteristic to be parallel to the boundary as if the outflow were sonic removes normal reflections back into the interior. This interpretation of Rudy and Strikwerda's outflow boundary condition allows formulation of a similar procedure for inflow boundaries. Therefore, for the inflow case, using the p, v, and ρ boundary condition, Eq. (54) becomes

$$
\begin{equation*}
\frac{\partial \mathrm{p}}{\partial \mathrm{t}}+\rho \mathrm{a} \frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\mathrm{C}_{\alpha}\left(\mathrm{p}-\mathrm{p}_{\mathrm{t}}\right)=0 \tag{55}
\end{equation*}
$$

where p_{1} is the specified inflow pressure. For the u, v, and ρ boundary conditions, Eq. (54) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{1}{\rho a} \frac{\partial p}{\partial t}+C_{\alpha}\left(u-u_{j}\right)=0 \tag{56}
\end{equation*}
$$

where u_{1} is the specified inflow velocity. Equation (55) or (56) is solved with Eq. (51) to determine u and p at the inflow boundary.

For mixed supersonic/subsonic inflow, VNAP2 uses the supersonic boundary condition at grid points where the flow is supersonic and either the u, v, and ρ or the p, v, and ρ boundary conditions (but not the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary conditions) at the subsonic points. VNAP2 allows using the supersonic boundary condition everywhere as an option.

The turbulence model boundary conditions are the specification of q for the one-equation model and q and e for the Jones-Launder two-equation model. The specified values of q and e can be determined following a procedure similar to that of Ref. 4. The value of q is calculated from

$$
\mathrm{q}=\frac{\mu_{\mathrm{T}}|\partial \mathrm{u} / \partial \mathrm{y}|}{0.3 \rho}
$$

where $|\partial \mathrm{u} / \partial \mathrm{y}|$ and ρ can be determined from the inflow velocity profile and μ_{T} can be determined by the mixing-length model. The value of e for the two-equation model can be calculated from Eq. (21). For large R_{T}, Eq. (21) reduces to

$$
\mu_{\mathrm{T}}=\mathrm{C}_{\mu} \rho \mathrm{q}^{2} / \mathrm{e},
$$

which can be easily solved for e, and for small R_{T} a trial and error solution can be used. For some flows this procedure produces values of q that are much lower than the evolved value at the first downstream grid point. However, increasing q to agree with the first downstream grid point value, while adjusting e to keep μ_{T} constant, produces little change in the solution. If the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ inflow boundary condition is used then a short run can be made, using the mixing-length model, to determine an inflow velocity profile. If the inflow profile is a uniform flow profile, that is, no shearing flow is present, then the inflow values of q and e can be set to some small values so that μ_{T} is negligible when compared to the molecular value.
3. Right-Boundary Grid Points. The right boundary can be a supersonic outflow boundary or a subsonic inflow/outflow boundary. This subsonic inflow option is required for internal flows with flow separation at the right boundary. For supersonic outflow, the flow variables are extrapolated. For subsonic outflow, the exit pressure is specified and the remaining variables are calculated using a characteristic scheme similar to the left-boundary scheme. The characteristic relations that couple the interior flow to the boundary are derived following the procedure of Ref. 1 and can be written as

$$
\left.\begin{array}{l}
d p-a^{2} d \rho=\psi_{4} d \tau \tag{57}\\
d v=\mu_{9} d \tau
\end{array}\right\} \quad \text { for } d \zeta=\omega u d \tau
$$

and

$$
\begin{equation*}
\mathrm{dp}+\rho \mathrm{adu}=\left(\psi_{4}+\mathrm{a}^{2} \psi_{1}+\rho a \psi_{2}\right) \mathrm{dt} \quad \text { for } \quad \mathrm{d} \zeta=\omega(\mathrm{u}+\mathrm{a}) \mathrm{d} \tau \tag{59}
\end{equation*}
$$

These equations are written in finite-difference form like those for the left-boundary scheme. The pressure is specified, and the u velocity component is then calculated from Eq. (59); the density from Eq. (57); the v velocity component from Eq. (58); and the temperature from the equation of state. If subsonic reverse flow (inflow) occurs at the right boundary, inflow boundary conditions must be specified. This is accomplished by leaving p equal to the specified exit pressure, setting ρ equal to the value at the boundary where separation occurred, and setting the flow angle equal to the value obtained by linear interpolation
between the boundaries. The ρ and v boundary conditions used here are arbitrary and can be changed by modifying subroutine EXITT (see Sec. II.A).

The code includes the nonreflecting outflow boundary condition of Rudy and Strikwerda. ${ }^{19}$ Here, u and p are calculated from Eqs. (54) and (59); the density from Eq. (57); v from Eq. (58); and T from the equation of state. This nonreflection option is also used when reverse flow occurs.

For mixed supersonic/subsonic outflow, VNAP2 uses the supersonic boundary condition at grid points where the flow is supersonic and the subsonic boundary condition at subsonic points. VNAP2 allows using either the supersonic or subsonic boundary conditions everywhere as an option.

The turbulence model boundary conditions are the extrapolation of q for the one-equation model and q and e for the Jones Launder two-equation model.
4. Wall Grid Points. The wall boundary can be a free-slip boundary, a free-jet boundary, a no-slip boundary, or a constant pressure inflow/outflow boundary. The constant pressure inflow/outflow boundary is required for external flows.
a. Free-Slip Boundary. For a free-slip boundary, a reference-plane-characteristic scheme is used. Partial derivatives with respect to ζ in the convective terms are computed in the initial-value and solution surfaces using noncentered differencing as in the MacCormack scheme. All derivatives in the viscous terms arc computed in the initial-value surface only, using centered differencing. The η and cross derivatives in the viscous terms are calculated by either reflecting or extrapolating a row of fictitious mesh points outside the flow boundary. These convection and viscous term derivatives are then treated as source terms, and the resulting system of equations is solved in the $\zeta=$ constant reference planes using a two-step, two-independent-variable characteristic scheme.

The characteristic relations that couple the interior flow to the boundary are derived following the procedure of Ref. 1 and can be written as

$$
\left.\begin{array}{l}
\beta d u-\alpha d v=\left(\beta \psi_{2}-\alpha \psi_{3}\right) d \tau \tag{60}\\
d p-a^{2} d \rho=\psi_{4} d \tau
\end{array}\right\} \text { for } d \eta=\bar{v} d \tau
$$

and

$$
\begin{align*}
& \mathrm{dp}+\rho \alpha \mathrm{a} \mathrm{du} / \alpha^{*}+\rho \beta a d v / \alpha^{*}=\left(\psi_{4}+a^{2} \psi_{1}+\rho \alpha a \psi_{2} / \alpha^{*}+\rho \beta a \psi_{3} / \alpha^{*}\right) \mathrm{d} \tau \\
& \quad \text { for } \mathrm{d} \eta=\left(\overline{\mathrm{v}}+\alpha^{*} a\right) \mathrm{d} \tau, \tag{62}
\end{align*}
$$

where

$$
\alpha^{*}=\left(\alpha^{2}+\beta^{2}\right)^{1 / 2}
$$

These equations are written in finite-difference form like those for the left-boundary scheme.
The boundary condition is that the flow is tangent to the boundary. This can be written as

$$
\begin{equation*}
v=u \tan \theta+\partial y_{w} / \partial t \tag{63}
\end{equation*}
$$

where θ is the local boundary angle. The time derivative is present because, in the free-jet option, the wall boundary coordinates are a function of time. Equation (63) is substituted into Eq. (60), and the resulting
equation is solved for the velocity component u. Then the v velocity component is obtained from Eq. (63); the pressure from Eq. (62); the density from Eq. (61); and the temperature from the equation of state.

The turbulence model boundary conditions are the extrapolation of q for the one-equation model and q and e for the Jones-Launder two-equation model.

This code has an option to improve the accuracy of the calculation of one sharp expansion corner on the wall contour. The flow at this corner must be supersonic and the boundary condition option must be the free-slip boundary with no free jet. The grid point is treated by a special procedure. First, an upstream solution is computed at the corner grid point, using the upstream flow tangency condition as the boundary condition and backward ζ differences in both initial-value and solution planes. Next, a downstream solution is calculated, using the Prandtl-Meyer exact solution and the stagnation conditions from the upstream grid point. The upstream solution is used when computing wall grid points upstream of the corner grid point as well as the adjacent interior grid point; the downstream solution is used when computing downstream wall grid points.
b. Free-Jet Boundary. The free-jet boundary grid points are computed by the wall routine so that the pressure equals the specified pressure. I'his is accomplished by first assuming the shape of the jet boundary and then using the wall routine to calculate the pressure. Next, the jet boundary location is changed slightly and a second pressure is computed. The secant method determines a new jet boundary location. This procedure is then repeated at each grid point until the jet boundary pressure and the ambient pressure agree within some specified tolerance.

When a free-jet calculation is made, the wall exit lip grid point becomes a singularity, so it is treated by a special procedure. First, an upstream solution is computed at the exit grid point, using the flow tangency condition as the boundary condition and backward ζ differences in both the initial-value and solution planes. Next, a downstream solution is calculated, using the specified pressure as the boundary condition and the stagnation conditions calculated from the upstream grid point. The upstream solution is used in computing wall grid points upstream of the exit grid point and the downstream solution in computing downstream free-jet grid points. A third exit grid point solution for interior grid point calculation is determined as follows. When the upstream solution is subsonic, the two solution Mach numbers are averaged to be less than or equal to one. This Mach number, along with the upstream stagnation temperature and pressure, is then used to calculate the exit grid point solution for computing the interior grid points. When the upstream solution is supersonic, it is used to calculate the interior grid points.
c. No-Slip Boundary. Unlike the VNAP code, VNAP2 uses the characteristic scheme to enforce the no-slip boundary condition. The boundary condition is the vanishing of the velocity components and either the vanishing of the temperature gradient normal to the boundary (adiabatic wall) or the specification of the temperature. The pressure is calculated from Eq. (62) with the normal temperature gradient set equal to zero and the density from Eq. (61). If the vanishing of the normal temperature gradient option is desired, then the temperature can be determined from the equation of state. If the specified wall temperature option is desired, then the pressure is recomputed from the equation of state.

The boundary conditions for the turbulence models are the vanishing of q for the one-equation model and the vanishing of q and the specification of e so that $\partial \mathrm{e} / \partial \mathrm{y}=0$ for the Jones-Ľaunder two-equation model.
d. Constant Pressure Inflow/Outflow Boundary. The constant pressure inflow/outflow boundary grid points are also calculated using the characteristic scheme. The pressure is always specified. If the flow across the boundary is outflow, then u and v are calculated from Eqs. (60) and (62), and ρ is calculated from Eq: (61). For inflow, u and ρ are specified and v is calculated from Eq. (62). The actual values of u and ρ specified are the values at the grid point where the left boundary intersects the wall. The
temperature is determined from the equation of state. A nonreflecting boundary condition option, similar to that used at the right boundary, is employed here.

The turbulence model boundary conditions are the extrapolation of q for the one-equation model and q and e for the Jones-Launder two-equation model.
5. Centerbody Grid Points. The centerbody boundary can be a free-slip boundary, a no-slip boundary, or a plane (axis) of symmetry. The free-slip and no-slip boundary calculations follow the wall procedure. The characteristic relation that couples the interior flow to the boundary is derived following. the procedure of Ref. 1 and can be written as

$$
\begin{align*}
& \mathrm{dp}-\rho \alpha a d u / \alpha^{*}-\rho \beta \mathrm{adv} / \alpha^{*}=\left(\psi_{4}+\mathrm{a}^{2} \psi_{1}-\rho \alpha a \psi_{2} / \alpha^{*}-\rho \beta \mathrm{a} \psi_{3} / \alpha^{*}\right) \mathrm{d} \tau \tag{64}\\
& \text { for } \mathrm{d} \eta=\left(\bar{v}-\alpha^{*} a\right) \mathrm{d} \tau .
\end{align*}
$$

Equation (63) becomes

$$
\begin{equation*}
\mathrm{v}=\mathrm{u} \tan \theta . \tag{65}
\end{equation*}
$$

The time derivative in Eq. (63) does not appear in Eq. (65) because the centerbody coordinates are not a function of time.

For flows where the centerbody is a plane (axis) of symmetry, the centerbody grid points are computed by the interior point scheme. The boundary condition is flow symmetry.

The turbulence model boundary conditions are the same as the wall boundary for the free-slip and no-slip cases. For the plane (axis) of symmetry case, q and e are specified so that $\partial q / \partial y=\partial e / \partial y=0$.
6. Dual-Flow-Space Wall Grid Points. The dual-flow-space walls can be either a free-slip or a no-slip boundary. The calculations follow the wall and centerbody procedures. The centerbody equations are used for the upper dual-flow space, and the wall equations, with Eq. (65) replacing Eq. (63), are used for the lower dual-flow-space wall. The turbulence model boundary conditions are the same as the wall and centerbody boundaries.
7. Step Size. The step size Δt is determined by

$$
\begin{equation*}
\Delta \mathrm{t}=\min \left(\Delta \mathrm{t}_{\mathrm{x}}, \Delta \mathrm{t}_{\mathrm{y}}\right) \tag{66}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta t_{x}=A /\left[(|u|+a) / \Delta x+\mu / A_{1} p \Delta x^{2}\right] \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta t_{y}=A /\left[(|v|+a) / \Delta y+\mu / A_{t} \rho \Delta y^{2}\right] \tag{68}
\end{equation*}
$$

where A and A_{1} are constants that usually equal 0.9 and 0.25 , respectively. For the Quick Solver option, Eq. (68) becomes

$$
\begin{equation*}
\Delta t_{y}=A /\left(|v| / \Delta y+\mu / A_{1} \rho \Delta y^{2}\right) . \tag{69}
\end{equation*}
$$

These conditions are checked at each grid point in the flow field at each time step. However, these conditions are not checked on the subcycled time steps.

F. Comments on the Calculation of Steady, Subsonic Flows

Because signals propagate in all directions in subsonic flows, disturbances can reflect inside the computational grid for many time steps and can significantly prolong the convergence to steady state.

However, in supersonic flows, signals only propagate downstream and are, therefore, swept out of the grid. As a result, supersonic flows generally converge to steady state in fewer time steps than subsonic flows. As an example, consider the following two inviscid accelerating flows: planar subsonic sink flow and planar supersonic source flow. The comptational regions for the subsonic sink and supersonic source flows are enclosed by the dashed lines in Figs. 4 and 5, respectively. The top dashed line is treated as a free-slip wall, the bottom dashed line is the flow midplane, and the left and right dashed lines are inflow and outflow boundaries, respectively. The outflow midplane Mach number for the subsonic case is 0.5 , and the inflow midplane Mach number for the supersonic case is 1.5 . The boundary conditions for the subsonic flow are the specification of p_{T}, T_{T}, and θ at the inlet and p at the exit. For the supersonic flow, all inlet variables are specified and all outlet variables are extrapolated. The initial-data surface for both flows is the 1D solution generated by the VNAP2 code. Figure 6 shows the pressure vs number of time steps for both flows. The top curve for both flows gives the solution at an interior grid point near the inflow boundary, and the lower line is a grid point near the outflow boundary. The supersonic flow reaches steady state in around 150 time steps, whereas the subsonic case requires approximately 1200. For very complex flows, this difference is often greater. Therefore, the following discussion will be concerned with improving the convergence to steady state of subsonic flows.

Figure 7 shows the pressure vs number of time steps for the subsonic sink flow employing different techniques to accelerate the convergence to steady state. Again, the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ inflow boundary condition is used. The grid point plotted in Fig. 7 is the one near the inlet in Fig. 6. The top curve is for a calculation that started from an initial-data surface consisting of a stationary flow at the stagnation pressure and temperature. At time equal to zero, the pressure at the outflow boundary was dropped from the stagnation value to the sink flow exact solution, thus simulating a bursting diaphragm. The other four calculations started with an initial-data surface generated by the VNAP2 code, which is the 1D solution. The third line from the top shows the solution using the Rudy and Strikwerda ${ }^{19}$ nonreflecting outflow boundary condition. The coefficient C_{α} (ALE in Namelist BC) in Eq. (54) equals 0.1. (Namelists are given in Sec. II.C.) The fourth curve from the top shows the solution for which all the dependent variables were smoothed in space for the first 500 time steps. This calculation multiplies the value at a grid point by a weighting parameter and adds it to the average of the values of its nearest neighboring grid points multiplied by one minus the weighting parameter. The weighting parameter was 0.5 for the first time step and linearly increased to 1.0 (no smoothing) by the 500th time step (SMP $=0.5, \mathrm{SMPF}=1.0$, and NST $=500$ in Namelist AVL). The bottom curve used the extended-interval time-smoothing option, which stores the solution for all dependent variables on the first time step and then monitors the pressure at a specified grid point on each time step. When this pressure changes direction, the solution at the current time step is averaged with the solution at the first time step. This averaged solution replaces the current time-step solution and, in addition, is stored in place of the first time-step solution. This process is continued for the entire computation (SMPT $=0.5, \mathrm{SMPTF}=0.5, \mathrm{NTST}=0$, and $\mathrm{NST}=\mathrm{NMAX}$ in Namelist AVL). The diaphragm initiai-data surface solution requires around 1800 time steps to reach steady state, whereas the ID initial-data surface solution is steady in approximately 1100 times. The nonreflecting and space-smoothing options further increase the convergence to steady state. However, the largest increase is due to the time smoothing, which results in a converged solution in about 400 time steps. The increased convergence rate of the time-smoothed solution over the other options is more pronounced for more complex flows.

Figure 8 shows the pressure vs the number of time steps for the u, v, and ρ inflow boundary condition. The diaphragm initial-data surface solution produced results similar to the 1 D curve and, therefore, is not shown. The top three curves correspond to the same options in Fig. 7. The bottom curve is the solution using the nonreflecting inflow option discussed in Sec. I.E.2. The coefficient C_{B} (ALI in Namelist BC) in Eq. (56) equals 0.1 . The top curve of Fig. 8 shows that the u, v, and ρ boundary condition trapped the
initial disturbances in the computational grid. The Rudy and Strikwerda ${ }^{19}$ nonreflecting outflow boundary condition option (not shown) did not significantly improve this result. Note that the Rudy and Strikwerda boundary condition is used in conjunction with the reference-plane-characteristic scheme, which is somewhat different from the numerical procedure they used. Their procedure may produce different results. As Fig. 8 shows, the space- and time-smoothing options, as well as the nonreflecting inflow boundary condition option, all produce steady solutions.

The 1D solution, which is used as the initial-data surface, has an outflow Mach number of 0.55 . The sink flow exact solution has midplane and upper wall outflow Mach numbers of 0.5 and 0.42 , respectively. The high 1D solution Mach number was chosen so that the 1D solution would not approximate the 2D sink flow solution too closely. However, this high Mach number produces a 12% difference in mass flow between the 1D solution and the 2D sink flow solution. Because the u, v, and ρ inflow boundary condition specifies the 2D sink flow solution mass flow, an expansion wave is produced at the inlet. This expansion wave causes the large drop in pressure, shown in Fig. 8, during the early stages of the calculation. Adjusting the Mach number of the 1D solution so that the 1D mass flow closely approximates the mass flow specified by the u, v, and ρ boundary condition yields the results shown in Fig. 9 where, except for the top curve, the convergence to steady state is greatly improved.

From the above and other similar results, some general conclusions can be drawn. First of all, for steady, subsonic flows the p_{T}, T_{T}, and θ inflow boundary condition is preferred over the u, v, and ρ boundary condition. For subsonic computations that require long run times, the extended-interval time smoothing can significantly reduce computational time. For subsonic/supersonic nozzle flows, the p_{T}, T_{T}, and θ inflow boundary condition is also preferred, because the mass flow is usually not known in advance. If the u, v, and ρ boundary condition is used for steady, subsonic flows, then either the nonreflecting inflow option of space or extended-interval time smoothing should be used. The u, v, and ρ inflow boundary condition is useful for unsteady subsonic flows where the user wishes to specify the mass flow. VNAP2 allows only constant values of u, v, and ρ to be specified; however, the code could easily be modified to allow time-dependent functions for \mathbf{u}, v, and ρ. The \mathbf{u}, v, and ρ inflow boundary condition also works well for the subsonic part of the boundary layer in a supersonic flow. In many cases, this subsonic part of the boundary can be treated with supersonic boundary conditions. However, where this practice gives poor results, the u, v, and ρ boundary condition is an improvement. The test cases run to date indicate that the u, v, and ρ boundary condition produces results more consistent with the supersonic part of the flow than does the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary condition. As a result, VNAP2 allows only the u, v, and ρ option at subsonic parts of a mixed subsonic/supersonic inflow.

The p, v, and ρ boundary condition has received little use to date because, in general, it should be used with either the u specified subsonic outflow boundary condition or supersonic outflow. When p is specified as the subsonic outflow boundary condition, some flows are not uniquely defined. For example, if p, v, and ρ are specified at the intlow and p is specified at the outflow for inviscid subsonic flow in a constant area duct, the Mach number would not be uniquely specified. The specified u outflow boundary condition is not incorporated (as originally intended) because there is little use for it. The p, v, and ρ boundary condition can be used for subsonic/supersonic nozzle flows because it does not specify the mass flow; however, the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary condition is preferred.

In general, the closer the initial-data surface is to the final solution, the faster the solution converges to the steady state. This is also true for viscous flows, where using initial data that approximate all boundary and free-shear layers generally reduces the run time.

Finally, Moretti and I disagree ${ }^{20-22}$ on the u, v, and ρ subsonic inflow boundary condition. Moretti feels that the u, v, and ρ boundary condition is incorrect for a well-posed problem, because disturbances reflected by this boundary condition may remain trapped in the finite-difference grid. Reference 22 lists several published proofs of the correctncss of this boundary condition. As a result of these proofs, I feel that this boundary condition is mathematically correct for a well-posed problem and that the trapping of disturbances is a numerical problem that can be overcome. In addition to these mathematical proofs, the \mathbf{u}, \mathbf{v},
and ρ boundary condition satisfies the characteristic compatibility conditions, as does the p_{T}, T_{T}, and θ boundary condition. Both boundary conditions falsify the time-dependent flow by holding quantities fixed that actually vary in time (p_{T} and T_{T} are constant only for steady flow). As a result, both cause nonphysical reflections at subsonic boundaries. The u, v, and ρ boundary condition causes a reflection that has approximately the same amplitude, whereas the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary condition produces a highly damped reflection. These reflection properties differ because they model different upstream con-ditions-constant mass flow as opposed to constant total pressure-which makes them suitable for different problems. In Ref. 23, Moretti seems to imply that the u, v, and ρ boundary condition requires knowledge of the exact solution. Although I specified the exact solution in Ref. 20, as did Moretti in Ref. 23 , the exact solution values of u, v, and ρ or p_{T}, T_{T}, and θ are generally not known in advance. (For the special case of inviscid, steady flow, p_{T} and T_{T}, but not θ, are usually known.) Therefore, one specifies his best guess boundary values. The computed solution will satisfy these boundary values as well as the governing equations, and its accuracy will depend on how well these boundary values were estimated. Therefore, I feel that both boundary conditions are correct and that the best choice is problem-dependent.

A second point that concerns this section is Moretti's claim ${ }^{23}$ that the initial-data surface and boundary conditions must be matched so that the transient part of a steady state calculation follows the true transient solution. Although this is the most correct way to formulate problems, it is generally not the most economical. It is true that there are flows where following the true transient solution is very desirable. One such case is the startup of a supersonic wind tunnel. If, for example, the area of the throat downstream of the test section is not large enough to pass the startup shock, then the shock will stand in the test section or nozzle. Beginning a time-dependent calculation of this flow with a purely supersonic initial-data surface will produce the started, all supersonic, steady solution, even though this solution is physically impossible. Beginning this calculation with a 1D subsonic initial-data surface would yield the right solution. However, use of Moretti's recommendation ${ }^{23}$ of the diaphragm initial-data surface, discussed above, provides the right solution without requiring any knowledge of the starting of a supersonic wind tunnel. Thus, there are flows where either hysteresis effects or lack of understanding suggest following Moretti's recommendation. However, for steady, subsonic flows this recommendation can be very expensive. In addition, I have never found a subsonic flow calculation using a time-dependent method where the steady solution depended on the initial-data surface (except for small differences from truncation errors and provided the initial-data surface is subsonic). As a result, I feel that the special procedures discussed above for accelerating the convergence of subsonic flows to their steady state may be used to reduce these lengthy computational times. I have included these last two paragraphs to warn the users of VNAP2 that some of the ideas expressed above are my own and may not be universally accepted as correct procedures.

G. Results and Discussion

Presented here are three relatively simple flows that are intended to illustrate the three general classes of flows that can be computed with VNAP2: internal, external, and internal/external flows. The data files for these three cases are included at the back of the Fortran listing of the VNAP2 code in the Appendix. The initial-data surfaces for the external and internal/external cases assume solution array sizes of 41 by 25. For the application of VNAP2 to more complex flows, see Ref. 24.

1. Internal, Inviscid Flow. The first case is steady, subsonic/supersonic, inviscid flow in the $45-15^{\circ}$ conical, converging-diverging nozzle shown in Fig. 10 with the flow from left to right. This calculation is also presented in Refs. 1, 2, and 25. The upper boundary is a free-slip wall and the lower boundary is the centerline. The left boundary is a subsonic inflow boundary using the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary condition.

The right boundary is a supersonic outflow boundary and, therefore, the variables are extrapolated. The Mach number contours and wall pressure ratio are shown in Fig. 11. The experimental data are those of Cuffel et al. ${ }^{26}$ The computed discharge coefficient is 0.983 , compared with the experimental value of 0.985 . The 21 by 8 uniform computational grid requires 299 time planes and a computation time of 35 s on the CDC 6600 and 6 s on the CDC 7600.

Although the Mach number, wall pressure, and throat mass flow results are in good agreement with experiment, the mass flow variation at different axial locations is fairly poor. For example, the mass flow variation between the inlet and throat is 4.5%. If the grid spacing is halved by using a 41 by 15 uniform grid, the mass flow variation between the inlet and throat is 1.4%. Halving the grid spacing again, by using an 81 by 29 uniform grid, produces a mass flow variation between the inlet and throat of 0.1%. Therefore, the mass flow variation appears to go to zero as the grid spacing goes to zero. Some of the error in the coarse grid case may be due to the trapezoidal rule used to evaluate the mass flow integral. However, much of the error is probably due to the large truncation error of the finite-difference equations, owing to the steep gradients in the nozzle throat region. The variation in throat mass flow between the 81 by 29 and 21 by 8 grid cases is 0.25%, whereas between the 81 by 29 and 41 by 15 grid cases it is 0.06%. Therefore, the throat mass flow is fairly good for coarse grid spacings even though the overall mass flow conservation is fairly poor.
This case uses the convergence tolerance option to determine when the steady state has been reached. That is, when the relative change in axial velocity in the throat and downstream regions is less than 0.003%, the flow is assumed to have reached steady state. In general, I have not found this convergence tolerance option to be very useful, because the value of the convergence tolerance depends on the grid spacing and flow conditions and as such is usually not known in advance. One exception to this is the case involving a large parametric study. Here, once the convergence tolerance has been determined by trial and error, it can be used repeatedly in the remaining runs of the parametric study. However, a procedure based on the time of flight of an average fluid particle seems to work more consistently. In this procedure, one sets the total number of time steps so that an average fluid particle will travel through the computational grid a particular number of times. The velocity of an average fluid particle can be estimated from the 1D solution or some other initial-data surface. This average velocity can also be estimated from the numerical solution itself by running the program for a fairly short time and using that solution to estimate the average fluid particle velocity. Use of the restart option allows this run to be contiued to steady state. The time step can be obtained by running the code for one time step (two for viscous flows). Once the average fluid particle velocity and time step have been determined, then the number of time steps required for one trip can be calculated. The last piece of required information is the number of trips made by the average fluid particle through the grid to reach steady state. For supersonic, inviscid flows, three trips are usually sufficient, whereas supersonic, viscous flows require around five. Converging-diverging, supersonic, inviscid nozzle flows usually require around five trips, whereas viscous nozzle flows need around seven. The numbers of trips given above are only rough estimates and should be supplemented by the user's own experiences. In addition, when in doubt as to how many time steps are necessary, always use the restart option.

Finally, for subsonic flows, neither the convergence tolerance nor the time of flight procedure is really effective. The most effective method that I have found is to monitor the static pressure at several spots in the flow (see LPP1, MPP1 in Namelist CNTRL). Provided that an average fluid particle has made at least one trip, then the flow can be assumed to be steady when the pressure is oscillating with an acceptable amplitude about a constant value. Looking at only the amplitude of the oscillation, without regard to whether it occurs about a constant value, is sometimes not sufficient.
2. External, Turbulent Flow. The second case is steady, subsonic, turbulent flow over a boattail afterbody with a solid body simulating the jet exhaust. The geometry is shown in Fig. 12, with the dashed line enclosing the computational region, and the flow is from left to right. This calculation is also
presented in Ref. 24. The upper boundary is a constant pressure inflow/outflow boundary and the lower boundary is a no-slip wall. The left boundary is a subsonic inflow boundary using the $\mathrm{p}_{\mathrm{T}}, \mathrm{T}_{\mathrm{T}}$, and θ boundary condition. The values of p_{T} and T_{T} are determined from an inviscid/boundary-layer solution procedure for the forebody. The right boundary is a subsonic outflow boundary and, therefore, the static pressure is specified. The free-stream Mach number is 0.8 and the Reynolds number, based on the length at the inflow boundary, is 10.5×10^{6}. For more details on the geometry or experimental data, see Ref. 27. The turbulence is modeled using the mixing-length model. This calculation employed the subcycling, Quick Solver, and extended-interval time-smoothing options. Figure 13 shows the physical space grid, pressure, and Mach number contours. Figure 14 shows the surface pressure coefficient on the boattail and jet exhaust simulator. Figures 13 and 14 show that the boundary layer remains attached. For cases with separation and exhaust jets, see Ref. 24. This calculation employs a 40 by 25 variable grid that requires 750 time steps (15000 subcycled time steps in the boundary layer) and a computation time of 1 h on the CDC 7600. Swanson ${ }^{28}$ compared several different formulations of the mixing-length model for computing this case as well as separated cases.
3. Internal/External, Turbulent Flow. The third case is stcady, subsonic, turbulent flow for a plane jet in a uniform stream. The geometry is shown in Fig. 15 with the dashed line enclosing the computational region, and the flow is from left to right. The upper boundary is a constant pressure inflow/outflow boundary and the lower boundary is the midplane. The dual-flow-space boundaries are no-slip walls. The left boundary is a subsonic inflow boundary using the u, v, and ρ boundary condition, with the nonreflecting option. The right boundary is a subsonic outflow boundary and, therefore, the static pressure is specified. The jet and external stream have initial Mach numbers of 0.14 and 0.02 , respectively, while the Reynolds number, based on the jet height, is 3.0×10^{4}. The turbulence is modeled using the mixing-length and Jones-Launder two-equation models. This case, assuming free-slip inflow profiles and a solid free-slip upper boundary and employing the mixing-length turbulence model, was presented in Ref. 1. The physical space grid and Mach number contours for the mixing-length model are shown in Fig. 16. Figure 17 shows the midplane velocity decay for both turbulence models. The subscript JE denotes the midplane velocity just downstream of the end of the dual-flow-space walls. The increase in the velocity is due to the acceleration of the mean flow caused by the growth of the boundary layer. The experimental data are from Ref. 29. This calculation employs a 41 by 17 variable grid that requires 6000 time steps and a computation time of 24 min (mixing-length model) on the CDC 7600.

This rather lengthy run time, even though a fairly coarse grid spacing was used, is because the flow is almost incompressible. That is, the flow velocity is much smaller than the sound speed. The explicit numerical scheme is limited to time steps so that sound waves travel less than one mesh spacing. (The problem geometry did not allow the use of the Quick Solver option, although some reduction in run time could be made using the subcycle option.) Therefore, many time steps are required before a particle of fluid travels from the inflow to the outflow boundary.

II. DESCRIPTION AND USE OF THE VNAP2 PROGRAM

A. Subroutine Description

The computer program consists of 1 program, 1 function, and 18 subroutines. A complete Fortran listing of the VNAP2 program is included in the Appendix.

1. Program VNAP2. Program VNAP2 initiates a run by reading in the input data. Next, the program title, abstract, and input data descriptions are printed. The program then calls subroutines GEØM, GE $\varnothing \mathrm{MCB}$, and GEØMLU to calculate the geometry. If requested, program VNAP2 calls
subroutine \varnothing NEDIM to calculate the 1 D , initial-value surface. Program VNAP2 then prints the initial-value surface, which includes a mass flow and momentum thrust calculation made by subroutine MASFL \emptyset. Next, subroutine PLØT is called to plot the data on film. The final part of VNAP2 consists of the time-step loop, which calculates the next time-step size; calls subroutine VISCØUS to calculate the artificial, molecular, and turbulent viscosity-heat conduction terms; calls subroutine QS \emptyset LVE to calculate the special derivatives used by the Quick Solver package; calls subroutine INTER to compute the interior mesh points; calls subroutine WALL to compute the wall, centerbody, and dual-flow-space wall mesh points; calls subroutine INLET to compute the inlet mesh points; calls subroutine EXITT to compute the exit mesh points; calls subroutine TURBC to set the boundary conditions for the turbulence variables; if requested, calls subroutine SM \varnothing TH to smooth the solution; calls subroutine MASFL \varnothing to compute the mass flow and momentum thrust; prints the solution surface; calls subroutine PLøT to plot the data on film; checks the solution for its convergence to the steady-state solution; and punches (writes) the last solution plane on cards (disc or tape) for restart.
2. Subroutine GEØM. Subroutine GE \varnothing M calculates the wall coordinates and slopes for four different wall geometries: a constant area duct wall; a circular-arc, conical wall; and two tabular input walls. In the case of the first tabular wall, a completely general set of wall coordinates is read in. Subroutine GEØM then calls subroutine MTLUP, which interpolates for the coordinates. Next, subroutine GEØM calls function DIF, which calculates the slopes of the coordinates. For the second tabular wall, the coordinates and slopes are read in.
3. Subroutine GE \varnothing MCB. Subroutine GE \varnothing MCB calculates the centerbody coordinates and slopes for four different centerbody geometries and is similar to subroutine GEøM.
4. Subroutine GEØMLU. Subroutine GEØMLU calculates the upper and lower dual-flow-space wall coordinates and slopes for two tabular input geometries. These tabular cases are the same as those in subroutine GEØM.
5. Subroutine MTLUP. Subroutine MTLUP (September 12, 1969) was taken from the National Aeronautics and Space Administration (NASA) Langley program library. This subroutine is called by subroutines GEØM, GE $\varnothing \mathrm{MCB}$, and GEØMLU to interpolate the wall, centerbody, and dual-flow-space wall coordinates.
6. Function DIF. Function DIF (August 1, 1968) was also taken from the NASA Langley program library. This function is called by subroutines GEØM, GEØMCB, and GEØMLU to calculate the slopes of the wall, centerbody, and dual-flow-space wall coordinates.
7. Subroutine \emptyset NEDIM. Subroutine \emptyset NEDIM is called by program VNAP2 to compute the 1D, isentropic initial-value surface. A Newton-Raphson scheme calculates the Mach number for the area ratios, which are determined from the geometry.
8. Subroutine MAP. Subroutine MAP calculates the functions that map the physical plane to a rectangular computational plane. Therefore, this subroutine is called before each mesh point is calculated.
9. Subroutine MASFLø. Subroutine MASFL \emptyset is called by program VNAP2 to calculate the mass flow and momentum thrust for the initial-value and solution surfaces. The trapezoidal rule evaluates the mass flow and momentum thrust integrals.
10. Subroutine PLØT. Subroutine PLØT is called by program VNAP2 to produce velocity vector plots, the physical space grid, and contour plots of density, pressure, temperature, Mach number,
turbulence energy, and dissipation rate, using the SC-4020 microfilm recorder. The SC-4020 recorder uses a 1022 by 1022 array of plotting points or coordinates on each film frame. The origin is the upper left corner of the array. The coordinates to be plotted by the SC-4020 recorder are assumed to be integer constants. The first section sets up the plot size by setting the maximum left (XXL), right (XR), top (YT), and bottom (YB) coordinates in the physical space. Then the film frame coordinates and scaling factors are determined with the plot beginning at 900 , instead of 1022 , to allow for labeling.

The next section generates the velocity vector plot. First, the maximum velocity is determined to scale the plot, which is done so that the maximum velocity vector is $0.9 \Delta x$, where Δx is the average value. Subroutine ADV (Los Alamos system routine) advances the film one frame. Then the velocity vector is calculated in fixed point film frame coordinates. Subroutine DRV (Los Alamos system routine) draws a line between the points (IX1, IY1) and (IX2, IY2), after which subroutine PLT (Los Alamos system routine) plots a plus sign at the point (IX 1, IY1). Subroutine LINCNT (Los Alamos system routine) skips down 58 lines. (Each printed line height equals 16 film frame points.) The routine then returns to set up the plot size for the next velocity vector plot if IVPTS >1, or goes on to the next section if IVPTS $\leqslant 1$.
The next section resets the plot size for the contour plots in case the different scaled velocity vector plots were requested (IVPTS >1).

The next section fills the plotting array called CQ with the following variables: density ($\mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$), pressure (psia or kPa), temperature (${ }^{\circ} \mathrm{R}$ or K), and Mach number.

The next section determines the plotting line quantities using the formula
$\mathrm{CQ}_{\mathrm{K}}=\mathrm{CQ}_{\mathrm{MIN}}+0.1 \mathrm{~K}\left(\mathrm{CQ}_{\mathrm{MAX}}-\mathrm{CQ}_{\text {MIN }}\right)$,
where K goes from one to nine. This section also labels the frames.
The next section determines the location of each contour line segment and plots it. The contour line segment defined by the film frame coordinates (IX1, IY1) and (IX2, IY2) is drawn by subroutine DRV. Subroutine PLT plots an L on the low contour ($\mathrm{K}=1$) and an H on the high contour ($\mathrm{K}=9$). .
The last section draws the geometry boundaries for the contour plots. The upper boundary is specified by YW, the lower by YCB, the upper dual-flow-space boundary by YU, and the lower dual-flow-space boundary by YL. Next, the routine returns to the section that fills the plotting array CQ for the next contour plot.
11. Subroutine SWITCH. Subroutine SWITCH switches the solution values from the solution array to the dummy array when dual-flow-space boundaries are present. The dummy array is required because the two dual-flow-space walls collapse to one grid line in the computational plane.
12. Subroutine VISCøUS. Subroutine VISCØUS calculates the artificial viscosity terms for shock computations using a velocity gradient viscosity coefficient. It also calculates the molecular viscosity terms in the Navier-Stokes equations. In addition, this subroutine calculates the various turbulence terms in the Navier-Stokes equations, as well as the turbulence energy and dissipation rate equations.
13. Subroutine SMøøTH. Subroutine SMøбTH is called hy program VNAP2 to add either space or time numerical smoothing to stabilize the calculations for nonuniform initial-data surfaces or to accelerate the convergence to steady state. The physically correct molecular viscous terms (with a large viscosity coefficient) could also be used; however, they are much slower and cannot be reduced or turned off during a run.
14. Subroutine MIXLEN. Subroutine MIXLEN is called by subroutine VISCøUS to calculate the shear layer width or the boundary layer thickness and kinematic displacement thickness for the mixing-length model (ITM =1). These parameters also determine the length scale used by the turbulence energy model (ITM $=2$).
15. Subroutine TURBC. Subroutine TURBC is called by program VNAP2 to set the boundary conditions for the turbulence energy, Q , and the dissipation rate, E .
16. Subroutine INTER. Subroutine INTER is called by program VNAP2 to calculate the interior mesh points. The conservation of mass, momenta, internal energy, turbulence energy, and dissipation rate equations are solved by the MacCormack second-order, finite-difference scheme. Subroutine INTER also contains part of the Quick Solver package. Special values of the derivatives u_{η}, v_{η}, and p_{η}, calculated by subroutine QSøLVE, are used in special forms of the governing equations to allow an increased time step.
17. Subroutine WALL. Subroutine WALL is called by program VNAP2 to compute the wall, centerbody, dual-flow-space walls, free-jet boundary, and sharp expansion corner mesh points. This subroutine uses a second-order, reference-plane-characteristic scheme and also controls the interpolation process for locating the free-jet boundary. Subroutine WALL also contains part of the Quick Solver package that allows an increased time step. However, this subroutine does not use the special derivatives calculated by subroutine QSøLVE.
18. Subroutine INLET. Subroutine INLET is called by program VNAP2 to compute the inlet mesh points. If the flow is subsonic, a second-order, reference-plane-characteristic scheme is employed, whereas specification of the boundary conditions is used for supersonic flow. This subroutine also checks the Mach number to determine which boundary condition should be used at each mesh point. In addition, subroutine INLET contains part of the Quick Solver package and uses the special derivatives calculated by subroutine QSøLVE.
19. Subroutine EXITT. Subroutine EXITT is called by program VNAP2 to calculate the exit mesh points. It uses a second-order, reference-plane-characteristic scheme when the flow is subsonic and extrapolation when the flow is supersonic. This subroutine also checks the Mach number to determine which boundary condition should be used at each mesh point. In addition, subroutine EXITT contains part of the Quick Solver package and uses the special derivatives calculated by subroutine QSøLVE.
20. Subroutine QSøLVE. Subroutine QSøLVE, which is part of the Quick Solver package, calculates the partial derivatives u_{n}, v_{n}, and p_{n} that are used in subroutines INTER, INLET, and EXITT. These special derivatives are calculated from the domain of dependence defined by the characteristics through the solution point and, therefore, allow an increased time step.

B. Computational Grid Description

The computational grid for the single-flow-space example is shown in Fig. 18. The grid is rectangular with equal spacing in the ζ and η directions, although $\Delta \zeta$ and $\Delta \eta$ are not in general equal. The grid spacing ($\Delta x, \Delta y$) in the physical space does not have to be equal.

The dual-flow-space grid (Fig. 19) is the same as the single-flow-space grid except for an extra row of grid puints ($M=$ MDFS and L between LDFSS and LDFSF). The solution values at these extra grid points are stored in arrays UL, VL, PL, RøL, QL, and EL. During the calculation, subroutine SWITCH exchanges these values continually with the values in the solution arrays $\mathrm{U}, \mathrm{V}, \mathrm{P}, \mathrm{R} \emptyset, \mathrm{Q}$, and E for $\mathrm{M}=$ MDFS and L between LDFSS and LDFSF. For reading in initial-data values, the values in UL, VL, PL, $R \emptyset L, Q L$, and EL arrays correpond to the lower dual-flow-space wall, whereas values in the $U, V, P, R \emptyset$, Q , and E arrays for $\mathrm{M}=\mathrm{MDFS}$ and L between LDFSS and LDFSF correspond to the upper dual-flow-space wall.

The computational grid for the subcycled grid option is shown in Fig. 20. The code advances the solution one time step in the large spacing grid points (from $M=1$ to MVCB -1 and from $\mathrm{M}=$ MVCT
+1 to MMAX) and then subcycles the small spacing grid points (from $\mathrm{M}=$ MVCB to MVCT). In this way, the small time step requirement of the small spacing grid points (small spacing in the physical plane) is not forced on the large spacing grid points.

The flow is assumed to enter from the left and exit on the right. In addition, flow may enter or exit the wall (see IWALL in Namelist BC).

C. Input Data Description

The program input data are entered by a title card and 10 namelists: CNTRL, IVS, GEMTRY, GCBL, BC, AVL, RVL, TURBL, DFSL, and VCL. The title card and each namelist are described below. The program will continue reading in data decks and executing them until a file mark is encountered. After each data deck is executed, the defaull values for the input data arc restored before the next data deck is read in.

1. Title Card. The first card of each data deck is a title card consisting of 80 alphanumeric characters that identify the job. This card must always be the first card of the data deck, even if no information is specified on the card. The 10 namelists must appear in the order in which they are discussed below.
2. Namelist CNTRL. This namelist reads in the parameters that control the overall logic of the program.

LMAX An integer specifying the number of mesh points in the x direction with a maximum value specified by a PARAMETER statement (see Sec. II.E.1). No default value is speciffed.
MMAX An integer specifying the number of mesh points in the y direction with a maximum value specified by a PARAMETER statement (see Sec. II.E.1). No default value is specifled.
NMAX An integer specifying the naximum number of time steps. For NMAX $=0$, only the initial-data surface is computed and printed (provided NPRINT >0). The default value is 0 .
NPRINT \quad An integer specifying the amount of output desired. For NPRINT $=\mathrm{N}$, every Nth solution plane, plus the initial-data and final solution planes, is printed. For NPRINT $=-\mathbf{N}$, every Nth solution plane, plus the final solution plane, is printed. For NPRINT $=0$, only the final solution plane is printed. The default value is 0 .
TCONV Specifies the axial velocity steady-state convergence tolerance in percentage. If equal to zero, the cunvergence is nut cliecked. This parametcr is a funotion of the problem as well as of grid spacing and, thercfore, should be used carefully. The default value is 0.0 .
FDT The parameter A in Eqs. (67)-(69) that premultiplies the allowable C-F-L time step. It is desirable to use as large a value of FDT as possible without causing the computation to become unstable. Values as large as 1.3 have been used successfully for shock-free flows, but smaller values are required for flows with shocks (see Siec. II.F). The defalut value is 0.9 .

FDTI The same as FDT, except it applies on the first time step only. Because the viscous contribution to the time-step limitation is not used on the first time step, FDTI may be used to get the calculation started with a small time step, without having to use this small value for the entire calculation. Some flows may require a small time step for the first few steps owing to initial gradients in the flow variables. This is often

FDT1	The same as FDT, except it applies only in the subcycled part of the mesh. That is, FDT1 is used from $M=$ MVCB to $M=$ MVCT (see Namelist VCL). The default value is 1.0 .
VDT	The parameter A_{1} in Eqs. (67)-(69) that premultiplies the viscous part of the time-step equation, whereas FDT premultiplies the entire time step. Increasing VDT increases the time step. The default value is 0.25 .
VDT1	The same as VDT, except it applies only in the subcycled part of the mesh. That is, VDT1 is used from $M=$ MVCB to $M=$ MVCT (see Namelist VCL). The default value is 0.25 , although values larger than 1.0 have been used in free-shear layers.
GAMMA	Denotes the ratio of specific heats. The default value is 1.4.
RGAS	Denotes the gas constant in $\mathrm{lbf}-\mathrm{ft} / \mathrm{lbm}-{ }^{\circ} \mathrm{R}$ if English units are used, or $\mathrm{J} / \mathrm{kg}-\mathrm{K}$ if metric units are used. The default value is 53.35 .
TSTØP	Specifies the physical time, in seconds, at which the computations will be stopped. The default value is 1.0 .
IUI	An integer specifying the type of units to be used for the input quantities. $I F I U I=1$, English units are assumed; if $I U I=2$, metric units are assumed. In using any default values, make sure the values correspond to the proper units. The default value is 1 .
$I U \emptyset$	The same as IUI except for output quantities. IF IU $\emptyset=3$, both English and metric units are printed. The default value is 1 .
IPUNCH	An integer which, if nonzero, punches (writes) the last solution plane on cards (disc or tape) for restart. The default value is 0 .
NPLOT	An integer which, if greater than or equal to zero, plots both velocity vectors and contours of density, pressure, temperature, Mach number, turbulence energy, and dissipation rate on an SC-4020 microfilm recorder. For NPLOT $=\mathrm{N}$, all Nth solution planes, plus the initial-data and final solution plane, are plotted. For NPLOT $=0$, only the final solution plane is plotted. The default value is -1 .
LPP1,MPP1	Three sets of integers that specify three grid points (the first point is $\mathrm{L}=\mathrm{LPP} 1, \mathrm{M}=$
LPP2,MPP2	MPP1) for which the pressure is printed at each time step. When MPP1(MPP2 or
LPP3,MPP3	MPP3) $=$ MDFS $\neq 0$ (Namelist DFSL), the upper dual-flow-space wall value is printed. This pressure history is very useful for determining when subsonic flows have reached steady state. If LPP1 < 0 , the pressure at each subcycled grid point (see MVCB and MVCT in Namelist VCL) is also printed. The default values are 0 (no printing).

The remaining parameters in Namelist CNTRL are less important than the parameters given above.: For most flows, these remaining parameters can be left at their default values.
NASM An integer specifying which part of the flow field is tested for steady-state convergence. For NASM $=0$, the entire flow field is tested. For NASM $=1$, the transonic and supersonic (throat region to exit) regions are tested. The default value is 1 .
NAME An integer that, when nonzero, causes the 10 namelists to be printed in addition to the regular output. The default value is 0 .
NCØNVI An integer specifying how many times the convergence tolerance TC \varnothing NV must be satisfied on consecutive time steps before the solution is considered to have converged. The default value is 1 .

IUNIT	An integer that, when equal to zero, causes the program to use either English or metric units (see IUI and IU \emptyset). For IUNIT $=1$, a nondimensional set of units is used. The default value is 0 .
PLØW	If the pressure becomes negative during a calculation, it is set equal to PL $\varnothing \mathrm{W}$ in psia or kPa . The default value is 0.01 .
RØLØW	If the density becomes negative during a calculation, it is set equal to $R \emptyset L \emptyset W$ in $\mathrm{lb} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$. The default value is 0.0001 .
IVPTS	An integer that controls the scaling of the velocity vector plots. IVPTS $=1$ produces one plot with the maximum vector cqual to $0.9 \Delta \mathrm{x}$, where $\Delta \mathrm{x}$ is the average value. IVPTS $=2$ produces the above plot and a second plot where the maximum vector is $1.9 \triangle \mathrm{x}$, and so on. The default value is 1 .

3. Namelist IVS. This namelist specifies the flow variable for the initial-data surface.

An integer specifying the type of initial-data surface desired. For N1D $=0$, a 2 D initial-data surface is read in. A value of U, V, P, and $R \emptyset$ (discussed below) must be read in for all mesh points from $L=1$ to LMAX and from $M=1$ to MMAX. In addition, for dual-flow-space examples, values of UL, VL, PL, and RØL (discussed below) must be read in for all mesh points from $\mathrm{L}=$ LDFSS to LDFSF. For the single-equation turbulence model, a value of Q, along with $Q L$ for the dual-flow-space example, may be read in. For the two-equation model, a value of E, along with EL for the dual-flow-space example, may also be read in. If the arrays Q and QL and the arrays E and EL are not read in, they are set equal to FSQ and FSE (Namellst TURBL), respectively. Values of Q and E may be read in for either NID $=0$ or N1D $\neq 0$. For N1D $\neq 0$, a 1 D data surface is computed internally. The following combinations are possible:

$$
\left.\begin{array}{l}
\text { N1D }=-2 \text { subsonic } \\
\text { N1D }=-1 \text { supersonic } \\
\text { N1D }=1 \text { subsonic-sonic-supersonic } \\
\text { N1D }=2 \text { subsonic-sonic-subsonic } \\
\text { N1D }=3 \text { supersonic-sonic-supersonic } \\
\text { N1D }=4 \text { supersonic-sonic-subsonic }
\end{array}\right\}
$$

see RSTAR and RSTARS

No
additional
data are
needed.
The default value is 1 .
$\mathrm{U}(\mathrm{L}, \mathrm{M}, 1) \quad$ An array denoting the x -direction velocity component in ft / s or $\mathrm{m} / \mathrm{\varepsilon}$. For $\mathrm{N} 1 \mathrm{D}=0$, $\mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ must be read in for cases from $\mathrm{L}=1$ to LMAX and from $\mathrm{M}=1$ to MMAX. For N1D $\neq 0, \mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ is not read in. No default values are specified.
$\mathrm{V}(\mathrm{L}, \mathrm{M}, 1) \quad$ An array denoting the y-direction velocity component in ft / s or m / s. See $\mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ for additional information. No default values are specified.
$\mathbf{P}(\mathrm{L}, \mathrm{M}, 1) \quad$ An array denoting the pressure in psia or $k P a$. See $\mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ for additional information. No default values are specified.
$\bar{R} \emptyset(L, M, 1) \quad$ An array denoting the density in $\mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$. See $\mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ for additional information. No default values are specitied.
$Q(L, M, 1) \quad$ An array denoting the turbulence energy in $\mathrm{ft}^{2} / \mathrm{s}^{2}$ or $\mathrm{m}^{2} / \mathrm{s}^{2}$. See $\mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ for additional information. The default value is $F S Q(M)$ in Namelist TURBL.
$E(L, M, 1) \quad$ An array denoting the dissipation ratc in $\mathrm{ft}^{2} / \mathrm{s}^{3}$ or $\mathrm{m}^{2} / \mathrm{s}^{3}$. Scc $\mathrm{U}(\mathrm{L}, \mathrm{M}, 1)$ for additional information. The default value is $\operatorname{FSE}(\mathrm{M})$ in Namelist TURBL.
UL(L, 1) An array denoting the x-direction velocity component in ft / s or m / s and corresponding to the lower dual-flow-space wall. The values for the upper dual-flow-space wall are read in by $\mathrm{U}(\mathrm{L}, \mathrm{MDFS}, 1)$. For $\mathrm{N} 1 \mathrm{D}=0$ and MDFS $\neq 0$, UL(L, 1) must be read in for cases from $L=$ LDFSS to LDFSF. For N1D $\neq 0$ or MDFS $=0, \mathrm{UL}(L, 1)$ is not read in. No default values are specified.

	y denoting the pressure in psia or kPa . See ion. No default values are specified.
	n array denoting the density in $\mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$. See $\mathrm{UL}(\mathrm{L}, 1)$ for additional formation. No default values are specified.
	An array denoting the turbulence energy in $\mathrm{ft}^{2} / \mathrm{s}^{2}$ or $\mathrm{m}^{2} / \mathrm{s}^{2}$. See UL(L,1) for dditional information. The default value is FSQL in Namelist TURBL.
	n array denoting the dissipation rate in $\mathrm{ft}^{2} / \mathrm{s}^{3}$ or $\mathrm{m}^{2} / \mathrm{s}^{3}$. See UL(L,1) for additional formation. The default valuc is FSEL in Namelist TURBL.
RSTAR	st be read in. RSTAR is the area per unit depth or height (in in. or cm) where the ach number is unity. RSTARS is the area divided by π that is the radius squared in. ${ }^{2}$ or cm^{2}) where the Mach number is unity. No default values are specified.
If the restart option is to be used, the initial run must be made with IPUNCH $\neq 0$ in CNTRL, thereby ausing a new IVS Namelist deck to be punched or written on disc or tape. The new IVS Namelist eplaces the one used initially and includes two additional parameters, NSTART and TSTART, which enote, respectively, the time step and the physical time where the solution was restarted. When N1D $\neq 0$, the initial data are calculated using 1D isentropic theory. However, the x and y elocity components are adjusted while the magnitude is kept constant and the flow angle is satisfied. The ow angles are linearly interpolated between the slope of the wall and the centerbody. For the ual-flow-space example, the Mach number is assumed to be equal in both flow spaces at a given value of However, the flow angles are interpolated between the centerbody and the lower dual-flow-space oundary for the lower space and between the upper dual-flow-space boundary and the wall for the upper pace.	

4. Namelist GEMTRY. This namelist specifies the parameters that define the wall contour.

NDIM An integer denoting the flow geometry. For NDIM $=0,2 \mathrm{D}$ planar flow is assumed, and for NDIM $=1$, axisymmetric flow is assumed. The default value is 1 .
NGEØM An integer specifying one of four different wall geometries. A discussion of these four cases follows the definitions of the additional parameters in this namelist. No default value is specified.
XI The x coordinate, in in. or cm , of the wall inlet. No default value is specified.
RI The y coordinate, in in. or cm , of the wall inlet. No default value is specified.
RT The y coordinate, in in. or cm , of the wall throat. No default value is specified.
XE The x coordinate, in in. or cm , of the wall or free-jet exit. No default value is specified.
$\mathrm{RCI} \quad$ The radius of curvature, in in. or cm , of the wall inlet. No default value is specified.
RCT The radius of curvature, in in. or cm , of the wall throat. No default value is specified.
ANGI
ANGE
The angle, in degrees, of the converging section. No default value is specified.

XWI

YWI A 1D array of y coordinates, in in. or cm , corresponding to the x coordinates in array XWI. No default values are specified.
NWPTS . An integer specifying the number of entries in arrays XWI and YWI. The maximum value is specified by a PARAMETER statement (see Sec. II.E.1). No default value is specified.
IINT An integer specifying the order of interpolation used. The maximum value is 2 . The default value is 2 .

> IDIF . An integer specifying the order of differentiation used. The maximum value is 5 . The default value is 2 .
> YW A 1D array of y coordinates, in in. or cm , which correspond to LMAX x coordinates, given by XP in Namelist VCL. No default values are specified.
> NXNY A 1D array (floating point) of the negative of the wall slopes corresponding to the elements of YW. No default values are specified.
> JFLAG An integer that, when equal to 1, denotes that a free-jet calculation is to be carried out and, when equal to -1 , denotes that a supersonic sharp expansion corner is present on the wall. These two options are allowed only for the free-slip wall boundary condition. Many free-jet flows contain shocks and will, therefore, require artificial viscosity (see Namelist AVL). The default value is 0 (no free jet and no sharp expansion corner).
> LJET An integer that, when JFLAG $=1$, denotes the first mesh point of the free-jet boundary (the last wall mesh point is LJET -1). However, when JFLAG $=-1$, LJET is the next mesh point downstream of the sharp expansion corner (the corner mesh point is LJET -1). The program assumes that either the wall ends exactly at LJET $-1($ JFLAG $=1)$ or the sharp expansion corner is located exactly at LJET 1) ($\mathrm{JFLAG}=-1$). Also, for the sharp expansion corner case (JFLAG $=-1$), the slope of the wall at the corner (LJET - 1) should be the upstream value. The program does not allow both a sharp expansion corner and a free-jet calculation. In addition LJET must be > 2 and < LMAX -1 . No default value is given.

The following is a discussion of the four different wall geometries considered by this program.
a. Constant Area Duct (NGEØM =1). The parameters XI,RI (radius of the duct) and XE must be specified.
b. Circular-Arc, Conical Wall (NGEØM = 2). The geometry for this case is shown in Fig. 21. The parameters XI, RI, RT, XE, RCI, RCT, ANGI, and ANGE are specified. The x coordinate of the throat and the radius of the exit are computed internally.
c. General Wall (NGEØM=3). An arbitrary wall contour is specified by tabular input. NWPTS xand y-coordinate pairs are specified by the arrays XWI and YWI, respectively. The tabular data need not be equally spaced. From the specified values of NWPTS, XWI, YWI, IINT, and IDIF, the program uses IINT-order interpolation to obtain LMAX y coordinates that correspond to the x coordinates given by XP in Namelist VCL. Next, IDIF-order differentiation is used to obtain the wall slope at these LMAX points.
d. General Wall ($N G E \emptyset M=4$). An arbitrary wall contour is spccified by tabular input. LMAX y coordinates and the negative of their slopes are specified by the arrays YW and NXNY, respectively. These y coordinates correspond to the LMAX x coordinates given by XP in Namelist VCL. XI and XE also must be read in.
5. Namelist GCBL. This namelist specifies the parameters that define the centerbody geometry. If no centerbody is present, this namelist is left blank but must still be present in the data deck.

An integer that, when nonzero, specifies one of four different centerbody geometries. A discussion of these four cases will follow the definitions of the additional parameters in this namelist. The default value is 0 .
The y coordinate, in in. or cm , of the centerbody inlet. No default value is specified.
RTCB The y coordinate, in in. or cm, of the centerbody maximum radius. No default value is specified.

RCICB The radius of curvature, in in. or cm , of the centerbody inlet. No default value is specified.
RCTCB The radius of curvature, in in. or cm , of the centerbody maximum radius. No default value is specified.
ANGICB
ANGECB
XCBI

YCBI A 1D array of y coordinates, in in. or cm , corresponding to the x coordinates in array XCBI. No default values are specified.
NCBPTS . An integer specifying the number of entries in arrays XCBI and YCBI. ine maximum value is specified by a PARAMETER statement (see Sec. II.E.1). No default value is specified.
IINTCB An integer specifying the order of interpolation used. The maximum value is 2 . The default value is 2 .
IDIFCB An integer specifying the order of differentiation used. The maximum value is 5 . The default value is 2 .
YCB A 1D array of y coordinates, in in. or cm, which correspond to LMAX x coordinates given by XP in Namelist VCL. The default values are 0.0 .
NXNYCB The 1D array (floating point) of the negative of the centerbody slopes corresponding to the elements of YCB. The default values are 0.0.
The following is a discussion of the four different centerbody geometries considered by this program.
a. Cylindrical Centerbody ($N G C B=2$). The parameter RICB (radius of the centerbody) must be specified.
b. Circular-Arc, Conical Centerbody (NGCB = 2). The geometry for this case is shown in Fig. 22. The parameters RICB, RTCB, RCICB, RCTCB, ANGICB, and ANGECB are specified. The x coordinate of the maximum radius and the radius of the exit are computed internally.
c. General Centerbody ($N G C B=3$). An arbitrary centerbody contour is specified by tabular input. NCBPTS x - and y-coordinate pairs are specified by the arrays XCBI and YCBI, respectively. The tabular data need not be equally spaced. From the specified values of NCBPTS, XCBI, YCBI, IINTCB, and IDIFCB, the program uses IINTCB-order interpolation to obtain LMAX y coordinates that correspond to the x coordinates given by XP in Namelist VCL. Next, IDIFCB-order differentiation is used to obtain the centerbody slope at these LMAX points.
d. General Centerbody ($N G C B=4$). An arbitrary centerbody contour is specified by tabular input. LMAX y coordinates and the negatives of their slopes are specified by the arrays YCB and NXNYCB, respectively. These y coordinates correspond to the LMAX x coordinates given by XP in Namelist VCL.
6. Namelist BC. This namelist specifies the flow boundary conditions for all computational boundaries. NSTAG
$\mathrm{PT}(\mathrm{M}) \quad \mathrm{A} 1 \mathrm{D}$ array denoting the stagnation pressure, in psia or kPa , across the inlet (see ISUPER). This array is used to calculate the 1D initial-data surface as well as the inflow conditions for ISUPER $=0,2$, or 3 . No default values are specified.

TT(M)	A 1D array denoting the stagnation temperature, in ${ }^{\circ} \mathrm{R}$ or K , across the inlet (see ISUPER). This array is used to calculate the 1 D initial-data surface as well as the inflow conditions for ISUPER $=0,2$, or 3 . No default values are specified.
THETA(M)	A 1D array denoting the flow angle, in degrees, across the inlet (see ISUPER). The default value is $\operatorname{THETA}(1)=0.0$, which is meaningful only when NSTAG $=0$.
PTL	Denotes the stagnation pressure, in psia or kPa , at the point where the lower dual-flow-space wall intersects the inlet (see Namelist DFSL). The upper dual-flow-space wall value is read in by $\mathrm{PT}(\mathrm{MDFS})$. If $\mathrm{NSTAG}=0$ or MDFS $=0$ or LDFSS $\neq 1$, then PTL is not read in. No default value is specified.
TTL	The same as PTL, except denotes the stagnation temperature in ${ }^{\circ} \mathrm{R}$ or K .
THETAL	The same as PTL, except denotes the flow angle is degrees.
PE(M)	A 1D array denoting the pressure, in psia or kPa , to which the flow is exiting. This pressure is used to compute the flow exit conditions when the flow is subsonic, the free-jet boundary location when a free-jet calculation is requested, or the wall inflow-outflow boundary when IWALL $=1$. The free-jet or wall inflow/outflow boundary pressure is assumed to be constant and equal to PE(MMAX). Subroutine WALL could be modified to allow PE to be a function of x or t . This array starts with the centerline or centerbody value and ends with the wall value. If the exit pressure is constant, only the first value of the array needs to be read in. The default value is 14.7.
PEL	Denotes the pressure, in psia or kPa , to which the flow is exiting at the point where the lower dual-flow-space wail intersects the exit (see Namelist DFSL). The upper dual-flow-space wall value is read in by $\mathrm{PE}(\mathrm{MDFS})$. Ir MDFS $=0$ or LDFSF \neq LMAX, PEL is not read in. No default value is specified.
UI(M)	A 1D array denoting the x velocity, in ft / s or m / s, across the inlet (see ISUPER). This array, as well as the arrays VI, PI, and R $\emptyset 1$ below, starts with the centerline or centerbody value and ends with the wall value. Values must be specified for points from $M=1$ to MMAX even if some grid points are not used (ISUPER $=2$ or 3). No default values are specified.
VI(M)	The same as UI, except y velocity.
PI(M)	The same as UI, except denotes pressure in psia or kPa .
RめI(M)	The same as JJ , except denotes density in $\mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$.
UIL	Denotes the x velocity in ft / s or m / s at the point where the lower dual-flow-space wall intersects the inlet (see Namelist DFSL). The upper dual-flow-space wall value is read in by UI(MDFS). For MDFS $=0$ or LDFSS $\neq 1$, UIL is not read in. See ISUPER for additional information. No default value is specified.
VIL	The same as UIL, except y velocity.
PIL	The same as UIL, except denotes pressure in psia or kPa .
RøIL	The same as UIL, except denotes density in $\mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$.
TW	A 1 D array denoting the wall temperalure in ${ }^{\circ} \mathrm{R}$ or K corresponding to the x mesh points. If TW is not specified, the wall is assumed to be adiabatic.
TCB	The same as TW, except denotes centerbody temperature.
TL	The same as TW, except denotes lower dual-flow-space wall (see Namelist DFSL). If MDFS $=0, \mathrm{TL}$ is not read in.
TU	The same as TW, except denotes upper dual-flow-space wall (see Namelist DFSL). If MDFS $=0, T U$ is not read in.
ISUPER	An integer that specifies whether the inlet flow is subsonic, supersonic, or both. ISUPER may have the following values:

ISUPER $=0$	Subsonic inflow with PT, TT, and THETA as the specified quantities.

ISUPER $=1 \quad$ Subsonic, supersonic, or mixed inflow with UI, VI, PI, and RøI as the specified quantities. For subsonic flow, PI is only an initial guess if INBC $=0$, and UI is only an initial guess if INBC $\neq 0$.
ISUPER $=2$ Subsonic, supersonic, or mixed inflow between the centerbody and lower dual-flow-space wall with UI, VI, PI, and RøI as the specified quantities. For subsonic flow, PI is only an initial guess if INBC $=0$, and UI is only an initial guess if INBC $\neq 0$. ISUPER $=2$ is subsonic inflow between the upper dual-flow-space wall and the wall with PT, TT, and THETA as the specified quantities.
ISUPER $=3$ The same as ISUPER $=2$, except subsonic and subsonic, supersonic or mixed sides are switched.
The default value is 0 .
INBC An integer that specifies whether u or p will be the inflow boundary condition for ISUPER $\neq 0$. If $\operatorname{INBC}=0, u$ is the boundary condition and p is calculated. If INBC $\neq 0$, the reverse is true. The default value is 0 .
IWALL An integer that denotes whether the wall is a solid boundary (includes free-jet option) or a constant pressure inflow/outflow boundary that is fixed with respect to time.

IWALL $=0 \quad$ Specifies a solid or free-jet boundary.
IWALL $=1 \quad$ Specifies a constant pressure [PE(MMAX)] boundary. When there is inflow across this constant pressure boundary, u and ρ are set equal to the wall-inlet value. This option cannot be used with JFLAG $\neq 0$ in Namelist GEMTRY. The default value is 0.

IWALL \varnothing An integer that, when not equal to 0 , forces linear extrapolation of the pressure at the wall for the IWALL = 1 case. This option is useful when a shock wave exits the wall boundary or when the flow normal to the boundary is supersonic outflow. The default value is 0 .
IINLET An integer that, when not equal to 0 , forces specification of all variables as the inflow boundary condition regardless of the Mach number. It applies only when ISUPER $\neq 0$. The default value is 0 .
IEXITT An integer that, when not equal to 0 , forces either extrapolation (IEXITT $=1$) or specified pressure (IEXITT $=2$) as the outflow boundary condition regardless of the Mach number. The default value is 0 .
IEX An integer that denotes the type of extrapolation to be used for supersonic outflow. IEX $=0$ denotes zeroth-order extrapolation, and IEX $=1$ denotes linear extrapolation. The default value is 1 .
IVBC An integer that specifies whether extrapolation or reflection is used to determine the viscous terms at boundaries. IVBC $=0$ specifies reflection, IVBC $=1$ specifies linear extrapolation, and IVBC $=2$ specifies zeroth-order extrapolation. Reflection is always used at the centerline or midplanc. The adiabatic wall boundary condition (that is, TW, TCB, TL, and TU not specified) requires IVBC $=0$. The default value is 0 .
NØSLIP
An integer that, when equal to zero, specifies free-slip walls whereas NySLIP $=1$ specifies no-slip ($u=v=0$) walls for all solid boundaries. The no-slip boundary condition is not enforced at the wall when IWALL $\neq 0$. The default value is 0 .

DYW	A parameter that specifies the maximum change that is allowed on each time step in the free-jet boundary location. The default value is 0.001 , that is, 0.1% maximum change per time step.
IAS	An integer that, if not equal to zero, causes the upper and lower dual-flow-space wal slopes to be set equal to the average of the two slopes. This occurs only at the point or points where the two dual-flow-space walls intersect. That is, for LDFSS $\neq 1$, the slopes at LDFSS will be set equal to their average. Also, if LDFSF \neq LMAX, the same occurs. The default value is 0 .
ALI	The coefficient C_{α} in Eqs. (55) and (56). This coefficient controls the nonreflecting inflow boundary condition employed at the left boundary. Any nonzero value will activate the nonreflecting option; however, values of approximately 0.1 appear to work well for many problems. Specifying ALI $\neq 0.0$ for the P_{T}, T_{T}, alld θ buundary coindition or supersonic inflow has no effect. The defuult value is 0.0 .
ALE	The coefficient C_{α} in Eq. (54). This coefficient controls the nonreflecting inflow and outflow boundary condition at the right boundary. See ALI for further details. Specifying AT.F. $\neq \cap \cap$ fnt supersnnic nutflow has nu effect. The deraull value is 0,0
ALW	The coefficient C_{α} in Eq. (54). This coefficient controls the nonreflecting inflow and outflow boundary condition at the wall boundary. See ALI for further details. Specifying ALW $\neq 0$ when IWALL $=0$ (Namelist BC) has no effect. The default value is 0.0 .

7. Namelist AV.L. This namelist specifies the parameters that determine the artificial viscosity used to stabilize the calculations for shocks and control the space- and time-smoothing options. For flows without shocks or where space or time smoothing is not desired, this namelist is left blank. See Sec. II.F for additional information.
CAV Denotes the artificial viscosity premultiplier C in Eq. (23). See Sec. II.F for typical values. The default value is 0.0 .
XMU Denotes the coefficient $\mathrm{C}_{\mu 1}$ in Eq. (24) in the artificial viscosity model. A nondimensional valuc is used. The default value is 0.4 .
XLA Denotes the cocfficient $\mathrm{C}_{\boldsymbol{\lambda}}$ in Eq. (23) in the aritificial viscosity model. A nondimensional value is used. The default value is 1.0 .
PRA Denotes the coefficient Pr_{A} in Eq. (25) in the artificial viscosity model and represents an artificial Prandtl number. The default value is 0.7 .
XRø Denotes the coefficient C_{ρ} in Eq. (26) in the artificial viscosity model. The default value is 0.6 .
LSS, Integors that speoify the x mesh points at which the addition of the artificial viscosity will begin (LSS) and end (LSF). These parameters can significantly reduce the run time for inviscid flows where a shock occupies only a small part of the flow. The default values are LSS $=1$ and LSF - 999.

LSF

MSS,
MSF

ISS

IDIVC An integer that, when not equal to 0 , bypasses the check on the sign of the velocity divergence in the artificial viscosity model. That is, the artiticial viscosity will be nonzero for both expansions and compressions. This improves some complex multiple shock interactions, but also increases the smearing of expansions. The default value is 0 .
The same as LSS and LSF, except that these specify the y mesh points at which the addition of the artificial viscosity begins (MSS) and ends (MSF). The default values are MSS $=1$ and MSF $=999$.
An integer that, when not equal to 0 , bypasses the check on the sign of the velocity An integer that, when not equal to 0 , adds the sound speed gradient to the velocity divergence in Eq. (23). For ISS $=1$, the sound speed gradient is added to the is added to the solution. This option is useful for moderate-to-high Reynolds number, steady flow, where the artificial viscosity swamps the molecular and turbulent viscosities in the boundary layer. By setting SMACH equal to ~ 0.5, the artificial viscosity is zero for most of the subsonic part of the boundary layer. See Sec. I.F for additional details. The default value is 0.0 .
NST An integer denoting the time step at which a small amount of numerical space or time smoothing is stopped. Smoothing is employed on the regular time steps and not the subcycled steps (see Namelist VCL). This smoothing may be required to stabilize the calculations for very nonuniform or impulsively started initial-data surfaces. Some initial smoothing in space causes subsonic flows to reach steady state faster, but this is not the case for transonic and supersonic flows. Time smoothing also causes subsonic flows to converge to steady state faster. When using the restart option, make sure NST is set equal to zero unless additional smoothing is desired. If additional smoothing is desired on a restart, make sure that the values of SMP or SMPT on the restart equal the final values of the previous run (see SMP and SMPT discussion below). The default value is 0 (no smoothing).
SMP A parameter that, along with NST and SMPF, controls the amount of space smoothing (provided NST $\neq 0$). SMP must be between 0.0 and 1.0. The dependent variables are smoothed by the following formula: $\mathbf{u}_{\mathrm{L}, \mathrm{M}}=$ SMP* $_{\mathrm{L}, \mathrm{M}}+(1.0-$ SMP $)^{*}\left(u_{L+1, M}+u_{L, M+1}+u_{L-1, M}+u_{L, M-1}\right) / 4.0$. The value of SMP changes on each time step by the following replacement formula:
SMP $=\mathbf{S M P}+(\mathbf{S M P F}-\mathbf{S M P}) /$ NST,
where the underlined SMP denotes the original input value. The inlet $(\mathrm{L}=1)$ and exit ($\mathrm{L}=\mathrm{LMAX}$) columns of grid points are not smoothed. The default value is 1.0 .
SMPF A parameter that, along with NST and SMP, controls the amount of space smoothing (see SMP for details). SMPF must be between 0.0 and 1.0. The default value is 1.0 .
SMPT A parameter that, along with NST and SMPTF, controls the amount of time smoothing or relaxation (provided NST $\neq 0$). The dependent variables are smoothed by the following formula:
$\mathrm{u}_{\mathrm{L}, \mathrm{M}}^{\mathrm{N}+1}=\mathrm{SMPT}^{*} \mathrm{u}_{\mathrm{L}, \mathrm{M}}^{\mathrm{N}+1}+(1.0-\operatorname{SMPT})^{*} \mathrm{u}_{\mathrm{L}, \mathrm{M}}^{\mathrm{N}}$.
The value of SMPT changes on each time step by the following replacement formula:
SMPT = SMPT + (SMPTF - SMPT)/NST,
where the underlined SMPT denotes the original input value. Where some initial space smoothing followed by longer duration time smoothing is desired, flows can be computed using the restart option. The default value is 1.0 .
SMPTF A parameter thal, alung willi NST and SMPT, controls the amount of time smoothing (see SMPT for details). The default value is 1.0 .
NTST An integer that specifies the interval of time steps over which the solution is time smoothed (provided NST $\neq 0$ and SMPT $\neq 1.0$). For example, if NTST $=10$, then after every 10 time steps the solution at the current time step N is time averaged with the solution at time step $N-10$. This averaged solution is then stored and used to average with the solution at $\mathrm{N}+10$. For $\mathrm{NTST}=0$, the code monitors the
pressure at the $L=$ LPP1 and $M=$ MPP1 grid point (Namelist CNTRL) and time smooths when this pressure changes direction. If LPP1 and MPP1 are not specified and NTST $=0$, there is no time smoothing. This extended-interval time smoothing usually improves the convergence to steady state of subsonic flows. To use this option with NTST $=0$ or >1, the arrays US, VS, PS, R \varnothing, QS, and ES must be dimensioned for LMAX and MMAX, while arrays ULS, VLS, PLS, RøLS, QLS, and ELS must be dimensioned for LMAX. These arrays are located in Common $A V$. The default value is 1 .
IAV An integer that, when not equal to 0 , causes the viscous-turbulence terms, turbulence energy, and dissipation rate (or length scale) to be printed at the solution planes specified by NPRINT. IAV $=2$ causes the viscous terms for each subcycled time step to be printed (provided MVCB and MVCT in Namelist VCL are nonzero). The default value is 0 .
8. Namclist RVL. This namclist specifies the real or mulecular viscosity parameters. for inviscid flows, this namelist is left blank.

These parameters specify the molecular viscosity μ by the following equation:
EMU

$$
\mu=\mathrm{CMU} \cdot \mathrm{~T}^{\mathrm{EMU}}
$$

where \mathbf{T} is the temperature in ${ }^{\circ} \mathrm{R}$ or K . The units of μ are $\mathrm{lbf}-\mathrm{s} / \mathrm{ft}^{2}$ or Pa .s. The default values are 0.0.
CLA, These parameters specify the second coefficient of viscosity λ by the following ELA equations:
$\lambda=\mathrm{CLA} \cdot \mathrm{T}^{\mathrm{ELA}}$,
where T is the temperature in ${ }^{\circ} \mathrm{R}$ or K . The units of λ are $\mathrm{lbf}-\mathrm{s} / \mathrm{ft}^{2}$ or $\mathrm{Pa}-\mathrm{s}$. The default values are 0.0 .
CK, These parameters specify the thermal conductivity k by the following equation:
EK
$\mathrm{k}-\mathrm{CK} \cdot \mathrm{T}^{\mathrm{EK}}$,
where T is temperature in ${ }^{\circ} R$ or K. The units of k are $\mathrm{lbf} / \mathrm{s}^{\circ}{ }^{\circ} \mathrm{R}$ or $\mathrm{W} / \mathrm{m}-\mathrm{K}$. The 'he default values are 0.0 .
9. Namelist TURBL. This namelist specifies the turbulence model parameters. For laminar as well as inviscid flows, it is left blank. For turbulent flows, Namelist RVL cannot be blank.
ITM An integer that, when nonzero, specifies one of three different turbulence models. ITM $=1$ specifies a mixing-length model; ITM $=2$ specifies a one-equation, turbulence energy model; and TTM $=3$ specilies a iwo-equation, turbulence energy-dissipation-rate model. The default value is 0 .
IMLM An integer, required for ITM = 1 or 2 , that specifies whether the flow is a free shear layer ($\mathrm{IMLM}=1$) or a boundary-layer flow (IMLM $=2$). This information is required because the equations for the mixing length ($I T M=1$) and the length scale of the one-equation model (ITM $=2$) are different depending on whether the flow is a free shear or boundary layer. For single-flow spaces, the shear-layer option assumes either that the boundaries are free slip or that the lower boundary is a symmetry boundary and the wall must be a constant pressure inflow/outflow
boundary. The boundary-layer option assumes one no-slip boundary, which is either a centerbody or a wall, but not both. For dual-flow spaces (see Namelist DFSL), the dual-flow-space walls are assumed to be no-slip boundaries, but the lower boundary must be a symmetry boundary and the wall must be a constant pressure inflow/outflow boundary. The program then uses the boundary-layer option between the dual-flow-space walls and the shear-layer option elsewhere, regardless of IMLM. Therefore, for dual-flow spaces IMLM does not need to be specified. The default value is 1 .

CML1, CML2

CAL

CQMU This coefficient, which is C_{u} in Eqs. (17) and (21) and required by $\mathrm{ITM}=2$ or 3, premultiplies the expression for the turbulent viscosity in the one- and two-equation models. The recommended and default value is 0.09 .
C1,C2, SIGQ,SIGE

BFST

FSQ(M)

FSE(M) The same as FSQ, except that the dissipation rate level ($\mathrm{ITM}=3$) is given in $\mathrm{ft}^{2} / \mathrm{s}^{3}$ or $\mathrm{m}^{2} / \mathrm{s}^{3}$. The default value is 0.1 .
FSQL Denotes the inlet or free-stream turbulence energy levcl (ITM =2 or 3) in $\mathrm{ft}^{2} / \mathrm{s}^{2}$ or $\mathrm{m}^{2} / \mathrm{s}^{2}$ at the point where the lower dual-flow-space wall intersects the inlet (see Namelist DFSL). The upper dual-flow-space wall is read in by FSQ(MDFS). For MDFS $=0$ or LDFSS $\neq 1$, FSQL is not read in. The default value is 0.0001 .
FSEL \quad The same as FSQL, except that the dissipation rate level $(\mathrm{ITM}=3)$ is given $\mathrm{ft}^{2} / \mathrm{s}^{3}$ or $\mathrm{m}^{2} / \mathrm{s}^{3}$. The default value is 0.1 .
QL \varnothing W If during a calculation the turbulence energy (ITM $=2$ or 3) becomes less than or equal to QLøW, it is set equal to QLøW. The default value is 0.0001 .

ELøW	The same as QLØW except for the dissipation rate (ITM = 3). The default value is 0.1.
LPRINT,	Integers that, when greater than zero, cause the convection, production, dissipation,
MPRINT	and diffusion terms of the turbulence energy (ITM $=2$ or 3) and dissipation rate ($\mathrm{ITM}=3$) to be printed for $\mathrm{L}=$ LPRINT, $\mathrm{M}=$ MPRINT at every time step. The axisymmetric terms are not included. The default value is 0 .
PRT	Denotes the turbulent Prandtl number in Eq. (8). The turbulent viscosity μ_{T} is calculated by the turbulence model, after which the turbulent conductivity k_{T} is calculated from PRT. The default value is 0.9 .
STBQ,	Denote the coefficients C_{Q} and C_{E}, respectively, in Eq. (22). These coefficients
STBE	control the fourth-order smoothing for the two-equation model (ITM $=3$). This smoothing may improve the results for strongly scparated flows. The default values are 0.0 (no smoothing).
amples,	SL. This namelist specifies the dual-flow-space walls. For single-flow-space ext is left blank.
MDFS	An integer that, when nonzero, specifies the M row of grid points along which the dual-flow-space walls are positioned. MDFS cannot be set equal to 2 or MMAX - 1 . The default value is 0 .
LDFSS, LDFSF	Integers that specify the x grid points where the dual-flow-space walls start and end, respectively. LDFSS and LDFSF cannot be set equal to 2 or LMAX - 1, respectively. The default values are 0 .
NDFS	An integer specifying one of two different dual-flow-space wall geometries. A discussion of these two cases follows the definitions of the additional parameters in this namelist. No default value is specified.
$\begin{aligned} & \text { YU, } \\ & \text { YL } \end{aligned}$	1D arrays of y coordinates in in. or cm , which correspond to the LMAX x coordinates given by XP in Nämelist VCL. YU denules the uppeı dual-fluw-space wall and YL denotes the lower. The default values are 0.0.
NXNYU,	1D arrays (floating point) of the negative of the dual-flow-space wall slopes
NXNYL	0.0
$\begin{aligned} & \text { XUI, } \\ & \text { XLI } \end{aligned}$	ID arrays of nonequally spaced x coordinates in in. or cm . XUI corresponds to the upper dual-flow-space wall and XLI corresponds to the lower. No default values are specified.
YUI,	1 D arrays of y coordinates in in. or cm, corresponding to the x coordinates in arrays
YLI	XUI and XLI, respectively. No default values are specified.
NUPTS,	Integers specifying the number of entries in arrays XUI-YUI and XLI-YLI,
NLPTS	respectively. The maximum value is specified by a PARAMETER statement (see Sec. II.E.1). No default values are specified.
IINTDFS	An integer specifying the order of interpolation used. The maximum value is 2 . The default value is 2 .
IDIFDFS	An integer specifying the order of differentiation used. The maximum value is 5 . The default value is 2 .

The following is a discussion of the two different dual-flow-space wall geometries considered by this program. If the dual-flow-space walls begin in the interior (LDFSS $\neq 1$), the values of YL and YU (or YLI and YUI) for $L=$ LDFSS must be equal. The same is true at $L=$ LDFSF if the dual-flow-space walls end in the interior (LDFSF \neq LMAX). If the dual-flow-space walls begin and end in the interior, than the ratio $(\mathrm{YL}-\mathrm{YCB}) /(\mathrm{YW}-\mathrm{YCB})$ at $\mathrm{L}=\mathrm{LDFSS}$ must equal that at $\mathrm{L}=\mathrm{LDFSF}$. The angle of attack of the dual-flow-space walls can be varied somewhat by changing the shape of the centerbody and wall. However, if the centerbody and wall shapes are fixed, then the angle of attack cannot be varied.
a. General Dual-Flow-Space Wall (NDFS =1). An arbitrary dual-flow-space wall contour is specified by tabular input. NUPTS x and y coordinate pairs are specified by the arrays XUI and YUI, respectively. NLPTS x and y coordinate pairs are specified by the arrays XLI and YLI, respectively. The tabular data need not be equally spaced. From the specified values of NUPTS, XUI, YUI, NLPTS, XLI, YLI, IINTDFS, and IDIFDFS, the program uses IINTDFS-order interpolation to obtain (LDFSF LDFSS + 1) upper and lower dual-flow-space wall y coordinates that correspond to the (LDFSF LDFSS +1) x coordinates given by XP(LDFSS) to XP(LDFSF) in Namelist VCL. Next, IDIFDFSorder differentiation is used to obtain the upper and lower dual-flow-space wall slopes at these (LDFSF LDFSS +1) points.
b. General Dual-Flow-Space Wall (NDFS = 2). An arbitrary wall contour is specified by tabular input. (LDFSF - LDFSS + 1) y coordinates and the negative of their slopes are specified by the arrays YU and NXNYU for the upper dual-flow-space wall and YL and NXNYL for the lower, respectively. The y coordinates correspond to the (LDFSF - LDFSS +1) x coordinates given by XP(LDFSS) to XP(LDFSF) in Namelist VCL.
11. Namelist VCL. This namelist specifies the variable grid coordinates as well as the parameters that control the subcycle and Quick Solver options. For equal or uniform grid spacing, this namelist is left blank.

The subcycle option allows the part of the mesh with the small grid spacing to be computed for many time steps with the required small time step, whereas the rest of the mesh is calculated only one time step. The Quick Solver option can be used with the subcycle option to increase the time step in the small grid part of the mesh and, therefore, reduce the number of time steps or subcycles. The Quick Solver allows the increased time step by a procedure that removes the sound speed from the usual C-F-L stability condition. The Quick Solver assumes the flow in the y direction is subsonic.

An integer that, when nonzero, specifies that both the x and y coordinates will have variable grid spacings. When IST $=0$, the program will generate equally spaced values of XP and YI. The default value is 0 .
$\mathbf{X P} \quad$ A 1D array that denotes the \mathbf{x} coordinate grid spacing. The elements of XP begin with the inlet $(\mathrm{L}=1)$ and extend to the outlet $(\mathrm{L}=\mathrm{LMAX})$. The first element XP(1) must equal XI [or XWI(1)] of Namelist GEMTRY and XP(LMAX) must equal XE [or XWI(NWPTS)]. For IST $=0$, the default values of XP consist of LMAX equally spaced grid points. For IST $\neq 0$, no default values are given.
YI A 1D array that specifies the y coordinate grid spacing at the inlet or $\mathbf{x}=\mathbf{X P}(1)$ column of grid points. The elements of YI begin with the centerline or centerbody and extend to the wall. If MDFS $\neq 0$ and LDFSS $=1$ (Namelist DFSL), then $\mathrm{YI}(\mathrm{MDFS})$ must equal $\mathrm{YU}(1)$ and a value of $\mathrm{YI}=\mathrm{YL}(1)$ is not read in. The grid spacing for the columns corresponding to $x=X P(2), \mathrm{XP}(3), \ldots, \mathrm{XP}(\mathrm{LMAX})$ is proportional to the YI spacings. For IST $=0$, the default values of YI consist of MMAX equally spaced grid points. For IST $\neq 0$, no default values are given.
MVCB, Integers that, when nonzero, denote which grid points will be subcycled. The MVCT

NVCMI An integer that, when nonzero, specifies the number of times the small spacing grid points are subcycled. If $\mathrm{NVCMI}=0$, the program determines the value internally. NVCMI must be an odd integer for indexing reasons. See NIQSS and NIQSF for additional details. The default value is 0 .

Abstract

IQS An integer that, when nonzero, specifies the Quick Solver option. This option assumes that the flow in the y direction is subsonic. Also, if MVCT = MMAX, then the wall boundary must be a no-slip solid wall (IWALL $=0$ and N \emptyset SLIP $=1$ in Namelist BC). If MVCB $=1$, then the centerbody boundary must be a no-slip solid wall ($\mathrm{NGCB}=1$ in Namelist GCBL and NøSLIP = 1). If dual-flow-space walls are present (see Namelist DFSL), the Quick Solver assumes that the subcycled grid points extend on each side of the dual-flow-space walls; that is, MVCB < MDFS < MVCT. The default value is 0 .

NIQSS, NIQSF

CQS ILLQS SQS

Integers that, when nonzero, denote at which time step N the Quick Solver will start (NIQSS) and stop (NIQSF). If NIQSS > 1 and NVCMI is nonzero, then the program internally calculates the number of times to subcycle the small spacing grid points for $\mathrm{N}<$ NIQSS and uses NVCMI when $\mathrm{N} \geqslant$ NIQSS. The default values are NIQSS $=2$ and NIQSF $=$ NMAX in Namelist CNTRL. the characteristic intersection points in the Quick Solver. The default value is 0.001 . An integer that specifies the maximum number of iteratione allowed in locating the characteristic intersection points in the Quick Solver. The default value is 30 . The coefficient C_{S}, in Eqs. (47) and (49), that controls the amount of numerical smoothing necessary to stabilize the Quick Solver. The recommended and default value is 0.5 .

D. Output Description

Program output consists of printed output, film plots, and punched cards (disc or tape file) for restart. The first two pages (or first three pages in the tabular input geometry case) of output include the program title, abstract, list of control parameters, fluid model, flow geometry, nozzle geometry, boundary conditions, artificial viscosity, molecular viscosity, turbulence model, and variable grid parameters.

Following the title pages is the initial-data surface. Before each initial-data surface, a page is printed that gives the mass flow, ratio of mass flow to inlet $(\mathrm{L}=1)$ mass flow, exit momentum thrust, and ratio of momentum thrust to inlet momentum thrust for $\mathrm{L}=1$ to LMAX. These data are either data that have been read in or a ID solution that has been computed by the program. All units are given. For planar flow, the mass flow units are $\mathrm{lbm} / \mathrm{in}$.-s or $\mathrm{kg} / \mathrm{cm}-\mathrm{s}$ and the momentum thrust units are $\mathrm{lbf} / \mathrm{in}$. or N / cm.

After the initial-data surface has been printed, the solution surfaces are printed. Before each solution surface, a page is printed that gives the mass flow, ratio of mass flow to inlet ($\mathrm{L}=1$) mass flow, exit momentum thrust, and ratio of momentum thrust to inlet momentum thrust for $\mathrm{L}=1$ to LMAX. After the mass flow page, the solution surfaces are printed. These surfaces have the same format as the initialdata surface. Each solution surface gives the flow field for a certain value of time. At the top of each solution surface page is the number of time steps N , the time, the time step, the number of subcycles NVCM, and the subcycled Courant number CNUMS. At the top right of each page are two pairs of numbers enclosed in parentheses. These give the grid points where the limiting time step was found. The one on the right is for the subcycled grid. As many solution planes as desired may be printed by varying the input data.

If requested ($\mathrm{IAV} \neq 0$), artificial viscosity, molecular viscosity, and turbulence parameters are printed before each solution plane. QUT denotes the x momentum equation right-hand-side terms in ft / s or m / s, QVT denotes the y momentum equation right-hand-side terms in ft / s or m / s, QPT denotes the internal energy equation right-hand-side terms in psia or kPa , and $\mathrm{QR} \varnothing \mathrm{T}$ denotes the continuity equation right-hand-side terms in $\mathrm{lbm} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$. AVMUR and TLMUR are the ratios of artificial and turbulent viscosities to the laminar value, respectively, Q is the turbulence energy at the $\mathrm{N}-1$ time step in $\mathrm{ft}^{2} / \mathrm{s}^{2}$ or
$\mathrm{m}^{2} / \mathrm{s}^{2}$, and E is the dissipation rate at the $\mathrm{N}-1$ time step in $\mathrm{ft}^{2} / \mathrm{s}^{3}$ or $\mathrm{m}^{2} / \mathrm{s}^{3}$. QQT is the turbulence energy equation right-hand-side terms in $\mathrm{ft}^{2} / \mathrm{s}^{2}$ or $\mathrm{m}^{2} / \mathrm{s}^{2}$, QET is the dissipation rate equation right-hand-side terms in $\mathrm{ft}^{2} / \mathrm{s}^{3}$ or $\mathrm{m}^{2} / \mathrm{s}^{3}$, and TML is the mixing-length (ITM $=1$) or length scale (ITM $=2$) in in. or cm . The parameters for the upper dual-flow-space wall are printed on the last page of the viscous printout. At the end of the viscosity parameters are the grid points whose viscous terms limit the time-step size in the x and y directions. Also printed is the ratio of the y terms to the x terms. The larger this ratio, the more restrictive the y direction terms become in limiting the time step size. If LPRINT and MPRINT are read in, the turbulence energy and dissipation rate convection, production, dissipation, and diffusion terms (not including axisymmetric terms) are also printed in internal units. Also, film plots with the units of the printed output are made for each requested time step. When the computation is stopped because the flow has satisfied the convergence tolerance, the physical time equals TST $\varnothing \mathrm{P}$, or the maximum number of time steps has been reached, the final solution plane is always printed and plotted.

E. Computing System Compatibility

1. Deck Set-Up. The deck begins with the common deck called MCC, followed by the main program called VNAP2 and the remaining function and subroutines. The common deck is preceeded by the card ${ }^{*}$ CøMDECK, MCC, beginning in column 1. This common deck is separated from the main program VNAP2 by the card *DECK,VNAP2, also beginning in column 1. Any routine that uses the common deck MCC has the card *CALL,MCC, beginning in column 1, at the location where the common deck should be in that routine. The CDC routine UPDATE will place the common deck in each routine containing a *CALL,MCC card. This simplifies making changes to the COMMON statements as well as array sizes (see below). For computing systems without an UPDATE or comparable routine, remove the *CøMDECK,MCC and *DECK,VNAP2 cards and replace all *CALL,MCC cards with the common deck, MCC.
2. Array Sizes. This version of the program allows for a maximum of 41 x and 25 y mesh points. These values are set by use of a PARAMETER statement, which is the first card in the common deck MCC. In this PARAMETER statement, $\mathrm{LI} \geqslant \mathrm{LMAX}, \mathrm{MI} \geqslant \mathrm{MMAX}, \mathrm{LII}=\mathrm{LI}+1$, and $\mathrm{MII}=\mathrm{MI}+$ 1. MQS \geqslant MVCT sets the Quick Solver array sizes. When the Quick Solver is not being used ($\mathrm{IQS}=0$), then MQS can be set equal to one to reduce the amount of storage. LTS $=$ LI and MTS $=$ MI set the extended-interval time-smoothing array sizes. When the extended-interval time smoothing is not being used (NTST $=1$ or NST $=0$), then LTS and MTS can be set equal to one to reduce the amount of storage. By using the routine UPDATE, discussed above, the array sizes may be changed by changing the one PARAMETER statement card. For computing systems that do not allow a PARAMETER statement, remove the PARAMETER statement and replace the integers LI, MI, LII, MII, MQS, LTS, and MTS in the common block, as well as the two cards defining LD and MD (following the NAMELIST statements in program VNAP2) with the desired values.
3. Film Ploting. The subroutine PLØT discussion in Sec. II.A describes the Los Alamos National Laboratory system routines used by this code. For other computing systems, the Los Alamos routines in subroutine PLØT will have to be replaced by comparable routines. On the other hand, if velocity vector and contour plots are not needed, then subroutine PLØT can be replaced by a dummy subroutine.
4. Single-Subscripted Arrays. Unlike VNAP, VNAP2 contains no single subscripting of arrays that are dimensioned with multiple subscripts, because most current Fortran compilers generate nearly as efficient a code with either single or multiple subscripts. For example, the single subscript version of VNAP2 was approximately 1 to 2% faster than the multiple subscript version using the CDC FTN 4.8 compiler. This small increase in efficiency did not seem to be worth the added complexity.

F. Artificial Viscosity Discussion

The artificial viscosity model contains many parameters. However, in most cases the user needs to be concerned with only two, CAV and FDT. CAV controls the overall amount of smoothing and FDT controls the time step. If the space oscillations (that is, oscillations from point to point in the same time plane) are too large, then increase CAV. If the shock is too smeared, then decrease CAV. However, if the time oscillations (that is, oscillations at the same space point in different time planes) are too large, then decrease FDT. Increases in CAV often require decreases in FDT, whereas decreases in CAV often allow increases in FDT. For computation efficiency one uses large values of FDT and, therefore, small values of CAV. In calculations where FDT is too large, the solution usually "blows up" in less than 10 time steps. For calculations where CAV is too small, the solution usually takes longer to blow up. If FDT is smaller than necessary and CAV is larger than required, the solution will not blow up but, instead, will be inaccurate and inetficient. However, there is a lower limit of FDT below which space osclllations will appear. The code includes an artificial viscosity contribution in the time step calculation and, therefore, a given value of FDT will usually suffice for a wide range of CAV.

As an example, an oblique shock produced by supersonic flow (Mach naumber $=3.2$) over a 30° wedge (pressure ratio $=6.84$) required a CAV of 1.5 and an FDT of 0.8 . In general, stronger shocks require larger values of CAV and smaller values of FDT. The opposite is true for weaker shocks.

The artificial viscosity discussed above is intended for shocks and is very small for contact surfaces and zero for expansions. Because of this, if contact surfaces are present, additional smoothing is usually needed. This can be accomplished by using the sound speed gradient option (ISS $\neq 0$). For ISS $\neq 0$, the sound speed gradient is added to the velocity divergence. If ISS $=1$ and the divergence of the velocity is <0, then the sound speed gradient is set equal to zero, which again mainly smooths only shocks. If ISS $=$ 2 , the sound speed gradient is always nonzero, which smooths shocks, contact surfaces, and, unfortunately, expansions. Therefore, for contact surfaces or dual flows with very different densities, use the ISS $=2$ option. The IDIVC $\neq 0$ (ISS $=1$) option could also be used, but here both the velocity divergence and the sound speed gradient are nonzero, causing additional smearing of any expansions that may be present.

Another problem concerning the artificial viscosity is the shock wave-boundary layer interaction. Here, the artificial viscosity that is necessary for the shock may swamp the molecular and turbulent viscosities in the boundary layer. To minimize this problem, the artificial viscosity depends on the velocity divergence and not the shear gradients. In addition, λ_{A} and μ_{A} are multiplied by the Mach number squared in the subsonic part of the boundary layer. If this is not sufficient, the SMACH option can be used. There are no claims that this artificial viscosity model is the best way to treat shock wave-boundary layer interactions. It is to be hoped that additional work will produce better procedures.

G. Sample Calculations

1. Case No. 1: Subsonic Constant Area, Supersonic Source Flow. The geometry for this case is shown in Fig. 23 and consists of a constant area duct on top containing subsonic flow and a diverging duct on the bottom containing supersonic source flow. The data deck and printed output are presented in Figs. 24 and 25 , respectively.
a. Namelist CNTRL. This case uses a 21 by 11 mesh, therefore LMAX $=21$ and MMAX $=11$. The maximum number of time steps NMAX is set equal to 500 . After 500 time steps, the supersonic flow is steady, but the subsonic flow is still changing slightly. Film plots of the final solution plane are requested by setting NPLØT $=500$. A nondimensional set of units is used, so IUNIT $=1$. The gas constant for this nondimensional set of units is 0.01 ; therefore RGAS $=0.01$. So that the calculation will not be stopped before the number of time steps reaches NMAX, TST $\emptyset \mathrm{P}$ is increased to 100.0 . The additional parameters are left equal to their default values.
b. Namelist IVS. An initial-data surface that is subsonic in the upper flow space and supersonic in the lower is desired. Because this is not possible using the internally generated initial data, a general initial-data surface is read in. Therefore, N1D $=0$ and values for the arrays $U, V, P, R \emptyset, U L, V L, P L$, and R $\varnothing \mathrm{L}$ must be read in. All the values are assumed to be constant in each flow space. The additional parameters are left equal to their default values.
c. Namelist GEMTRY. The flow geometry for this case is 2 D planar flow; therefore NDIM $=0$. The wall is a constant area duct; therefore $\mathrm{NGE} \varnothing \mathrm{M}=1$. The inlet location XI equals 0.0 , the exit location XE equals 4.0 , and the radius RI equals 2.1547. No other input is required.
d. Namelist GCBL. Because this case has no centerbody, no input is required.
e. Namelist BC. Because the lower flow-space inflow is supersonic and the upper flow space is subsonic, ISUPER $=2$. The stagnation pressure PT, stagnation temperature TT, and exit pressure PE for the upper flow space are 213.514, 124.2, and 180.0, respectively. Values for the arrays UI, VI, PI, and RøI, as well as the variables UIL, VIL, PIL, and RøIL, are read in for the lower flow space. No other input is required.
f. Namelist $A V L$. Because there are no shocks and the initial data is smooth, no input is required.
g. Namelist RVL. Because the flow is inviscid, no input is required.
h. Namelist TURBL. Because the flow is inviscid, no input is required.
i. Namelist DFSL. For this case, the upper and lower dual-flow-space walls are specified by LMAX equally spaced values of YL and YU and the corresponding negative of their slopes NXNYL and NXNYU; therefore NDFS $=2$. The dual-flow-space walls begin at the inlet and end at the exit; therefore LDFSS $=1$ and LDFSF $=21$. The dual-flow-space walls correspond to the $\mathrm{M}=6$ row of grid points; therefore MDFS $=6$. No other input is required.
j. Namelist VCL. Because a uniform grid is used, no input is required.
2. Case No. 2: Supersonic Source, Subsonic Constant Area Flow. This case is the same as Case No. 1, except that the lower dual-flow space is the subsonic constant area duct and the upper flow space is the supersonic source flow. The geometry is shown in Fig. 26. The data deck and printed output are presented in Figs. 27 and 28, respectively. Because the discussion for this case closely follows that of Case No. 1, it is not included here.
3. Case No. 3: Subsonic Airfoil. The geometry for this case is shown in Fig. 29 and consists of a 10° double wedge airfoil between two solid walls. The data deck and printed output are presented in Figs. 30 and 31 , respectively.
a. Namelist CNTRL. This case uses a 21 by 11 mesh; therefore LMAX $=21$ and MMAX $=11$. The maximum number of time steps NMAX is set equal to 500 . Film plots of the final solution plane are requested by setting NPLØT equal to 500 . A nondimensional set of units is used, so IUNIT $=1$. The gas
constant for this nondimensional set of units is 0.01 ; therefore RGAS $=0.01$. So that the calculation will not be stopped before the number of time steps reaches NMAX, TST $\emptyset \mathrm{P}$ is increased to 100.0 . The additional parameters are left equal to their default values.
b. Namelist IVS. A subsonic initial-data surface is computed by the program, so N1D $=-2$. The Mach number everywhere is set by specifying the height for the area where the Mach number equals 1.0 ; therefore RSTAR $=0.7464$. No other input is required.
c. Namelist GEMTRY. The flow geometry for this case is 2 D planar flow; therefore $\mathrm{NDIM}=0$. The wall is a constant area duct, therefore $\operatorname{NGE} \emptyset M=1$. The inlet location XI $=0.0$, the exit location $\mathrm{XE}=$ 4.0 , and the radius $\mathrm{RI}=1.0$. No other input is required.
d. Namelist $G C B L$. The centerbody is a horizontal wall, and so $\mathrm{NGCB}=1$. The radius $\mathrm{RICB}=0.0$. No other input is required.
c. Namelist $B C$. The stagnation prcssurc $\mathrm{PT}=213.514$, the stagnation temperature $\mathrm{TT}=124.2$, and the exit pressure $\mathrm{PE}=180.0$. No other input is required.
f. Namelist $A V L$. Because there are no shocks and the initial data is smooth, no input is required.
g. Namelist RVL. Because the flow is inviscid, no input is required.
h. Namelist TURBL. Because the flow is inviscid, no input is required.
i. Namelist DFSL. For this case, the upper and lower dual-flow-space walls are specified by 11 (LDFSF - LDFSS + 1) equally spaced values of YL and YU and the corresponding negative of their slopes NXNYL and NXNYU; therefore NDFS $=2$. The dual-flow-space walls begin at $L=6$ and end at $L=16$, therefore $\operatorname{LDFSS}=6$ and $\operatorname{LDFSF}=16$. The dual-flow-space walls correspond to the $M=6$ row of grid points; therefore MDFS $=6$. No other input is required.
j. Namelist $\overline{V C} \mathbf{L}$. Because a unitorm grid is used, no input is required.

ACKNOWLEDGMENTS

This work was performed at the Los Alamos National Laboratory, Los Alamos, New Mexico, and supported by the National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia, and the United States Department of Energy. The contract monitor was Richard G. Wilmoth of the Langley Research Center Propulsion Aerodynamics Branch. The author wishes to thank Richard G. Wilmoth, Lawrence E. Yutnam, and K. Charles Swanson, Jr., of the Langley Research Center Propulsion Nerodynamics Branch, and Bart J. Daly, of the Los Alamos National Laboratory, for their many helpful discussions.

REFERENCES

1. M. C. Cline, "VNAP: A Computer Program for Computation of Two-Dimensional, TimeDependent, Compressible, Viscous, Internal Flow," Los Alamos Scientific Laboratory report LA-7326 (November 1978).
2. M. C. Cline, "NAP: A Computer Program for the Computation of Two-Dimensional, TimeDependent, Inviscid Nozzle Flow," Los Alamos Scientific Laboratory report LA-5984 (January 1977).
3. R. W. MacCormack, "The Effect of Viscosity in Hypervelocity Impact Cratering," AIAA Hypervelocity Impact Conference, Cincinnati, Ohio, April 1969, AIAA Paper 69-354.
4. B. E. Launder, A. Morse, W. Rodi, and D. B. Spalding, "The Prediction of Free Shear Flows-A Comparison of the Performance of Six Turbulence Models," Proc. NASA Conf. Free Shear Flows, NASA Langley Research Center, Hampton, Virginia, July 1972 (NASA SP-321, 1973), Vol. I, pp. 361-426.
5. Tuncer Cebeci, A. M. O. Smith, and G. Mosinskis, "Calculation of Compressible Adiabatic Turbulent Boundary Layers," AIAA J. 8, 1974 (1970).
6. W. P. Jones and B. E. Launder, "The Prediction of Laminarization with a Two-Equation Model of Turbulence," Int. J. Heat Mass Transfer 15, 301 (1972).
7. W. P. Jones and B. E. Launder, "The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence," Int. J. Heat Mass Transfer 16, 1119 (1973).
8. B. E. Launder and B. I. Sharma, "Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc," Lett. Heat Mass Transfer 1, 131 (1974).
9. K. Hanjalic and B. E. Launder, "Contribution Towards a Reynolds-Stress Closure for Low-Reynolds-Number Turbulence," J. Fluid Mech. 74, 593 (1976).
10. T. J. Coakley and J. R. Viegas, "Turbulence Modeling of Shock Separated Boundary-Layer Flows," Symp. Turbulent Shear Flows, University Park, Pennsylvania, April 18-20, 1977.
11. C. M. Hung and R. W. MacCormack, "Numerical Solutions of Supersonic and Hypersonic Laminar Compression Corner Flows," AIAA J. 14, 475 (1976).
12. F. H. Harlow and A. A. Amsden, "A Numerical Fluid Dynamics Calculation Method for Ail Flow Spceds," J. Comput. Phys. 8, 197 (1971).
13. R. W. MacCormack, "A Rapid Solver for Hyperbolic Systems of Equations," Lect. Notes Phys. 59, 307-317 (1976).
14. C. P. Kentzer, "Discretization of Boundary Conditions of Moving Discontinuities," Lect. Notes Phys. 8, 108-113 (1970).
15. G. Moretti, "The λ-Scheme," Comput. Fluids 7, 191 (1979).
16. R. A. Serra, "Determination of Internal Gas Flows by a Transient Numerical Technique," AIAA J. 10, 603 (1972).
17. J. Oliger and A. Sundström, "Theoretical and Practical Aspects of Some Initial Boundary Value Problems in Fluid Dynamics," SIAM J. Appl. Math. 35, 419 (1978).
18. G. Moretti and M. Àbbett, "A Time-Dependent Computational Method for Blunt Body Flows," AIAA J. 4, 2136 (1966).
19. D. H. Rudy and J. C. Strikwerda, "A Nonreflecting Outflow Boundary Condition for Subsonic Navier-Stokes Calculations," J. Comput. Phys. 36, 55 (1980).
20. M. C. Cline, "Stability Aspects of Diverging Subsonic Flow," AIAA J. 18, 534 (1980).
21. G. Moretti, "Comment on Stability Aspects of Diverging Subsonic Flow," AIAA J. 19 (May 1981).
22. M. C. Cline, "Reply by Author to G. Moretti," AIAA J. 19, (May 1981).
23. G. Moretti and M. Pandolfi, "On the Calculation of Subsonic Flows in Ducts," Polytechnic Institutc of New York report M/AE 80-18 (June 1980).
24. M. C. Cline and R. G. Wilmoth, "Computation of High Reynolds Number Internal/External Flows," AIAA 14th Fluid Plasma Dyn. Conf., Palo Alto, California, June 23-25, 1981, AIAA Paper 81-1194.
25. M. C. Cline, "Computation of Steady Nozzle Flow by a Time-Dependent Method," AIAA J. 12, 419 (1974).
26. R. F. Cuffel, L. H. Back, and P. F. Massier, "Transonic Flow-Field in a Supersonic Nozzle with Small Throat Radius of Curvature," AIAA J. 7, 1364 (1969).
27. D. E. Reubush, "Experimental Study of the Effectiveness of Cylindrical Plume Simulators for Predicting Jet-On Boattail Drag of Mach Numbers up to 1.30," NASA TN D-7795, 1974.
28. R. C. Swanson, Jr., 'Numerical Solutions of the Navier-Stokes Equations for Transonic Afterbody Flows," NASA Technieal Paper 1784 (December 1980).
29. L. J. S. Bradbury, "The Structure of a Self-Preserving Turbulent Plane Jet," J. Fluid Mech. 23, 31 (1965).

Fig. 1.
Physical and computational spaces.

Fig. 2.
Physical space grid.

Fig. 4.
Planar subsonic sink flow.

Fig. 3.
Quick Solver characteristic grid.

Fig. 5.
Planar supersonic source flow.

Fig. 6.
Subsonic sink and supersonic source flow solutions.

Fig. 7.
Subsonic sink flow with the $\mathrm{p}_{\mathrm{T}}, \mathrm{r}_{\mathrm{T}}$, and θ inflow boundary condition.

Fig. 8.
Subsonic sink flow with the u, v, and ρ inflow boundary condition.

Fig. 9.
Subsonic sink flow with the u, v, and ρ inflow boundary condition and matched mass flow, 1D, initial-data surface.

Fig. 10.
Nozzle geometry for Case No. 1.

Fig. 11.
Mach number contours (top) and wall pressure ratio for Case No. 1.

Fig. 12.
Boattail afterbody geometry for Case No. 2.

\qquad

Fig. 13.
Physical space grid (top), pressure (middle), and Mach number contours for Case No. 2.

Fig. 14.
Surface pressure coefficient for Case No. 2.

Fig. 15.
Plane jet geometry for Case No. 3 .

\qquad

Fig. 16.
Physical space grid (top) and Mach number contours for Case No. 3.

Fig. 17.
Midplane velocity decay for Case No. 3.

Fig. 18.
Single-flow-space computational grid.

Fig. 19.
Dual-flow-space computational grid.

Fig. 23.
Case No. 1 geometry.

```
VNAP2 CASE 1 - SUBSONIC CONSTANT AREA-SUPERSONIC SOURCE FLOW
    $CNTRL LMAX=21,MMAX=11, NMAX=500.NPLOT=500.,IUNIT=1,RGAS=0.01,
    TSTOP=100.0 $
    $IVS N10=0,
    U(1,1,1)=21*1.39,U(1, 2, 1)=21*1.39,U(1,3,1)=21*1.39,U(1,4,1)=21*1.39,
    U(1,5.1)=21*1.39,UL=21*1.39,U(1,6.1)=21*0.67.U(t.7.1)=21*0.67,
    U(1,8,1)=21*0.67,U(1,9,1)=21*0.67,U(1,10,1)=21*0.67,U(1,11,1)=21*0.67,
    V(1,1,1)=21*0.4,V(1,2,1)=21*0.4,V(1,3,1)=21*0.4.V(1,4,1)=21*0.4.
    V(1,5,1)=21*0.4,VL=2it*0.4,V(1,6,1)=21*0.0,V(1,7,1)=21*0.0,
    V(1,8,1)=21*0.0,V(1,9,1)=21*0.0,V(1,10,1)=21*0.0,V(1, 11, 1)=21*0.0.
    P(1,1,1)=21*81.7,P(1,2,1)=21*81.7.P(1,3,1)=21*84.7,P(1,4,1)=21*81.7,
    P(1,5,1)=21*81.7.PL=21*81.7,P(1,6,1)=21*180.0.P(1,7,1)=21*180.0.
    P(1.8,1)=21*180.0.P(1.9,1)=21*180.0.P(1,10.1)=21*180.0,P(1, 11, 1)=21*180.0,
```



```
    RO(1,5,1)=21*86.6,ROL=21*86.6,RO(1,6,1)=21*150.0,RO(1,7,1)=21*150.O.
    RO(1,8,1)=21*150.O,RO(1.9,1)=2{*150.O.RO(1.10.1)=21*150.O.
    RO(1,11,1)=21*150.0 $
    $GEMTRY NDIM=O.NGEOM=1,XI=O.O.XE=4.O.RI=2.1547 $
    $GCBL $
    $BC ISUPER=2.PT=213.514,TT=124 2,PE=180.0,
    UI=1.301538,1.3092,1.3276,1.3494,1.3701,UIL=1.3877.
    VI=0.0.0.07559.0.1533.0.2337,0.3164.VIL=0.4006;
    PI=100.0.98.7152.95.4717.91.2200.86.5300,PIL=81.7273,
    ROI = 100.0.99.0805,96.744i,93.6450,90.1800.ROIL=86.5775
    $AVL $
    $RVL $
    $TURBL $
    $DFSL NDFS=2, LDFSS=1, LDFSF=21,MDFS=6 ,
    YL=0.5,0.5577,0.6155,0.6732,0.7309,0.7887,0.8464,0.9041,0.9619,1.0196,
    1.0771,1.1351,1.1928,1.2500,1.3083,1.3860,1.4238,1.4815.1.5392.1.5970,
    1.6547.
    NXNYL=21*-0.28868,
    YU=21*1.6547,
    NXNYU=21*-0.0 $
    $VCL $
```

Fig. 24.
Case No. I data deck.

VNAP2, A COMPUTER PROGRAM FOR THE COMPLTATION OF TWO-DIMENSIONAL, TIME-DEPENDENT, CJMPRESSIBLE. TURBULENT FLOW BY MICHAEL C. CLENE. T-3 - LOS ALAMOS NATIONAL LABORATJRY

PROGRAM ABSTRACT -

THE NAVIER-STOKES EQUATIONS FOR TWO-DIMENSIONAL, TIME-DEPENDENT FLOW FRE SOLVED USING THE SECOND-ORDEF, MACCORMACK FINITE-LIFFERENCE SCHEME. ALL BOUNDARY CONDITIGRS ATE COMPUTED USING A SECOND-DRCER, REFERENCE PLANE, OHARAC-ERISIIC SCHEME WITH THE VISCOUS TERNS TREATED AS SOURCE FUNCTIONS. THE FLUID IS ASSUMED TO BE A PERFECT GAS. THE STEADY-STATE SOLLTION IS OBTAINED AS THE ASYMPTOTIC SOLUTION FOR EARG三 TIME TH三 FLOW BOUNDARIES MAY BE ARBITREFY CURVED SOLID WALES AS WELL AS JET ENVELOPES. THE GEOMETR* MAY CONSIST OF SINGLE AND DUAL FLOUEVG STREAMS. TURBULENCE EFFECTS ARE MODELED WITH EITHER \& NIXI WG-LEVGTH, A TURBULENCE ENERGY EOUAT:CN, OR A TURBULENCE ENERGY-DISSIPATION RATE EQUA-IONS NODEL. THIS PROGRAM ALLOWS VARIABLE GFIO SPACING AND INCLUDES OPTIONS TO SPEED UP THE CALCULATION FOR HIGH REYNOLDS NUMBER FLO'NS.

JOB TITLE -
VNAP2 CASE 1 - SUBSONIC CONSIANT AEEA-SUPERSONIC SOURCE FLOW

CONTROL PARAMETERS -

	M			0	NPLOT =	500	OT	FCT: $=100$	FOTI	
IUI = \dagger	IU0	IV	NCONV $1=1$		=	$10 \mathrm{E}+$	$\mathrm{N} 1 \mathrm{D}=0$	TCORJV=6. 000	NASM $=1$	IUNIT $=1$
PSTAR=	0.000000	RSTA	. 50000		PLo	100	ROLOW=	$0001 \cdot 9$	VDT	VDT $1=$

FLUID MODEL -
THE RATIO OF SPECIFIC HEATS, GAMMA $=1.4000$ AND THE GAS CONSTANT, $R=.0$ OM (FT-LBF/LBM-R)

FLOW GEOMETRY -
TWO-DIMENSIONAL, PLANAR FLOW HAS BEEN SPECJFIED

DUCT GEOMETRY -
A CONSTANT AREA DUCT HAS BEEN SPECI=IED BY XI= 0.0000 (IN), RI= 2.1547 (IR), AND XE $=4 . O O O O$ (IN)

Fig. 25.
Case No. 1 output.

DUAL FIOW SJACE BOUNDARY GEQMETRY -
general boundaries have been specified by the following parameters,

L	XP(IP)	YL(IN)	SLOPEL	YU(IN)	SLOPEU
1	0.0000	. 5000	. 2887	1.6547	0.0000
2	. 2000	. 5577	. 2887	1.6547	0.0000
3	. 4000	. 6155	. 2887	1.6547	0.0000
4	. 6000	. 6732	. 2887	1.6547	0.0000
5	. 8000	. 7309	. 2887	1.6547	0.0000
5	1.0000	. 7887	. 2887	1.6547	0.0000
7	1.2000	. 8464	. 2887	1.6547	0.0000
B	1.4000	. 9041	. 2887	1.6547	0.0000
9	1.6000	. 9619	. 2887	1.6547	0.0000
12	1.8000	1.0196	. 2887	1.6547	0.0000
11	2.0000	1.0774	. 2887	1.6547	0.0000
12	2.2000	1.1351	. 2887	1.6547	0.0000
13	2.4000	1. 1928	. 2887	1.6547	0.0000
14	2.6000	1. 2506	. 2887	1.6547	0.0000
15	2.8000	1. 3083	. 2887	1.6547	0.0000
16	3.0000	1.3660	. 2887	1.6547	0.0000
17	3.2000	1.4238	. 2887	1.6547	0.0000
18	3.4000	1.4815	. 2887	1.6547	0.0000
19	3.6000	1.5392	. 2887	1.6547	0.0000
20	3.8000	1.5970	. 2887	1.6547	0.0000
21	4.0000	1.6547	. 2887	1.6547	0.0000

Fig. 25. (cont)

M	PT(PSIA)		TT(R)			THETA(DEG)		$P \equiv(2 S I A)$		FSQ(FT2/S2)		FSE(FT2/S3)	
1	213.5140			124.20				180	.3000		. 0001		1
2	213.5140			124.20				180	- 3000		. 0001		1
3	213.5140			124.20				180	2J000		. 0001		1
4	213.5140			124.20				180	-3000		. 000		1
5	213.5140			124.20				180	20000		. 0001		1
6	213.5140			124.20				180	33000		. 0001		1
6	213.5140			124.20				180	3:3000		. 0001		1
7	213.5140			124.20				180	30000		. 0001		1
8	213.5140			124.20				180	23000		. 0001		1
9	213.5140			124.20				180	23000		. 0001		1
10	213.5140			124.20				180	3 J		. 0001		
11	213.5140			124.20				180	37000		. 0001		. 1
I INLET $=0$	IEXITT=0	IEX=1		I SUP \equiv R $=2$	OYV=	. 0010	$\mathrm{IVEC}=0$	INBC $=0$	$I N A L L=0$	IWALLO $=0$	$A L I=0.00$	ALE $=0.00$	
$A L W=0.00^{\circ}$	NSTAG $=0$	NPE=	0	PEI = C.	00000								

FREE-SLIO WALLS ARE SPECIFIED

ADIABATIミ UPPER WALL IS SPECIFIED

ADIABATIZ LOWER DUAL FLOW SFACE BOUNDARY IS SPECIFIED
ADIABATI: UPPER DUAL FLOW SFACE BOIJNJARY IS SPECIFIED

ARTIFICAL VISCOSITY -

CAV $=0.00$	$\mathrm{XMU}=.40$	$X \angle A=1.00$	P RA $=.70$	$\mathrm{KRD}=.60$	LSS $=1$		LSF $=999$	\therefore IDIVC $=0$	ISS $=0$	$\mathrm{SMACH}=0.00$
NST $=0$	$S M P=1.00$	$S M P F=1.00$	$\operatorname{SMPT}=1.00$	SMPTF $=1.00$	NTST =	;	$14 \mathrm{~V}=0$	MSS $=1$	MSF $=999$	

MOLECULAR VISCOSITY -
$C M U=0$. (LBF-S/F-2) CLA= O. (LBF-S/FT2: CK=0. $\quad(L B F: S-R) \quad E M U=0.00 \quad E L A=0 . O O \quad E K=O . O O$

TURBULENCE MODEL -
NO MODEL IS SPECIFIED

VARIABLE GRID PARAMETERS -
$I S T=0 \quad M V C B=0 \quad$ MVCT $=0$ IQS=0 NIQSS=2 $N I Q S F=0 \quad N V C A I=0 \quad I _L Q S=30 \quad S Q S=.50 \quad C Q S=. O O 1$
***** EXPECT FILN OUTPUT FOR $N=\quad 0$ *****

$N=$	90.	$T=$	5.40287119	SECONDS.	DT $=$. 05753144	SECONDS.	NVCM		,	CNUMS $=1.00$.	(20, 2).	$(0,0)$
$N=$	\$00.	$T=$	5.97823303	SECONDS.	DT $=$. 05755439	SECONDS.	NVCM		,	CNUMS $=1.00$,	(20, 2).	0, 0)
$N=$	110.	$T=$	6.55370146	SECONDS,	$D T=$. 05754307	SECONDS.	NVCM		,	CNUMS $=1.00$.	(20, 2).	0, 0)
$N=$	120.	$T=$	7. 12915448	SECONDS.	DT $=$. 05754566	SECONDS.	NVCM		,	CNUMS $=1.00$.	(20, 2)	0, 0)
$N=$	130.	$T=$	7.70460850	SECONDS.	DT $=$. 05754561	SECONDS.	NVCM	$=1$	1	CNUMS $=1.00$,	(20, 2)	0, 0)
$N=$	140.	$T=$	8.28006455	SECONDS,	$D T=$. 05754551	SECONDS.	NVCM		.	CNUMS $=1.00$,	(20, 2)	0.0)
$N=$	150.	$T=$	8.85551982	SECONDS.	DT $=$. 05754552	SECONDS.	NVCM		,	CNUMS $=1.00$.	(20, 2).	(0,0)
$N=$	160.	T	9.43097477	SECONDS.	DT $=$. 05754549	SECANDS.	NVCM		,	CNUMS $=1.00$.	(20, 2)	0, 0)
$\mathrm{N}=$	170.	$T=$	10.00642973	SECONDS,	DT $=$. 05754550	SECONDS.	NVCM		1	CNUMS $=1.00$.	(20. 2)	0.0)
$\mathrm{N}=$	180.	$T=$	10.58188469	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		1	CNUMS $=1.00$	20, 2)	0, 0)
$N=$	190.	$T=$	11.15733965	SECONDS.	DT $=$. 05754550	SECONDS	NVCM		1	CNUMS $=1.00$.	(20, 2)	0, 0)
$N=$	200.	$T=$	11.73279462	SECONDS.	DT $=$. 05754550	SECONDS	NV			NUMS $=1.00$	$(20,2)$	
$N=$	210.	$T=$	12.30824958	SECONDS.	DT =	. 05754550	SECONDS.	NVCM		1	CNUMS $=1.00$	2),	
$N=$	220.	$T=$	12.88370455	SECONDS.	DT $=$. 05754550	SECONDS	NVCM $=$,	CNUMS $=1.00$ CNUMS $=1.00$	2).	
$N=$	230.	$T=$	13.45915951	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$ CNUMS $=1.00$	20, 2)	
$N=$	240.	$T=$	14.03461448	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM			CNUMS $=1.00$ CNUMS $=1.00$	$(20,2)$	$(0,0)$
$N=$	250.	T	14.61006944	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		,	CNUMS $=1.00$, CNUMS $=1.00$	20, 2).	
$N=$	260.	$T=$	15.18552440	SECONDS.	DT $=$. 05754550	SECONDS,	NVCM		1	CNUMS $=1.00$, CNUMS $=1.00$,	(20, 2),	$\left(\begin{array}{lll}0, & 0 \\ 0, & 0\end{array}\right.$
$N=$ $N=$	270.	T	15.76097937 16.33643433	SECONDS. SECONDS.	DT $=$ DT $=$. 05754550	SECONDS. SECONDS,	NVCM		1	CNUMS $=1.00$, CNUMS $=1.00$.	(20, 2).,	(0, 0)
$N=$	280. 290.	T	16.33643433 16.91188930	SECONDS. SECONDS.	DT $=$ DT $=$. 05754550	SECONDS,	NVCM		1	CNUMS $=1.00$,	(20, 2).,	(0, 0)
$\mathrm{N}=$	300.	$\mathrm{T}=$	17.48734426	SECONDS.	DT =	. 05754550	SECONDS.	NVCM	$=$	1.	CNUMS $=1.00$.	(20, 2).	0.0)
$\mathrm{N}=$	310.	$T=$	18.06279923	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM	=	1.	CNUMS $=1.00$.	(20, 2).	0, 0)
$N=$	320.	T	18.63825419	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM	$=$	1.	CNUMS $=1.00$.	(20, 2).	0, 0)
$N=$	330.	$T=$	19.21370915	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$	(20, 2).	0, 0)
$N=$	340.	$T=$	19.78916412	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM	$=$	1	CNUMS $=1.00$,	$(20,2)$,	O, 0)
$\mathrm{N}=$	350.	T	20.36461908	SECONDS.	DT =	. 05754550	SECONDS.	NVCM		1	CNUMS $=1.00$. CNUMS $=1.00$.	$(20,2)$	
$N=$	360.	T	20.94007405	SECONDS.	DT =	. 05754550	SECONDS.	NVCM		1	CNUMS $=1.00$ CNUMS $=1.00$	$(20,2)$ $(20,2)$	$\left(\begin{array}{ll}0, & 0) \\ 0, & 0)\end{array}\right.$
$\mathrm{N}=$	370.	T	21.51552901	SECONDS.	DT =	. 05754550	SECONDS	NVCM		1.	CNUMS $=1.00$ CNUMS $=1.00$	(20,2).	$\left(\begin{array}{lll}0, & 0 \\ 0, & 0\end{array}\right.$
$\mathrm{N}=$	380.	$T=$	22.09098398	SECONDS.	DT $=$. 05754550	SECONDS	NVCM		1.	CNUMS $=1.00$, CNUMS $=1.00$.	(20, 2).	$(0,0)$
$\mathrm{N}=$	390.	T	22.66643894 23.24189390	SECONDS, SECONDS,	DT $=$ DT $=$. 05754550	SECONDS.	NVCM	=	1.	CNUMS $=1.00$, CNUMS $=1.00$.	$(20,2)$,	$\left(\begin{array}{lll}0, & 0 \\ (0,0)\end{array}\right.$
$\mathrm{N}=$	410.	T $=$	23.81734887	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$	$(20,2)$,	$(0,0)$
$\mathrm{N}=$	420.	T	24.39280383	SECONDS.	DT $=$. 05754550	SECONDS,	NVCM	=	1.	CNUMS $=1.00$	(20, 2).	$(0,0)$
$\mathrm{N}=$	430.	$T=$	24.96825880	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$	(20, 2).	$0.0)$
$N=$	440.	T	25.54371376	SECONDS.	DT =	. 05754550	SECONDS.	NVCM	=	1.	CNUMS $=1.00$	(20, 2).	0, 0)
$N=$	450.	$T=$	26.11916873	SECONDS.	DT $=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$.	(20. 2).	0, 0)
$N=$	460.	$T=$	26.69462369	SECONDS,	DT $=$. 05754550	SECONDS.	NVCM	=	1.	CNUMS $=1.00$	$(20,2)$	0, 0)
$N=$	470.	$T=$	27.27007865	SECONDS.	$D T=$. 05754550	SECONDS.	NVCM		,	CNUMS $=1.00$,	(20, 2)	
$N=$	480.	$\mathrm{T}=$	27.84553362	SECONOS.	DT $=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$.	(20. 2)	
$N=$	490.	$T=$	28.42098858	SECONDS.	$D T=$. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$		
$N=$	500.	$T=$	28.99644355	SECONDS.	DT =	. 05754550	SECONDS.	NVCM		1.	CNUMS $=1.00$,	(20,	0, O)

Fig. 25. (cont)

MASS FLOW AND THRUST CALCULA-ION. $N=500$

L	MF (LBM, ${ }^{\text {S }}$)	MF/MFI	$T(L B F)$	T/TI
1	112.31686	1.0000	116.3781	1.0000
2	11ミ.59665	1.0114.	131.6404	1-1E11
3	$114.00 \% 41$	1.0151	140.5393	1. 2076
4	114.20202	1.0168	146.8395	1.2617
5	114.31913	1.0178	151.7055	1. 3036
6	114.40858	1.0186	155.6649	1.3376
7	114.46970	1.0192	158.9635	1. 3659
8	114.51786	1.0196	161.7840	1.3902
9	$114.56<52$	1.0200	164.2508	1.4114
10	114.59610	1. 0203	166.4094	1. 4299
11	114.62785	1.0206	168.3425	1.4465
12	114.64830	1.0208	170.0656	1.4613
13	114.66477	1.0209	171.6242	1. 4 $^{\text {4 }} 47$
14	114.68<57	1.0211	- 173.0564	1.4870
15	114.696 .15	1.0212	174.3582	1.4982
16	114.70792	1.0213	175.5579	1.5085
17	114.71788	1.0214	176.6759	1.5181
18	114.73392	1.0215	177.7096	1.5270
19	114.71499	1.0214	178.6491	1.5351
20	114.89C94	1.0229	179.9148	1.5460
21	114.86499	3. 0227	180.7273	t. 5529

Fig. 25. (cont)

SOLUTION SURFACE NO. $500-$ TIME $=28.99644355$ SECONDS (DELTAT $=.05754550$, NVCM $=1, \operatorname{CNUMS}=1 . O 0,(20,2),(0,0)$)

L	M	$\stackrel{x}{(I N)}$	$\begin{aligned} & Y \\ & (I N) \end{aligned}$	$\underset{(F / S)}{U}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \mathrm{RHO} \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
1	1	0.0000	0.0000	1.3015	0.0000	100.00000	100.000000	1. 3015	1. 1000	100.0000
1	2	0.0000	. 1000	1.3092	. 0756	98.71520	99.080500	1.3114	1.1104	99.6313
1	3	0.0000	. 2000	1.3276	. 1533	95.47170	96.744100	1.3364	1. 1370	98.6848
1	4	0.0000	. 3000	1.3494	. 2337	91.22000	93.645000	1. 3695	1.1727	97.4104
1	5	0.0000	. 4000	1.3701	. 3164	86.53000	90.180000	1.4062	1.2132	95.9525
1	6	0.0000	. 5000	1.3877	. 4006	81.72730	86.577500	1.4444	1.2564	94.3979
1	6	0.0000	1.6547	. 6441	0.0000	179.92863	152. 129942	. 6441	. 5006	118.2730
1	7	0.0000	1.7547	. 6441	0.0000	179.92863	152.129942	. 6441	. 5006	118.2730
1	8	0.0000	1.8547	. 6441	0.0000	179.92863	152. 129942	. 6441	. 5006	118.2730
1	9	0.0000	1.9547	. 6441	0.0000	179.92863	152. 129942	. 6441	. 5006	118.2730
1	10	0.0000	2.0547	. 6441	0.0000	179.92863	152. 129942	. 6441	. 5006	118.2730
1	11	0.0000	2. 1547	. 6441	0.0000	179.92863	152. 129942	. 6441	. 5006	118.2730
2	1	. 2000	0.0000	1.5437	0.0000	70.42400	77.366711	1.5437	1.3675	91.0262
2	2	. 2000	. 1115	1.5460	. 0941	69.84010	76.921446	1.5488	1.3738	90.7941
2	3	. 2000	. 2231	1.5485	. 1857	68.51261	75.925220	1.5596	1.3876	90.2370
2	4	. 2000	. 3346	1.5515	. 2765	66.53859	74.403717	1.5759	1.4084	89.4291
2	5	2000	. 4462	1.5540	3651	64.12068	72.501138	1.5963	1.4345	88.4409
2	6	. 2000	5577	1.5492	4472	62.00111	70.846121	1.6125	1.4568	87.5152
2	6	. 2000	1.6547	. 6441	0.0000	179.92401	152. 127155	. 6441	. 5006	118.2721
2	7	. 2000	1.7547	. 6441	. 0000	179.92401	152.127155	. 6441	. 5006	118.2721
2	8	. 2000	1.8547	. 6441	-. 0000	179.92401	152.127155	. 6441	. 5006	118.2721
2	9	. 2000	1.9547	. 6441	. 0000	179.92401	152.127155	. 6441	. 5006	118.2721
2	10	. 2000	2.0547	6441	-. 0000	179.92401	152.127155	. 6441	. 5006	118.2721
2	11	. 2000	2. 1547	. 6441	0.0000	179.92401	152.127155	. 6441	. 5006	118.2721
3	1	. 4000	0.0000	1.6850	0.0000	54.68094	64.419078	1.6850	1.5457	84.8831
3	2	. 4000	. 1231	1.6841	. 1023	54.44593	64.240050	1.6872	1.5489	84.7539
3	3	. 4000	2462	1.6807	. 2019	53.77164	63.725641	1.6928	1.5575	84.3799
3	4	. 4000	3693	1.6756	. 2990	52.69850	62.868180	1.7021	1.5712	83.8238
3	5	. 4000	. 4924	1.6689	. 3913	51.31118	61.731773	1.7142	1.5891	83.1196
3	6	. 4000	. 6155	1.6572	. 4784	49.91357	60.590319	1.7248	1. 6061	82.3788
3	6	. 4000	1.6547	. 6441	0.0000	179.92725	152.129108	. 6441	. 5006	118.2727
3	7	4000	1.7547	6441	-. 0000	179.92725	152.129108	. 6441	. 5006	118.2727
3	8	. 4000	1.8547	. 6441	-. 0000	179.92725	152. 129108	. 6441	. 5006	118.2727
3	9	. 4000	1.9547	. 6441	. 0000	179.92725	152.129108	. 6441	5006	118.2727
3	10	. 4000	2.0547	. 6441	. 0000	179.92725	152.129108	. 6441	5006	118.2727
3	11	. 4000	2.1547	. 6441	0.0000	179.92725	152.129108	. 6441	. 5006	118.2727
4	1	. 6000	0.0000	1.7836	0.0000	44.63367	55.651536	1.7836	1.6832	80.2020
4	2	. 6000	. 1346	1.7814	. 1065	44.53166	55.579614	1.7845	1.6850	80.1223
4	3	6000	. 2693	1.7752	. 2108	44.14704	55.288347	1.7877	1.6908	79.8487
4	4	. 6000	. 4039	1.7657	. 3123	43.51038	54.770628	1.7931	1.7002	79.4411
4	5	. 6000	5386	1.7544	. 4090	42.57997	53.982336	1.8015	1.7143	78.8776
4	6	. 6000	. 6732	1.7390	. 5020	41.49522	53.054077	1.8100	1.7297	78.2131
4	6	6000	1.6547	. 6441	0.0000	179.93296	152. 132558	. 6441	. 5005	118.2738
4	7	. 6000	1.7547	. 6441	-. 0000	179.93296	152.132558	. 6441	. 5005	118.2738
4	8	6000	1.8547	. 6441	. 0000	179.93296	152.132558	. 6441	5005	118.2738
4	9	. 6000	1.9547	. 6441	. 0000	179.93296	152.132558	. 6441	. 5005	118.2738
4	10	. 6000	2.0547	. 6441	-. 0000	179.93296	152. 132558	. 6441	. 5005	118.2738
4	11	. 6000	2.1547	. 6441	0.0000	179.93296	152.132558	. 6441	. 5005	118.2738
5	1	. 8000	0.0000	1.8584	0.0000	37.61577	49.212201	1.8584	1.7965	76.4359

SOLUTION SURFACE NO. $500-\operatorname{TIME}=28.9964435 E \operatorname{SECONDS}$ (DELTAT $=.05754550$, NVCM $=1, \operatorname{CNUMS}=1.00,(20,2)$ (0.0)

L	M	$\stackrel{x}{(\mathrm{IN})}$	$\stackrel{Y}{(I N)}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \mathrm{RHO} \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
5	2	. 8000	. 1462	1.8556	. 1090	37.56076	49.178536	1.8588	1.7976	76.3763
5	3	. 8000	. 2924	+. 8481	. 2165	37.30861	48.990486	1.8607	1.8020	76.1548
5	4	. 8000	. 4385	!.8364	. 3215	36.87358	48.631677	1.8643	1. 8095	75.8221
5	5	. 8000	. 5847	:. 8226	. 4228	36.16039	49.005901	1.8710	1.8220	75.3249
5	6	. 8000	. 7309	-. 8047	. 5210	35.25577	47.196082	1.8784	1.8368	74.7006
5	6	. 8000	1.6547	. 6440	0.0000	179.94062	152.137183	. 6440	. 5005	118.2752
5	7	. 8000	1.7547	. 6440	-. 0000	179.94062	152.137183	. 6440	. 5005	118.2752
5	8	. 8000	1.8547	. 6440	. 0000	179.94062	152.137183	. 6440	. 5005	118.2752
5	9	. 8000	1.9547	. 6440	-. 0000	179.94062	152.137183	. 6440	. 5005	118.2752
5	10	. 8000	2.0547	. 6440	-. 0000	179.94062	152. 137183	. 6440	. 5005	118.2752
5	11	. 8000	2. 1547	. 6440	0.0000	179.94062	152. 137183	. 6440	. 5005	118.2752
6	1	1.0000	0.0000	. 9181	0.0000	32.42246	44.234596	1.9181	1.8935	73.2966
6	2	1.0000	. 1577	-. 9152	. 1109	32.37947	44.209019	1.9184	1.8945	73.2418
6	3	1.0000	. 3155	. .9070	. 2209	32.18301	44.061170	1.9197	1.8984	73.0417
6	4	1.0000	. 4732	-. 8942	. 3290	31.83592	43.767295	1.9226	1.9052	72.7391
6	5	1.0000	. 6310	- 8790	. 4343	31.23841	43.223165	1.9285	1.9172	72.2724
6	6	1.0000	. 7887	-. 8592	. 5367	30.45887	42.495530	1.9351	1.9318	71.6755
6	6	1.0000	1.6547	. 6440	0.0000	179.94731	152.141222	. 6440	5004	118.2765
6	7	1.0000	1. 7547	. 6440	. 0000	179.94731	152. 141222	. 6440	5004	118.2765
6	8	1.0000	1.8547	. 6440	. 0000	179.94731	152.141222	. 6440	. 5004	118.2765
6	9	1.0000	1. 9547	. 6440	. 0000	179.94731	152. 141222	. 6440	5004	118.2765
6	10	1.0000	2.0547	. 6440	-. 0000	179.94731	152. 141222	. 6440	. 5004	118.2765
6	11	1.0000	2. 1547	. 6440	0.0000	179.94731	152.141222	. 6440	. 5004	
7	1	1.2000	0.0000	1.9676	0.0000	28.41421	40.241246	1.9676	1.9789	70.6097
7	2	1.2000	. 1693	1.9646	. 1127	28.36953	40.210997	1.9679	1.9801	70.5517
7	3	1.2000	. 3386	1.9562	. 2248	28.19273	40.072029	1.9691	1.9840	70.3551
7	4	1.2000	. 5078	1.9429	. 3356	27.88247	39.798801	1.9717	1.9908	70.0586
7	5	1.2000	6771	1. 9266	. 4443	27.35629	39.301382	1.9772	2.0029	69.6064
7	6	1.2000	. 8464	1. 9055	. 5501	26.67300	38.638731	1.9833	2.0174	69.0318
7	6	1. 2000	1.6547	. 6440	0.0000	179.94594	152.140394	. 6440	. 5004	118.2762
7	7	1.2000	1.7547	. 6440	. 0000	179.94594	152.140394	6440	. 5004	118.2762
7	8	1.2000	1.8547	. 6440	. 0000	179.94594	152.140394	. 6440	. 5004	118.2762
7	9	1.2000	1.9547	6440	. 0000	179.94594	152.140394	. 6440	. 5004	118.2762
7	10	1.2000	2.0547	. 6440	. 0000	179.94594	152.140394	. 6440	. 5004	118.2762
7	11	1.2000	2.1547	. 6440	0.0000	179.94594	152.140394	. 6440	. 5004	118.2762
8	1	1.4000	0.0000	2.0096	0.0000	25.21985	36.945647	2.0096	2.0557	68.2620
8	2	1.4000	. 1808	2.0068	. 1144	25.16963	36.906817	2.0100	2.0571	68.1978
8	3	1. 4000	. 3616	1.9982	. 2285	24.99772	36.763487	2.0112	2.0614	67.9960
8	4	i. 4000	. 5425	1.9847	. 3418	24.70364	36.492815	2.0139	2.0687	67.6945
8	5	1.4000	. 7233	1.9676	. 4532	24.22841	36.027167	2.0192	2.0809	67.2504
8	6	1.4000	. 9041	1.9453	. 5616	23.62296	35.419115	2.0248	2.0954	66.6955
8	6	1.4000	1.6547	. 6440	0.0000	179.94038	152.137043	. 6440	. 5004	118.2752
8	7	1.4000	1.7547	. 6440	-. 0000	179.94038	152. 137043	. 6440	. 5004	118.2752
8	8	1.4000	1.8547	. 6440	-. 0000	179.94038	152.137043	. 6440	. 5004	118.2752
8	9	1. 4000	1.9547	. 6440	-. 0000	179.94038	152.137043	. 6440	. 5004	118.2752
8	10	1.4000	2.0547	. 6440	. 0000	179.94038	152.137043	. 6440	. 5004	118.2752
8	11	1. 4000	2.1547	. 6440	0.0000	179.94038	152.137043	. 6440	. 5004	118.2752
9	1	1.6000	0.0000	2.0461	0.0000	22.61059	34. 166358	2.0461	2. 1257	66.1779
9	2	1. 6000	1924	2.0433	1162	22.55543	34.119462	2.0466	2. 1274	66. 1072

Fig. 25. (cont)

SOLUTION SURFACE NO. $500-T I M E=28.99644355 \operatorname{SECONDS}(D E L T A T=.05754550, N V C M=1, C N U M S=1 . O O,(2 O, 2),(O, O)$

L	M	$\begin{gathered} x \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(\mathrm{IN})}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\stackrel{v}{(F / S)}$	$(\stackrel{P}{P S I A})$	$\begin{gathered} \text { RHO } \\ (\text { LBM } / \text { FT3) } \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
9	3	1.6000	. 3848	2.0348	. 2321	22.38412	33.968206	2.0480	2. 1322	65.8973
9	4	1.6000	. 5771	2.0210	. 3476	22.09955	33.694880	2.0507	2. 1401	65.5873
9	5	1.6000	. 7695	2.0034	. 4613	21.66517	33.254731	2.0558	2.1526	65.1491
9	6	1.6000	. 9619	1.9801	. 5716	21.12425	32.693800	2.0610	2.1670	64.6124
9	6	1.6000	1.6547	. 6440	0.0000	179.93258	152. 132332	. 6440	5005	118.2737
9	7	1.6000	1.7547	. 6440	-. 0000	179.93258	152. 132332	. 6440	. 5005	118.2737
9	8	1.6000	1.8547	. 6440	-. 0000	179.93258	152. 132332	. 6440	5005	118.2737
9	9	1.6000	1.9547	. 6440	. 0000	179.93258	152.132332	. 6440	. 5005	118.2737
9	10	1.6000	2.0547	. 6440	. 0000	179.93258	152.132332	. 6440	. 5005	118.2737
9	11	1.6000	2. 1547	. 6440	0.0000	179.93258	152. 132332	. 6440	. 5005	118.2737
10	1	1.8000	0.0000	2.0783	0.0000	20.43660	31.781310	2.0783	2. 1904	64.3038
10	2	1.8000	. 2039	2.0756	. 1181	20.37869	31.728703	2.0789	2. 1924	64.2279
10	3	1.8000	. 4078	2.0670	. 2357	20.20832	31.570578	2.0804	2.1976	64.0100
10	4	1.8000	. 6118	2.0531	. 3530	19.93247	31.295166	2.0832	2. 2061	63.6918
10	5	1.8000	. 8157	2.0349	. 4686	19.53324	30.877874	2.0881	2.2189	63.2597
10	6	1.8000	1.0196	2.0108	. 5805	19.04665	30.358132	2.0929	2.2332	62.7398
10	6	1.8000	1.6547	. 6440	0.0000	179.92792	152. 129500	. 5440	. 5005	118.2729
10	7	1.8000	1.7547	. 6440	-. 0000	179.92792	152. 129500	. 6440	. 5005	118.2729
10	3	1.8000	1.8547	. 6440	. 0000	179.92792	152. 129500	. 5440	. 5005	118.2729
10	9	1.8000	1.9547	. 6440	. 0000	179.92792	152. 129500	. 6440	. 5005	118.2729
10	10	1.8000	2.0547	. 6440	. 0000	179.92792	152. 129500	. 6440	. 5005	118.2729
10	11	1.8000	2.1547	. 6440	0.0000	179.92792	152.129500	. 6440	. 5005	118.2729
11	1	2.0000	0.0000	2. 1071	0.0000	18.59719	29.707043	2. 1071	2.2507	62.6019
11	2	2.0000	. 2155	2. 1043	. 1199	18.53893	29.651490	2. 1077	2.2529	62.5228
11	3	2.0000	. 4310	2.0957	. 2392	18.37146	29.489336	2. 1093	2.2586	62.2987
11	4	2.0000	. 6464	2.0816	. 3582	18.10560	29.214569	2. 1122	2.2676	61.9746
11	5	2.0000	. 8619	2.0629	. 4752	17.73778	28.818925	2. 1169	2.2805	61.5491
11	6	2.0000	1.0774	2.0382	. 5884	17.29735	28.335426	2. 1214	2.2948	61.0450
11	6	2.0000	1.6547	. 6440	0.0000	179.92841	152. 129794	. 6440	. 5005	118.2730
11	7	2.0000	1.7547	. 6440	-. 0000	179.92841	152. 129794	. 6440	. 5005	118.2730
11	8	2.0000	1.8547	. 6440	-. 0000	179.92841	152.129794	. 6440	. 5005	118.2730
11	9	2.0000	1. 9547	. 6440	-. 0000	179.92841	152. 129794	. 6440	. 5005	118.2730
11	10	2.0000	2.0547	. 6440	-. 0000	179.92841	152.129794	. 6440	. 5005	118.2730
11	11	2.0000	2.1547	. 6440	0.0000	179.92841	152. 129794	.6440	. 5005	118.2730
12	1	2.2000	0.0000	2. 1330	0.0000	17.02108	27.883243	2. 1330	2.3073	61.0441
12	2	2.2000	. 2270	2. 1303	. 1216	16.96446	27.827205	2.1337	2.3096	60.9636
12	3	2.2000	. 4540	2. 1215	. 2426	16.80203	27.664177	2. 1353	2.3157	60.7357
12	4	2.2000	. 6811	2. 1072	. 3630	16.54782	27.393221	2. 1382	2.3251	60.4084
12	5	2.2000	. 9081	2.0881	. 4813	16.20857	27.018521	2. 1428	2.3382	59.9906
12	6	2.2000	1.1351	2.0628	. 5955	15.80773	26.567110	2.1470	2.3524	59.5011
12	6	2.2000	1.6547	. 6440	0.0000	179.93270	152. 132432	. 6440	. 5004	118.2737
12	7	2.2000	1.7547	. 6440	-. 0000	179.93270	152.132433	. 6440	. 5004	118.2737
12	8	2.2000	1.8547	. 6440	-. 0000	179.93270	152.132433	. 6440	. 5004	118.2737
12	9	2.2000	1.9547	. 6440	-. 0000	179.93270	152.132433	. 6440	5004	118.2737
12	10	2.2000	2.0547	. 6440	-. 0000	179.93270	152.132433	. 6440	. 5004	118.2737
12	11	2.2000	2. 1547	. 6440	0.0000	179.93270	152. 132432	. 6440	. 5004	118.2737
13	1	2.4000	0.0000	2. 1567	0.0000	15.65648	26.265270	2. 1567	2.3608	59.6091
13	2	2.4000	. 2386	2. 1538	. 1233	15.60287	26.210640	2. 1573	2.3631	59.5288
13	3	2.4000	. 4771	2. 1449	. 2458	15.44724	26.049531	2. 1589	2.3695	59.2995

L	M	$\begin{gathered} \mathrm{X} \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(I N)}$	$\begin{gathered} \mathrm{U} \\ (F / S) \end{gathered}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \mathrm{RHO} \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \mathrm{MACH} \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
13	4	2.4000	. 7157	2. 1304	. 3674	15.20602	25.785211	2. 1618	2.3792	58.9719
13	5	2.4000	. 9542	2. 1108	. 4868	14.89292	25.430803	2. 1662	2.3924	58.5625
13	6	2.4000	1. 1928	2.0850	. 6019	14.52626	25.007882	2. 1702	2.4065	58.0867
13	6	2.4000	1.6547	. 6439	0.0000	179.93859	152.135984	. 6439	. 5004	118.2748
13	7	2.4000	1.7547	. 6439	$-.0000$	179.93859	152.135984	. 6439	. 5004	118.2748
13	8	2.4000	1.8547	. 6439	-. 0000	179.93859	152.135984	. 6439	. 5004	118.2748
13	9	2.4000	1.9547	. 6439	-. 0000	179.93859	152. 135984	. 6439	. 5004	118.2748
13	10	2.4000	2.0547	. 6439	-. 0000	179.93859	152.135984	. 6439	5004	118.2748
13	11	2.4000	2. 1547	. 6439	0.0000	179.93859	152.135984	. 6439	5004	118.2748
14	1	2.6000	0.0000	2. 1783	0.0000	14.46522	24.819942	2.1783	2.4115	58.2807
14	2	2.6000	. 2501	2.1753	. 1248	14.41545	24.768017	2.1789	2.4138	58.2019
14	3	2.6000	. 5002	2. 1663	. 2488	14.26784	24.611024	2. 1805	2.4203	57.9734
14	4	2.6000	. 7504	2. 1515	. 3716	14.04046	24.355569	2.1833	2.4303	57.6478
14	5	2.6000	1.0005	2. 1315	. 4919	13.75138	24.020806	2. 1875	2.4435	57.2478
14	6	2.6003	1.2506	2.1052	. 6077	13.41446	23.623374	2. 1912	2.4576	56.7847
14	6	2.6000	1.6547	. 6439	0.0000	179.94405	152.139205	. 6439	. 5004	118.2759
14	7	2.6000	1.7547	. 6439	. 0000	179.94405	152. 139205	. 6439	. 5004	118.2759
14	8	2.6000	1.8547	. 6439	. 0000	179.94405	152.139205	. 6439	. 5004	118.2759
14	9	2.6000	1.9547	. 5439	. 0000	179.94405	152.139205	. 6439	. 5004	118.2759
14	10	2.6000	2.0547	. 5439	. 0000	179.94405	152.139205	. 6439	. 5004	118.2759
14	11	2.6000	2.1547	. 5439	0.0000	179.94405	152.139205	. 6439	. 5004	118.2759
15	1	2.8000	0.0000	2.1982	0.0000	13.41706	23.520057	2. 1982	2.4597	57.0452
15	2	2.8000	. 2617	2.1952	. 1263	13.37150	23.471611	2. 1988	2.4621	56.9688
15	3	2.8000	. 5233	2.1859	. 2516	13.23257	23.320296	2.2003	2.4687	56.7427
15	4	2.8000	. 7850	2.1708	. 3754	13.01938	23.075264	2.2031	2.4788	56.4214
15	5	2.8000	1.0466	2. 1505	. 4966	12.75228	22.759286	2.2071	2.4919	56.031 ;
15	6	2.8000	1.3083	2.1238	. 6131.	12.44127	22.384540	2.2105	2.5060	55.5798
15	6	2.8000	1.6547	. 6439	0.0000	179.94865	152. 142000	. 6439	. 5003	118.2768
15	7	2.8000	1.7547	. 6439	. 0000	179.94865	152.142000	. 6439	. 5003	118.2768
15	8	2.8000	1.8547	. 6439	. 0000	179.94865	152.142000	. 6439	. 5003	118.2768
15	9	2.8000	1.9547	. 6439	. 0000	179.94865	152.142000	. 6439	. 5003	118.2768
15	10	2.8000	2.0547	6439	. 0000	179.94865	152.142000	. 6439	. 5003	118.2768
15	11	2.8000	2.1547	. 6439	0.0000	179.94865	152.142000	. 6439	. 5003	118.2768
16	1		0.0000	2.2165	0.0000	12.48999	22.346233			
16	2	3.0000	. 2732	2.2134	. 1276	12.44870	22.301650	2.2171	2.5080	55.8196
16	3	3.0000	. 5464	2.2040	. 2542	12.31873	22.157049	2.2186	2.5147	55.5973
16	4	3.0000	. 8196	2.1886	. 3790	12.11967	21.923448	2.2212	2.5248	55.2818
16	5	3.0000	1.0928	2. 1679	. 5009	11.87278	21.625515	2.2250	2.5379	54.9017
16	6	3.0000	1.3660	2.1408	. 6180	11.58481	21.271525	2.2283	2.5519	54.4616
16	6	3.0000	1.6547	. 6438	0.0000	179.95352	152.145039	. 6438	. 5003	118.2776
16	7	3.0000	1.7547	. 6438	. 0000	179.95352	152.145039	. 6438	. 5003	118.2776
16	8	3.0000	1.8547	. 6438	. 0000	179.95352	152. 145039	1.6438	. 5003	118.2776
16	9	3.0000	1.9547	. 6438	. 0000	179.95352	152.145039	. 6438	. 5003	118.2776
16	10	3.0000	2.0547	. 6438	. 0000	179.95352	152.145039	. 6438	. 5003	118.2776
16	11	3.0000	2.1547	. 6438	0.0000	179.95352	152.145039	. 6438	. 5003	118.2776
17	1	3.2000	0.0000	2.2337	0.0000	11.66280	21.277714	2.2337	2.5499	54.8123
17	2	3.2000	. 2848	2.2305	. 1288	11.62563	21.237063	2.2342	2.5521	54.7422
17	3	3.2000	. 5695	2.2208	. 2565	11.50454	21.099725	2.2356	2.5588	54.5246
17	4	3.2000	. 8543	2.2052	. 3823	11.31923	20.878028	2. 2381	2.5689	54.2160

Fig. 25. (cont)

L.	M	$\begin{gathered} x \\ (I N) \end{gathered}$	$\begin{gathered} Y \\ (I N) \end{gathered}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\stackrel{V}{(F / S)}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
17	5	3. 2000	1. 1390	2. 1841	5049	11.09066	20.596966	2.2417	2.5819	53.8461
17	6	3. 2000	1.4238	2. 1567	6226	10.82254	20.260958	2.2448	2.5959	53.4158
17	6	3.2000	1.6547	. 6438	0.0000	179.96004	152. 148947	. 6438	. 5003	118.2789
17	7	3.2000	1.7547	. 6438	. 0000	179.96004	152. 148947	. 6438	. 5003	118.2789
17	8	3. 2000	1.8547	. 6438	. 0000	179.96004	152. 148947	. 6438	5003	118.2789
17	9	3. 2000	1.9547	. 6438	. 0000	179.96004	152. 148947	. 6438	5003	118.2789
17	10	3. 2000	2.0547	. 6438	-. 0000	179.96004	152.148947	6438	5003	118.2789
17	1.1	3.2000	2. 1547	. 6438	0.0000	179.96004	152. 148947	6438	5003	118.2789
18	1	3.4000	0.0000	2.2494	0.0000	10.92756	20.309865	2.2494	2.5917	53.8042
18	2	3.4000	. 2963	2.2461	. 1300	10.89422	20.273038	2.2498	2.5939	53.7375
18	3	3.4000	. 5926	2.2362	. 2587	10.78171	20.143218	2.2511	2.6005	53.5253
18	4	3.4000	. 8889	2.2203	. 3853	10.60953	19.933551	2.2535	2.6106	53.2245
18	5	3.4000	1. 1852	2. 1989	. 5085	10.39790	19.668722	2.2569	2.6234	52.8652
18	6	3.4000	1.4815	2.1712	. 6268	10.14847	19.350539	2.2598	2.6373	52.4454
18	6	3.4000	1.6547	. 6437	0.0000	179.96894	152. 154211	. 6437	. 5003	118.2806
18	7	3.4000	1.7547	. 6437	-. 0000	179.96894	152. 154211	. 6437	. 5003	118.2806
18	8	3.4000	1.8547	. 6437	-. 0000	179.96894	152.154211	6437	5003	118.2806
18	9	3.4000	1.9547	. 6437	-. 0000	179.96894	152. 154211	. 6437	5003	118.2806
18	10	3.4000	2.0547	. 6437	-. 0000	179.96894	152. 154211	. 6437	. 5003	118.2806
18	11	3.4000	2. 1547	. 6437	0.0000	179.96894	152. 154211	6437	. 5003	118.2806
19	1	3.6000	0.0000	2. 2648	0.0000	10.25387	19.407756	2. 2648^{\prime}	2.6334	52.8339
19	2	3.6000	. 3078	2. 2614	. 1310	10.22406	19.374567	2.2652	2.6354	52.7705
19	3	3.6000	. 6157	2.2513	. 2608	10.11976	19.252252	2.2664	2.6420	52.5640
19	4	3.6000	. 9235	2.2351	. 3881	9.96008	19.054503	2.2686	2.6519	52.2716
19	5	3.6000	1.2314	2.2134	. 5120	9.76366	18.804465	2.2719	2.6646	51.9220
19	6	3.6000	1.5392	2.1853	. 6309	9.52893	18.499550	2.2746	2.6785	51.5090
19	6	3.6000	1.6547	. 6437	0.0000	179.97978	152.160790	. 6437	. 5002	118.2826
19	7	3.6000	1.7547	. 6437	-. 0000	179.97978	152. 160790	. 6437	. 5002	118.2826
19	8	3.6000	1.8547	. 6437	-. 0000	179.97978	152. 160790	. 6437	. 5002	118.2826
19	9	3.6000	1.9547	. 6437	-. 0000	179.97978	152. 160790	. 6437	. 5002	118.2826
19	10	3.6000	2.0547	6437	-. 0000	179.97978	152.160790	. 6437	. 5002	118.2826
19	11	3.6000	2. 1547	. 6437	0.0000	179.97978	152.160790	. 6437	. 5002	118.2826
20	1	3.8000	0.0000	2.2785	0.0000	9.69812	18.639909	2.2785	2.6697	52.0288
20	2	3.8000	. 3194	2.2750	. 1319	9.67116	18.609777	2.2788	2.6716	51.9681
20	3	3.8000	. 6388	2.2647	. 2626	9.57404	18.494487	2.2799	2.6781	51.7670
20	4	3.8000	. 9582	2.2483	. 3905	9.42515	18.307660	2.2820	2.6879	51.4820
20	5	3.8000	1.2776	2.2263	. 5150	9.24183	18.071130	2.2850	2.7005	51.1414
20	6	3.8000	1.5970	2. 1979	. 6345	9.01826	17.776265	2.2876	2.7144	50.7320
-20	6	3.8000	1.6547	. 6437	0.0000	179.99068	152. 167457	. 6437	. 5002	118.2846
20	7	3.8000	1.7547	. 6437	-. 0000	179.99068	152.167457	. 6437	. 5002	118.2846
20	8	3.8000	1.8547	. 6437	-. 0000	179.99068	152.167457	. 6437	. 5002	118.2846
20	9	3.8000	1.9547	. 6437	. 0000	179.99068	152.167457	. 6437	. 5002	118.2846
20	10	3.8000	2.0547	. 6437	. 0000	179.99068	152.167457	. 6437	. 5002	118.2846
20	11	3.8000	2. 1547	. 6437	0.0000	179.99068	152.167457	. 6437	. 5002	118.2846
21	1	4.0000	0.0000	2.2921	0.0000	9. 14238	17.872062	2.2921	2.7085	51.1546
21	2	4.0000	. 3309	2.2886	. 1327	9. 11825	17.844986	2.2924	2.7104	51.0970
21	3	4.0000	. 6619	2.2781	. 2643	9.02832	17.736723	2.2934	2.7168	50.9018
21	4	4.0000	. 9928	2.2615	. 3930	8.89021	17.560817	2.2953	2.7265	50.6253
21	5	4.0000	1.3238	2.2391	. 5180	8.71999	17.337795	2.2982	2.7389	50.2947

SOLUTION SURFACE NO. $500-$ TIME $=28.99644355$ SECCNDS (DELTA $T=.05754550$, NVCM $=1$, CNUMS $=1.00 .(20,2),(0,0)$)

L	M	$\begin{gathered} \mathrm{X} \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(I N)}$	$\stackrel{!!}{(F i S)}$	$\begin{gathered} v \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ \text { (LEM/FT3) } \end{gathered}$	VMAS $(F / 5)$	$\begin{aligned} & \mathrm{M} . \mathrm{ACH} \\ & \text { NO } \end{aligned}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{R}) \end{gathered}$
21	6	4.0000	1.6547	2.2104	. 6381	8. 50758	17.052979	2.3007	2.7529	49.8891
21	6	4.0000	1.6547	. 643 E	0.0000	180.00000	152. 173097	. 5436	. 5002	118.2863
21	7	4.0000	1.7547	. 643 E	. 0000	180.00000	152.173097	. 5436	. 5002	118.2863
21	8	4.0000	1.8547	. 643 E	. 0000	180.00000	152.173097	. 5436	. 5002	118.2863
21	9	4.0000	1.9547	. 643 E	. 0000	180.00000	152.173097	. 5436	. 5002	118.2863
21	10	4.0000	2.0547	. 643 E	. 0000	180.00000	152.173097	. 5436	. 5002	118.2863
21	11	4.0000	2. 1547	. 643 E	0.0000	180.00000	152. 173097	. 5136	. 5002	118.2863
***** EXPECT	ILM	T FOR	500 **							

Fig. 25. (cont)

Fig. 26.
Case No. 2 geometry.

```
VNAP2 CASE 2 - SUPERSONIC SOURCE-SUBSONIC CONSTANT AREA FLOW
    $CNTRL LMAX=21, MMAX=11,NMAX =500,NPLOT=500, IUNIT=1,RGAS=0.01.
    TSTOP=100.0 $
    $IVS N1D=O.
    U(1,1,1)=21*0.67.U(1,2,1)=21*0.67,U(1,3,1)=21*0.67,U(1,4,1)=21*0.67.
    U(1,5,1)=21*0.67.UL=21*0.67.U(1,6,1)=21*1.39,U(1,7,1)=21*1.39;
    U(1, 8, 1)=21*1.39,U(1,9,1)=21*1.39,U(1,10,1)=21*1.39,U(1,11,1)=21*1.39.
    V (1,1,1)=21*0.0.V(1,2,i)=21*0.0.V(1,3,1)=2 1*0.0.V(1,4,1)=21*0.0,
    V(1,5,1)=21*0.0,VL=21*0.0,V(1,6,1)=21*0.4,V(1,7,1)=21*0.4.
    V(1, 8,1)=21*0.4.V(1,9,1)=21*0.4.V(1,10,1)=21*0.4.V(1, 11, 1)=21*0.4.
    P(1.1,1)=21*180.O.P(1,2,1)=21*180.O.P(1,3,1)=21*180.0,P(1,4,1)=21*180.0,
    P(1,5,1)=21*180.0, PL'=21*180.0,P(1,6,1)=21*81.7.P(1,7,1)=21*81.7.
    P(1,8,1)=21*81.7. P(1,9,1)=21*81.7.P(1, 10,1)=21*81.7,P(1, 11.1)=21*81.7.
    RO(i,1,1)=21*150.O.RO(1,2,1)=21*150.O.RO(1,3,1)=21*150.O.RO(1,4,1)=21*150.0.
    RO(1,5,1)=21*150.O.ROL=21*150.O.RO(1,6,1)=21*86.6.RO(1, 7,1)=21*86.6.
    RO(1,8,1)=21*86.6,RO(1,9,1)=21*86.6,RO(1,10,1)=21*86.6.
    RO(1,11,1)=21*86.6 $
    $GEMTRY NDIM=O,NGEOM=4,XI=0.O,XE=4.O,
    YW=1.0,1.1155,1.2309,1.3464,1.4619,1.5773,1.6928,1.8083,1.9238,2.0392,
    2.1547,2.2702,2.3856,2.5011.2.6166,2.7321.2.8475,2.9630,3.0785,3.1939.
    3.3094,
    NXNY=21*-0.57735 $
    $GCBL $
    $BC ISUPER=3,PT=213.514,TT=124.2,PE=180.O.
    UI (6)=1.3877,1.4010,1.4099.1.4142,1.4143,1.41032.
    VI(6) =0.4006,0.4853,0.5698.0.6532,0.7349.0.81425,
    PI (6) = 81.7273,76.9763,72.3470.67.9110,63.7063,59.7460,
    ROI (6)=86.5775,82.9519,79.3570,75.8503,72.4653.69.2182 $
    $AVL $
    $TURBL$
    $TURBL $
    $DFSL NDFS=2, LDFSS=1, LDFSF=21,MDFS=6,
    YL=21*0.5.
    NXNYI=21+-0.0.
    YU=0.5,0.5577,0.6155,0.6732.0.7309.0.7887,0.8464.0.9041.0.9619,1.0196,
    1.0774,1.1351,1.1928,1.2506,1.3083,1.3660,1.4238,1.4815.1.5392.1.5970.
    1.6547,
    NXNYU=24*-0.28868 $
    $VCL $
```

Fig. 27.
Case No. 2 data deck.

VNAP2. A COMPUTER PRGGRAM FOF THE COMPUTATION OF TWO-DIMENSIONAL. TIME-DEPENDENT. COMPRESSIBLE, TURBULENT FLOW BY MICHAEL C. CLINE, T-3 - LOj ALAMOS NATIONAL LABORATCRY

PROGRAM ABSTRACT -

THE NAVIER-STGKES EQUATIONS FOR TWO-DIMEVSIONAL. TIME-DEPENOENT FLOW ARE SOLVED USING THE SECOND-ORDER, MACCORMACK FINITE-DIFFERENCE SC-IEME, ALL BOUNDARY CONDITIONS ARE COMPUTED USING A SECOND-OFDER, REFERENCE PI-ANE CHARACTERISTI Z SCHEME WITH THE VISEOUS TERMS IREATED AS SOURCE FUNCTIONS. - THE FLUID'IS ASSUMED TO GE A PERFECT GAS. THE STEADY-STABE SOLUTION IS OBTAINED AS THE ASYMPTCTIC SOLUTION FOR LAEGE TINE. THE FLOW BOUNDARIES MAY BE AFEITRARY CURVED SOLID WALLS AS WELL AS JET ENVELOPES. THE GEONETRY MAY CJNSIST OF SINGLE AND DUAL FLOWING STREAMS. TURBULENCE EFFECTS ARE MCDELED WITH EITHEE A MIXING-LENGTH. A TURBULENCE ENERGY EQUATION, OR A TURBULENCE ENERGY-DISSIPATION RATE EQUATIONS MOCEL. THIS PROGRAM ALLOWS VARIABLE GRID SFACING AND INCLUDES OPTIONS TO SPEED UP THE CALCULATION FOR HIGH REVNOLDS NUMBER FLOWS

JOB TITLE -
VNAP2 CASE 2 - SUPERSONIC SOURCE-SIJBSCNIC CONSTANT AREA FLOW

CONTROL PARAMETERS -

LMAX $=21$	M ${ }_{\text {H }}$ AX $=11$	NMAX $=500$	WPRINT =	0	NPLOT $=$	500	$F D T=.90$	FOT $1=1.00$	FDT $\mathrm{I}=.90$	I PUNCH $=0$
IUI = I	IJJO $=1$	IVPTS $=1$	WCONVI = 1		TSTOP =	10E+03	$\mathrm{N} 1 \mathrm{C}=0$	TCONV $=0.000$	NASM $=1$	IUNIT $=1$
RSTAR =	0.000000	RSTARS $=$	0.000000		PLOW $=$	0100	ROLOW=	. 000100	$\mathrm{VDT}=.25$	VOT $1=.25$

FLUID MODEL
THE RATIO OF SPECIEIC HEATS. GAMMA $=\cdot .4000$ AND THE GAS CONSTANT. R $=.0100(F T-L B F / L B M-R)$

FLOW GEOMETRY -
TWO-DIMENS:ONAL, P_ANAR FLOW HAS BEEN SPECIFIED

Fig. 28.
Case No. 2 output.

DUCT GEDMETRY -
A GENERAL WALL HAS BEEN SPECIFIED BY THE FOLLOWING PARAMETERS, XT= $0.0000(I N), R T=1 . O O O O(I N)$,

L	$X P(I N)$	$Y W(I N)$	$S L O P E$
1	0.0000	1.0000	.5773
2	.2000	1.1155	.5773
3	.4000	1.2309	.5773
4	.6000	1.3464	.5773
5	.8000	1.4619	.5773
5	1.0000	1.5773	.5773
7	1.4000	.6928	.5773
8	1.6000	1.8083	.5773
9	1.8000	2.039	.5773
10	2.0000	2.1547	.5773
11	2.4000	2.2702	.5773
12	2.6000	2.5856	.5773
13	3.8000	2.6166	.5773
14	3.2000	2.7321	.5773
15	3.4000	2.8475	.5773
16	3.6000	3.9630	.5773
17	4.0000	3.1939	.5773
18		3.3094	.5773
19			.5773
20			

Fig. 28. (cont)

DUAL FLOW SPAEE BDUNDARY GEONETRY -
general boundaries haive been specifieg by the following parameters,

L	XP(IN)	\cdots (IN)	SLCPEL	YU(IN)	SLOPEU
1	0.0000	. 5000	0.0000	5300	. 2887
2	. 2000	. 5000	0.0000	5577	. 2887
3	. 4000	5000	0.0000	6.155	. 2887
4	. 6000	. 5000	0.0000	6.7こ2	2887
5	. 8000	5000	0.0000	.73C9	2887
6	1.0000	5000	0.0000	7887	2887
7	1.2000	5000	0.0000	84E4	2887
8	1.4000	. 5000	0.0000	$90<1$	2887
9	1.6000	. 5000	0.0000	. $66 \cdot 9$	2887
10	1.8000	. 5000	0.0000	1.C196	2887
11	2.0000	. 5000	0.0000	1.C7.4	2887
12	2.2000	. 5000	0.0000	1. 1351	2887
13	2.4000	. 5000	0.0000	1.1928.	2887
14	2.6000	. 5000	0.0000	1. 2506	2887
15	2.8000	. 5000	0.0000	1. 5083	2887
16	3.0000	. 5000	0.0000	1.3660	2887
17	3.2000	. 5000	0.0000	1.4238	2887
18	3.4000	. 5000	0.0000	1.4815	2887
19	3.6000	. 5000	0.0000	1.5332	2887
20	3.8000	. 5000	0.0000	1.5976	2887
21	4.0000	. 5000	0.0000	1.6577	2887

Fig. 28 (cont)
oUUNDARY CONDITIONS -

ARTIFICAL VISCOSITY -

$C A V=0.00$	$X M U=.40$	$X L A=1.00$	PRA $=.70$	$\mathrm{XRO}=.60$	LSS $=$		LSF $=999$	IDIVC=0	ISS $=0$		$\mathrm{MACH}=0.00$
NST $=0$	$S M P=1.00$	SMPF $=1.00$	SMPT $=1.00$	SMPTF $=1.00$	NTST $=$	1	I $A V=0$	MSS =	MSF $=999$		

MOLECULAR VISCOSITY -
$C M U=0 . \quad(L B F-S / F T 2) \quad C L A=0 . \quad(L B F-S / F T 2) \quad C K=0 . \quad E L A F / S-R) \quad E M U=0.00 \quad E L A=0.00 \quad E K=0 . O O$

TURBULENCE MDCEL
NO NODEL IS SPECIFIED

VARIABLE GRID PARAMETERS -
$I S T=0 \quad M V C B=0 \quad$ MVCT $=0 \quad \operatorname{IQS}=0 \quad$ NIQSS $=2 \quad$ NIQSF $=0 \quad$ NVCMI $=0 \quad \operatorname{ILLQS}=30 \quad S Q S=.50 \quad \operatorname{CQS}=.001$

EXPECT FILM OUTPUT FOR $N=0$ *****

Fig. 28. (cont)

MASS FLOW AND THRUST CALCULATION, $N=500$

L	MF (LBM/S)	MF/MFI	T(ILBF)	T/TI
1	103.66476	1.0000	108.4936	1.0000
2	104.17112	1.0049	116.7201	1.0758
3	104.38358	1.0069	122.2641	1.1269
4	104.52396	1.0083	126.4869	1.1658
5	104.62213	1.0092	129.8680	1.1970
6	104.68099	1.0098	132.6420	1.2226
7	104.73904	1.0104	135.0156	1.2445
8	104.78580	1.0108	137.0625	1.2633
9	104.81792	1.0111	138.8408	1.2797
10	104.84414	1.0114	140.4132	1.2942
11	104.86594	1.0116	141.8178	1.3072
12	104.88962	1.0118	143.0932	1.3189
13	104.90506	1.0120	144.2406	1.3295
14	104.91802	1.0121	145.2872	1.3391
15	104.93230	1.0122	146.2559	1.3481
16	104.94652	1.0124	147.1501	1.3563
17	104.94665	1.0124	147.9603	1.3638
18	104.96477	1.0125	148.7347	1.3709
19	104.95407	1.0124	149.4413	1.3774
20	105.09699	1.0138	150.3916	1.3862
21	105.08073	1.0137	151.0062	1.3918

Fig. 28. (cont)

L	M	$\begin{gathered} x \\ (I N) \end{gathered}$	$\begin{gathered} Y \\ (I N) \end{gathered}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\begin{gathered} v \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ \text { (LBM/FT3) } \end{gathered}$	JMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
1	1	0.0000	0.0000	. 6440	0.0000	179.93650	152.134697	. 6440	. 5005	118.2745
1	2	0.0000	. 1000	. 6440	0.0000	179.93650	152. 134697	. 6440	. 5005	118.2745
1	3	0.0000	. 2000	. 6440	0.0000	179.93650	152.134697	. 6440	. 5005	118.2745
1	4	0.0000	. 3000	. 6440	0.0000	179.93650	152.134697	. 6440	. 5005	118.2745
1	5	0.0000	. 4000	. 6440	0.0000	179.93650	152. 134697	. 6440	. 5005	118.2745
1	6	0.0000	. 5000	. 6440	0.0000	179.93650	152.134697	. 6440	. 5005	118.2745
1	6	0.0000	. 5000	-. 3877	. 4006	81.72730	86.577500	1.4444	1. 2564	94.3979
1	7	0.0000	. 6000	-. 4010	. 4853	76.97630	82.951900	1.4827	1.3008	92.7963
1	8	0.0000	. 7000	-. 4099	. 5698	72.34700	79.357000	1.5207	1.3460	91. 1665
1	9	0.0000	. 8000	1.4142	. 6532	67.91100	75.850300	1.5578	1.3914	89.5329
1	10	0.0000	. 9000	1.4143	. 7349	63.70630	72.465300	1.5938	1.4367	87.9128
1	11	0.0000	1.0000	1.4103	. 8142	59.74600	69.218200	1.6285	1.4814	86.3154
2	1	. 2000	0.0000	. 6440	0.0000	179.94450	152. 139524	. 6440	. 5005	118.2760
2	2	. 2000	. 1000	. 6440	. 0000	179.94450	152. 139524	. 6440	. 5005	118.2760
2	3	. 2000	. 2000	. 6440	. 0000	179.94450	152.139524	. 6440	. 5005	118.2760
2	4	. 2000	. 3000	. 6440	. 0000	179.94450	152. 139524	. 6440	. 5005	118.2760
2	5	. 2000	. 4000	. 6440	. 0000	179.94450	152. 139524	. 6440	. 5005	118.2760
2	6	. 2000	. 5000	. 6440	0.0000	179.94450	152.139524	. 6440	. 5005	118.2760
2	6	. 2000	. 5577	1.5603	. 4504	60.90799	69.921220	1.6240	1.4706	87.1095
2	7	2000	. 6693	1. 5558	. 5415	58.14545	67.677034	1.6474	1.5021	85.9161
2	8	. 2000	. 7808	1.5494	. 6294	55.33358	65.350453	1.6723	1.5360	84.6721
2	9	. 2000	. 8924	1.5405	. 7154	52.45968	62.925772	1.6985	1.5722	83.3676
2	10	. 2000	1.0039	1.5301	. 7992	49.55768	60.424814	1.7262	1.6110	82.0155
2	11	. 2000	1.1155	1.5141	. 8741	47.12494	58.310333	1.7483	1.6436	80.8175
3	1	. 4000	0.0000	. 6440	0.0000	179.95138	152.143681	. 6440	. 5005	118.2773
3	2	. 4000	. 1000	. 6440	-. 0000	179.95138	152.143681	. 6440	. 5005	118.2773
3	3	. 4000	2000	. 6440	-. 0000	179.95138	152.143681	. 6440	. 5005	$\dagger 18.2773$
3	4	. 4000	. 3000	. 6440	-. 0000	179.95138	152.143681	. 6440	. 5005	118.2773
3	5	. 4000	. 4000	. 6440	-. 00000	179.95138	152.143681	. 6440	. 5005	118.2773
3	6	. 4000	. 5000	. 6440	0.0000	179.95138	152.143681	. 6440	. 5005	118.2773
3	6	. 4000	. 6155	1.6730	. 4830	48.48676	59.307674	1.7413	1.6276	. 81.7546
3	7	. 4000	. 7386	1.6605	. 5787	46.56392	57.657919	1.7584	1.6538	80.7589
3	8	. 4000	. 8617	1.6462	. 6700	44.59378	55.936316	1.7773	1.6823	79.7224
3	9	. 4000	. 9847	1.6299	. 7585	42.53974	54.104554	1.7978	1.7135	78.6251
3	10	. 4000	1.1078	1.6122	. 8423	40.48913	52.240680	1.8190	1.7462	77.5050
3	11	. 4000	1.2309	\$. 5902	. 9181	38.68948	50.592252	1.8362	1.7746	76.4731
4	1	. 6000	0.0000	. 6440	0.0000	179.95091	152.143398	. 6440	. 5005	118.2772
4	2	. 6000	. 1000	. 6440	. 0000	179.95091	152. 143398	. 6440	. 5005	118.2772
4	3	. 6000	. 2000	. 6440	-. 0000	179.95091	152. 143398	. 6440	. 5005	118.2772
4	4	. 6000	. 3000	. 6440	. 0000	179.95091	152. 143398	. 6440	. 5005	118.2772
4	5	. 6000	. 4000	. 6440	. 0000	179.95091	152. 143398	. 6440	. 5005	118.2772
4	6	. 6000	. 5000	. 6440	0.0000	179.95091	152. 143398	. 6440	. 5005	118.2772
4	6	. 6000	. 6732	f. 7563	. 5070	40.07869	51.712182	1.8280	1.7549	77.5034
4	7	. 6000	. 8078	1.7392	. 6061	38.61233	50.391387	1.8418	1.7782	76.6249
4	8	. 6000	. 9425	1.7201	. 6999	37.13224	49.034950	1.8570	1.8036	75.7261
4	9	. 6000	1.0771	1.6988	. 7899	35.59385	47.596833	1.8735	1.8310	74.7820
4	10	. 6000	1.2118	1.6764	. 8746	34.03739	46.115423	1.8908	1.8601	73.8091
4	11	. 6000	1.3464	1.6503	. 9528	32.58363	44.719000	1. 9056	1.8868	72.8631
5	1	. 8000	0.0000	. 6440	0.0000	179.94718	152.141143	. 6440	. 5005	118.2765

Fig. 28. (cont)

L	M	$\stackrel{x}{(I N)}$	$\begin{gathered} Y \\ (I N) \end{gathered}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\stackrel{V}{(F / S)}$	$\begin{gathered} P \\ (\text { PSIA }) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\text { LBM } / \text { FT3) } \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \mathrm{MACH} \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
5	2	. 8000	. 1000	. 6440	. 0000	179.94718	152.141143	. 6440	. 5005	118.2765
5	3	. 8000	. 2000	. 6440	. 0000	179.94718	152.141143	. 6440	. 5005	118.2765
5	4	. 8000	. 3000	. 6440	. 0000	179.94718	152.141143	. 6440	. 5005	118.2765
5	5	. 8000	. 4000	. 6440	. 0000	179.94718	152.141143	. 6440	5005	118.2765
5	6	. 8000	. 5000	. 6440	0.0000	179.94718	152.141143	. 6440	5005	118.2765
5	6	. 8000	. 7309	1.8217	. 5259	33.98808	45.937772	1.8961	1.8631	73.9872
5	7	. 8000	. 8771	1.8016	. 6274	32.81371	44.833210	1.9077	1.8846	73. 1906
5	8	. 8000	1.0233	1.7793	. 7228	31.65328	43.724326	1.9205	1.9077	72.3928
5	9	. 8000	1. 1695	1.7546	. 8143	30.44179	42.543676	1.9344	1.9327	71.5542
5	10	. 8000	1.3157	1.7289	. 9006	29. 18547	41.297156	1.9494	1.9598	70.6719
5	11	. 8000	1.4619	1.6998	. 9814	27.95671	40.064681	1.9627	1.9858	69.7789
6	1	1.0000	0.0000	. 6441	0.0000	179.94134	152.137620	. 6441	. 5005	118.2754
6	2	1.0000	. 1000	. 6441	. 0000	179.94134	152.137620	. 6441	. 5005	118.2754
6	3	1.0000	. 2000	. 6441	. 0000	179.94134.	152. 137620	. 6441	. 5005	118.2754
6	4	1.0000	. 3000	. 6441	. 0000	179.94134	152. 137620	. 6441	5005	118.2754
6	5	1.0000	. 4000	. 6441	-. 0000	179.94134	152. 137620	. 6441	. 5005	118.2754
6	6	1.0000	. 5000	. 6441	0.0000	179.94134	152.137620	. 6441	. 5005	118.2754
6	6	1.0000	. 7887	1.8752	. 5413	29.37709	41.375081	1.9518	1.9577	71.0019
6	7	1.0000	. 9464	1.8529	. 6446	28.40590	40.425452	1.9619	1.9780	70.2674
6	8	1.0000	1.1041	1.8283	. 7414	27.46269	39.489769	1.9729	1.9995	69.5438
6	9	1.0000	1.2619	1.8012	. 8343	26.46292	38.477828	1.9851	2.0230	68.7745
6	10	1.0000	1.4196	1.7731	. 9224	25.40415	37.386397	1.9987	2.0492	67.9502
6	11	1.0000	1.5773	1.7415	1.0055	24.34057	36.276694	2.0109	2.0748	67.0970
7	1	1.2000	0.0000	. 6441	0.0000	179.93970	152. 136628	. 6441	. 5005	118.2751
7	2	1.2000	. 1000	. 6441	-. 0000	179.93970	152. 136628	. 6441	. 5005	118.2751
7	3	1.2000	. 2000	. 6441	-. 0000	179.93970	152. 136628	. 6441	. 5005	118.2751
7	4	1. 2000	. 3000	. 6441	-. 0000	179.93970	152.136628	. 6441	. 5005	118.2751
7	5	1. 2000	. 4000	. 6441	-. 0000	179.93970	152. 136628	. 6441	. 5005	118.2751
7	6	1. 2000	. 5000	. 6441	0.0000	179.93970	152.136628	. 6441	. 5005	118.2751
7	6	1.2000	. 8464	1.9201	. 5543	25.77387	37.670133	1. 9986	2.0420	68.4199
7	7	1. 2000	1.0157	1.8962	. 6590	24.95046	36.836126	2.0074	2.0615	67.7337
7	8	1.2000	1. 1850	1.8698	. 7569	24.15841	36.023058	2.0172	2.0818	67.0637
7	9	1.2000	1. 3542	1.8409	. 8514	23.30152	35.124801	2.0283	2.1047	66.3392
7	10	1.2000	1.5235	1.8109	. 9413	22.38400	34.144972	2.0409	2. 1304	65.5558
7	11	1.2000	1.6928	1.7774	1.0262	21.45017	33.134878	2.0523	2.1558	64.7359
8	1	1.4000	0.0000	. 6441	0.0000	179.94290	152.138561	. 6441	. 5005	118.2757
8	2	1.4000	. 1000	. 6441	-. 0000	179.94290	152.13856 1	. 6441	. 5005	118.2757
8	3	1.4000	. 2000	. 6441	-. 0000	179.94290	152.138561	. 6441	. 5005	118.2757
8	4	1.4000	. 3000	. 6441	-. 0000	179.94290	152.13856 1	. 6441	. 5005	118.2757
8	5	1.4000	. 4000	. 6441	-. 0000	179.94290	152.13856	. 6441	. 5005	118.2757
8	6	1.4000	. 5000	. 6441	0.0000	179.94290	152.138561	. 6441	. 5005	118.2757
8	6	1.4000	. 9041	1.9586	. 5654	22.88582	34.595375	2.0386	2. 1183	66.1528
8	7 -	1.4000	1.0849	1.9333	. 6713	22.17336	33.850018	2.0466	2. 1371	65.5047
8	8	1.4000	1.2658	1.9056	. 7704	21.48936	33.125244	2.0555	2. 1568	64.8731
8	9	1.4000	1.4466	1.8753	. 8664	20.73441	32.307548	2.0658	2. 1794	64. 1782
8	10	1.4000	1.6275	1.8437	. 9579	19.92505	31.414473	2.0777	2.2048	63.4264
8	11	1.4000	1.8083	1.8086	1.0442	19.09689	30.488485	2.0883	2.2301	62.6364
9	1	1.6000	0.0000	. 6440	0.0000	179.94924	152.142382	. 6440	. 5005	118.2769
9	2	1.6000	. 1000	. 6440	-. 0000	179.94924	152.142382	. 6440	. 5005	118.2769

SOLUTION SURFACE PO. $500-$ TIME $=30.09822540$ SECONDS (OELTAT $=.05981900$, NVCM $=1, ~ C N U M S=1.00 .(20.7) .(0.0))$

L	M	$\begin{gathered} \mathrm{X} \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(I N)}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
9	3	1.6000	. 2000	6440	-. 0000	179.94924	152. 142382	. 6440	5005	118.2769
9	4	1.6000	. 3000	. 6440	-. 0000	179.94924	152. 142382	. 6440	5005	118.2769
9	5	1.6000	. 4000	. 6440	-. 0000	179.94924	152.142382	6440	5005	118.2769
9	6	1.6000	. 5000	. 6440	0.0000	179.94924	152.142382	. 6440	5005	118.2769
9	6	1.6000	. 9619	1.9921	. 5751	20.52185	31.997014	2.0734	2. 1881	64.1368
9	7	1.6000	1. 1543	1.9657	. 6821	19.89505	31.321326	2.0807	2. 2065	63.5192
9	8	1.6000	1.3467	1.9370	. 7824	19.29097	30.561937	2.0890	2.2259	62.9151
9	9	1.6000	1.5390	1.9055	. 8798	18.61319	29.905045	2.0988	2.2484	62.2410
9	10	1.6000	1.7314	1.8725	. 9727	17.89087	29.083375	2.1100	2.2737	61.5158
9	11	1.6000	1.9238	1.8361	1.0600	17.15044	28.229734	2. 1201	2.2988	60.7531
10	1	1.8000	0.0000	. 6440	0.0000	179.95680	152.146960	. 6440	5004	118.2783
10	2	1.8000	. 1000	. 6440	-. 0000	179.95680	152.146960	. 6440	5004	148.2783
10	3	1.8000	. 2000	. 6440	-. 0000	179.95680	152. 146960	. 6440	5004	118.2783
10	4	1.8000	. 3000	. 6440	-. 0000	179.95680	152. 146960	6440	5004	118.2783
10	5	1.8000	. 4000	. 6440	-. 0000	179.95680	152. 146960	. 6440	5004	118.2783
10	6	1.8000	. 5000	. 6440	0.0000	179.95680	152. 146960	. 6440	. 5004	118.2783
10	6	1.8000	1.0196	2.0216	5836	18.55307	29.768315	2. 1042	2.2526	62.3249
10	7	1.8000	1.2235	1.9944	. 6917	17.99419	29.148766	2. 1109	2.2707	61.7323
10	8	1.8000	1.4274	1. 9647	. 7931	17.45156	28.539665	2. 1187	2.2899	61.1485
10	9	1.8000	1.6314	1.9322	. 8919	16.83548	27.831693	2. 1282	2.3126	60.4903
10	10	1.8000	1.8353	1.8981	. 9859	16.18554	27.071089	2. 1388	2.3378	59.7890
10	11	1.8000	2.0392	1.8605	1.0742	15.51887	26.280284	2. 1483	2.3628	59.0514
11	1	2.0000	0.0000	. 6439	0.0000	179.96285	152. 150622	. 6439	. 5004	118.2794
11	2	2.0000	. 1000	. 6439	. 0000	179.96285	152. 150622	. 6439	. 5004	118.2794
11	3	2.0000	. 2000	. 6439	. 0000	179.96285	152.150622	. 6439	. 5004	118.2794
11	4	2.0000	. 3000	. 6439	. 0000	179.96285	152. 150622	.6439	. 5004	118.2794
11	5	2.0000	. 4000	. 6439	. 0000	179.96285	152. 150622	.6439	. 5004	148.2794
11	6	2.0000	. 5000	. 6439	0.0000	179.96285	152.150622	. 6439	. 5004	118.2794
11	6	2.0000	1.0774	2.0480	. 5912	16.88929	27.832515	2. 1316	2.3127	60.6819
11	7	2.0000	1.2929	2.0200	. 7003	16.38558	27.259293	2. 1379	2.3305	60.1101
11	8	2.0000	1.5083	1.9895	. 8029	15.89210	26.690556	2. 1454	2.3498	59.5420
11	9	2.0000	1.7238	1.9562	. 9029	15.32754	26.024145	2. 1545	2.3726	58.8974
11	10	2.0000	1.9392	1.9210	. 9978	14.73910	25.316975	2. 1647	2.3977	58.2183
11	11	2.0000	2.1547	1.8824	1.0868	14.13497	24.581054	2.1737	2.4226	57.5035
12	1	2.2000	0.000 C	. 6439	0.0000	179.96793	152. 153669	€439	. 5004	118.2804
12	2	2.2000	. 100G	. 6439	. 0000	179.96793	152. 153669	. 6439	. 5004	118.2804
12	3	2.2000	. 20000	. 6439	. 0000	179.96793	152. 153669	. 6.439	. 5004	118.2804
12	4	2.2000	. 3000	. 6439	. 0000	179.96793	152. 153669	. 6.439	. 5004	118.2804
12	5	2.2000	. 4000	. 6439	. 0000	179.96793	152. 153669	. $€ .439$. 5004	118.28% ¢
12	6	2.2000	. 5006	. 6439	0.0000	179.96793	152. 153669	. 6.439	. 5004	118.2804
12	6	2.2000	1.1351	2.0718	. 5981	15.46617	26. 133668	2. $\$ 564$	2.3690	59.1810
12	7	2.2000	1.3621	2.0430	. 7082	15.00826	25.599550	2.:62\%	2.3867	58.6271
12	8	2.2000	1.5891	2.0118	. 8119	14.55552	25.064617	2. 695	2.4061	58.0720
12	9	2.200 C	1.8162	1.9777	. 9129	14.03541	24.434968	2. 78 F	2.4291	57.4398
12	10	2.200C	2.0432	1.9416	1.0086	13.49995	23.775252	2. 880	2.4540	56.7815
12	11	2.200C	2. 2702	1.9023	1.0983	12.94929	23.087544	2. 966	2.4788	56.0878
13	1	2.400 c	0.0000	. 6439	0.0000	179.97290	152. 156657	. 6439	. 5004	118.2813
13	2	2.400 C	. 1000	. 6439	. 0000	179.97290	152. 156657	. 6439	. 5004	118.2813
13	3	2.4000	. 2000	. 6439	. 0000	179.97290	152.156657	. 6439	. 5004	118.2813

L	M	$\begin{gathered} x \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(I N)}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
13	4	2.4000	. 3000	6439	. 0000	179.97290	152. 156657	. 6439	5004	118.2813
13	5	2.4000	. 4000	. 6439	. 0000	179.97290	152. 156657	. 6439	. 5004	118.2813
13	6	2.4000	5000	. 6439	0.0000	179.97290	152. 156657	. 6439	5004	118.2813
13	6	2.4000	1. 1928	2.0934	. 6043	14.23589	24.629139	2.1789	2.4222	57.8010
13	7	2.4000	1.4314	2.0640	. 7154	13.81672	24. 128653	2.1845	2.4397	57.2627
13	8	2.4000	1.6699	2.0321	. 8202	13.39878	23.623069	2. 1914	2.4592	56.7191
13	9	2.4000	1.9085	1.9973	. 9221	12.91781	23.026793	2. 1999	2.4823	56.0990
13	10	2.4000	2.1470	1.9604	1.0185	12.42841	22.409512	2.2092	2.5072	55.4604
13	11	2.4000	2.3856	1.9203	1.1087	11.92377	21.764301	2.2174	2.5319	54.7859
14	1	2.6000	0.0000	. 6438	0.0000	179.97908	152.160424	. 6438	. 5003	118.2824
14	2	2.6000	. 1000	. 6438	-. 0000	179.97908	152. 160424	. 6438	. 5003	118.2824
14	3	2.6000	. 2000	. 6438	-. 0000	179.97908	152. 160424	. 6438	. 5003	118.2824
14	4	2.6000	. 3000	. 6438	-. 0000	179.97908	152. 160424	. 6438	. 5003	118.2824
14	5	2.6000	. 4000	. 6438	. 0000	179.97908	152.160424	. 6438	. 5003	118.2824
14	6	2.6000	. 5000	. 6438	0.0000	179.97908	152. 160424	. 6438	. 5003	118.2824
14	6	2.6000	1.2506	2.1132	. 6100	13. 16282	23.286586	2. 1994	2.4725	56.5253
14	7	2.6000	1.5007	2.0831	. 7221	12.77693	22.815539	2.2047	2.4900	56.0010
14	8	2.6000	1.7508	2.0506	. 8278	12.38946	22.336234	2.2114	2.5095	55.4680
14	9	2.6000	2.0009	2.0152	. 9306	11.94346	21.770772	2.2197	2.5328	54.8601
14	10	2.6000	2.2510	1.9776	1.0275	11.49447	21.191776	2.2286	2.5574	54.2403
14	11	2.6000	2.5011	1.9368	1.1182	11.02983	20.584401	2.2364	2.5821	53.5834
15	1	2.8000	0.0000	. 6438	0.0000	179.98692	152. 165171	. 6438	. 5003	118.2839
15	2	2.8000	. 1000	. 6438	-. 0000	179.98692	152. 165171	. 6438	. 5003	118.2839
15	3	2.8000	. 2000	. 6438	-. 0000	179.98692	152. 165171	. 6438	. 5003	118.2839
15	4	2.8000	. 3000	. 6438	-. 0000	179.98692	152.165171	. 6438	. 5003	118.2839
15	5	2.8000	. 4000	. 6438	. 0000	179.98692	152. 165171	. 6438	. 5003	118.2839
15	6	2.8000	. 5000	. 6438	0.0000	-179.98692	152. 165174	. 6438	. 5003	118.2839
15	6	2.8000	1.3083	2. 1313	. 6153	12.21939	22.080390	2.2184	2.5203	55.3405
15	7	2.8000	1.5700	2. 1007	. 7283	11.86240	21.635351	2.2234	2.5377	54.8288
15	8	2.8000	1.8316	2.0677	. 8349	11.50196	21.179933	2.2299	2.5574	54.3059
15	9	2.8000	2.0933	2.0316	. 9384	11.08743	20.643063	2.2379	2.5807	53.7102
15	10	2.8000	2.3549	1.9934	1.0359	10.67390	20.098480	2.2464	2.6053	53.1080
15	11	2.8000	2.6166	1.9520	1.1270	10.24396	19.524511	2.2540	2.6299	52.4672
16	1	3.0000	0.0000	. 6437	0.0000	179.99548	152. 170292	. 6437	. 5002	118.2856
16	2	3.0000	. 1000	. 6437	-. 0000	179.99548	152. 170292	. 6437	. 5002	118.2856
16	3	3.0000	. 2000	. 6437	-. 0000	179.99548	152. 170292	. 6437	. 5002	118.2856
16	4	3.0000	. 3000	. 6437	-. 0000	179.99548	152.170292	. 6437	. 5002	118.2856
16	5	3.0000	. 4000	. 6437	-. 0000	179.99548	152. 170292	. 6437	5002	118.2856
16	6	3.0000	5000	. 6437	0.0000	179.99548	152. 170292	6437	. 5002	+18.2856
16	6	3.0000	1. 3660	2. 1481	. 6201	11.38500	20.991480	2.2358	2.5658	54.2363
16	7	3.0000	1.6392	2.1170	. 7340	11.05352	20.569916	2.2406	2.5833	53.7364
16	8	3.0000	1.9124	2.0834	. 8415	10.71752	20. 136775	2.2469	2.6030	53.2236
16	9	3.0000	2.1857	2.0467	. 9457	10.33154	19.626696	2.2546	2.6263	52.6402
16	10	3.0000	2.4589	2.0079	1.0436	9.94958	19.113580	2.2629	2.6507	52.0550
16	11	3.0000	2.7321	1.9659	1.1350	9.55056	18.570203	2.2701	2.6753	51.4295
17	1	3.2000	0.0000	. 6437	0.0000	180.00297	152.174806	. 6437	. 5002	118.2870
17	2	3.2000	. 1000	. 6437	-. 0000	180.00297	152. 174806	. 6437	. 5002	118.2870
17	3	3.2000	. 2000	. 6437	-. 0000	180.00297	152.174806	. 6437	. 5002	118.2870
17	4	3.2000	. 3000	. 6437	-:0000	180.00297	152.174806	. 6437	. 5002	118.2870

Fig. 28. (cont)

L	M	$\begin{gathered} \mathrm{X} \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(I N)}$	$\underset{(F!S)}{U}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ \text { (LBM/FT3) } \end{gathered}$	$\begin{aligned} & \text { VMAG } \\ & (F / S) \end{aligned}$	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
17	5	3.2000	. 4000	. 6437	-. 0000	180.00297	152. 174806	. 6437	. 5002	118.2870
17	6	3.2000	. 5000	. 6437	0.0000	180.00297	152.174806	. 6437	. 5002	118.2870
17	6	3.2000	1.4238	2. 1638	. 6246	10.64075	20.000878	2.2521	2.6095	53.2014
17	7	3.2000	1.7085	2. 1322	7393	10.33162	19.600098	2.2567	2.6270	52.7121
17	8	3.2000	1.9933	2.0980	. 8477	10.01753	19.187340	2.2628	2.6467	52.2091
17	9	3.2000	2.2780	2.0609	. 9524	9.65735	18.702112	2.2703	2.5701	51.6378
17	10	3.2000	2.5628	2.0215	1.0507	9.30312	18.217098	2.2782	2.5944	51.0681
17	11	3.2000	2.8475	1.9791	1.1426	8.93058	17.699921	2.2852	2.7190	50.4555
18	1	3.4000	0.0000	. 6436	0.0000	180.00750	152. 177594	. 6436	. 5002	118.2878
18	2	3.4000	. 1000	. 6436	. 0000	180.00750	152. 177594	. 6436	. 5002	118.2878
18	3	3.4000	. 2000	. 6436	. 0000	180.00750	152.177594	. 6436	. 5002	118.2878
18	4	3.4000	. 3000	. 6436	-. 0000	180.00750	152.177594	. 6436	. 5002	118.2878
18	5	3.4000	. 4000	. 6436	-. 0000	180.00750	152.177594	. 6436	. 5002	118.2878
18	6	3.4000	. 5000	. 6436	0.0000	180.00750	152.177594	. 6436	. 5002	118.2878
18	6	3.4000	1.4815	2. 1781	. 6288	9.97767	19.101643	2.2670	2.6510	52.2346
18	7	3.4000	1.7778	2. 1460	7443	9.68915	18.720764	2.2714	2.6684	51.7561
18	8	3.4000	2.0741	2. 1114	. 8534	9.39553	18.327845	2.2773	2.6882	51.2637
18	9	3.4000	2.3704	2.0737	. 9586	9.05890	17.865995	2.2845	2.7115	50.7047
18	10	3.4000	2.6667	2.0338	1.0573	8.72981	17.407209	2.2922	2.7356	50.1505
18	11	3.4000	2.9630	1.9909	1. 1495	8.38247	16.916345	2.2989	2.7601	49.5525
19	1	3.6000	0.0000	. 6436	0.0000	180.00804	152.177928	. 6436	5001	118.2879
19	2	3.6000	. 1000	. 6436	. 0000	180.00804	152.177928	. 6436	. 5001	118.2879
19	3	3.6000	. 2000	. 6436	-. 0000	180.00804	152.177928	. 6436	. 5001	118.2879
19	4	3.6000	. 3000	. 6436	-. 0000	180.00804	152.177928	. 6436	. 5001	118.2879
19	5	3.6000	4000	. 6436	-. 0000	180.00804	152. 177928	. 6436	. 5001	118.2879
19	6	3.6000	. 5000	. 6436	0.0000	180.00804	152.177928	. 6436	. 5001	118.2879
19	ϵ	3.6000	1.5392	2. 1922	. 6328	9.37246	18.267047	2.2817	2.6922	51.3080
19	7	3.6000	1.8471	2. 1597	. 7490	9. 10049	17.901453	2.2859	2.7096	50.8366
19	g	36000	2. 1549	2. 1246	. 8588	8.82515	17.526411	2.2916	2.7294	50.3534
19	c	3.6000	2.4628	2.0864	. 9645	8.51013	17.086474	2.2986	2.7527	49.8062
19	10	3.6000	2.7706	2.0461	1.0636	8.20309	16.650830	2.3060	2.7767	49.2654
19	11	3.6000	3.0785	2. CO 26	1. 1562	7.87531	16.179224	2.3125	2.8013	48.6754
20	1	3.8000	0.0000	. 6436	0.0000	180.00500	152.176053	. 6436	. 5002	118.2873
20	2	3.8000	. 1000	. 6436	-. 0000	180.00500	152. 176053	. 6436	. 5002	118.2873
20	3	3.8000	. 2000	. 6436	-. 00000	180.00500	152.176053	. 6436	. 5002	118.2873
20	\angle	3.8000	. 3000	. 6436	-. 0000	180.00500	152. 176053	. 6436	. 5002	118.2873
20	5	3.8000	. 4000	. 6436	-. 0000	180.00500	152.176053	. 6436	. 5002	118.2873
20	6	3.8000	. 5000	. 6436	0.0000	180.00500	152.176053	. 6436	. 5002	118.2873
20	6	3.8000	1.5970	E. 2047	. 6364	8.87248	17.555816	2.2947	2.7280	50.5387
20	7	3.8000	1.9164	2. 1718	. 7532	8.61417	17.203403	2.2987	2.7455	50.0725
20	8	3.8000	2.2358	2.1363	. 8635	8.35413	16.843914	2:3043	2.7653	49.5973
20	9	3.8000	2.5551	2.0978	. 9696	8.05694	16.422722	2.3110	2.7886	49.0597
20	10	3.8000	2.8745	2.0570	1.0691	7.76865	16.007691	2.3182	2.8124	48.5307
20	11	3.8000	3.1939	2.0130	1.1622	7.45564	15.550579	2.3245	2.8372	47.9445
21	1	4.0000	0.0000	. 6436	0.0000	180.00000	152.173018	. 6436	. 5002	118.2864
21	2	4.0000	. 1000	. 6436	-. 0000	180.00000	152.173018	. 6436	. 5002	118.2864
21	3	4.0000	. 2000	. 6436	-. 0000	180.00000	152.173018	. 6436	. 5002	118.2864
21	4	4.0000	.. 3000	. 6436	-. 0000	180.00000	152.173018	. 6436	. 5002	118.2864
21	5	4.0000	. 4000	. 6436	-. 0000	180.00000	152.173018	. 6436	. 5002	118.2864

Fig. 28. (cont)

SOLUTION	SURFACE NO.		$\begin{gathered} 500- \\ x \\ (\mathrm{IN}) \end{gathered}$	30.09822540 SECONDS (DELTA $T=$			$\begin{gathered} .05981900 . \\ \text { P } \\ (\text { PSIA }) \end{gathered}$	$\begin{gathered} \text { NVCM }=1 . \\ \text { RHD } \\ \text { (LBM/FT3) } \end{gathered}$	$M S=1.0$	-7).	O))
	L	M		$\stackrel{Y}{(I N)}$	$\underset{(F / S)}{\mathbf{U}}$	$\stackrel{V}{(F / S)}$			VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} \mathrm{T} \\ \mathrm{R}) \end{gathered}$
	21	6	4.0000	. 5000	. 6436	0.0000	180.00000	152.173018	. 6436	. 5002	1:8.2864
	21	6	4.0000	1.6547	2.2172	. 6401	8.37249	16.844586	2.3077	2.7665	49.7044
	21	7	4.0000	1.9856	2. 1839	. 7574	8.12785	16.505354	2.3116	2.7840	49.2437
	21	8	4.0000	2.3166	2.1481	. 8683	7.88311	16.161417	2.3169	2.8038	48.7774
	21	9	4.0000	2.6475	2.1091	. 9748	7.60375	15.758970	2. 3235	2.8270	48.2503
	21	10	4.0000	2.9785	2.0679	1.0746	7.33421	15.364551	2.3304	2.8507	47.7346
	21	11	4.0000	3.3094	2.0234	1. 1682	7.03598	14.921935	2.3365	2.8757	47.1520

Fig. 28. (cont)

Fig. 29.
Case No. 3 geometry.

```
VNAP2 CASE 3 - SUBSONIC AIRFOIL
    $CNTRL LMAX=21,MMAX=11,NMAX=500,NPLOT=500, IUNIT=1,RGAS=0.01,
    TSTOP=100.O $
    $IVS N1D=-2.RSTAR=0.7464 $
    $GEMTRY NDIM=0,NGEOM=1,XI=0.O.XE=4.O,RI=1.0 $
    $GCBL NGCB=1,RICB=0.0 $
    $BC PT=213.514.TT=124.2.PE=18\cap.\Omega $
    $AVL $
    $RVL $
    $TURBL $
    $DFSL NDFS=2,LDFSS=6, LDFSF=16,MDFS=6,
    YI.(6)=0.5.0.4825.0.4650.0.4475.0 4300.0.4125.0 430\cap.0 4475.
    0.4650.0.4825,0.5.
    NXNYL(6)=0.04374,4*0.08749,0.0,4*-0.08749,-0.04374 .
    YU(6)=0.5,0.5175,0.5350,0.5525,0.5700.0.5875,0.5700.0.5525.
    0.5050.0.5175,0.5.
    NXNYU(6)=-0.04374,4*-0.08749,0.0.4*0.08749,0.04374 $
    $VCL $
```

Fig. 30.
Case No. 3 data deok.

VNAP2, A COMPUTER PROGRAM FOR THE COMPUTATION OF TWO-DIMENSIONAL, TIME-DEPENDENT, COMPRESSIBLE, TURBULENT FLOW BY MICHAEL C. CLINE, T-3 - LOS ALAMOS NATIONAL LABORATORY

PROGRAM AESTRACT

Abstract

THE NAVIER-STOKES EQUATIONS FOR TWO-DIMENSIONAL. TIME-DEPENDENT FLOW ARE SOLVED USING THE SECOND-OFDER, MACCORMACK FINITE-DIFFERENCE SCHEME. ALL BOUNDARY CONDITIONS ARE COMPUTED USING a second-order, reference plane characteristic scheme with the viscous ferms treated as source FUNCTIONS. THE FLUID IS ASSUMED TO BE A PERFECT GAS. THE STEADY-STATE SOLUTION IS OBTAINED AS THE ASYMFTOTIC SOLUTION FOR LARGE TIME. THE FLOW BOUNDARIES MAY BE ARBITRARY CURVED SOLID WALLS AS WELL AS JET ENVELOPES. THE GEOMETRY MAY CONSIST OF SINGLE AND DUAL FLOWING STREAMS. TURBULENCE EFFECTS ARE MODELED WITH EITHER A MIXING-LENGTH, A TURBULENCE ENERGY EQUATION, OR A TURBULENCE ENERGY-DISSIPATION RATE EQUATIDNS MODEL. THIS PROGRAM ALLOWS VARIABLE GRID SPACING AND INCLUDES OPTIONS TO SPEED UP THE CALCULATION FOR HIGH REYNOLDS NUMBER FLOWS.

JOB TITLE -

VNAP2 CASE 3 - SUBSONIC AIRFOIL

CONTROL PARAMETERS -

LMAX $=21$	MMAX $=11$	500	VPRINT =	O	NPLOT =	500	. 90	FDT $=1.00$	F	
I	IUO $=1$	I VPTS $=1$	VCONVI = 1		STOP	$10 \mathrm{E}+$	N1D $=-2$	CONV $=0.000$	NASM $=1$	IUNIT = 1
RS	746400	RST	0.0000000		LO	10	OL	. 000100	VDT $=$	DT

FLUID MODEL -
THE RATIO OF SPECIFIC HEATS, GAMMA $=1.4000$ AND THE GAS CONSTANT, R $=.0100(F T-L B F / L B M-R)$

FLOW GEDMETRY
TWO-DIMENSIONAL. PLANAR FLOW HAS BEEN SPECIFIED

DUCT GEOMETRY -

A CONSTANT AREA DUCT HAS BEEN SPECIFIED BY XI $=0.0000$ (IN), RI $=1.0000$ (IN), AND XE $=4.0000$ (IN)
A CYLINDRICAL CENTERBGDY HAS BEEN SPECIFIED BY XICB= 0.0000 (IN), RICB= 0.OOOO (IN), AND XECB= 4.OOOO (IN)

DUAL FLOW SPACE BOUNDARY GEOMETRY -
general boundaries have been sfecified by the following parameters,

L	XP(IN)	YL(IN)	SLOPEL	YU(IN)	SLOPEU
6	1.0000	. 5000	-. 0437	. 50co	. 0437
7	1.2000	. 4825	-. 0875	. 5175	. 0875
8	1.4000	. 4650	-. 0875	. 5350	. 0875
9	1.6000	. 4475	-. 0875	.5525	. 0875
10	1.8000	. 4300	-. 0875	. 5790	. 0875
11	2.0000	. 4125	0.0000	. 5875	0.0000
12	2.2000	. 4300	. 0875	. 5760	-. 0875
13	2.4000	. 4475	. 0875	55こ5	-. 0875
14	2.6000	. 4650	. 0875	. 5350	-. 0875
15	2.8000	. 4825	. 0875	. 5175	-. 0875
16	3.0000	. 5000	. 0437	. 5000	-. 0437

Fig. 31. (cont)

Fig. 31. (cont)

MASS FLOW AND THRUST CALCULATION, $N=500$

L	MF (LBM/S)	MF/MFI	T(LBF)	T/TI
1	97.97247	1.0000	63.0912	
2	97.98057	1.0001	63.1015	1.0000
3	97.95771	.9998	63.0786	.0002
4	98.04827	1.0008	63.1755	1.0998
5	97.71521	.9974	62.8246	.9958
6	98.04291	1.0007	63.3069	1.0034
7	97.76694	.9979	65.8924	1.0444
8	98.06552	1.0009	69.9632	1.1089
9	97.52895	.9955	73.2858	1.1616
10	98.74291	1.0079	79.8288	1.2655
11	97.73069	.9975	83.8832	1.3296
12	97.85483	.9988	78.7409	1.2480
13	97.56375	.9958	73.0532	1.1579
14	98.01990	1.0005	69.9273	1.1084
15	97.29910	.9931	65.2744	1.0346
16	98.11851	1.0015	63.4184	1.0052
17	97.79844	.9982	62.7905	.9952
18	98.01869	1.0005	63.2089	1.0019
19	97.87349	.9990	62.9277	.9974
20	97.97664	1.0000	63.1262	1.0006
21	97.89335	.9992	62.9648	.9980

Fig. 31. (cont)

L	M	$\begin{gathered} x \\ (I N) \end{gathered}$	$\begin{aligned} & Y \\ & (I N) \end{aligned}$	(F, S)	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
1	1	0.0000	0.0000	. 6441	0.0000	179.92963	152. 130548	. 6441	. 5006	118.2732
1	2	0.0000	. 1000	. 6442	0.0000	179.92510	152. 127812	. 6442	. 5006	118.2723
1	3	0.0000	2000	. 6440	0.0000	179.93776	152. 135456	. 6440	. 5005	118.2747
1	4	0.0000	3000	. 6438	0.0000	179.95468	152. 145675	. 6438	5003	118.2779
1	5	0.0000	4000	. 6438	0.0000	179.96019	152.149000	. 6438	. 5003	118.2789
1	6	0.0000	5000	. 6435	0.0000	179.98871	152. 166225	. 6435	. 5000	118.2843
1	7	0.0000	. 6000	6438	0.0000	179.95754	152.147399	. 6438	. 5003	118.2784
1	8	0.0000	. 7000	6440	0.0000	179.93879	152. 136077	. 6440	. 5005	118.2749
1	9	0.0000	. 8000	6441	0.0000	179.93403	152.133201	. 6441	. 5005	118.2740
1	10	0.0000	. 9000	6443	0.0000	179.91313	152.120584	. 6443	. 5007	118.2701
1	11	0.0000	1.0000	6443	0.0000	179.90967	152.118493	. 6443	. 5007	118.2694
2	1	. 2000	0.0000	6442	0.0000	179.93163	152.132487	. 6442	. 5006	118.2730
2	2	. 2000	. 1000	6443	-. 0001	179.93517	152.134726	. 6443	. 5007	118.2736
2	3	. 2000	. 2000	. 6441	-. 0001	179.94171	152.138639	. 6441	5005	148.2748
2	4	. 2000	. 3000	. 6439	-. 0001	179.95268	152.145235	. 6439	. 5004	118.2769
2	5	. 2000	. 4000	. 6438	-. 0000	179.96177	152.150775	. 6438	5003	118.2786
2	6	. 2000	. 5000	. 6433	. 0001	179.96011	152.149066	. 6433	. 4999	118.2788
2	7	. 2000	. 6000	. 6439	. 0001	179.95908	152. 148965	. 6439	. 5004	118.2782
2	8	. 2000	. 7000	. 6441	. 0001	179.94327	152.139524	. 6441	. 5005	118.2752
2	9	. 2000	. 8000	. 6441	. 0001	179.92701	152.129707	. 6441	. 5005	118.2721
2	10	. 2000	- 9000	. 6444	. 0000	179.92106	152. 126143	. 6444	. 5008	118.2710
2	11	. 2000	1.0000	. 6444	0.0000	179.91326	152.121433	. 6444	. 5008	118.2695
3	1	. 400 C	0.0000	. 6444	0.0000	179.84896	152.081505	. 6444	. 5008	118.2583
3	2	. 4000	. 1000	. 6442	-. 0001	179.85251	152.083603	. 6442	. 5007	118.2590
3	3	. 4000	. 2000	. 6439	-. 0002	179.88470	152. 103070	. 6439	. 5004	118.2650
3	4	. 4000	. 3000	. 6436	-. 0002	179.92894	152.129802	. 6436	. 5002	118.2733
3	5	. 4000	. 4000	. 6432	-. 0000	179.98890	152. 166007	. 6432	. 4998	118.2846
3	6	. 4000	. 5000	- 6435	. 0001	180.04365	152. 199378	. 6435	5000	118.2946
3	7	. 4000	. 6000	. 6439	. 0003	179.99410	152. 169190	. 6439	5004	118.2855
3	8.	. 4000	. 7000	.. 6439	. 0004	179.92717	152.128717	. 6439	. 5004	118.2730
3	9	. 4000	. 8000	. 6442	. 0003	179.87968	152.100037	. 6442	. 5007	118.2641
3	10	. 4000	. 9000	. 6445	. 0001	179.84139	152.076893	. 6445	. 5009	118.2569
3	11	.4000	1.0000	. 6445	0.0000	179.82842	152.069065	. 6445	5009	118.2544
4	1	. 6000	0.0000	. 6455	0.0000	179.83587	152.075105	. 6455	. 5017	118.2546
4	2	. 6000	. 1000	. 6455	-. 0009	179.85532	152.087029	. 6455	. 5017	118.2582
4	3	. 6000	. 2000	. 6449	-. 0016	179.91666	152. 124012	. 6449	5012	118.2697
4	4	. 6000	. 3000	. 6439	-. 0018	180.02353	152.188501	. 6439	5003	118.2898
4	5	. 6000	. 4000	. 6432	-. 0015	180.13405	152.255283	. 6432	. 4998	118.3105
4	E	. 6000	. 5000	. 6413	. 0004	180. 24852	152.323238	. 6413	. 4982	118.3329
4	7	. 6000	. 6000	. 6429	. 0017	180.18237	152.284226	. 6429	. 4995	118.3198
4	ε	. 6000	. 7000	. 6448	. 0019	180.04020	152. 198552	. 6448	. 5011	118.2930
4	9	. 6000	. 8000	. 6452	. 0017	179.90938	152.119568	. 6452	. 5015	118.2684
4	10	. 6000	. 9000	. 6459	. 0009	179.83438	152.074321	6459	. 5020	118.2543
4	11	. 6000	1.0000	. 6458	0.0000	179.78844	152.046557	. 6458	. 5020	118.2456
5	\cdot	. 8000	0.0000	. 6483	0.0000	179.27175	151.732123	. 6483	. 5041	118.1502
5	2	. 8000	. 1000	. 6477	-. 0014	179.30708	151,753332	. 6477	. 5036	118. 1569
5	3	. 8000	. 2000	. 6456	-. 0025	179.45714	151.844019	. 6456	5019	118. 1852
5	4	. 8000	. 3000	. 6422	-. 0029	179.70017	151,990842	. 6422	. 4992	118.2309
5	5	. 8000	. 4000	. 6370	-. 0014	180. 14007	152.256542	. 6370	. 4949	118.3135

Fig. 31. (cont)

L	M	$\begin{gathered} x \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{Y}{(I N)}$	$\underset{(F / S)}{U}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\text { LBM } / \text { FT3) } \end{gathered}$	VMAG (F / S)	$\begin{gathered} \text { MACH } \\ \text { NO } \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{R}) \end{gathered}$
5	6	. 3000	. 5000	. 6328	. 0007	180.60786	152.540245	. 6328	. 4915	118.4001
5	7	. 8000	. 6000	. 6379	. 0022	180.16143	152.269756	. 6379	. 4956	118.3173
5	3	. 8000	. 7000	. 6426	. 0033	179.72030	152.003133	. 6426	. 4994	118.2346
5	9	. 8000	. 8000	. 6461	. 0027	179.44078	151.834197	. 6461	. 5023	118.1821
5	10	. 8000	. 9000	. 6484	. 0014	179.26674	151.729012	. 6484	. 5041	118.1493
5	11	. 8000	1.0000	.6494	0.0000	179.18449	151.679309	. 6494	. 5049	118.1338
6	1	1.0000	0.0000	. 6553	0.0000	178.69533	151.386362	. 6553	. 5098	118.0393
6	2	1.0000	. 1000	. 6540	-. 0059	178.76880	151.431231	. 6541	. 5088	118.0528
6	3	1.0000	. 2000	. 6505	-. 0116	179.07243	151.614839	. 6506	. 5060	118.1101
6	4	1.0000	. 3000	. 6449	-. 0175	179.58106	151.922426	. 6451	. 5015	118.2058
6	5	1.0000	. 4000	. 6359	-. 0224	180.45083	152.448094	. 6363	. 4942	118.3687
6	6	1.0000	. 5000	. 6225	-. 0272	184.43926	153.039413	. 6231	. 4837	118.5572
6	6	1.0000	. 5000	. 6237	. 0273	181.25469	152.934071	. 6243	. 4846	118.5182
6	7	1.0000	. 6000	. 6376	. 0227	180.17262	152.279217	. 6380	4957	118.3173
6	8	1.0000	. 7000	. 6464	. 0170	179.44205	151.838009	. 6466	5027.	118.1799
6	9	1.0000	. 8000	. 6520	. 0113	178.92438	151.525080	. 6521	. 5072	118.0824
6	10	1.0000	. 9000	. 6554	. 0057	178.64862	151.358340	. 6554	. 5099	118.0302
6	11	1.0000	1.0000	. 6568	0.0000	178.56632	151.308482	. 6568	. 5110	118.0147
. 7	1	1.2000	0.0000	. 6804	0.0000	176.36226	149.972133	. 6804	. 5303	117.5967
7	2	1.2000	. 0965	. 6794	-. 0108	176.43367	150.016652	. 6795	. 5295	117.6094
7	3	1.2000	. 1930	. 6771	-. 0220	176.68532	150.170556	. 6774	. 5278	117.6564
7	4	1.2000	. 2895	. 6732	-. 0339	177.08691	150.416278	. 6741	. 5250	117.7312
7	5	1.2000	. 3860	. 6671	-. 0464	177.71065	150.796887	. 6687	. 5206	117.8477°
7	6	1.2000	. 4825	. 6633	-. 0580	178.03249	150.994017	. 6658	. 5182	117.9070
7	6	1.2000	. 5175	. 6597	. 0577	178.16165	151.067225	. 6622	. 5154	117.9353
7	7	1.2000	. 6140	. 6688	. 0441	177.45605	150.642222	. 6702	. 5219	117.7997
7	8	1.2000	. 7105	. 6741	. 0321	176.89414	150.298820	. 6749	. 5257	117.6950
7	9	1.2000	. 8070	. 6777	. 0210	176.50877	150.062813	. 6781	5284	1:7.6233
7	10	1.2000	. 9035	. 6799	. 0105	176.32830	149.952214	. 6800	5300	117.5897
7	11	1.2000	1.0000	. 6805	0.0000	176.28884	149.926980	. 6805	. 5304	117.5831
8	1	1.4000	0.0000	. 7162	0.0000	172.60884	147.692533	. 7162	. 5599	116.8704
8	2	1.4000	. 0930	. 7164	-. 0119	172.64040	147.712929	. 7165	. 5602	116.8756
8	3	1.4000	. 1860	. 7154	-. 0238	172.68209	147.739069	. 7158	. 5596	116.8832
8	4	1.4000	. 2790	. 7137	-. 0360	172.75828	147.786599	. 7146	. 5586	116.8971
8	5	1.4000	. 3720	. 7115	-. 0490	172.81628	147.824383	. 7132	. 5575	116.9065
8	6	1.4000	. 4650	. 7096	-. 0621	172.99911	147.929190	. 7123	. 5567	116.9472
8	6	1.4000	. 5350	. 7084	. 0620	173.19136	148.059243	. 7111	. 5557	116.9744
8	7	1.4000	. 6280	. 7108	. 0488	172.91918	147.884985	. 7125	. 5569	116.9282
8	8	1. 4000	. 7210	. 123	. 0360	172.81147	147.816503	. 7132	. 5575	116.9095
8	9	1.4000	. 8140	. 7142	. 0237	172.75060	147.779000	. 7146	. 5586	116.8979
8	10	1.4000	. 9070	. 7151	. 0118	172.73111	147.766929	. 7152	. 5591	116.8943
8	11	1.4000	1.0000	. 7153	0.0000	172.73544	147.769380	. 7153	. 5591	116.8953
9	1	1.6000	0.0000	. 7537	0.0000	168.36449	145.080278	. 7537	. 5913	116.0492
9	2	1.6000	. 0895	. 7527	-. 0114	168.33985	145.066195	. 7528	. 5906	116.0435
9	3	1.6000	. 1790	. 7523	-. 0234	168.31983	145.053813	. 7526	. 5905	116.0396
9	4	1.6000	. 2685	. 7517	-. 0363	168.29635	145.039824	. 7525	. 5904	116.0346
9	5	1.6000	. 3580	. 7505	-. 0504	168.28215	145.028951	. 7522	. 5902	116.0335
9	6	1.6000	. 4475	. 7443	-. 0651	167.83234	144.757824	. 7472	. 5865	115.9401
9	6	1.6000	. 5525	. 7440	. 0651	167.92753	144.804303	. 7469	. 5862	115.9686

L	M	$\begin{gathered} x \\ (\mathrm{IN}) \end{gathered}$	$\begin{gathered} Y \\ (\mathrm{IN}) \end{gathered}$	$\underset{(F / S)}{U}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (1-B M / F T 3) \end{gathered}$	VMAS (F / S)	$\begin{aligned} & \mathrm{MACH} \\ & \text { NO } \end{aligned}$	$\stackrel{T}{(R)}$
9	7	1.6000	. 6420	. 7513	. 0506	163.05350	144.893533	. 7530	. 5909	115.9841
9	3	1.6000	. 7315	. 7527	. 0362	16B. 23076	145.003094	. 7535	. 5913	116.0187
9	9	1.6000	. 8210	. 7526	. 0235	168. 35166	145.076201	. 7530	. 5908	116.0436
9	10	1.6000	. 9105	. 7527	. 0116	168.44078	145.130086	. 7528	. 5906	116.0619
9	11	1.6000	1.0000	. 7532	0.0000	168.53170	145.184299	. 7532	. 5908	116.0812
10	1	1.8000	0.0000	7992	0.0000	164.43271	142.668435	. 7992	. 6291	115.2551
10	2	1.8000	. 0860	. 8008	-. 0127	164.35470	142.621085	. 8009	. 6305	115.2387
10	3	1.8000	. 1720	8044	-. 0264	164.04485	142.432924	8048	. 6338	115.1734
10	4	1.8000	. 2580	. 8104	-. 0419	163.45307	142.072841	. 8115	. 6394	115.0488
10	5	1.8000	. 3440	. 8185	-. 0601	162.52985	141.515621	. 8207	. 6472	114.8494
10	6	1.8000	. 4300	. 8401	-. 0735	159.64350	139.715563	. 8433	. 6668	114.2632
10	6	1.8000	. 5700	. 8242	. 0721	161.05797	140.605579	. 8273	. 6533	114.5459
10	7	1.8000	. 6560	. 8158	. 0521	162.54924	141.513242	. 8174	6446	114.8650
10	8	1.8000	. 7420	. 8075	. 0368	163.45810	142.067836	. 8084	. 6369	115.0564
10	9	1.8000	. 8280	. 8010	. 0236	164.09803	142.459858	. 8014	6310	115.1890
10	10	1.8000	. 9140	. 7972	. 0120	164.48294	142.696498	. 7973	. 6276	115.2677
10	11	1.8000	1.0000	. 7947	0.0000	164.69942	142.830843	. 7947	. 6255	115.3108
11	1	2.0000	0.0000	. 8394	0.0000	158.81698	139. 164508	. 8394	. 6641	114.1218
11	2	2.0000	. 0825	. 8436	. 0004	158.58480	139.025564	. 8436	. 6676	114.0688
11	3	2.0000	. 1650	. 8510	. 0012	157.73375	138.495248	. 8510	. 6739	113.8911
11	4	2.0000	. 2475	. 8641	. 0022	156.27318	137.583529	. 8641	. 6853	113.5842
11	5	2.0000	. 3300	. 8856	. 0010	153.71971	135.978802	. 8856	. 7039	113.0468
11	6	2.0000	. 4125	. 9196	0.0000	151.21521	134.403945	. 9196	. 7327	112.5080
11	6	2.0000	. 5875	. 8996	0.0000	153.40795	135.757117	. 8996	. 7152	113.0018
11	7	2.0000	. 6700	. 8692	-. 0003	156.11195	137.471736	. 8692	. 6894	113.5593
11	8	2.0000	. 7525	. 8508	. 0001	158.01311	138.662628	. 8508	. 6736	113.9551
11	9	2.0000	. 8350	. 8390	. 0003	159.30354	139.467588	. 8390	. 6635	114.2226
11	10	2.0000	. 9175	. 8323	-. 0001	159.95114	139.870389	. 8323	. 6578	114.3567
11	11	2.0000	1.0000	8289	0.0000	160. 14805	139.988771	. 8289	. 6550	114.4006
12	1	2.2000	0.0000	. 7964	0.0000	163.58950	142. 152968	. 7964	. 6274	115.0799
12	2	2.2000	0860	. 7974	. 0127	163.39534	142.042019	. 7975	. 6284	115.0331
12	3	2.2000	. 1720	. 8 CO 8	. 0263	162.88680	141.733474	. 8012	. 6317	114.9247
12	4	2.2000	. 2580	8058	. 0419	162.07130	141.238851	. 8069	. 6366	114.7498
12	5	2.2000	. 3440	. 8153	. 0598	160.77808	14C. 452870	. 8175	. 6458	114.4712
12	6	2.2000	. 4300	. 8130	. 0711	160.66941	14C. 396774	. 8161	. 6448	114.4395
12	6	2.2000	. 5700	. 8224	-. 0719	159.94058	139.929516	. 8255	. 6526	114.3008
12	7	2.2000	. 6560	. 8126	-. 0520	161.36048	140.801458	. 8142	. 6428	114.6014
12	8	2.2000	. 7420	. 8048	-. 0365	162.49001	141.487087	. 8056	. 6353	114.8444
12	9	2.2000	. 8280	. 7990	-. 0231	163.25273	141.951062	. 7993	. 6300	115.0063
12	10	2.2000	. 9140	. 7966	-. 0119	163.57937	142.148126	. 7967	. 6277	115.0767
12	11	2.2000	1.0000	. 7962	0.0000	163.64165	142.180759	. 7962	. 6273	115.0941
13	1	2.4000	0.0000	. 7503	0.0000	169.11378	145.548993	. 7503	. 5883	116.1903
13	2	2.4000	. 0895	. 7505	. 0113	169.08978	145.543276	. 7505	. 5885	116.1783
13	3	2.4000	. 1790	. 7500	. 0229	169.09601	145.550863	. 7504	. 5884	116.1766
13	4	2.4000	. 2685	. 7496	. 0348	169.11170	145.56697C	. 7504	. 5884	116. 1745
13	5	2.4000	. 3580	. 7462	. 0494	169.39531	145.745691	. 7478	. 5862	116.2266
13	6	2.4000	. 4475	. 7436	. 0651	169.55218	145.844506	. 7464	. 5851	116.2554
13	6	2.4000	. 5525	. 7444	-. 0651	169. 18976	145.621219	. 7473	. 5859	116. 1848
13	7	2.4000	. 6420	. 7483	-. 0502	169.11983	145.574651	. 7500	. 5881	116. 1740

Fig. 31. (eont)

L	M	$\begin{aligned} & \mathrm{X} \\ & (\mathrm{IN}) \end{aligned}$	$\stackrel{Y}{(I N)}$	$\begin{gathered} U \\ (F / S) \end{gathered}$	$\begin{gathered} V \\ (F / S) \end{gathered}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ (\mathrm{LBM} / \mathrm{FT} 3) \end{gathered}$	VMAG (F / S)	MACH NO	$\begin{gathered} T \\ (\mathrm{R}) \end{gathered}$
13	8	2.4000	. 7315	. 7492	-. 0363	169.08397	145.544534	. 7501	. 5881	116.1734
13	9	2.4000	8210	. 7496	-. 0236	169.09189	145.544310	7499	5880	116.1790
13	10	2.4000	9105	. 7501	-. 0118	169.06066	145.521759	. 7502	5882	116.1755
13	11	2.4000	1.0000	. 7502	0.0000	169.05207	145.510546	. 7502	5883	116.1786
14	1	2.6000	0.0000	. 7164	0.0000	172.36093	147.547241	. 7164	. 5602	116.8175
14	2	2.6000	. 0930	. 7164	. 0118	172.36350	147.557870	. 7165	. 5603	116.8108
14	3	2.6000	. 1860	. 7155	. 0237	172.39963	147.584491	. 7159	. 5598	116.8142
14	4	2.6000	. 2790	. 7140	. 0362	172.45723	147.627584	. 7150	. 5591	116.8191
14	5	2.6000	. 3720	. 7118	. 0491	172.60962	147.727886	. 7135	. 5578	116.8430
14	6	2.6000	. 4650	. 7094	. 0621	173.11309	148.046439	. 7121	. 5566	116.9316
14	6	2.6000	. 5350	. 7086	-. 0620	173.27541	148. 124471	. 7113	5558	116.9796
14	7	2.6000	. 6280	. 7102	-. 0481	172.98563	147.949866	. 7118	. 5563	116.9218
14	8	2.6000	. 7210	. 7125	-. 0354	172.80929	147.832618	. 7134	. 5576	116.8952
14	9	2.6000	. 8140	. 7139	-. 0232	172.68210	147.749196	. 7142	. 5584	116.8752
14	10	2.6000	. 9070	. 7149	-. 0116	172.60397	147.697519	. 7150	. 5590	116.8631
14	11	2.6000	1.0000	. 7151	0.0000	172.55756	147.663132	. 7151	. 5591	116.8589
15	1	2.8000	0.0000	. 6782	0.0000	176.40221	150.004977	. 6782	. 5286	117.5976
15	2	2.8000	. 0965	. 6774	. 0106	176.44090	150.038176	6775	. 5280	117.5973
15	3	2.8000	. 1930	. 6747	. 0216	176.61634	150.149443	. 6751	. 5260	117.6270
15	4	2.8000	. 2895	. 6703	. 0330	176.92917	150.347476	. 6711	. 5229	117.6802
15	5	2.8000	. 3860	. 6631	. 0458	177.43889	150.664840	. 6647	. 5177	117.7706
15	6	2.8000	. 4825	. 6497	. 0568	178.46103	151.286038	. 6522	. 5075	117.9627
15	6	2.8000	. 5175	. 6546	-. 0573	177.97915	150.991957	. 6571	. 5115	117.8733
15	7	2.8000	. 6140	. 6651	-. 0441	177.31139	150.580243	. 6666	. 5192	117.7521
15	8	2.8000	. 7105	. 6714	-. 0321	176.83180	150.279437	. 6721	. 5237	117.6687
15	9	2.8000	. 8070	. 6759	-. 0211	176.50801	150.076833	. 6762	. 5270	117.6118
15	10	2.8000	9035	. 6787	-. 0106	176.31330	149.954547	. 6787	. 5290	117.5778
15	11	2.8000	1.0000	. 6799	0.0000	176.23057	149.898024	. 6799	. 5300	117.5670
16	1	3.0000	0.0000	. 6562	0.0000	178.57515	151.321025	. 6562	. 5105	118.0108
16	2	3.0000	. 1000	. 6547	. 0058	178.65575	151.379994	. 6547	. 5094	118.0181
16	3	3.0000	. 2000	. 6513	. 0114	178.97167	151.575645	. 6514	. 5066	118.0742
16	4	3.0000	. 3000	. 6454	. 0166	179.48814	151.895740	. 6456	. 5019	118.1654
16	5	3.0000	. 4000	. 6363	. 0222	180.44888	152.482391	. 6367	4947	118.3408
16	6	3.0000	. 5000	. 6256	. 0274	181.29569	153.003296	. 6262	. 4862	118.4914
16	6	3.0000	. 5000	. 6270	-. 0274	181.11328	152.871307	. 6276	. 4873	118.4743
16	7	3.0000	. 6000	. 6374	-. 0225	180.06779	152.246798	. 6378	. 4957	118.2736
16	8	3.0000	. 7000	. 6465	-. 0175	179.32977	151.791409	. 6467	. 5028	118.1422
16	9	3.0000	. 8000	. 6522	-. 0120	178.81648	151.475165	. 6523	. 5074	118.0500
16	10	3.0000	. 9000	. 6557	-. 0061	178.54805	151.308804	. 6557	. 5101	118.0024
16	11	3.0000	1.0000	. 6572	0.0000	178.47106	151.255431	. 6572	. 5113	117.9932
17	1	3.2000	0.0000	. 6477	0.0000	179.67603	151.986138	. 6477	. 5035	118.2187
17	2	3.2000	. 1000	. 6470	. 0014	179.74705	152.039364	. 6470	. 5029	118.2240
17	3	3.2000	. 2000	. 6448	. 0024	179.97430	152.181260	. 6448	. 5011	118.2631
17	4	3.2000	. 3000	. 6419	. 0023	180.27633	152.371799	. 6419	. 4988	118.3134
17	5	3.2000	. 4000	. 6347	. 0031	181.02479	152.830633	. 6347	. 4929	118.4480
17	6	3.2000	. 5000	. 6312	. 0007	181.20769	152.940791	. 6312	. 4901	118.4822
17	7	3.2000	. 6000	. 6375	-. 0024	180.65552	152.602871	. 6375	. 4952	118.3828
17	8	3.2000	. 7000	. 6423	-. 0031	180.18298	152.307114	. 6423	4991	118.3024
17	9	3.2000	. 8000	. 6455	-. 0028	179.85039	152.100038	6455	5017	. 118.2448

L	M	$\begin{gathered} x \\ (\mathrm{IN}) \end{gathered}$	$\stackrel{y}{Y}(\mathrm{IN})$	$\stackrel{J}{(F / S)}$	$\stackrel{v}{(F / S)}$	$\begin{gathered} P \\ (P S I A) \end{gathered}$	$\begin{gathered} \text { RHO } \\ \text { (LBM/FT3) } \end{gathered}$	VMAG (F / S)	$\begin{aligned} & \text { MACH } \\ & \text { NO } \end{aligned}$	$\begin{gathered} T \\ (R) \end{gathered}$
17	10	3.2000	. 9000	. 6473	-. 0014	179.69516	152.002028	. 6473	. 5032	118.2189
17	11	3.2000	1.0000	. 6478	0.0000	179.65637	151.971562	. 6478	. 5036	118.2171
18	1	3.4000	0.0000	. 6469	0.0000	179.54338	151.906250	. 6469	5029	118.1935
18	2	3.4000	. 1000	. 6465	. 0009	179.57099	151.933177	. 6465	5026	118.1908
18	3	3.4000	. 2000	. 6456	. 0015	179.63098	151.974009	. 6456	5019	118.1985
18	4	3.4000	. 3000	. 6444	. 0020	179.72757	152.040465	. 6444	5009	118.2104
18	5	3.4000	. 4000	. 6429	. 0013	179.82734	152. 107726	. 6429	. 4997	118.2237
18	6	3.4000	. 5000	. 6414	-. 0004	179.82416	152. 105322	. 6414	. 4985	118.2235
18	7	3.4000	. 6000	. 6437	-. 0016	179.75819	152.060802	. 6437	. 5004	118.2147
18	8	3.4000	. 7000	. 6449	-. 0018	179.67170	151.998224	. 6449	. 5013	118.2064
18	9	3.4000	. 8000	. 6458	$-.0015$	179.59676	151.946866	. 6459	5021	118.1971
18	10	3.4000	. 9000	. 6465	-. 0008	179.56182	151.921583	. 6465	. 5026	118.1938
18.	11	3.4000	1.0000	. 6468	0.0000	179.55297	151.909237	. 6468	. 5028	118.1975
19	1	3.6000	0.0000	. 6442	0.0000	179.98355	152. 172301	. 6442	. 5006	118.2762
19	2	3. 6000	. 1000	. 6440	. 0002	179.99746	152.190994	. 6440	. 5004	118.2708
19	3	3.6000	. 2000	. 6435	. 0003	180.02851	152.214380	. 6435	. 5001	118.2730
19	4	3.6000	. 3000	. 6427	. 0004	180.08225	152.254990	. 6427	. 4995	118.2767
19	5	3.6000	. 4000	. 6417	. 0003	180. 12635	152.288732	. 6417	. 4987	118.2795
19	6	3.6000	. 5000	. 6403	-. 0000	180. 12693	152.288461	. 6403	. 4976	118.2801
19	7	3.6000	. 6000	. 6423	-. 0003	180.08996	152.261252	. 6423	. 4991	118.2769
19	8	3.6000	. 7000	. 6431	-. 0004	180.04633	152.224539	. 6431	. 4998	118.2768
19	9	3.6000	. 8000	. 6436	-. 0003	180.00328	152.192431	. 6436	. 5002	118.2735
19	10	3.6000	. 9000	. 6441	-. 0002	179.98525	152.177342	. 6441	. 5005	118.2734
19	11	3.6000	1.0000	. 6442	0.0000	179.97940	152. 166774	. 6442	. 5006	118.2777
20	1	3.8000	0.0000	. 6451	0.0000	179.77278	152.045085	. 6451	. 5014	118.2365
20.	2	3.8000	. 1000	. 6450	. 0001	179.77647	152.057672	. 6450	. 5013	118.2291
20	3	3.8000	. 2000	. 6447	. 0002	.179.78302	152.066276	. 6447	. 5011	118.2268
20	4	3.8000	. 3000	. 6443	. 0002	179.78979	152.078542	. 6443	. 5008	118.2217
20	5	3.8000	. 4000	. 6436	. 0001	179.79404	152.088246	. 6436	. 5003	118.2169
20	6	3.8000	5000	. 6422	-. 0000	179.79208	152.086341	. 6422	. 4992	118.2171
20	7	3.8000	. 6000	. 6440	-. 0002	179.78889	152.079376	. 6440	. 5006	118.2204
20	8	3.8000	. 7000	. 6445	-. 0002	179.78175	152.064717	. 6445	. 5009	118.2271
20	9	3.8000	. 8000	. 6447	-. 0002	179.77840	152.056602	. 6447	. 5011	118.2312
20	10	3.8000	. 9000	. 6450	-. 0001	179.77595	152.050939	. 6450	. 5013	118.2340
20	11	3.8000	1.0000	. 6451	0.0000	179.77676	152.044388	. 6451	. 5014	118.2397
21	1	4.0000	0.0000	. 6438	0.0000	180.00000	152. 182221	. 6438	. 5003	148.2793
21	2	4.0000	. 1000	. 6437	. 0001	180.00000	152. 192626	6437	. 5002	118.2712
21	3	4.0000	- 2000	. 6435	. 0002	180.00000	152. 197272	. 6435	. 5001	118.2676
21	4	4.0000	3000	. 6433	. 0002	180.00000	152.205457	. 6433	. 4999	118.2612
21	5	4.0000	. 4000	. 6427	. 0001	180.00000	152.212584	. 6427	. 4995	118.2557
21	6	4.0000	. 5000	. 6414	-. 0001	180.00000	152.211907	. 6414	. 4984	118.2562
21	7	4.0000	. 6000	. 6430	-. 0002	180.00000	152. 206858	. 6430	. 4997	118.2601
21	8	4.0000	. 7000	. 6434	-. 0002	180.00000	152. 196505	. 6434	. 5000	118.2682
21	9	4.0000	. 8000	. 6435	-. 0002	180.00000	152. 190416	. 6435	. 5001	118.2729
21	10	4.0000	. 9000	. 6437	-. 0001	180.00000	152.186234	. 6437	. 5003	118.2761
21	11	4.0000	1.0000	. 6438	0.0000	180.00000	152.179192	. 6438	5003	118.2816

[^0]Fig. 31. (cont)

APPENDIX

FORTRAN LISTING OF THE VNAP2 PROGRAM

Los Alamos Identification No. LP-833

```
*COMDECK.MCC
    PARAMETER (LI=41, MI=25, LI 1=42, MI i= 26. MQS=9, LTS=41, MTS=25)
        COMMON /ONESID/ UD(4).VD(4), PD(4), ROD(4)
        COMMON /SOLUTN/ U(LI,MI,2),V(LI,MI,2), P(LI,MI,2). KU(LI,MI.2),
        1 UL(LI,2). VL(LI,2), PL(LI,2), ROL(LI,2)
        COMMON /CNTRLC/ LMAX, MMAX, NMAX, NPRINT, TCONV. FDT, GAMMA, RGAS,
        1 GAM1, GAM2, L1, L2. L3. M1. M2. DX, DY. DT, N, N1, N3, NASM,
        2 ICHAR, NID, LJET, JFLAG. IERR, IUI, IUO, DXR, DYR, IB, RSTAR,
        3 RSTARS, NPLOT, G. PC. TC, LC. PLOW, ROLOW. CQ(LI,MII), NSTART,
        4 GAM3. RG. NC. ISTOP
        COMMON /GEMTRYC/ NGEOM, XI, RI, XT, RT, XE. RE, RCI, RCT, ANGI
        I ANGE. YW(LI). XWI(LI), YWI(LI). NXNY(LI), NWPTS, IINT, IDIF. LT,
        2 NDIM
        COMMON /GCB/ NGCB. XICB, RICB, XTCB, RTCB, XECB, RECB, RCICB
        1 RCTCB, ANGICB, ANGECB, YCB(LI), XCBI(LI), YCBI(LI), NXNYCB(LI),
        2 NCBPTS, IINTCB, IDIFCB
        COMMON /BCC/ PT(MI). TT(MI). THETA(MI). MASSE. MASSI. MASST.
        1 THRUST, NSTAG, NOSLIP, IEXITT, TW(LI), TCB(LI), JSUPER, DYW, IVBC
        2 . IEX, IAS. PTL. TTL. THETAL, UIL, VIL, PIL, ROIL, TL(LI), TU(LI)
        3. IWALL, UI(MI), VI(MI), PI(MI), ROI(MI), PE(MI), PEL, PEI, NPE,
        4 ~ I N B C . ~ I I N L E T . ~ I W A L L O . ~ A L I . ~ A L E . ~ A L W ~
        COMMON /AV/ IAV, CAV, NST, SMP, LSS. XMU, XLA, PRA, XRO, QUT(LI,MI
        1 ), OVT(LI,MI), QPT(LI,MI). OROT(LI,MI). SMACH. OUTL(LI), QVTL(LI)
        2, QPTL(LI), QROTL(LI), SMPT, US(LTS.MTS), VS(LTS.MTS). PS(LTS,MTS
        3). ROS(LTS,MTS), QS(LTS.MTS), ES(LTS,MTS), ULS(LTS), VLS(LTS)
        PLS(LTS). ROLS(LTS), QLS(LTS). ELS(LTS), NTST, NTC, LSF. IDIVC.
        5 ISS, MSS. MSF
        COMPION /RV/ CMU. CI.A. CK. EMU, ELA, EK, CHECK, TMUX, TMUY, TMUIX,
        1 TMUIV
            COMMON /TURB/ ITM. TML. O(LI.MI.2), E(LI,MI,2). QL(LI.2). EL(LI.2)
        1. CAL, COMU. C1, C2, SIGQ, SIGE, OQT(LI,MI), OET(LI.MI). QQTL(LI)
        2. QETL(LI), FSO(MI), FSE(MI), FSQL. FSEL, CQL. LPRINT, MPRINT.
        OLOW. ELOW, IMLM, DEL, DELS, UBLE, YSL1, YSL2, YMIN, MMIN, IMP,
        4 \text { BFST, CMLI, CML2, PRT, STBQ, STBE}
        COMMON /DFS/ YU(LI), YL(LI). NXNYU(LI), NXNYL(LI), MDFSM1, MDFSP1,
        1 MMAXD, LDFSS, LDFSF. MDFS. NDFS. IINTDFS, IDIFDFS, NLPTS, NUPTS.
        2 XLI(LI), YLI(LI), XUI(LI), YUI(LI), MDFSC
        COMMON /VC/ IST: MVCB, MVCT, XP(LI), YI(MI), IVC, VN(MI), RIND
        1 RIND1, MVCB1. MVCT1, NVC., NN1, NN3, UU1(LI), UU2(LI), VV1(LI),
        VV2(LI), PP1(LI), PP2(LI), RORO1(LI). RORO2(LI), QQ1(LI), QQ2(LI)
            EE1(LI), EE2(LI), DZDX(LII), X(LI), DYOVIN(MII), Y(MI), IQSD
        4 ILLQS, DUDYQS(LI,MQS,2), DVDYQS(LI.MOS.2), DPDYOS(LI,MQS.2). SQS.
        5 IOS, CQS, NVCM
        COMMON /MAPC/ IP, LMAP, MMAP, AL3. AL4, BE3, BE4, DE3. DE4. OM1.
        I OM2. YP
        REAL MN3, NXNY, NXNYCB. MASSI, MASST, MASSE. LC, LC2. NXNYL:. NXNYU
*DECK, VNAP2
        PROGRAM VNAP2 (ITAPE,OTAPE1,PUN1,TTY,TAPE5=ITAPE.TAPE6=OTAPE1
        1. TAPE8=PUN1 . TAPE 59= TTY)
C
    VNAP2, A COMPUTER PROGRAM FOR THE COMPUTATION OF TWO-DIMENSIONAL.
                        TIME-DEPENDENT, COMPRESSIBLE. TURBULENT FLOW
                            BY MICHAEL C. CLINE, T-3
                LOS ALAMOS NATIONAL LABORATORY
\begin{tabular}{|c|c|c|}
\hline 63 & C & the navier-stokes equations for two-dimensional. time- \\
\hline 64 & C & dependent flow are solved using the second-order, maccormack \\
\hline 65 & C & FINITE-DIFFERENCE SCHEME. ALL Boundary conditions are computed \\
\hline 66 & C & USing a second-order. reference plane characteristic scheme \\
\hline 67 & C & WIth the viscous terms treated as source functions. ihe fluid \\
\hline 68 & C & IS ASSUMED to be a perfect gas. the steady-state solution is \\
\hline 69 & C & OBTAINED AS THE ASYMPTOTIC SOLUTION FOR LARGE TIME. THE FLOW \\
\hline 70 & C & goundaries may be arbitrary curved solio wall s as well as free \\
\hline 71 & C & JEt envelopes. The geometry may consist of single and dual. \\
\hline 72 & C & flowing jtreamg. turbulence effects are modeled with either \\
\hline 73 & C & A MIXING-LENGTH, A TURBULENCE ENERGY EQUATION, OR A TURBULENCE \\
\hline 74 & C & ENERGY-DISSIPATION RATE EQUATIONS MODEL. THIS PROGRAM ALLOWS \\
\hline 75 & C & VARIABLE GRID SPACING AND INCLUDES OPTIONS TO SPEED UP THE \\
\hline 76 & C & Calculation for high reynolds number flows. \\
\hline 77 & C & \\
\hline 78 & & DIMENSION TITLE(10) \\
\hline 79 & *CALL. & , MCC \\
\hline 80 & & NAMELIST /CNIRL/ LMAX.MMAX, NMAX, NPRINT.TCONV.FDT.FDTI, FDT \\
\hline 81 & &  \\
\hline 82 & & 2 , LPP'3, MPP 3 , NASM, NAME, NCUINVI. IUNIT. PLOW, ROLOW, IVPT3 \\
\hline 83 & & NAMELIST /IVS/ NID,U,V,P,RO,Q,E,UL,VL,PL,ROL, QL, EL, RSTAR,RSTARS \\
\hline 84 & & 1 , NSTART, TSTART \\
\hline 85 & & NAMELIST /GEMTRY/ NDIM, NGEOM, XI,RI,RT, XE, RCI, RCT, ANGI, ANGE,XWI, YWI \\
\hline 86 & & 1 , NWPTS.IINT, IDIF, YW, NXNY,JFLAG,LUET \\
\hline 87 & & NAMELIST /GCBL/ NGCB.RICB.RTCB.RCICB.RCTCB.ANGICB.ANGECB.XCBI.YCBI \\
\hline 88 & & 1 , NCBPTS, IINTCB, IDIFCB. YCB.NXNYCB \\
\hline 89 & & NAMELIST /BC/ NSTAG.PT, TT, THETA.PTL, TTL, THETAL.PE,PEL.PEI, NPE.UI \\
\hline 90 & & 1, VI.PI,ROI, UIL, VIL, PIL,ROIL.TW, TCB, TL, TU, ISUPER.INBC.IWALL, IWALLO \\
\hline 91 & & 2 , íiñlet, iexitt, IEX, IVBC, NUSLIP, UYW, IAS, ALI, ALE, ALW \\
\hline 92 & & NAMELIST /AVL/ CAV, XMU, XLA, PRA, XRU,LSS, LSF, MSS, MSF.IDIVC,ISS, SMACH \\
\hline 93 & & 1 ,NST, SMP, SMPF. SMPT, SMPTF, NTST, IAV \\
\hline 94 & & NAMELIST /RVL/ CMU.EMU.CLA.ELA.CK, EK \\
\hline 95 & & NAMELIST /TURBL/ ITM.IMLM, CML 1, CMI. \(2 . C A L, C O L . C O M U . C 1 . C 2, S I G Q, S I G E\) \\
\hline 96 & & 1 , BFST, FSQ, FSE, FSQL, FSEL. QLOW, ELOW, LPRINT, MPRINT, PRT, STBQ, STBE \\
\hline 97 & & NAMELIST /DFSL/ MDFS.LDFSS.LDFSF.NDFS.YU.YL.NXNYU.NXNYL.XUI, XI.I \\
\hline 98 & & 1 . YUI, YI.I, NUPTS, NLPTS.IINTDFS.IDIFDFS \\
\hline 99 & & NAMELIST /VCL/ IST.XP,YI,MVCB.MVCT, NVCMI.IQS.NIQSS,NIQSF.CQS.ILLQS \\
\hline 100 & & 1 . Sos \\
\hline 101 & C & \\
\hline 102 & C & SEt the array sizes for specifying the input default values \\
\hline 103 & C & \\
\hline 104 & & LD=LI \\
\hline 105 & & MD=MI \\
\hline 106 & C & \\
\hline 107 & C & SET default values \\
\hline 108 & C & \\
\hline 109 & 10 & TCȮNV \(=0.0\) \\
\hline 110 & & TSTART \(=0.0\) \\
\hline 111 & & THETA ( 1 ) \(=0.0\) \\
\hline 112 & & \(C A V=0.0\) \\
\hline 113 & & \(\mathrm{XMU}=0.4\) \\
\hline 114 & & XLA \(=1.0\) \\
\hline 115 & & \(\mathrm{PRA}=0.7\) \\
\hline 116 & & \(\mathrm{XRO}=0.6\) \\
\hline 117 & & LSS \(=1\) \\
\hline 118 & & LSF \(=998\) \\
\hline 119 & & MSS \(=1\) \\
\hline 120 & & Mちt-yicg \\
\hline 121 & & SMACH \(=0.0\) \\
\hline 122 & & IDIVC=0. \\
\hline 123 & & TSSEn \\
\hline 124 & & TC=O. 0 \\
\hline 125 & & \(\mathrm{CMU}=0.0\) \\
\hline 126 & & C.I \(\triangle=00\) \\
\hline 127 & & CK=0.0 \\
\hline 128 & & \(\mathrm{EMU}=0.0\) \\
\hline 129 & & F.I. \(\mathrm{A}=0.0\) \\
\hline 130 & & EK \(=0.0\) \\
\hline 131 & & RSTAR \(=0.0\) \\
\hline 132 & & RICB \(=0.0\) \\
\hline 133 & & RTCB \(=0.0\) \\
\hline 134 & & RSTARS \(=0.0\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 207 & I WALL \(=0\) \\
\hline 208 & I WALLO \(=0\) \\
\hline 209 & \(18=0\) \\
\hline 210 & LOFSS \(=0\) \\
\hline 211 & LDFSF \(=0\) \\
\hline 212 & MDFS \(=0\) \\
\hline 213 & LPR INT \(=0\) \\
\hline 214 & MPRINT \(=0\) \\
\hline 215 & I VBC \(=0\) \\
\hline 216 & INBC \(=0\) \\
\hline 217 & LPP \(1=0\) \\
\hline 218 & IQS \(=0\) \\
\hline 219 & NIQSF \(=0\) \\
\hline 220 & \(I A V=0\) \\
\hline 221 & \(\mathrm{IST}=0\) \\
\hline 222 & LOUF \(=0\) \\
\hline 223 & MUUF \(=0\) \\
\hline 224 & NTC \(=0\). \\
\hline 225 & I INT \(=2\) \\
\hline 226 & \(101 F=2\) \\
\hline 227 & I 1 NTCB \(=2\) \\
\hline 228 & IDIFCB \(=2\) \\
\hline 223 & \(1 \mathrm{INTOF} \dot{\text { ¢ }}=2\) \\
\hline 230 & IDIFDFS \(=2\) \\
\hline 231 & ILLOS \(=30\) \\
\hline 232 & GAMMA \(=1.4\) \\
\hline 233 & RGAS \(=53.35\) \\
\hline 234 & NPLOT \(=-1\) \\
\hline 235 & \(\mathrm{G}=32.174\) \\
\hline 236 & \(P C=144.0\) \\
\hline 237 & LC \(=12.0\) \\
\hline 238 & PLOW \(=0.01\) \\
\hline 239 & ROLOW \(=0.0001\) \\
\hline 240 & DYW \(=0.001\) \\
\hline 241 & \(C A L=1.0\) \\
\hline 242 & COMU \(=0.09\) \\
\hline 213 & C. \(1=144\) \\
\hline 244 & C2 \(=1.8\) \\
\hline 245 & SIGQ \(=1.0\) \\
\hline 246 & SIGE=1.3 \\
\hline \%47 & STS \(=0.5\). \\
\hline 248 & CQS \(=0.001\) \\
\hline 249 & NIOSS \(=2\) \\
\hline 250 & FSOL \(=0.0001\) \\
\hline 251 & O1 OW=0.0nO1 \\
\hline 252 & FSEL=0. 1 \\
\hline 253 & ELOW=0. 1 \\
\hline 254 & PRI \(=0.9\) \\
\hline 255 & STBQ \(=0.0\) \\
\hline 256 & STBE \(=0.0\) \\
\hline 257 & ISTOP \(=0\) \\
\hline 250 & DO \(20 \mathrm{M}=1\), MD \\
\hline 259 & \(\mathrm{UI}(\mathrm{M})=0.0\) \\
\hline 260 & VI ( \(M\) ) \(=0.0\) \\
\hline 261 & FI( \(M\) ) \(=0.0\) \\
\hline 262 & ROI (M) \(=0.0\) \\
\hline 263 & FSO(M) \(=0.0001\) \\
\hline 264 & FSE (M) =0. 1 \\
\hline 265 & 20 CONTINUE \\
\hline 288 & \(0030 \mathrm{~L}-1.10\) \\
\hline 267 & \(Y C B(L)=0.0\) \\
\hline 268 & \(Y \mathrm{~L}(\mathrm{~L})=0.0\) \\
\hline 269 & Yu(L)-0:0 \\
\hline 270 & NXNYCB(L) \(=0.0\) \\
\hline 271 & NXNYL(L) \(=0.0\) \\
\hline 272 & NXNYU(L) \(=0.0\) \\
\hline 273 & OL(L. 1 ) \(=0.0\) \\
\hline 274 & EL (L, 1) \(=0.0\) \\
\hline 275 & \(O L(L, 2)=0.0\) \\
\hline 276 & \(E L(L .2)=0.0\) \\
\hline 277 & \(U L(L, 1)=0.0\) \\
\hline 278 & \(\mathrm{VL}(\mathrm{L}, 1)=0.0\) \\
\hline
\end{tabular}
```

 PL(L, 1)=0.0
 ROL(L, 1)=0.0
 PL(L,2)=0.0
 ROL(L.2)=0.0
 TW(L)=-1.0
 TCB(L)=-1.0
 TL(L)=-1.0
 TU(L)=-1.0
 DO 3O M=1.MD
 Q(L,M, 1)=0.O
 E(L,M.1)=0.O
 O(L,M,2)=0.O
 E(L.M.2)=0.O
 30 CONTINUE
READ IN INPUT DATA
READ (5.1370) TITLE
IF (EOF(5)) 40.50
4O CALL EXIT
50 READ (5.CNTRL)
READ (5.IVS)
READ (5.GEMTRY)
READ (5,GCBL)
READ (5.BC)
READ (5.AVL)
READ (5.RVL)
READ (5.TURBL)
READ (5.DFSL)
READ (5.VCL)
IF (NAME.EO.O) GO TO 60
WRITE. (6,CNTRL)
WRITE (6,IVS)
WRITE (6,GEMTRY)
WRITE (6,GCBL)
WRITE (6,BC)
WRITE (6.AVL)
WRITE (6.RVL)
WRITE (G.TURBL)
WRITE (6.DFSL)
WRITE (6.VCL)
PRINT INPUT DATA
60 WRITE (6, 1380)
WRITE (6,1410)
WRITE (6,1400)
WRITE (6, 1420)
WRITE (6.1430)
WRITE (6,1390)
WRITE (6.1440) TITLE
WRITE (6,1390)
WRITE (6.1450)
NPRIND=ABS(FLOAT(NPRINT))
IF (FDTI.EQ.O.O) FDTI=FDT
WRITE (6,1460) LMAX,MMAX,NMAX,NPRIND,NPLOT,FDT,FDT1,FDTI, IPUNCH
1 .IUI, IUO, IVPTS,NCONVI, TSTOP,N1D,TCONV,NASM, IUNIT,RSTAR,RSTARS
? ,PI_OW,ROLOW,VOT,VDT1
WRITE (6,1390)
IF (IUI.EQ.1) WRITE (6.1470) GAMMA.RGAS
IF (IUI.[0.2) WRITE (6.1480) GAMMA.RGȦS
WRITE (6,1390)
WRITE (6,1490)
IF (NOIM.EQ.O) WRITE (6,1500)
IF (NDIM.EO.1) WRITE (6.1510)
CALCULATE THE GEOMETRY RADIUS AND SLOPE
L1=LMAX-1
L2 = LMAX - 2
L.3=LMAX-3
M1=MMAX-1

```
```

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
304
3Y'2
397
394
395 c
396 C
397
398
399
400
4 0 1
4 0 2
4 0 3
4 0 4
405
406
4 0 7
4 0 8
409
410
411
412
413
414
415
4 1 6
417
418
419
420
4 2 1
422
M2 =MMAX - 2
MDFSM1=MDFS-1
MDFSP 1=MDFS + 1
MMAXD =MMAX - MDF S
CHECK=ABS (CMU)+ABS(CLA)+ABS (CK)
IF (NGEOM.NE.3) GO TO 7O
XI = XWI (1)
XE=XWI(NWPTS)
70 DX=(XE-XI)/FLOAT(L1)
DY=1.O/FLOAT(M1)
IF (IST.NE.O) GO TO 90
DO 8O L=1.LMAX
XP(L)=XI+FLOAT(L-1)*DX
8O CONTINUE
90 XP(1)=XI
XP(LMAX)=XE
WRITE (6,1390)
CALL GEOM
IF (IERR.NE.O) GO IU 10
XICB=XI
XFCR=XE
IF (NGCB.EQ.O.AND.MDFS.EQ.O) GO TO 14O
If (NGCB.NE.O) CALL GEOMCB
IF (IERR.NE.O) GO TO 10
IF (MDFS.NE.O) CAII. GEOMLU
IF (IAS.EQ.O) GO TO 110
IF (LDFSF.EQ.LMAX) GO TO 100
NXNYL(LDFSF)=0.S*(NXNYL(LDFSF)+NXNYU(LUr SF ')
NXNYU(LDFSF)=NXNYL(LDFSF)
t00 IF (LDFSS.EQ.1) GO to 110
NXNYL(LDFSS) =0.5*(NXNYL(LDFSS) +NXNYU(LDFSS))
NXNYU(LDFSS)-NXNYL(LDFSS)
110 LT=1
YO=YW(1)-YU(1)+YL(1)-YCB(1)
DO 130 L=1.LMAX
IF (NDIM.EQ.O) YY=YW(L)-YU(L)+YL(L)-YCE(L)
IF (NDIM.EQ.1) YY=YW(L)*+2-YU(L)**2+YL(L)*+2-YCB(L)**2
IF (YY.GT.O.O) GO TO 12O
WRITE (6.1610)
GO TO 10
120 IF (YY.LT.YO) LT=L
IF (LT.EO.L) YO-Y'M
1.3n gONT INUE
CONTINUE SET UP AND PRINTING OF INPUT dATA
140 GAM 1 =GAMMA/(GAMMA - 1.0)
GAM2=(GAMMA-1.0)/2.0
GAM3=(GAMMA+1.0)/(GAMMA -1.0)
IF (PE(2).NE -1 O) fill In lḧ|
DO 150 M=2.MMAX
PE (M) = PE (1)
150 CONTINUE
PEL=PE(1)
160 IF (MDFS.NE.O.AND.LDFSF.NE.LMAX) PEL=PE(MDFS)
IF (NSTAG.NE.O) GO TO 180
DO 170 M=2.mMAX
PT(M)=PT(1)
TT(M)=TT(1)
THETA(M)=THETA(1)
170 CONTINUE
PTL=PT(1)
MTL=PT(1)
THETAL = THETA(1)
180 IF (ISUPER.NE.3) GO TO 190
PT(MDFS)=PTL
TT(MDFS)=TTL
THETA(MDFS) = THETAL
190 IF (ISUPER.NE.2) GO TO 200
PI(MDFS)=PIL
200 WRITE (6,1380)
IF (IUI.EQ.1) WRITE (6.1580)

```
```

4 2 3
424
4 2 5
426
427
428
429
4 3 0
4 3 1
4 3 2
4 3 3
434
435
436
4 3 7
438
4 3 9
440
441
442
443
444
446
4 4 6
4 4 8
449
450
451
452
453
454
455
4 5 6
457
458
459
460
461
462
4 6 3
464
465
466
467
468
4 6 9
470
4 7 1
472
473
4 7 4 ~ C
475 C
476 C
4 7 7
4 7 8
479
480
481
482
483
484
485
486
487
4 8 8 C
4 8 9 ~ C
490 C
499
4 9 2
4 9 3
4 9 4
4 9 5

```
    IF (IUI.EQ.2) WRITE (6.1590)
```

 IF (IUI.EQ.2) WRITE (6.1590)
 DO 210 M=1.MMAX
 DO 210 M=1.MMAX
 IF (M.EQ.MDFS.AND.LDFSS.EQ.1) WRITE (6.1600) M.PTL.TTI..THETAL.PEI_
 IF (M.EQ.MDFS.AND.LDFSS.EQ.1) WRITE (6.1600) M.PTL.TTI..THETAL.PEI_
 1 . FSOL,FSEL
 1 . FSOL,FSEL
 WRITE (6,TGOO) M.FT(M),TT(M),THETA(M).PE(M).FSQ(M),FSE(M)
 WRITE (6,TGOO) M.FT(M),TT(M),THETA(M).PE(M).FSQ(M),FSE(M)
 210 CONT INUJE
210 CONT INUJE
WRITE (6.2O20) IINLET.IEXITT.IEX.ISUPER.DYW.IVBC.INBC.IWALL.IWALLO
WRITE (6.2O20) IINLET.IEXITT.IEX.ISUPER.DYW.IVBC.INBC.IWALL.IWALLO
1 .ALI.ALE.ALW,NSTAG.NPE,PEI
1 .ALI.ALE.ALW,NSTAG.NPE,PEI
IF (NOSLIP.EQ.O) WRITE (6.1840)
IF (NOSLIP.EQ.O) WRITE (6.1840)
IF (NOSLIP.NE.O) WRITE (6.1850)
IF (NOSLIP.NE.O) WRITE (6.1850)
WRITE (6.1390)
WRITE (6.1390)
IF (TW(1).LT.O.O.AND.IWALL.EQ.O) WRITE (6.1890).
IF (TW(1).LT.O.O.AND.IWALL.EQ.O) WRITE (6.1890).
IF (TW(1).GE.O.O) WRITE (6,1900)
IF (TW(1).GE.O.O) WRITE (6,1900)
WRITE (G.1390)
WRITE (G.1390)
IF (TCB(1).LT.O.O.AND.NGCB.NE.O) WRITE (6.1910)
IF (TCB(1).LT.O.O.AND.NGCB.NE.O) WRITE (6.1910)
IF (TCE(1).GE.O.O) WRITE (6.1940)
IF (TCE(1).GE.O.O) WRITE (6.1940)
IF (MDFS.EO.O) GO TO 22O
IF (MDFS.EO.O) GO TO 22O
IF (ICB(1).GE.O.O.OR.NGCB.NE.O) WRITE (6,1390)
IF (ICB(1).GE.O.O.OR.NGCB.NE.O) WRITE (6,1390)
IF (TL(1).LT.O.O) WRITE (6.1920)
IF (TL(1).LT.O.O) WRITE (6.1920)
IF (TL(1).GE.O.O) WRITE (6.1950)
IF (TL(1).GE.O.O) WRITE (6.1950)
WRITE (6,1390)
WRITE (6,1390)
IF (TL(1).LT.O.O) WRITE (G.1930)
IF (TL(1).LT.O.O) WRITE (G.1930)
IF (TU(1).GE.O.O) WRITE (6,1960)
IF (TU(1).GE.O.O) WRITE (6,1960)
220 WRITE (6.1390)
220 WRITE (6.1390)
IF (SMP.LT.O.O) SMP=0.O
IF (SMP.LT.O.O) SMP=0.O
IF (SMPF.LT.O.O) SMPF=O.O
IF (SMPF.LT.O.O) SMPF=O.O
IF (SMP.GT. 1.O) SMP-1.O
IF (SMP.GT. 1.O) SMP-1.O
IF (SMPF.GT.1.O) SMPF=1.O -
IF (SMPF.GT.1.O) SMPF=1.O -
WRITE (6,1830) CAV, XMU,XLA,PRA,XRO,LSS.LSF.IDIVC.ISS.SMACH,NST,SMP
WRITE (6,1830) CAV, XMU,XLA,PRA,XRO,LSS.LSF.IDIVC.ISS.SMACH,NST,SMP
1 .SMPF,SMPT, SMPTF,NTST,IAV,MSS,MSF
1 .SMPF,SMPT, SMPTF,NTST,IAV,MSS,MSF
WRITE (6.1390)
WRITE (6.1390)
IF (CML1.NE.O.O.OR.CML2.NE.O.O) GO TO 23O
IF (CML1.NE.O.O.OR.CML2.NE.O.O) GO TO 23O
IF (NDIM.EQ.O) CML 1 = 0. 125
IF (NDIM.EQ.O) CML 1 = 0. 125
IF (NDIM.EQ.O) CML2=0.125
IF (NDIM.EQ.O) CML2=0.125
IF (NDIM.NE.O) CML1=0.1;
IF (NDIM.NE.O) CML1=0.1;
IF (NDIM.NE O) CML2=0.11
IF (NDIM.NE O) CML2=0.11
230 IF (CQL.NE.O.O) GO TO 240
230 IF (CQL.NE.O.O) GO TO 240
CQL=17.2
CQL=17.2
IF (NDIM.NE.O) CQL=CQL*O.625/0.875
IF (NDIM.NE.O) CQL=CQL*O.625/0.875
24O IF (IUI.EQ.1) WRITE (6,1860) CMU,CLA,CK,EMU,ELA,EK
24O IF (IUI.EQ.1) WRITE (6,1860) CMU,CLA,CK,EMU,ELA,EK
IF (IUI.FD.2) WRTTE (6,1870) CMU,CLA,CK,EMU,ELA.EK
IF (IUI.FD.2) WRTTE (6,1870) CMU,CLA,CK,EMU,ELA.EK
WRITE (6,1390)
WRITE (6,1390)
IF (ITM.EO.O) WRITE (6.1970)
IF (ITM.EO.O) WRITE (6.1970)
IF (ITM.EQ.1) WRITE (6.1980) CAL.IMLM.CML1.CML2.PRT
IF (ITM.EQ.1) WRITE (6.1980) CAL.IMLM.CML1.CML2.PRT
IF (ITM.EO.2) WRITE (6,1990)
IF (ITM.EO.2) WRITE (6,1990)
IF (ITM.EQ.2) WRITE (6,2OOO) CAL,CQL,CQMU.IMLM,CML1,CML2,PRT
IF (ITM.EQ.2) WRITE (6,2OOO) CAL,CQL,CQMU.IMLM,CML1,CML2,PRT
IF (ITM.EQ.3) WRITE (6.2010)
IF (ITM.EQ.3) WRITE (6.2010)
IF (ITM,EQ.3) WRITE (6.2O3O) CAI.,GOMII,G1,GO;GIGO,GIGF.RFST,PRT
IF (ITM,EQ.3) WRITE (6.2O3O) CAI.,GOMII,G1,GO;GIGO,GIGF.RFST,PRT
1 STBQ,STBE
1 STBQ,STBE
WRITE (6.1.390)
WRITE (6.1.390)
WRITE (6,2040) IST,MVCB,MVCT,IQS.NIQSS,NIQSF.NVCMI,ILLQS.SOS.COS
WRITE (6,2040) IST,MVCB,MVCT,IQS.NIQSS,NIQSF.NVCMI,ILLQS.SOS.COS
CHECK THE WAI.I OPTIONS
CHECK THE WAI.I OPTIONS
IVCE=O
IVCE=O
IF (UFLAG.EQ.O) GO TO 250
IF (UFLAG.EQ.O) GO TO 250
IF (LJET.LE.2.OR.LJET.GE.L1) IVCE=1
IF (LJET.LE.2.OR.LJET.GE.L1) IVCE=1
IF (NOSLIP.NE.O) IVCE=1
IF (NOSLIP.NE.O) IVCE=1
IF (IWALL.NE.O) IVCE=1
IF (IWALL.NE.O) IVCE=1
IF (IVCE.EQ.O) GO TO 250
IF (IVCE.EQ.O) GO TO 250
WRITE (6,2150)
WRITE (6,2150)
GO TO 10
GO TO 10
250 IF (ISUPER.GE O) GO TO 260
250 IF (ISUPER.GE O) GO TO 260
WRITE (6,2140)
WRITE (6,2140)
GO TO 10
GO TO 10
CHECK MIXING-LENGTH TURBULENCE MODEL
CHECK MIXING-LENGTH TURBULENCE MODEL
2GO IF (ITM.NE.1) GO TO 300
2GO IF (ITM.NE.1) GO TO 300
IF (MDFS.NE.O) GO TO 280
IF (MDFS.NE.O) GO TO 280
IF (IMLM.EQ.1) GO TO 270
IF (IMLM.EQ.1) GO TO 270
IF (NOSLIP.EQ.O) IVCE=1
IF (NOSLIP.EQ.O) IVCE=1
IF (NGCB.NE.O.AND.IWAIL..FO.O) IVR.F=1
IF (NGCB.NE.O.AND.IWAIL..FO.O) IVR.F=1
IF (NGCB.EQ.O.AND.IWALL.NE.O) IVCE=1

```
    IF (NGCB.EQ.O.AND.IWALL.NE.O) IVCE=1
```

```
497
4 9 8
4 9 9
500
501
502
503
504
505 c
506 c
507 c
508
5 0 9
510
511
512
513
514
515
516
547
518
519
520
521
522
523
524
525
526
527
528
529
5 3 0
531 C
532 C
533 C
5 3 4
535
536
5 3 7
538
539
540
54i
542
54.3
544
545
546
547
548
5 4 9
550
551
552
553
554
555
556
557
558
559 C
560 C
5 6 1
5 6 2
563
564
565
565
```

566 IF (MNCY.EQ.MMAX.AND.IWALL.NE.ONEIVCE=1

```
566 IF (MNCY.EQ.MMAX.AND.IWALL.NE.ONEIVCE=1
    566 IF (MVCB.EQ.1.AND.NGCB.EQ.O) IVCE=1
    566 IF (MVCB.EQ.1.AND.NGCB.EQ.O) IVCE=1
567 IF (MDFS.EO.O) GO TO 360
567 IF (MDFS.EO.O) GO TO 360
568 IF (MVCB.GT.MOFS.OR.MVCT.LT.MDFS) IVCE=1
```

568 IF (MVCB.GT.MOFS.OR.MVCT.LT.MDFS) IVCE=1

```
```

 GO TO 290
    ```
    GO TO 290
    270 IF (NOSLIP.NE.O) IVCE=1
    270 IF (NOSLIP.NE.O) IVCE=1
    IF (NGCB.EQ.O.AND.IWALL.NE.O) IVCE=O
    IF (NGCB.EQ.O.AND.IWALL.NE.O) IVCE=O
    GO TO 290
    GO TO 290
    280 IF (NGCB.NE.O.OR.IWALL.EQ.O) IVCE=1
    280 IF (NGCB.NE.O.OR.IWALL.EQ.O) IVCE=1
    290 IF (IVCE.EQ:O) GO TO 30O
    290 IF (IVCE.EQ:O) GO TO 30O
    WRITE (6.2050)
    WRITE (6.2050)
    GO TO 10
    GO TO 10
    CHECK THE DUAL FLOW SPACE AND VARIARLE GRIO PARAMETERS
    CHECK THE DUAL FLOW SPACE AND VARIARLE GRIO PARAMETERS
    300 1F (MVCB.NE:O.AND.MVCT.NE.O) IVC=1
    300 1F (MVCB.NE:O.AND.MVCT.NE.O) IVC=1
    IP=-1
    IP=-1
    CALL MAP
    CALL MAP
    IF (IERR.NE.O) GO TO 10
    IF (IERR.NE.O) GO TO 10
    MDFSC=O
    MDFSC=O
    IF (MDFS.GE . MVCB . AND . MDFS.LE .MVCT) MDFSC=1
    IF (MDFS.GE . MVCB . AND . MDFS.LE .MVCT) MDFSC=1
    IT (MDIS.EQ.O) LDFSS=O
    IT (MDIS.EQ.O) LDFSS=O
    IF (MDFS.EO.O) LDFSF=O
    IF (MDFS.EO.O) LDFSF=O
    IF (MDFS.EQ.O) GO TO 320
    IF (MDFS.EQ.O) GO TO 320
    IF (LDFSS.EQ.1) GO TO 310
    IF (LDFSS.EQ.1) GO TO 310
    IF (TL(LDFSS).GT.O.O) TL(1)=TL(LDFSS)
    IF (TL(LDFSS).GT.O.O) TL(1)=TL(LDFSS)
    IF (TU(LDFSS).GT.O.O) TU(i)=TU(LDFSS)
    IF (TU(LDFSS).GT.O.O) TU(i)=TU(LDFSS)
310 IF (MDFS.EQ.2.OR.MDFS.EQ.MMAX-1) IVCE=1
310 IF (MDFS.EQ.2.OR.MDFS.EQ.MMAX-1) IVCE=1
    IF (LDFSS.EQ.2.OR.LDFSF.EO.LMAX-1) IVCE=1
    IF (LDFSS.EQ.2.OR.LDFSF.EO.LMAX-1) IVCE=1
    IF (ISUPER.GE.2.AND.LDFSS.NE. 1) IVCE=1
    IF (ISUPER.GE.2.AND.LDFSS.NE. 1) IVCE=1
    CLDFSS=ABS(YU(LDFSS)-YL(LDFSS))/YL(LDFSS)
    CLDFSS=ABS(YU(LDFSS)-YL(LDFSS))/YL(LDFSS)
    CLDFSF=ABS(YU(LDFSF)-YL(LDFSF))/YL(LDFSF)
    CLDFSF=ABS(YU(LDFSF)-YL(LDFSF))/YL(LDFSF)
    IF (LDFSS.NE.1.AND.CLDFSS.GT.O.OO1) IVCE=1
    IF (LDFSS.NE.1.AND.CLDFSS.GT.O.OO1) IVCE=1
    IF (LDFSF.NE.LMAX.AND.CLDFSF.GT.O.OO1) IVCE=1
    IF (LDFSF.NE.LMAX.AND.CLDFSF.GT.O.OO1) IVCE=1
    IF (JFLAG.EQ.1.AND.LJET.LE.LDFSF) IVCE=1
    IF (JFLAG.EQ.1.AND.LJET.LE.LDFSF) IVCE=1
    IF (IVCE.EQ.O) GO TO 32O
    IF (IVCE.EQ.O) GO TO 32O
    WRITE (6, 2060)
    WRITE (6, 2060)
    GO TO 10
    GO TO 10
    CHECK THE SUBCYCLED GRID PARAMETERS
    CHECK THE SUBCYCLED GRID PARAMETERS
    320 IF (IVC.EO.O) GO TO 350
    320 IF (IVC.EO.O) GO TO 350
    MVCB 1=MVCB+1
    MVCB 1=MVCB+1
    MVCT 1=MVCT - 1
    MVCT 1=MVCT - 1
    IF (NVOMI FO OI GO TO 3.30
    IF (NVOMI FO OI GO TO 3.30
    II1=NVCMI/2
    II1=NVCMI/2
    II2=(NVCMI +1)/2
    II2=(NVCMI +1)/2
    IF (II1.EQ.II2) IVCE=1
    IF (II1.EQ.II2) IVCE=1
    1F (IVEE.EU.シ) GO TO 330
    1F (IVEE.EU.シ) GO TO 330
    WRITE (6.2070)
    WRITE (6.2070)
    gO TO 10
    gO TO 10
    330 IF (MVCB.EQ.1.AND.MVCT.EO.MMAX) IVCE=1
    330 IF (MVCB.EQ.1.AND.MVCT.EO.MMAX) IVCE=1
    IF'(MDFS.EO.O) GO TO 34O
    IF'(MDFS.EO.O) GO TO 34O
    IF (MVCT.LT.MDFS-1.OR.MVCB.GT.MDFS+1) GO TO 340
    IF (MVCT.LT.MDFS-1.OR.MVCB.GT.MDFS+1) GO TO 340
    IF (MVCB.EO.MDFS+1.OR.MVCT.EO.MDFS-1) IVCE=1
    IF (MVCB.EO.MDFS+1.OR.MVCT.EO.MDFS-1) IVCE=1
    IF (MVCB.GT.MDFS-2) IVCE=1
    IF (MVCB.GT.MDFS-2) IVCE=1
    IF (MVCT.LT.MDFS+2) IVCE=1
    IF (MVCT.LT.MDFS+2) IVCE=1
    IF (IVCE.EQ.O) GO TO 350
    IF (IVCE.EQ.O) GO TO 350
    WRITE (6.2080)
    WRITE (6.2080)
    GO TO 10
    GO TO 10
    340 IF (MVCB.EQ.2.OR.MVCT.EQ.MMAX-1) IVCE=1
    340 IF (MVCB.EQ.2.OR.MVCT.EQ.MMAX-1) IVCE=1
    IF (MVCT-MVCR.I_T.2) IVCE=1
    IF (MVCT-MVCR.I_T.2) IVCE=1
    IF (IVCE.EO.O) GO TO 35O
    IF (IVCE.EO.O) GO TO 35O
    WRITE (6, 2090)
    WRITE (6, 2090)
    GO TO 10
    GO TO 10
    check iHE UUICK SULVER PáRameters
    check iHE UUICK SULVER PáRameters
350 IF (IVC.EQ.O) IQS=O
350 IF (IVC.EQ.O) IQS=O
    IF (IQS.EQ.O) GO TO 370
    IF (IQS.EQ.O) GO TO 370
    IF (NIOSF.EQ.O) NIOSF=NMAX
    IF (NIOSF.EQ.O) NIOSF=NMAX
    IF (NOSLIP.EQ.O) IVCE=1
    IF (NOSLIP.EQ.O) IVCE=1
    IF (MVCT.EQ.MMAX.AND.IWALL.NE.O) IVCE=1
```

 IF (MVCT.EQ.MMAX.AND.IWALL.NE.O) IVCE=1
    ```
```

569
570
571
572 c
573 C
574 C
575
576
577
578
579
580
581
582
583
584 C
585 C
586 C
587
588
589
590
591
592
593
594
595
596
597
598
599
600
6 0 1
602
603
6 0 4
6 0 5
6 0 6
607
608
6 0 9
610
6 1 1
612
613
614
615
616
617
618
619
620
621
622
623
624
624
625
626
627
628
629
630
6 3 1
632
633
634
635
636
6 3 7
637
65%
6 3 9
640
360 IF (IVCE.EQ.O) GO TO 370
WRITE (6.2130)
GO TO 10
CHECK FOR ZERO VALUES OF Q AND E - SET THE DEFAULT VALUES
370 IF (ITM.LE. 1) GO TO 390
IF (NSTART.NE.O) GO TO 390
DO 380 L=1.LMAX
IF (QL(L.1).LE.O.O) QL(L.1)=FSQL
IF (EL(L,1).LE.O.O) EL(L,1)=FSEL
DO 380 M=1. MMAX
IF (O(L,M,1).LE.O.O) Q(L,M,1)=FSO(M)
IF (E(L,M,1).LE.O.O) E(L,M,I)=FSE(M)
380 CONT INUE
CONVERT METRIC UNITS TO ENGLISH UNITS
390 IF (IUI.EQ.1) GO TO 540
RSTAR=RSTAR/2.54
RSTARS =RSTARS/6.4516
PLOW=PLOW/6.8948
ROLOW=ROLOW/16.02
CMU =CMU/47.88/1.8**EMU
CLA =CLA/47.88/1.8**ELA
CK=CK*O.125/1.8**EK
RGAS=RGAS/5.38032
XT=XT/2.54
RT=RT/2.54
XI=XI/2.54
XE = XE/2.54
XE=XE/2.54
XECB=XEC8/2.54
DX=DX/2.54
DO 40O L=1.LMAX
XP(L)=XP(L.)/2.54
YW(L)=YW(L)/2.54
YCB(L)=YCB(L)/2.54
YL(L.)=YL(L)/2.54
YU(L)=YU(L)/2.54
400 CONTINUE
DO 410 M=1, MMAX
PT(M)=PT(M)/6.8948
PE(M)=PE(M)/6.8948
TT(M)=TT(M)*1.8
410 CONTINUE
PTL=PTL/6.8948
PEL=PEL/6.8948
PEI=PEI/6.8948
PEI=PEI/6.8948
TTL=TTL* 1.8
IF (TCB(1).LT.O.O) GO TO 430
DO 420 L=1. LMAX
TCB(L)=TCB(L)*1.8
420 CONTINUE
430 IF (TW(1).LT.O.O) GO TO 450
DO 440 L= 1. LMAX
TW(L)=TW(L)*1.8
44O CONTINUE
450 IF (TL(1).LT.O.O) GO TO 470
DO 460 L=1. LMAX
TL(L)=TL(L)*1.8
46O CONTINUE
470 IF (TU(1).LT.O.O) GO TO 4.90
DO 480 L=1. LMAX
TU(L)=TU(L)*1.8
48O CONTINUE
490 IF (ISUPER.EQ.O) GO TO 520
DO 500 M=1.MMAX
UI (M.)=UI (M)/0.3048
UI(M)=UI (M)/0.3048
PI(M)=PI(M)/6.8948
ROI(M)=ROI (M)/16.O2

```
```

641
642
6 4 3
644
6 4 5
646
647
648
6 4 9
650
6 5 1
652
6 5 3
654
655
656
657
65%
659
660
661
662
6 6 3
6 6 4
665
6 6 6
6 6 7
668
6 6 9
6 7 0
6 7 1 ~ C
672 C
673 C
674 C
6 7 5 ~ C
676 C
677
678
679
680
881
6 8 2
682
684
fR5
686
687
68%
689
6 9 0
6 9 1
602
6 9 3

```
500 CONT INUE
```

500 CONT INUE
UIL=UIL/O.3048
UIL=UIL/O.3048
VIL_=VIL/O.3048
VIL_=VIL/O.3048
PIL=PIL/6.8948
PIL=PIL/6.8948
ROIL=ROIL/16.02
ROIL=ROIL/16.02
OLOW = QLOW/0.0929
OLOW = QLOW/0.0929
ELOW = ELOW/O.0929
ELOW = ELOW/O.0929
FSOL = FSOL/O.0929
FSOL = FSOL/O.0929
FSEL = FSEL/0.0Y29
FSEL = FSEL/0.0Y29
DO 51O M= 1,MMAX
DO 51O M= 1,MMAX
FSQ(M)=FSQ(M)/0.0929
FSQ(M)=FSQ(M)/0.0929
FSE (M)=FSE(M)/0.0929
FSE (M)=FSE(M)/0.0929
510 CONTINUE
510 CONTINUE
52O IF (N1D.NE.O) GO TO 54O
52O IF (N1D.NE.O) GO TO 54O
IF (NSTART.NE.O) GO TO 54O
IF (NSTART.NE.O) GO TO 54O
DO 530 L=1. LMAX
DO 530 L=1. LMAX
UL(L, 1)=UL(L. 1)/0.3048
UL(L, 1)=UL(L. 1)/0.3048
VL(L., 1)=VL(L, 1)/0.3018
VL(L., 1)=VL(L, 1)/0.3018
PL(L.1)=PL(L.1)/6.8948
PL(L.1)=PL(L.1)/6.8948
ROL(L, 1)=ROL(L,1)/16.02
ROL(L, 1)=ROL(L,1)/16.02
QL(L. 1)=QL(L. 1)/O.0929
QL(L. 1)=QL(L. 1)/O.0929
EL(L, 1)=EL(L, 1)/0.0929
EL(L, 1)=EL(L, 1)/0.0929
DO 530 M=1,MMAX
DO 530 M=1,MMAX
U(L.M.1)=U(L,M.1)/0.3048
U(L.M.1)=U(L,M.1)/0.3048
V(L,M,1)=V(L,M,1)/0.3048
V(L,M,1)=V(L,M,1)/0.3048
P(L,M,1)=P(L,M.1)/6.8948
P(L,M,1)=P(L,M.1)/6.8948
RO(L.M.1)=RO(L,M, 1)/16.O2
RO(L.M.1)=RO(L,M, 1)/16.O2
Q(L.M.1) =O(L,M.1)/0.0929
Q(L.M.1) =O(L,M.1)/0.0929
E(L.M.1)=E(L.M.1)/0.0929
E(L.M.1)=E(L.M.1)/0.0929
530 CONTINUE
530 CONTINUE
CONVERT INPUT DATA UNITS TO INTERNAL UNITS THE INTERNAL UNITS
CONVERT INPUT DATA UNITS TO INTERNAL UNITS THE INTERNAL UNITS
ARE P=LBF/FT2, RO=LBF-S2/FT4, X=YCB=YL=YU=YW=INCHES, Y=
ARE P=LBF/FT2, RO=LBF-S2/FT4, X=YCB=YL=YU=YW=INCHES, Y=
DIMENSIONLESS, DT=IN-S/FT,MU=LA=LBF-S-IN/FT3,K=LBF-IN/S-R-FT,
DIMENSIONLESS, DT=IN-S/FT,MU=LA=LBF-S-IN/FT3,K=LBF-IN/S-R-FT,
O=FT2/S2. E=FT2/53. TML=INCHES. U=V=FT/S, AND RG^S=LBF-FT/LBM-R.
O=FT2/S2. E=FT2/53. TML=INCHES. U=V=FT/S, AND RG^S=LBF-FT/LBM-R.
540 IF (IUNIT.EO.O) GO TO 550
540 IF (IUNIT.EO.O) GO TO 550
PC=1.O
PC=1.O
IL=1.0
IL=1.0
G=1 n
G=1 n
550 TCONV=TCOPNV/100.0
550 TCONV=TCOPNV/100.0
T=TSTART*LC
T=TSTART*LC
TST\capP=TST\capP*IS.
TST\capP=TST\capP*IS.
CMU=CMU*LC
CMU=CMU*LC
C.I A = CLLA*LC
C.I A = CLLA*LC
CK=CK•LC
CK=CK•LC
DO 560 L=1.LMAX
DO 560 L=1.LMAX
XWI(L)=0.0
XWI(L)=0.0
560 CONTINUE
560 CONTINUE
DO 570 M=1. MMAX
DO 570 M=1. MMAX
PT(M)=PT(M)*PC
PT(M)=PT(M)*PC
PE(M)=PE(M)+Pr
PE(M)=PE(M)+Pr
THETA(M)=THETA(M)*O.O174533
THETA(M)=THETA(M)*O.O174533
570 CONT INUE
570 CONT INUE
PTL-PTL*PC
PTL-PTL*PC
PEL=PEL*PC
PEL=PEL*PC
PEI = PEI *PC
PEI = PEI *PC
THETAL = THETAL*O.O174533
THETAL = THETAL*O.O174533
IF (N1D.NE.O) GO TO 590
IF (N1D.NE.O) GO TO 590
DO 500 L= 1, LMAX
DO 500 L= 1, LMAX
PL(L, 1)=PL(L.1)*PC
PL(L, 1)=PL(L.1)*PC
ROL(L,1)=ROL(L.1)/G
ROL(L,1)=ROL(L.1)/G
DO 580 M=1,MM\DeltaX
DO 580 M=1,MM\DeltaX
P(L,M,1)=P(L,M,1)*PC
P(L,M,1)=P(L,M,1)*PC
RO(L,M,1)=RO(L,M,1)/G
RO(L,M,1)=RO(L,M,1)/G
5 8 0 ~ C O N T ~ I N U E ~
5 8 0 ~ C O N T ~ I N U E ~
590 RG=RGAS*G
590 RG=RGAS*G
FILL THE ARRAYG AT L=1 WITH THE INFLOW BOUNDARY CONDITIONS
FILL THE ARRAYG AT L=1 WITH THE INFLOW BOUNDARY CONDITIONS
IF (ISUPER.EQ.O) GO TO 62O
IF (ISUPER.EQ.O) GO TO 62O
DO 6OO M=1.MMAX

```
    DO 6OO M=1.MMAX
```

```
    IF (ISUPER.EQ.2.AND.M.GE.MDFS) GO TO 600
    IF (ISUPER.EQ.3.AND.M.LT.MDFS) GO TO 600
    U(1,M,1)=UI (M)
    V(1,M,1)=VI(M)
    IF (NSTART.EO.O) P(1,M,1)=PI(M)*\GammaC
    RO(1,M,1)=ROI (M)/G
    U(1,M,2)=U(1,M,1)
    V(1,M,2)=V(1,M,1)
    P(1,M,2)=P(1,M,1)
    RO(1,M,2)=RO(1,M,1)
    60O CONTINUE
    IF (ISUPER.EQ.3) GO TO 610
    UL(1,1)=UIL
    VL(1,1)=VIL
    IF (NSTART.EQ.O) PL(1.1)=PIL*PC
    ROL (1,1)=ROIL/G
    UL (1, 2)=UL(1, 1)
    VL(1, 2)=VL(1,1)
    PL(1.2)=PL(1.1)
    ROL(1,2)=ROL(1,1)
    GO TO 620
610 PT(MDFS)=PTL
    TT(MOFS)=TTL
    THETA(MDFS)=THETAL
    ZERO VISCOUS TERM ARRAYS
    620 DO 630 L=1.LMAX
    QUTL(L)=0.0
    QVTL(L)=0.0
    QPTL(L)=0.0
    QROTL(L)=0.O
    OQTL(L)=0.O
    QETL(L)=0.O
    DO 630 M=1.MMAX
    QUT(L,M)=0.O
    OVT(L,M)=0.O
    OPT (L.M) =0.O
    QROT(L.M)=0.O
    OOT (L,M)=0.O
    OET(L,M)=0.O
    6 3 0 ~ C O N T ~ I N U E ~
    IF (N1D.EQ.O) GO TO 64O
    COMPUTE THE 1-D INITIAL-DATA SURFACE
    CALL ONEDIM
    IF (IERR.NE.O) GO TO 10
    COMPUTE THE INITIAL-DATA SURFACE MASS FLOW AND MOMENTUM THRUST
    64O IF (NPRINT.GT.O) GO TO 650
    NPRINT = -NPRINT
    GO TO 730
    650 CALL MASFLO
    PRINT THE INITIAL-DATA SURFACE
    IP=O
    DO 720 IU=1.2
    IF (IIIO.EO.1.AND.IU.ED.2) CO TO 72O
    IF (IUO.EQ.2.AND.IU.EQ.1) GO TO }72
    NLINE=0
    WRITE (6.1380)
    WRITE (6.1520) TSTART.NSTART
    WRITE (6.1530)
    IF (IU.EQ.1) WRITE (6.1540)
    IF (IU.EO.2) WRITE (6.1550)
    WRITE (6,1390)
    DO 710 L=1,LMAX
    LMAP = L
    IF (MDFS.NE.O) IB=3
```

```
    IF (L.NE.1) WRITE (6,1880)
    IF (L.NE.1) NLINE=NLINE + 1
    LDFS=O
    IF. (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
    DO 710. M=1. MMAX
    MMAP =M
    CALL MAP
    IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 670
    IMUFS=0
    VELMAG=SORT(UL (L, 1)**2+VL(L, 1)**2)
    XMACH=VELMAG/SORT(GAMMA +PL(L, 1)/ROL(L, 1))
    PRES=PL(L.1)/PC
    RHO}=ROL(L, 1) +G
    TEMP=PL(L, 1)/(RHO*RGAS )
    XPP=XP(L)
    UP=UL(L.1)
    VP=VL.(L.1)
    GO TO 680
660 IMDFS = 1
    1B=4
    CALL MAP
670 VELMAG=SORT(U(L,M,1)**2+V(L,M,1)**2)
    XMACH=VELMAG/SORT(GAMMA*P(L.M,1)/RO(L,M,1))
    PRES = P(L.M.1)/PC
    RHO=RO(L,M,1)+C
    TEMP=P(L.,M,1)/RHO/RGAS
    XPP=XP(1.)
    UP=U(L,M,1)
    VP=V(L,M,1)
680 IF.(IU.EO.1) GO TO 690
    XPP=XP(L)*2.54
    YP=YP*2.54
    UP=UP*O.3048
    VP.=VP*O. 3048
    PRCS=PRES*6.8918
    RHO=RHO* 16.02
    VLLMAG=VELMAG*O.3048
    TEMP = TEMP*5.0/9.0
690 NLINE = NLINE+1
    IF (NLINE.LT.54) GO TO 700
    WRITE (6,1380)
    WR1IE (6.1520) TSTART.NSTART
    WRTTF (f, 1%3n)
    IF (IU.EQ.1) WRITE (6.1540)
    IF (IU,EQ,2) WRITE (6,1550)
    WRITE (6.1390)
    NLINE=1
700 WRITE (6,1560) L,M, XPP,YF,UP,VP,PRES,RHO,VELMAG, XMACH, TFMP
    IF (M.NE.MDFS.OR.LDFS.EQ.U) GO TO 710
    IF (IMDFS.EQ.O) GO TO 660
710 CONT INUE
    IF (ILIO.NE.3) HII TH 7.3n
720 CONT INUE
730 IF (NPLOT.LE.O) GO TO 740
    CALL PLOT (TITLE,TSTART,NSTART, IVPTS)
    WRITE (6.1810) NSTART
740 IF (NMAX.EQ.O) GO TO 10
    SAVE THE SOLUTION FOR THE EXTENDED INTERVAL TIME SMOOTHING
    IF (NTST.EQ.1) GO TO 760
    DO 750 L=1. LMAX
    ULS (L)=UL(L, 1)
    VLS(L)=VL(L.1)
    PLS(L)=PL(L.1)
    ROLS(L)=ROL(L,1)
    OLS(L)=QL(L,1)
    ELS(L)=EL(L,1)
    DD 750 M=1,MMAX
    US (L,M)=U(L,M, 1)
    VS(L,M)=V(L,M,1)
    PS(L,M)=P(L,M,1)
```

```
857
858
859
860
861 C
8 6 2 ~ C ~ C
863 c
864
865
866
867
868
869
870
871
872
8 7 3
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
8 9 8 ~ C
899 C
900 C
9 0 1
902 C
9 0 3
904
905
906
907
908
909 C
910 C
911 C
912
913
914
915
916
917
918
918
919
920
921
922
923
924
925
926
927
928
929
930
C
    IF (N.EQ.2) FDT=FDTD
    SMP = SMP +DELSMP
    SMPT - SMPT + DSMPT
    IOSD=0
    IF (IOS.EO.O) GO TO 780
    IF (N.GE.NIQSS.ANO.N.LE.NIQSF) IOSD=IQS
    calculate delta i
    780 IP=1
    UPAM=0.O
    DO 810 L=2.L1
    LMAP = L
    IF (MDFS.NE.O) IB=3
    LDFSOO
    IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
    DXP1=XP(L)-XP(L-1)
    OXP2=XP(L+1)-XP(L)
    DXP=AMIN1(OXP1.OXP2)
    DO 810 M=2.M1
    IF (IVC.EQ.O) GO TO 790
    IF (M.GE.MVCB.AND.M.LE.MVCT) GO TO 810
    790 IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 800
    IB=4
    GO TO 810
800 MMAP =M
    CALL MAP
    DYP3=0Y/BE3
```

```
    DYP4=DY/BE4
    DYP=AMIN1(DYP3.DYP4)
    AER=AL3;BE3
    A = SORT(GAMMA +P(I.,M,Ni)/RO(L.,M.N1))
    UPAI=(AES(U(L,M,N1))+A)/DXP+VDT +TMUX
    VTOL=ABS(U(L.M,NT)*ABR+V(L,M,N1))
    AST = SORT(AL3*AL3+BE3*BE3)/BE3
    UPA2 = (VTOL +AST*A)/DYP+VDT * TMUY
    UPA = AMAX1(UPAI, UPA2)
    IF (IIPA.I.E.IIPAM) GO TO 810
    UPAM=UPA
    LDU=L
    MDU=M
81O CONTINUE
    CALCULATE DELTA T FOR THE SUBCYCLED GRID
    IF (IVC.EQ.O) GO TO 8GO
    IF (NVCMI.EQ.O) GO TO 820
    IF (IQS.NE,O.AND.IQSD.EQ.O) GO TO 82O
    NVCM=NVCMI
    NVCM 1 = NVCM +1
    CNUMS =0.0
    LDUF=0
    MDUF=0.0
    GO TO 860
820 UPAMF =O.O
    DO 844O L=2̈,L1
    LMAP = L
    IF (MDFS.NE.O) IB=3
    LDFS=O
    IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
    DXP1=XP(L)-XP(L-1)
    DXP2 = XP(L+1)-XP(L)
    DXP=AMIN1(DXP1, DXP?)
    DO 840 M=MVCB1,MVCT1
    IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 830
    IB=4
    GO TO 840
830 MMAP = M
    CAII MAP
    DYP3-DY/BE3
    DYP4=DY/BE4
    DYP=AMIN1(DYP3,DYP4)
    ABR=AL3/BE3
    A = SQRT(GAMMA*P(L,M,Ni )/RO(L,M,Ni))
    UPA1=(ABS(U(L,M,N1))+A)/DXP+VDT1*TMU1X
    VTOL = ABS(U(L,M,N1)*ABR+V(I,M,N1))
    AST = SQRT(AL3*AL3+BE3*BE3)/BE3
    IF (IOSD.NE.O) AST =AST-1.O
    UPA2 = (VTOL + AST *A)/DYP+VDT 1*TMU1Y
    UPA=AMAX1(UPA1,UPA2)
    IF (UPA.LE.UPAMF) GO TO }84
    UPAMF=UPA
    LDUF=L
    MDUF =M
840 CONT INUL
    DETERMINE THE NUMBER OF SUBCYCLES
    XNVCM=UUPAMF / (UPAM*FDT1)
    NVCM=O
    I=-1
    IF (XNVCM.LE.200.0) GO TO 850
    IF (N.EQ.1) GO TO 850
    NP=N+NSTART
    WRITE (6.2100) NP
    NMAX = N
    NVCM = XNVCM
    DT=FDT/UPAM
    GO TO 1110
\beta50 I = I + 2
```

```
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014 C
1015 C
1016 C
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030 C
1031 C
1032 C
1033
1034
1035
1036
1037
1038 C
1 0 3 9 ~ C
1040 C
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
106 1
1062 C
1 0 6 3 ~ C
1064 C
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
```

```
    IF (XNVCM.LE.FLOAT(I)) NVCM=I
```

 IF (XNVCM.LE.FLOAT(I)) NVCM=I
 IF (NVCM.EQ.O) GO TO 850
 IF (NVCM.EQ.O) GO TO 850
 NVCM 1 = NVCM+1
 NVCM 1 = NVCM+1
 CNUMS = XNVCM/FLOAT (NVCM)
 CNUMS = XNVCM/FLOAT (NVCM)
 860 DT = FDT/UPAM
860 DT = FDT/UPAM
T=T+DT
T=T+DT
IF (T.LT.TSTOP) GO TO 870
IF (T.LT.TSTOP) GO TO 870
T=T-DT
T=T-DT
DT = TSTOP-T
DT = TSTOP-T
T=TSTOP
T=TSTOP
ISTOP=1
ISTOP=1
PRINT N.T AND DT
PRINT N.T AND DT
870 NPD-NPD+1
870 NPD-NPD+1
NC=NC+1
NC=NC+1
NPC=NPC+1
NPC=NPC+1
TMUX=0.O
TMUX=0.O
TMUY=0.0
TMUY=0.0
TMU 1X=0.0
TMU 1X=0.0
TMU 1Y =0.0
TMU 1Y =0.0
IF (NPD.NE.1O) GO TO 880
IF (NPD.NE.1O) GO TO 880
NP=N+NSTART
NP=N+NSTART
TIME=T/LC
TIME=T/LC
DTIME=DT/LC
DTIME=DT/LC
WRITE (6, 1820) N',,TIME.UIIME,NVCM, CNUMS, LDU, MDU, LDUF,MDUF
WRITE (6, 1820) N',,TIME.UIIME,NVCM, CNUMS, LDU, MDU, LDUF,MDUF
NPD =O
NPD =O
BEGIN THE SUBCYCLE LOOP
BEGIN THE SUBCYCLE LOOP
880 DO 1010 NVC=1.NVCM1
880 DO 1010 NVC=1.NVCM1
RIND=FLOAT(NVC-2)/FLOAT (NVCM)
RIND=FLOAT(NVC-2)/FLOAT (NVCM)
RIND 1=FLOAT(NVC-1)/FLOAT(NVCM)
RIND 1=FLOAT(NVC-1)/FLOAT(NVCM)
IF (NVC.NE.2) GO TO 890
IF (NVC.NE.2) GO TO 890
DT=DT/FLOAT (NVCM)
DT=DT/FLOAT (NVCM)
CAlCULATE THE PREDICTOR SOLUTION
CAlCULATE THE PREDICTOR SOLUTION
890 IB=1
890 IB=1
IF (IQSD.NE.O.AND.NVC.NE.1) CALL QSOLVE
IF (IQSD.NE.O.AND.NVC.NE.1) CALL QSOLVE
IF (IERR.NE.O) GO TO 110O
IF (IERR.NE.O) GO TO 110O
IF (CAV.NE.O.O.OR.CHECK.NE.O.O) CALL VISCOUS
IF (CAV.NE.O.O.OR.CHECK.NE.O.O) CALL VISCOUS
IF (IERR.NE.O) GO TO 140O
IF (IERR.NE.O) GO TO 140O
ICHAR=1
ICHAR=1
IB=1
IB=1
CALL INTER
CALL INTER
IF (NVC.GT.1.AND.MVCT.NE.MMAX) GO TO 900
IF (NVC.GT.1.AND.MVCT.NE.MMAX) GO TO 900
IF (NVC.EQ.1.AND.MVCT.EO.MMAX) GO TO }90
IF (NVC.EQ.1.AND.MVCT.EO.MMAX) GO TO }90
C.\DeltaY! W\DeltaII.
C.\DeltaY! W\DeltaII.
IF (IERR.NE.O) GO TO 1090
IF (IERR.NE.O) GO TO 1090
9OO IF (NGCB.EQ.O) GO TO 910
9OO IF (NGCB.EQ.O) GO TO 910
IF (NVC.GT.1.AND.MVCB.NE.1) GO TO 940
IF (NVC.GT.1.AND.MVCB.NE.1) GO TO 940
IF (NVC.EQ.1.AND.MVCB.EQ.1) GO TO 910
IF (NVC.EQ.1.AND.MVCB.EQ.1) GO TO 910
IB =2
IB =2
CALL WALL
CALL WALL
IF (IERR.NE.O) GO TO 1O9O
IF (IERR.NE.O) GO TO 1O9O
910 IF (LDFSS.NE. 1.OR.(NVC.EQ.1.AND.MDFSC.NE.O)) CALL INLET
910 IF (LDFSS.NE. 1.OR.(NVC.EQ.1.AND.MDFSC.NE.O)) CALL INLET
IF (LDFSF.NE.LMAX.OR.(NVC.EQ.1.AND.MDFSC.NE.O)) CALL EXITT
IF (LDFSF.NE.LMAX.OR.(NVC.EQ.1.AND.MDFSC.NE.O)) CALL EXITT
IF (IERR.NE.O) GO TO 109O
IF (IERR.NE.O) GO TO 109O
CALCULATE THE DUAL FLOW SPACE BOUNDARY PREDICTOR SOLUTION
CALCULATE THE DUAL FLOW SPACE BOUNDARY PREDICTOR SOLUTION
IF (MDFS.EQ.O) GO TO 92O
IF (MDFS.EQ.O) GO TO 92O
IF (NVC.EQ.1.AND.MDFSC.NF.O) GO TO 920
IF (NVC.EQ.1.AND.MDFSC.NF.O) GO TO 920
IF (NVC.GT.1.AND.MVCT.LT.MDFS) GO TO }92
IF (NVC.GT.1.AND.MVCT.LT.MDFS) GO TO }92
IF (NVC.GT.I.AND.MVCB.GT.MDFS) GO TO 920
IF (NVC.GT.I.AND.MVCB.GT.MDFS) GO TO 920
IB=4
IB=4
CALL WALL
CALL WALL
IF (IERR.NE.O) GO TO 1090
IF (IERR.NE.O) GO TO 1090
IF (LDFSS.EQ.1) CALL INLET
IF (LDFSS.EQ.1) CALL INLET
IF (LDFSF.EQ.LMAX) CALL EXITT
IF (LDFSF.EQ.LMAX) CALL EXITT
IF (IERR.NE.O) GO TO 1090

```
    IF (IERR.NE.O) GO TO 1090
```

```
1075
1076
1077
1078
1079
1080
1081
1082 C
1 0 8 3 ~ C
1 0 8 4 ~ C
1085
1086
1087
1088
1089
1090
1091
1092
1093
1004
. }100
1096
1097
1098
1099
1100
1101
1102 C
1103 c
1104 C
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122C
1123 C
1124 C
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1144
1145
1146
```

```
    CALL SWITCH
```

 CALL SWITCH
 (2)
 (2)
 IB=3
 IB=3
 CALL WALL
 CALL WALL
 IF (IERR,NE O) GO TO 108O
 IF (IERR,NE O) GO TO 108O
 IF (LDFSS.EQ.1) CALL INLET
 IF (LDFSS.EQ.1) CALL INLET
 IF (LDFSF.EQ.LMAX) CALL EXITT
 IF (LDFSF.EQ.LMAX) CALL EXITT
 IF (IERR.NE.O) GO TO 1080
 IF (IERR.NE.O) GO TO 1080
 C
C
CALCULATE THE CORRECTOR SOLUTION
CALCULATE THE CORRECTOR SOLUTION
920 IF (ITM.GE.2) CALL TURBC (3)
920 IF (ITM.GE.2) CALL TURBC (3)
ICHAR=2
ICHAR=2
IB=1
IB=1
CALL INTER
CALL INTER
IF (NVC.GT.1.AND.MVCT.NE.MMAX) GO TO }93
IF (NVC.GT.1.AND.MVCT.NE.MMAX) GO TO }93
IF (NVC.EQ.1.AND.MVCT.EQ.MMAX) GO TO 930
IF (NVC.EQ.1.AND.MVCT.EQ.MMAX) GO TO 930
CALL WALL
CALL WALL
IF (IERR.NE.O) GO TO 1070
IF (IERR.NE.O) GO TO 1070
93\Omega IF (NGCB.EQ.O) GO TO.940
93\Omega IF (NGCB.EQ.O) GO TO.940
IF (PNVG:CT:1:AND, MVGB,NE.1) CO TO OAO
IF (PNVG:CT:1:AND, MVGB,NE.1) CO TO OAO
IF (NVG:EQ,1:AND, PQVGB,EQ.1) GO TO g1O
IF (NVG:EQ,1:AND, PQVGB,EQ.1) GO TO g1O
IB=2
IB=2
CALL WALL
CALL WALL
IF (IERR.NE.O) GO TO 1070
IF (IERR.NE.O) GO TO 1070
940 IF (LDFSS.NE.1.OR.(NVC.EQ.1.AND.MDFSC.NE.O)) CALL INLET
940 IF (LDFSS.NE.1.OR.(NVC.EQ.1.AND.MDFSC.NE.O)) CALL INLET
IF (LDFSF.NE.LMAX.OR.(NVC.EQ.1.AND.MDISC.NE.O)) CALL EXITT
IF (LDFSF.NE.LMAX.OR.(NVC.EQ.1.AND.MDISC.NE.O)) CALL EXITT
IF (IERR.NE.O) GO TO 1070
IF (IERR.NE.O) GO TO 1070
CALCULATE THE DUAL FLOW SPACE BOUNDARY CORRECTOR SOLUTION
CALCULATE THE DUAL FLOW SPACE BOUNDARY CORRECTOR SOLUTION
IF (MDFS.EQ.O) GO TO 950
IF (MDFS.EQ.O) GO TO 950
IF: (NVC.EQ.1.AND.MDFSC.NE.O) GO TO 950
IF: (NVC.EQ.1.AND.MDFSC.NE.O) GO TO 950
IF (NVC.GT. 1.AND.MVCT.LT.MDFS) GO TO }95
IF (NVC.GT. 1.AND.MVCT.LT.MDFS) GO TO }95
IF (NVC.GT.1.AND.MVCB.GT.MDFS) GO TO }95
IF (NVC.GT.1.AND.MVCB.GT.MDFS) GO TO }95
IB=3
IB=3
CALL WALL
CALL WALL
IF (IERR.NE.O) GO TO 1080
IF (IERR.NE.O) GO TO 1080
IF (LDFSS.EQ. 1) CALL INLET
IF (LDFSS.EQ. 1) CALL INLET
IF (LDFSF.EQ.LMAX) CALL EXITT
IF (LDFSF.EQ.LMAX) CALL EXITT
IF (IERR.NE.O) GO TO 1080
IF (IERR.NE.O) GO TO 1080
GALLL STWIT`C゙CH (2) GALLL STWIT`C゙CH (2)
IB=4
IB=4
CALL WALL
CALL WALL
IF (ItRR.Nt.U) \&U IU IUYU
IF (ItRR.Nt.U) \&U IU IUYU
IF (LDFSS.EQ. 1) CALL INLET
IF (LDFSS.EQ. 1) CALL INLET
IF (LDFSF.EQ.LMAX) GALG EY,ITT
IF (LDFSF.EQ.LMAX) GALG EY,ITT
IF (IERR.NE.O) GO TO 1090
IF (IERR.NE.O) GO TO 1090
SET THE SUBCYCLED GRID END CONDITİONS
SET THE SUBCYCLED GRID END CONDITİONS
950 IF (NVCM1.EQ.1) GO TO 1010
950 IF (NVCM1.EQ.1) GO TO 1010
IF (NVC.EQ.1) GO TO 990
IF (NVC.EQ.1) GO TO 990
IF (NVC.EQ.NVCM1) GO TO }97
IF (NVC.EQ.NVCM1) GO TO }97
IF (LPPTD.GE.O) GO TO 960
IF (LPPTD.GE.O) GO TO 960
PCDUM=PC
PCDUM=PC
IF (IUO.EQ.2) PCDUM=\overline{PC}/6.8.8948
IF (IUO.EQ.2) PCDUM=\overline{PC}/6.8.8948
PPP 1 = P(LPP 1, MPP 1,N3)/PCDUM
PPP 1 = P(LPP 1, MPP 1,N3)/PCDUM
PPP2=P(LPP2,MPP2,N3)/PCDUM
PPP2=P(LPP2,MPP2,N3)/PCDUM
PPP3=P(LPP3,MPP3.N3)/PCDUM
PPP3=P(LPP3,MPP3.N3)/PCDUM
WRITE (6,2110) NVC.LPP1,MPP1,PPP1,LPP2,MPP2,PPP2,LPP3,MPP3,PPP3
WRITE (6,2110) NVC.LPP1,MPP1,PPP1,LPP2,MPP2,PPP2,LPP3,MPP3,PPP3
360 IF (ITM.GE.2) CALL TURBC (2)
360 IF (ITM.GE.2) CALL TURBC (2)
NNN=N1
NNN=N1
N1=N3
N1=N3
N3=NNN
N3=NNN
GO TO 1010
GO TO 1010
970 DT=DT*FLOAT (NVCM)
970 DT=DT*FLOAT (NVCM)
IF (MVCTD.GE.MMAX) GO TO 1010
IF (MVCTD.GE.MMAX) GO TO 1010
00 980 L= 1. LMAX
00 980 L= 1. LMAX
U(L,MVCTD,N3)=UU2(L)
U(L,MVCTD,N3)=UU2(L)
V(L,MVCTD,N3)=VV2(L)
V(L,MVCTD,N3)=VV2(L)
P(L,MVCTD,N3)=PP2(L)
P(L,MVCTD,N3)=PP2(L)
RO(L.MVCTD.N3)=RORO2(L)

```
    RO(L.MVCTD.N3)=RORO2(L)
```

```
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1457
1158
1159
1160
1161
1162
1463
1164
1165
1166
1167
1168 
1470 C
1171 C
1172
1173
1174
1175
1176
1177
1178
1479
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
192
1193
1194
1195
1196
1197
1198
1199 C
1 2 0 0 ~ C
1201 C
1202
1203
1204
1205
1206
1207
1208
1209
1210 C
1211 C
1212 C
1214 NCONV=NCONV+1
1216
1216
1217
1218
```

```
1213 1060 IF (DOM.GE.TCONV) GO TO 1110
```

1213 1060 IF (DOM.GE.TCONV) GO TO 1110

```
    Q(L.MVCTD,N3)=QQ2(L)
```

 Q(L.MVCTD,N3)=QQ2(L)
 E(L.MVCTD.N3)=EE2(L)
 E(L.MVCTD.N3)=EE2(L)
 980 CONTINUE
 980 CONTINUE
 go TO 1010
 go TO 1010
 990 NN1=N1
 990 NN1=N1
 NN3 = N3
 NN3 = N3
 IF (MVCTD.GE.MMAX) GO TO 1010
 IF (MVCTD.GE.MMAX) GO TO 1010
 DO 1000 L=1.LMAX
 DO 1000 L=1.LMAX
 UU1(L)=U(L.MVCTD.N1)
 UU1(L)=U(L.MVCTD.N1)
 VV1(L)=V(L.MVCTD.N1)
 VV1(L)=V(L.MVCTD.N1)
 PP1(L)=P(L,MVCTD,N1)
 PP1(L)=P(L,MVCTD,N1)
 RORO1(L)=RO(L,MVCTD,N1)
 RORO1(L)=RO(L,MVCTD,N1)
 OO1(L)=O(L.MVCTD,N1)
 OO1(L)=O(L.MVCTD,N1)
 EE1(L)=E(L',MVCTD.N1)
 EE1(L)=E(L',MVCTD.N1)
 UU2(L)=U(L,MVCTO.N3)
 UU2(L)=U(L,MVCTO.N3)
 VV2(L)=V(L.MVCTD.N3)
 VV2(L)=V(L.MVCTD.N3)
 PP2(L)=P(L.MVCTD.N3)
 PP2(L)=P(L.MVCTD.N3)
 RORO2(L)=RO(L,MVCTD,N3)
 RORO2(L)=RO(L,MVCTD,N3)
 QQ2(L)=Q(L.MVCTD,N3)
 QQ2(L)=Q(L.MVCTD,N3)
 EE2(L)=E(L.MVCTD,N3)
 EE2(L)=E(L.MVCTD,N3)
 1000 CONTINUE
 1000 CONTINUE
 1010 CONTINUE
 1010 CONTINUE
 PRINT THE PRESSURE AT THE THREE REQUESTED POINTS
 PRINT THE PRESSURE AT THE THREE REQUESTED POINTS
 IF (LPP1.EO.O) GO TO 1040
 IF (LPP1.EO.O) GO TO 1040
 NP=N+NSTART
 NP=N+NSTART
 PCDUM=PC
 PCDUM=PC
 IF (IUO.EQ.2) PCDUM=PC/6.8948
 IF (IUO.EQ.2) PCDUM=PC/6.8948
 PPP1=P(LPP1.MPP1,N3)/PCDUM
 PPP1=P(LPP1.MPP1,N3)/PCDUM
 PPP2 = P(LPP2,MPP2.N3)/PCDUM
 PPP2 = P(LPP2,MPP2.N3)/PCDUM
 PPP3=P(LPP3,MPP3.N3)/PCDUM
 PPP3=P(LPP3,MPP3.N3)/PCDUM
 IF (N.GT.NST) GO TO 1030
 IF (N.GT.NST) GO TO 1030
 IF (NTST.GT.O) GO TO 1030
 IF (NTST.GT.O) GO TO 1030
 IF (N.GT.2) GO TO 102O
 IF (N.GT.2) GO TO 102O
 IF (N.EO.1) PC.2=PPP1
 IF (N.EO.1) PC.2=PPP1
 IF (N.EQ.2) PC3=PPP1
 IF (N.EQ.2) PC3=PPP1
 GO TO 1030
 GO TO 1030
 1020 PC 1=PC2
 1020 PC 1=PC2
 PC2=PC3
 PC2=PC3
 PC3=PPP 1
 PC3=PPP 1
 IF ((PC3-PC2)*(PC2-PC1).LT.O.O) NTST=-1
 IF ((PC3-PC2)*(PC2-PC1).LT.O.O) NTST=-1
 IF (INTST.EQ.3) INTST=O
 IF (INTST.EQ.3) INTST=O
 IF (INTST.EQ.2) INTST=3
 IF (INTST.EQ.2) INTST=3
 IF (INTST.EQ.1) INTST=2
 IF (INTST.EQ.1) INTST=2
 IF (INTST.EQ.O.AND.NTST.NE.O) INTST=1
 IF (INTST.EQ.O.AND.NTST.NE.O) INTST=1
 IF (INTST.NE.1) NTST=O
 IF (INTST.NE.1) NTST=O
 1030 WRITE (6,2120) NP,LPP1,MPP1.PPP1.LPP2.MPP2.PPP2.LPP3.MPP3.PPP3
 1030 WRITE (6,2120) NP,LPP1,MPP1.PPP1.LPP2.MPP2.PPP2.LPP3.MPP3.PPP3
 1.NTST
 1.NTST
 1040 IF (N.LE.NST) CALL SMOOTH
1040 IF (N.LE.NST) CALL SMOOTH
IF (NTST.EQ.-1) NTST=O
IF (NTST.EQ.-1) NTST=O
IF (ITM.GE.2) CALL TURBC (1)
IF (ITM.GE.2) CALL TURBC (1)
DETERMINE THE mAXIMUM (DELTA U)/U
DETERMINE THE mAXIMUM (DELTA U)/U
IF (TCONV.LE.O.O) GO TO 1060
IF (TCONV.LE.O.O) GO TO 1060
OQM=0.O
OQM=0.O
DO 1050 L=LDUM, LMAX
DO 1050 L=LDUM, LMAX
DO 1050 M=1. MMAX
DO 1050 M=1. MMAX
IF (U(L.M,Ni).EQ.O.O) GO TO 1050
IF (U(L.M,Ni).EQ.O.O) GO TO 1050
DO=ABS((U(L,M,N3)-U(L,M,N1))/U(L,M,N1))
DO=ABS((U(L,M,N3)-U(L,M,N1))/U(L,M,N1))
IF (DQ.GT.DQM) DQM=DO
IF (DQ.GT.DQM) DQM=DO
1050 CONTINUE
1050 CONTINUE
CHECK FOR REQUESTED PRINTING OR PLOTTING
CHECK FOR REQUESTED PRINTING OR PLOTTING
IF (NCONV.EQ. 1) NCHECK-N-1
IF (NCONV.EQ. 1) NCHECK-N-1
IF (NCONV.GE.NCONVI) NC=NPRINT
IF (NCONV.GE.NCONVI) NC=NPRINT
IF (NCONV.GE.NCONVI) NPC=NPLOT
IF (NCONV.GE.NCONVI) NPC=NPLOT
IF (N.GE.NCHECK+NCONVI) NCONV=O

```
    IF (N.GE.NCHECK+NCONVI) NCONV=O
```

```
1219
1220 C
1221 1070 IF (MDFS.EQ.O) GO TO 1090
1222 1080 CALL SWITCH (3)
1223 1090 N3=N1
1224 1 100 NMAX =N
1225 IF (NVC.GF.2) DT=DT*FIOAT (NVCM)
1226 C
1227 1110 IF (N.EQ.NMAX) NC=NPRINT
1228 IF (N.EQ.NMAX) NPC=NPLOT
1229 IF (ISTOP.NE.O) NC=NPRINT
1230
1231
1232
1233
1234c
1236 C
1237 1120 IEN=0
1238 IF (UFLAG.EQ.O) GO TO 1430
1239 IF (LT:NE.LJET-1) GO ro 1130
1240 UDUM=U(LT,MMAX,N3)
1241 RODUM=RO(LT,MMAX,N3)
1242 U(LT,MMAX,N3)=UD(3)
1243 RO(LT,MMAX,N3)=ROD(3)
1244 ICN=1
1245
1246
1247
1248
1249 C
1250 C PRINT THE SOLUTION SURFACE
1251 C
1252
1253
1254
1255
1256.
1257
1258
1259
126O
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
$290
```

```
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322 C
1324 C
1327 TIME =T/LC
1328 NP=N+NSTART
1329
1330
1331 C
1332 C
1333 C
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343 C
1344 C
1345 C
1346
1347
1348
1349
1350
1351
1352
1353
1354
1354
1356
1357
1358
1359
1360
1361
1362
1363
1564
```

```
1325 1220 IF (NPLOT.LT.O) GO TO 1230
```

1325 1220 IF (NPLOT.LT.O) GO TO 1230
1326 IF (NPC.NE.NPLOT) GO TO \$230
1326 IF (NPC.NE.NPLOT) GO TO \$230

```
    XMACH=VELMAG/SORT(GAMMA +P(L,M,N3)/RO(L,M,N3))
```

 XMACH=VELMAG/SORT(GAMMA +P(L,M,N3)/RO(L,M,N3))
 PRES=P(L.M,N3)/PC
 PRES=P(L.M,N3)/PC
 RHO=RO(L.M,N3) *G
 RHO=RO(L.M,N3) *G
 TEMP=P(L,M,N3)/RHO/RGAS
 TEMP=P(L,M,N3)/RHO/RGAS
 XPP=XP(L)
 XPP=XP(L)
 UP=U(L,M,N3)
 UP=U(L,M,N3)
 VP=V(L,M,N3)
 VP=V(L,M,N3)
 1170 IF (IU.EQ.1) GO TO 1180
1170 IF (IU.EQ.1) GO TO 1180
XPP = XP(L)*2.54
XPP = XP(L)*2.54
YP=YP+2.54
YP=YP+2.54
UF =UP*0.3048
UF =UP*0.3048
VP=VP*0.3048
VP=VP*0.3048
PRES=PRES*6.8948
PRES=PRES*6.8948
RHO=RHO + 16.02
RHO=RHO + 16.02
VELMAG=VELMAG + 0.3048
VELMAG=VELMAG + 0.3048
TEMP = TEMP + 5.0/9.0
TEMP = TEMP + 5.0/9.0
1180 NLINE =NLINE+1
1180 NLINE =NLINE+1
IF (NLINE.LT.54) GO TO 1190
IF (NLINE.LT.54) GO TO 1190
WRITE (6,1380)
WRITE (6,1380)
WRITE (6,1570) NP,TIME,DTIME,NVCM,CNUMS.LDU,MDU,LDUF,MDUF
WRITE (6,1570) NP,TIME,DTIME,NVCM,CNUMS.LDU,MDU,LDUF,MDUF
WRITE (6,1530)
WRITE (6,1530)
IF (IU.EQ.1) WRITE (6,1540)
IF (IU.EQ.1) WRITE (6,1540)
IF (IU.EO.2) WRITE (6.1550)
IF (IU.EO.2) WRITE (6.1550)
WRITE (6,1390)
WRITE (6,1390)
NLINE=1
NLINE=1
1190 WRITE (6,1560) L.M, XPP,YP,UP,VP,PRES,RHO,VELMAG, XMACH,TEMP
1190 WRITE (6,1560) L.M, XPP,YP,UP,VP,PRES,RHO,VELMAG, XMACH,TEMP
IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 1200
IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 1200
IF (IMDFS.EO.O) GO TO 1150
IF (IMDFS.EO.O) GO TO 1150
1200 CONTINUE
1200 CONTINUE
IF (IUO.NE.3) GO TO 1220
IF (IUO.NE.3) GO TO 1220
121O CONTINUE
121O CONTINUE
GENERATE THE FILM PLOTS
GENERATE THE FILM PLOTS
CALL PLOT (TITLE.TIME,NP.IVPTS)
CALL PLOT (TITLE.TIME,NP.IVPTS)
WRITE (G,1810) NP
WRITE (G,1810) NP
CHECK for CONVERGENCE OF THE STEADY STATE SOLUTION
CHECK for CONVERGENCE OF THE STEADY STATE SOLUTION
1230 IF (DQM.LT.TCONV) GO TO 1260
1230 IF (DQM.LT.TCONV) GO TO 1260
IF (ISTOP.NE.O) GO TO }126
IF (ISTOP.NE.O) GO TO }126
IF (N.EQ.NMAX) GO TO 1260
IF (N.EQ.NMAX) GO TO 1260
IF (NC.EQ.NPRINT) NC=O
IF (NC.EQ.NPRINT) NC=O
IF (NPC.EQ.NPLOT) NPC=O
IF (NPC.EQ.NPLOT) NPC=O
1240 NNN=N1
1240 NNN=N1
N1=N3
N1=N3
N3=NNN
N3=NNN
1250 CONT INUE
1250 CONT INUE
PUNCH(WRITE) A \$IVS NAMELIST FOR RESTART
PUNCH(WRITE) A \$IVS NAMELIST FOR RESTART
1260 IF (NPLOT.GE.O) CALL ADV (10)
1260 IF (NPLOT.GE.O) CALL ADV (10)
IF (IPUNCH.EQ.O) GO TO 10
IF (IPUNCH.EQ.O) GO TO 10
DO 1270 L= 1. LMAX.
DO 1270 L= 1. LMAX.
PL(L,N3)=PL(L,N3)/PC
PL(L,N3)=PL(L,N3)/PC
ROL(L,N3)=ROL (L,N3)*G
ROL(L,N3)=ROL (L,N3)*G
DO 1270 M=1.MMAX
DO 1270 M=1.MMAX
P(L,M,N3)=P(L,M,N3)/PC
P(L,M,N3)=P(L,M,N3)/PC
RO(L,M,N3)=RO(L,M,N3)+G
RO(L,M,N3)=RO(L,M,N3)+G
1270 CONTINUE
1270 CONTINUE
WRITE (8,1620) NP,TIME
WRITE (8,1620) NP,TIME
DO 1280 M=1.,MMAX
DO 1280 M=1.,MMAX
WRITE (8,1630) M,U(1,M.N3)
WRITE (8,1630) M,U(1,M.N3)
WRITE (8, 1650) (U(L,M,N3),L=2,LMAX)
WRITE (8, 1650) (U(L,M,N3),L=2,LMAX)
1280 CONTINUE
1280 CONTINUE
DO 1290 M=1. MMAX
DO 1290 M=1. MMAX
WRITE (8,1660) M,V(1,M.N3)
WRITE (8,1660) M,V(1,M.N3)
WRITE (8,165O) (V (L,M,N3).L=2,LMAX)
WRITE (8,165O) (V (L,M,N3).L=2,LMAX)
1290 CONT INUE
1290 CONT INUE
UU 13OUO M=1.MMMAK

```
    UU 13OUO M=1.MMMAK
```

1365		WRITE (8.1680) M.P(1.M.N3)
1366		WRITE (8.1700) (P(L,M,N3),L=2.LMAX)
1367	1300	CONTINUE
1368		DO $1310 \mathrm{M}=1$, MMAX
1369		WRITE (8.1710) M.RO(1.M.N3)
1370		WRITE (8.1730) (RO(L.M,N3).L=2.LMAX)
1371	1310	CONTINUE
1372		IF (ITM.LE. 1) GO TO 1340
1373		DO $1320 \mathrm{M}=1 . \mathrm{MmAX}$
1374		WRITE (8,1740) M.O(1.M.N3)
1375		WRITE (8.1760) (Q(L.M.N3).L=2.LMAX)
1376	1320	CONTINUE
1377		IF (ITM.EO.2) GO TO 1340
1378		DO $1330 \mathrm{M}=1$. MMAX
1379		WRITE (8,1750) M, E(1,M,N3)
1380		WRITE (8,1760) (E(L.M.N3).L=2.LMAX)
1341	1330	cuntinile
1382	1340	IF (MDFS.EO.O) GO TO 1350
1383		LDFSSP $1=$ LDFSS 1
1384		WRITE (8,1640) LDFSS, UL (LOFSS,N3)
1385		WRITE (8,1650) (UL (L.N3).L=LDFSSP1.LDFSF)
1386		WRITE (8,1670) LDFSS.VL(LDFSS.N3)
1387		WRITE (8, 1650) (VL(L,N3).L=LUFSSP 1.LUFSF)
1388		WRITE (8.1690) LDFSS.PL(LDFSS,N3)
1389		WRTTF (8, 1700) (PL(L,N3).L=LDFSSP1.LDFSF)
1390		WRITE (8,1720) LDFSS.ROL (LDFSS.N3)
1391		WRITE (8.1730) (ROL(L,N3), L=LDFSSP1.LDFSF)
1392		IF (ITM.LE.1) GO TO 1350
1393		WRITE (8,1770) LDFSS.QL(LDFSS.N3)
1394		WRITE (8,1760) (OL(L, N3).L=LDFSSP1,LDFSF)
1395		IF (ITM.EQ.2) GO TO 1350
1396		WRITE (8.1780) LDFSS.EL(LDFSS.N3)
1397		WRITE (8.1760) (EL (L.N3).L=LOFSSP1.LDFSF)
1398	1350	WRITE (8.1790)
1399		NCARDS $=($ LMAX $/ 7+2) *$ MMAX * 4+2+LDFSF-LDFSS
1400		WRITE (6.1800) NCARDS
1401		Gn Tn in
1402	C	
1403		FORMAT STATEMENTS
1404	C	
1405	1370	FORMAT (10A8)
1406	1380	FORMAT (1111)
1407	1390	FORMAT (${ }^{4} \mathrm{H}$)
1408	1400	FORMAT (1 HO)
1409	1410	FORMAT (1 HO. 10X.47HVNAP2. A COMPUTER PROGRAM FOR THE COMPUTATION
1410		1 . 58HF TWO-DİMẼSİIONAL. TIME-DEPENDENT, COMPRESSIBLE, TURBULENT.5H
1411		2 FLOW, //37X.57HBY MICHAEL C. CLINE, T-3 - los alamos national labo
1412 ,		JRATORY)
1413	1420	FORMAT (1 HO, 10X, 18HPROGRAM ABSTRACT -.//26X. 17 HTHE NAVIER-STOKES. 6
1414		1 2H EQUATIONS FOR TWO-DIMENSIONAL. TIML DLFENDENT FLOW ARE SOLVED,
1415		2 10H USING THE./.21X.62HSECOND-ORDER. MACCORMACK FINITE-DIFFERENCE
1415		3 SC.HFMF, AIL. ROINNTAR.31HY CONDITIDNS ARE COMPUTED USING./.21X.13HA
1417		4 SECOND-ORDE.62HR, REFERENCE Plane Characteristic scheme with the
1418		5VISCOUS TERM, 19HS TREATED AS SOURCE)
1419	1430	FORMAT ($1 \mathrm{H}, 20 \mathrm{X}, 4$ 1HFUNCTIONS. THE FLUID IS ASSUMED TO BE A . 54 HPE
1420		1RFECT GAS. THE STEADY-STATE SOLUTION IS ORTAINED AS./. $21 \times \mathrm{x}$. 62 HTHE
1421		2ASYMPTOTIC GOLUTION POR LARGE TIME. TIIC 「LOW boundaries m. 34hay
1422		3 E ARBITRARY CURVED SOLID WALLS $, / .21 \mathrm{X}, 62 \mathrm{HAS}$ WELL AS JET ENVELOPES.
1423		4 THE GEOMETRY MAY CONSIST OF SINGLE , 36HAND DUAL FLOWING STREAMS.
1424		5TURBULENCE, / $21 \times .62 \mathrm{HEFFECTS}$ ARE MODELED WITH EITHER A MIXING-LENGT
1425		6H. A TURBULENCE . 32HENERGY EQUATION. OR A TURBULENCE./. $21 \times, 62$ Hener
1426		7GY-DISSIPATION RATE EQUATIONS MODEL. THIS PROGRAM ALLOWS , 34HVARI
1427		
1428		9E CALCULATION FOR HIGH Reynolds number flows.)
1429	1440	FORMAT (1 HO, 10X, 11 HJOB TITLE -//21X.1048)
1430	1450	FORMAT ($1 \mathrm{HO}, 10 \mathrm{X}, 2 \mathrm{HHCONTROL}$ PARAMETERS -)
1431	1460	
1432		$1=, 14.2 X, 6 \mathrm{HNPLOT}=.14 .6 \mathrm{X}, 4 \mathrm{HFDT}=, \mathrm{F4} \cdot 2.2 \mathrm{X}, 5 \mathrm{HFDT} 1=, \mathrm{F4} .2 .3 \mathrm{X}, 5 \mathrm{HFDTI}=. \mathrm{F} 4.2$
1433		
1434		$3 \mathrm{HNCONVI}=, 12,4 \mathrm{X}, 6 \mathrm{HTSTOP}=, \mathrm{EB}, 2,2 \mathrm{X}, 4 \mathrm{HN} 1 \mathrm{D}=, 12,4 \mathrm{X}, 6 \mathrm{HTCONV}=, \mathrm{F} 5.3 ; 1 \mathrm{X}, 5 \mathrm{HN}$
1435		$4 \mathrm{~S} M=, \mathrm{I} 1,5 \mathrm{X}, 6 \mathrm{HIUNIT}=, \mathrm{I} 1, / .21 \mathrm{X}, 6 \mathrm{HRSTAR}=, \mathrm{F} 11.6 .2 \mathrm{X}, 7 \mathrm{HRSTARS}=, \mathrm{F} 13.7,4 \mathrm{X}$,
1436		$55 \mathrm{HPLOW}=, \mathrm{FG.4.5X,6HROLOW}=. \mathrm{F} 11.6 .5 \mathrm{X}, 4 \mathrm{HVDT}=, \mathrm{F} 4.2 .3 \mathrm{X}, 5 \mathrm{HVDT} 1=, \mathrm{F} 4.2$)

1470 FORMAT ($1 \mathrm{HO}, 10 \mathrm{X}, 13 \mathrm{HFLUID}$ MODEL $-, / / 2^{\circ} \mathrm{ix}, 36 \mathrm{HTHE}$ RATIO OF SPECIFIC HE 1ATS. GAMMA =.F6.4.26H AND THE GAS CONSTANT, $R=. F 9.4,15 H$ (FT-LBF/L 2BM-R))
1480 FORMAT (1 HO, 1OX, 13HFLUID MODEL $-. / / 21 X, 36$ HTHE RATIO OF SPECIFIC HE 1ATS, GAMMA =,F6.4.2GH AND THE GAS CONSTANT, R =,F9.4.9H (J/KG-K))
1490 FORMAT (1 HO .10 X .15 HFLOW GEOMETRY -)
1500 FORMAT ($1110.20 \mathrm{X}, 47 \mathrm{HTWO}$-DIMENSIONAL. PLANAR FLOW HAS BEEN SPECIFIED 1)
1510 FORMAT (1 HO, 2OX, 36HAXISYMMETRIC FLOW HAS BEEN SPECIFIED)
1520 FORMAT (1H, 3OHINITIAL-DATA SURFACE - TIME $=, F 12.8 .8 H$ SECONDS, $4 H$ $1(\mathrm{~N}=. \mathrm{I} 6,1 \mathrm{H}))$
1530 FORMAT ($1 \mathrm{HO}, 11 \mathrm{X}, 1 \mathrm{HL}, 4 \mathrm{X}, 1 \mathrm{HM}, 9 \mathrm{X}, 1 \mathrm{HX}, 10 \mathrm{X}, 1 \mathrm{HY}, 10 \mathrm{X}, 1 \mathrm{HU}, 11 \mathrm{X}, 1 \mathrm{HV}, 12 \mathrm{X}, 1 \mathrm{HP}$, 1 11X, 3HRHO, $7 \mathrm{X}, 4 \mathrm{HVMAG}, 10 \mathrm{X}, 4 \mathrm{HMACH}, 8 \mathrm{X}, 1 \mathrm{HT})$
1540 FORMAT ($1 \mathrm{H}, 25 \mathrm{X}, 4 \mathrm{H}(\mathrm{IN}), 7 \mathrm{X}, 4 \mathrm{H}(\mathrm{IN}) .6 \mathrm{X}, 5 \mathrm{H}(\mathrm{F} / \mathrm{S}), 7 \mathrm{X}, 5 \mathrm{H}(\mathrm{F} / \mathrm{S}), 7 \mathrm{X}, 6 \mathrm{H}(\mathrm{PSIA})$ $1,6 \mathrm{X}, 9 \mathrm{H}(\mathrm{LBM} / \mathrm{FT} 3), 4 \mathrm{X}, 5 \mathrm{H}(\mathrm{F} / \mathrm{S}), 10 \mathrm{X}, 2 \mathrm{H} N \mathrm{NO}, 8 \mathrm{X}, 3 \mathrm{H}(\mathrm{R}))$
1550 FORMAT ($1 \mathrm{H}, 25 \mathrm{X}, 4 \mathrm{H}(\mathrm{CM}), 7 \mathrm{X}, 4 \mathrm{H}(\mathrm{CM}), 6 \mathrm{X}, 5 \mathrm{H}(\mathrm{M} / \mathrm{S}), 7 \mathrm{X}, 5 \mathrm{H}(\mathrm{M} / \mathrm{S}), 7 \mathrm{X}, 6 \mathrm{H}$ (KPA) $1,7 \mathrm{X}, 7 \mathrm{H}(\mathrm{KG} / \mathrm{M} 3), 5 \mathrm{X}, 5 \mathrm{H}(\mathrm{M} / \mathrm{S}), 10 \mathrm{X}, 2 \mathrm{HNO}, 8 \mathrm{X}, 3 \mathrm{H}(\mathrm{K}))$
1560 FORMAT (1H , 7X. 2 I5. 4F 12.4 . F13.5.F12.6.3F12.4)
1570 FORMAT ($1 \mathrm{H}, 2 \mathrm{OHSOLUTION}$ SURFACE NO., I6.3H - .7HTIME $=, F 12.8 .20 \mathrm{H} \mathrm{S}$ 1ECONDS (DELTA $T=, F 10.8,8 \mathrm{H}, \mathrm{NVCM}=, \mathrm{I} 3,9 \mathrm{H}, \mathrm{CNUMS}=, \mathrm{F} 5.2 .3 \mathrm{H},(.12,1$ $2 \mathrm{H}, \mathrm{I} 2,4 \mathrm{H})$, (, I2,1H, I $2,2 \mathrm{H}$)))
1580 FORMAT (1HO, 10X, 21 HBOUNDARY CONDITIONS -.//22X,1HM,10X,8HPT(PSIA), 1 11X,5HTT(R), 10X, 1OHTHETA(DEG), 1OX, 8HPE(PSIA), $7 \mathrm{X}, 1 \mathrm{HHFSQ}(F T 2 / S 2), 7 X$ 2 . 11HFSE(FT2/S3)./)
1590 FORMAT (1 HO. $10 \mathrm{X}, 21$ HBOUNDARY CONDITIONS $-, / / 22 \mathrm{X}, 1 \mathrm{HM}, 10 \mathrm{X}, 7 \mathrm{HPT}(K P A), 1$ $12 \mathrm{X}, 5 \mathrm{HT}(\mathrm{K}), 10 \mathrm{X}, 10 \mathrm{HTHETA}(\mathrm{DEG}), 10 \mathrm{X}, 7 \mathrm{HPE}(\mathrm{KPA}), 8 \mathrm{X}, 10 \mathrm{HF} \mathrm{SO}(\mathrm{M} 2 / \mathrm{S} 2), 8 \mathrm{X}, 10$ 2 HFSE(M2/S3), /)
1600 FORMAT (1H , 20X, I2, 7X,F1O.4, 1OX,F7.2,10X,F7.2,9X,F11.5,F18.4,F18.1 $1)$
1610 FORMAT (1 HO. $51 \mathrm{H} * * * * *$ THE RADIUS OF THE CENTERBODY IS LARGER THAN T 1 . 2OHHE WALL RADIUS *****)
1620 FORMAT ($1 \mathrm{X}, 18 \mathrm{H} \$ \mathrm{IVS} \mathrm{N} 1 \mathrm{D}=0, \mathrm{NSTART}=, \mathrm{I} 6,8 \mathrm{H}, \mathrm{TSTART}=, \mathrm{F} 14.10,1 \mathrm{H}$,)
1630 FORMAT ($1 \mathrm{X}, 4 \mathrm{HU}(1, .12,5 \mathrm{H}, 1)=, \mathrm{F} 10.3,1 \mathrm{H}$,)
1640 FORMAT $(1 X, 3 H U L(, 12.5 H, 1)=, F 10.3,1 \mathrm{H}$,)
1650 FORMAT ((1X,7(F10.3,1H,)))
1660 FORMAT $(1 X, 4 H V(1, . I 2,5 H, 1)=, F 10.3 .1 H$,
1670 FORMAT ($1 \mathrm{X}, 3 \mathrm{HVL}(, \mathrm{I} 2,5 \mathrm{H}, 1)=, \mathrm{F} 10.3,1 \mathrm{H}$,)
1680 FORMAT $(1 X .4 \mathrm{HP}(1, . I 2.5 \mathrm{H}, 1)=. \mathrm{F} 10.4,1 \mathrm{H}$.
1690 FORMAT $(1 \mathrm{X}, 3 \mathrm{HPL}(, \mathrm{I} 2,5 \mathrm{H}, 1)=, \mathrm{F} 10.4,1 \mathrm{H}$,
1700 FORMAT ($(1 \times, 7(F 10.4,1 H))$,
1710 FORMAT $(1 \mathrm{X}, 5 \mathrm{HRO}(1,, \mathrm{I} 2,5 \mathrm{H}, 1)=, \mathrm{F} 10.6,4 \mathrm{H}$,
1720 FORMAT ($1 \times .4$ HROL $(, 12,5 \mathrm{H}, 1)=. \mathrm{F} 10.6,1 \mathrm{H}$,)
1730 FORMAT ((1X,7(F10.6.1H.)))
1740 FORMAT $(1 X, 4 \mathrm{HQ}(1, . I 2,5 \mathrm{H}, 1)=. \mathrm{E} 10.4,1 \mathrm{H}, \mathrm{)}$
1750 FORMAT $(1 X, 4 \mathrm{HE}(1,, 12.5 \mathrm{H}, 1)=. \mathrm{E} 10.4,1 \mathrm{H}$,)
1760 FORMAT ((ix,7(E10.4,1H,)))
1770 FORMAT $(1 X, 3 \mathrm{HQL}(, 12,5 \mathrm{H}, 1)=, E 10.4,1 \mathrm{H}$,
1780 FORMAT $(1 X, 3 H E L(, I 2,5 H, 1)=, E 10.4,1 \mathrm{H}$,)
1\%YU FURMAT (1X,1H\$)
1800 FORMAT ($1 \mathrm{HO}, 27 \mathrm{H} * * * * *$ EXPECT APPROXIMATELY . I $4.2 O H$ PUNCHED CARDS ** 1***)
1810 FORMAT ($1 \mathrm{HO}, 31 \mathrm{H} * * * * *$ EXPECT FILM DUTPUT FOR N=, I $6,6 \mathrm{H} * * * * *$)
1820 FORMAT ($1 \mathrm{H}, 10 \mathrm{X} .2 \mathrm{HN}=.16,5 \mathrm{H} . \mathrm{T}=, \mathrm{F} 12.8,14 \mathrm{H}$ SECONDS. $\mathrm{DT}=. \mathrm{F} 10.8 .8 \mathrm{H} \mathrm{S}$ 1ECONDS.9H. $N V C M=, I 3.1 O H . \quad C N U M S=. F 5.2 .4 H . \quad(.12 .1 H . .12 .5 H)$. (2 .I2,1H..I2.1H))
1830 FORMAT (1HO, 1OX, 21 HARTIFICAL VISCOSITY -. //2 $1 \mathrm{X}, 4 \mathrm{HCAV}=, \mathrm{F} 4.2 .3 \mathrm{X}, 4 \mathrm{HXM}$ $1 U=, F 4.2,3 X, 4 H X L A=, F 4.2 .3 X, 4 H P R A=, F 4.2,3 X, 4 H X R O=, F 4.2,3 X, 4 H L S S=, I 2$, $25 \mathrm{X}, 4 \mathrm{HLSF}=, \mathrm{I} 3,3 \mathrm{X}, 6 \mathrm{HIDIVC}=, \mathrm{I} 4,3 \mathrm{X}, 4 \mathrm{HISS}=, \mathrm{I} 1,3 \mathrm{X}, 6 \mathrm{HSMACH}=, F 4.2 . /, 21 \mathrm{X}, 4$ 3 HNST $=, 14,3 X, 4 H S M P=, F 4.2,3 X, 5 H S M P F=, F 4,2,2 X, 5 H S M P T=, F 4,2,2 X, 6 H S M P T$ $4 F=, F 4,2,1 X, 5 H N T S T=, I 4,2 X, 4 H I A V=, I f, 5 X, 4 H M S S=, I 2,4 X, 4 H M S F=, 13)$
1840 FUKMAT (1HO. 2OX. 29HFREE-SLIP WALLS ARE SPECIFIED)
1850 FORMAT (1HO.20X. $27 \mathrm{HNO}-$ SLIP WALLS ARE SPECIFIED)
 1BF-S/FT2) CLA=,E11.4.17H (LBF-S/FT2) $C K=. E 10.4,16 H$ (LBF/S-R) EM 2U=.F4.2.6H ELAv.F4.2.5H EK=.F4.2)
1870 FORMAT (1 HO. 1OX. 21 HMOLECULAR VISCOSITY -.//2 $1 \mathrm{X} .4 \mathrm{HCMU}=. \mathrm{E} 10.4 .13 \mathrm{H}$ (P 1A-S) $\quad C L A=, E 11.4 .12 H(P A-S) \quad C K=. E 10.4,14 H(W / M-K) \quad E M U=, F 4.2,6 H$ 2ELA=,F4.2.5H EK=,F4.2)
1880 FORMAT ($1 \mathrm{H}, 10 \mathrm{X}, 48 \mathrm{H}-\cdots$
$2.7 \mathrm{H}-\cdots-)^{-}$
1890 FORMAT ($1 H, 20 X, 33 H A D I A B A T I C$ UPPER WALL IS SPECIFIED)

```
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
155.3
1554
1555
1556
1557
1558
```

```
1900 FORMAT (1H . 20X.15HIW IS SPECIFJED)
```

1900 FORMAT (1H . 20X.15HIW IS SPECIFJED)
1910 FORMAT (1H . 2OX.39HADIABATIC LOWER CENTERBODY IS SPECIFIED)
1910 FORMAT (1H . 2OX.39HADIABATIC LOWER CENTERBODY IS SPECIFIED)
1920 FORMAT (1H .2OX.44HADIABATIC LOWER DUAL FLOW SPACE BOUNDARY IS .9H
1920 FORMAT (1H .2OX.44HADIABATIC LOWER DUAL FLOW SPACE BOUNDARY IS .9H
1SPECIFIED)
1SPECIFIED)
1930 FORMAT (1H . 2OX.44HADIABATIC UPPER DUAL FLOW SPACE ROUNDARY IS .9H
1930 FORMAT (1H . 2OX.44HADIABATIC UPPER DUAL FLOW SPACE ROUNDARY IS .9H
ISPECIFIED)
ISPECIFIED)
1940 FORMAT (1H , 2OX,16HTCB IS SPECITIED)
1940 FORMAT (1H , 2OX,16HTCB IS SPECITIED)
1950 FORMAT (1H , 2OX.15HTL IS SPECIFIED)
1950 FORMAT (1H , 2OX.15HTL IS SPECIFIED)
1960 FORMAT (1H . 2OX.15HTU IS SPECIFIED)
1960 FORMAT (1H . 2OX.15HTU IS SPECIFIED)
1970 FORMAT (1HO.1OX.18HTURBULENCE MODEL -.//21X.21HNO MODFI. IS SPECIFI
1970 FORMAT (1HO.1OX.18HTURBULENCE MODEL -.//21X.21HNO MODFI. IS SPECIFI
IED)
IED)
1980 FORMAT (1HO,1OX.18HTURBULENCE MODEL -.//21X.38HMIXING-LENGTH MODEL
1980 FORMAT (1HO,1OX.18HTURBULENCE MODEL -.//21X.38HMIXING-LENGTH MODEL
1 IS SPECIFIED. CAL=.F4.2.2X.5HIMLM=.12. 2X.5HCMLI=.F5.3.2X.5HCML2=
1 IS SPECIFIED. CAL=.F4.2.2X.5HIMLM=.12. 2X.5HCMLI=.F5.3.2X.5HCML2=
2 .F5.3.2X.4HPRT =.F4.2)
2 .F5.3.2X.4HPRT =.F4.2)
1990 FORMAT (HO.1OX.18HTURBULENCE MODEL -.//21x.45HTURBULENCE ENERGY E
1990 FORMAT (HO.1OX.18HTURBULENCE MODEL -.//21x.45HTURBULENCE ENERGY E
IQUATION MODEL IS SPECIFIED)
IQUATION MODEL IS SPECIFIED)
2000 FORMAT (1HO.2OX.4HCAL=.F4.2.2X.4HCOL=.F5.2.2X.5HCOMU=.F4.2.2X.5HIM
2000 FORMAT (1HO.2OX.4HCAL=.F4.2.2X.4HCOL=.F5.2.2X.5HCOMU=.F4.2.2X.5HIM
1LM=.12, 2X.5HCML 1=.F5.3, 2X.5HCML2=,F5.3.2X.4HPRT=.F4. ?)
1LM=.12, 2X.5HCML 1=.F5.3, 2X.5HCML2=,F5.3.2X.4HPRT=.F4. ?)
2010 FORMAT (1HO.1OX,18HTURBULENCE MODEL -.//21x.62HTURBULENCE ENERGY -
2010 FORMAT (1HO.1OX,18HTURBULENCE MODEL -.//21x.62HTURBULENCE ENERGY -
1 DISSIPATIGN PATE EOUATIONS MODFI. IS SPECIF.3HIED)
1 DISSIPATIGN PATE EOUATIONS MODFI. IS SPECIF.3HIED)
2020 FORMAT (1HO.2OX.7HIINLET=,I1,2X.7HIEXITT=,I1,2X.4HIEX=,I1,5X,7HISU
2020 FORMAT (1HO.2OX.7HIINLET=,I1,2X.7HIEXITT=,I1,2X.4HIEX=,I1,5X,7HISU
IPER=,I1.2X.4HDYW=,F6.4.2X.5HIVBC=.I1, 2X.5HINBC =.I1. 2X.6HIWALL =.I 1.
IPER=,I1.2X.4HDYW=,F6.4.2X.5HIVBC=.I1, 2X.5HINBC =.I1. 2X.6HIWALL =.I 1.
2 2X,7HIWALLO=,I1, 2X,4HALI=,F4.2.2X,4HALE=.F4.2./. 21X,4HALW=,F4.2.2
2 2X,7HIWALLO=,I1, 2X,4HALI=,F4.2.2X,4HALE=.F4.2./. 21X,4HALW=,F4.2.2
3 X.,6HNSTAG=.I1.3X.4HNPE =. 14. 2X.4HPEI =.F1O.5)
3 X.,6HNSTAG=.I1.3X.4HNPE =. 14. 2X.4HPEI =.F1O.5)
2O3O FORMAT (1HO.2OX,4HCAL=,F4.2, 2X,5HCOMU=,F4.2, 2X, 3HC 1=,F4.2, 2X,3HC.2=
2O3O FORMAT (1HO.2OX,4HCAL=,F4.2, 2X,5HCOMU=,F4.2, 2X, 3HC 1=,F4.2, 2X,3HC.2=
1 .F4.2.2X.5HSIGO=.F4.2.2X,5HSIGE=.F4.2, 2X.5HBFSTT=.F4.2. 2X,4HPRT=
1 .F4.2.2X.5HSIGO=.F4.2.2X,5HSIGE=.F4.2, 2X.5HBFSTT=.F4.2. 2X,4HPRT=
2, FA.2.2X,5HSTBQ =,F6.4.2X,5HSTBE =,FG.4)
2, FA.2.2X,5HSTBQ =,F6.4.2X,5HSTBE =,FG.4)
2040 FORMAT (1HO.1OX.26HVARIABLE GRID PARAMETERS -.//21X.4HIST=.I1.3X.5
2040 FORMAT (1HO.1OX.26HVARIABLE GRID PARAMETERS -.//21X.4HIST=.I1.3X.5
1 HMVCB =.12,3X.5HMVCT =.I2.3X.4HIOS =.I1.3X.6HNIOSS=.I1.3X.6HNIOSF=
1 HMVCB =.12,3X.5HMVCT =.I2.3X.4HIOS =.I1.3X.6HNIOSS=.I1.3X.6HNIOSF=
2,I4,3X.6HNVCMI=,13.3X,6HILLOS=.12.3X.1HSOS=.FS.2.3X.4HCDS=.F5.3)
2,I4,3X.6HNVCMI=,13.3X,6HILLOS=.12.3X.1HSOS=.FS.2.3X.4HCDS=.F5.3)
2O50 FORMAT (1HO.63H***** INCOMPATIBLE TURBULENCE MODEL - GEOMETRY PARA
2O50 FORMAT (1HO.63H***** INCOMPATIBLE TURBULENCE MODEL - GEOMETRY PARA
1METERS ****+)
1METERS ****+)
2060 FORMAT (1HO.51H+**** INCOMPATIBLE DUAL FLOW SPACE PARAMETERS *****
2060 FORMAT (1HO.51H+**** INCOMPATIBLE DUAL FLOW SPACE PARAMETERS *****
1)
1)
2O7O FORMAT (1HO,29H***** NVCMI MUST BE ODD *****)
2O7O FORMAT (1HO,29H***** NVCMI MUST BE ODD *****)
2O8O FORMAT (1HO.52H+*++* INCOMPATIBLE DUAL FLOW SPACE - SURCYCLED GRID
2O8O FORMAT (1HO.52H+*++* INCOMPATIBLE DUAL FLOW SPACE - SURCYCLED GRID
1 . 16HPARAMETERS *****)
1 . 16HPARAMETERS *****)
2O90 FORMAT (1HO.5OH**** INCOMPATIRLE SUBCYCLED GRID PARAMETERS *****)
2O90 FORMAT (1HO.5OH**** INCOMPATIRLE SUBCYCLED GRID PARAMETERS *****)
2100 FORMAT (1HO,35H***** NVCM IS GREATER THAN 2OO AT N=,I6.34H. CHECK
2100 FORMAT (1HO,35H***** NVCM IS GREATER THAN 2OO AT N=,I6.34H. CHECK
ilAST SOLUTION PLANE. *****)
ilAST SOLUTION PLANE. *****)
2110 FORMAT (1H1.18X,4HNVC=,13.5X.2HP(.I2.1H..12.2H)=.F10.5.5X.2HP(.I2.
2110 FORMAT (1H1.18X,4HNVC=,13.5X.2HP(.I2.1H..12.2H)=.F10.5.5X.2HP(.I2.
1 1H.,12,2H)=, F(0.5,5X,2HP(,12,1H,.12,2H)=.510.5)
1 1H.,12,2H)=, F(0.5,5X,2HP(,12,1H,.12,2H)=.510.5)
2120 FORMAT (1H.,IOX, 2IN=.IG,13X,2HP(.I2.1H_.12,2H)=,F1O.5,5X,2HP(,I2,1
2120 FORMAT (1H.,IOX, 2IN=.IG,13X,2HP(.I2.1H_.12,2H)=,F1O.5,5X,2HP(,I2,1
1 H,.I2,2H)=.F10.5.5X.2HP(.I?,1H, ,I2,2H)=.F10.5.5X.5HNTST=,Ib)
1 H,.I2,2H)=.F10.5.5X.2HP(.I?,1H, ,I2,2H)=.F10.5.5X.5HNTST=,Ib)
213n FORMAT (1HO.48H***** INCOMPATIBLE OUICK SOLVER PARAMETERS *****)
213n FORMAT (1HO.48H***** INCOMPATIBLE OUICK SOLVER PARAMETERS *****)
2140 FORMAT (1HO,53H***** ISUPER MUST BE GREATER THAN OR EOUAL T'O Oं ***
2140 FORMAT (1HO,53H***** ISUPER MUST BE GREATER THAN OR EOUAL T'O Oं ***
1**)
1**)
2150 FORMAT (1HO.65H**** INCOMPATIBLE WALL GEOMETRY AND/OR BOUNDARY CO
2150 FORMAT (1HO.65H**** INCOMPATIBLE WALL GEOMETRY AND/OR BOUNDARY CO
1NDITIONS *****)
1NDITIONS *****)
ENO

```
        ENO
```

1559		SUBROUT INE GEOM
1560	C	
1561	C	******************************+****+*************************
1562	C	
1563	C	this subroutine calculates the wall radius and slope
1564	C	
1565	C	*******************+**
1566	C	
1567	*CALL	MCC
1568		GO TO ($10,30,120,170$), NGEOM
1569	C	
1570	C	CONSTANT AREA WALL CASE
1571	C	
1572	10	WRITE (6.230)
1573		IF (IUI.EQ.1) WRITE (6.250) XI, RI, XE
1574		IF (IUI.EO.2) WRITE $(6,260)$ XI,RI, XE
1575		$L T=L M A X$
1576		$X T=X E$
1577		$R T=R I$
1578		RE $=$ RI
1579		DO $20 \mathrm{~L}=1$, LMAX
1580.		YW(L) =RI
1581		NXNY(L) $=0.0$
1582	20	CONTINUE
1583		Gu tu 210
1584	C	
1585	C	CIRCULAR-ARC, CONICAL WALL CASE
1586	C	
1587	30	WRITE (6.230)
1588		IF (RCI.EO.O.O.OR.RCT.EQ.O.O) GO TO 200
1589		ANI $=$ ANGI * $3.141593 / 180.0$
1590		ANE = ANGE*3.141593/180.O
1591		XTAN $=X I+R C I * S I N(A N I)$
1592	-	$R T A N=R I+R C I+(\operatorname{COS}(A N I)-1.0)$
1593		RT $1=\mathrm{R} \cdot \mathrm{T}-\mathrm{RCT}$ + (COS(ANI)-1.0)
1594		XT1 $=\times$ TAN+(RTAN-RT1)/TAN(ANI)
1595		IF (XTI.GE.XTAN) GO TO 40
1596		XT1=XTAN
1597		RT1=RTAN
1598	40	$X T=X T 1+R C T+S I N(A N I)$
1599		$X T 2=X T+R C T+S I N(A N E)$
1600		$R T 2=R T+R C T+(1.0-C O S(A N E))$
1601		$R E=R T 2+(X E-X T 2)+\operatorname{TAN}(\triangle N E)$
1602		$L T=1$
1603		IF (IUI.EQ.1) WRITE (6.270) XI,RI, RT, XE. RCI, RCT, ANGI, ANGE, XT, RE
1604		IF (IUI.EQ.2) WRITE (6.280) XI, RI, RT, XE, RCI, RCT, ANGI, ANGE, XT, RE
1605		$\text { DO } 110 L=1 . \text { LMAX }$
1 คกล		IF (XPP(L).LE, XTAN) GO TO 50
1607		IF (XP(L).GT. XTAN.AND.XP(L).L.F.XT1) GO TO 60
1508		IF (XP(L).GT. XT 1. AND. XP(L).LE. XT) GO TO 70
1609		IF (XP(L).GT.XT.AND.XP(L).LE.XT2) GO TO 80
1610		GO TO 90
1611	C	
1612	50	$Y W(L)=R I+R C I+(\operatorname{COS}(A S I N((X P(L)-X I) / R C I))-1.0)$
1613		$\operatorname{NXNY}(L)=(X P(L)-X I) /(Y W(L)-R I+R C I)$
1614		GO TO 100
1615	C	
1616	60	$Y W(L)=R T 1+(X T 1-X P(L)) * T A N(A N I)$
1617		NXNY(L) = TAN(ANI)
1618 1619	C	OO TO 100
1620	70	$W(L)=R T+R C T *(1 . O-C O S(A S I N((X T-X P(L)) / R C T))$)
1621		$\operatorname{NXNY}(L)=(X T-X P(L)) /(R C T+R T-Y W(L))$
1622		GO TO 100
1623	C	
1624	80	$W(L)=R T+R C T+(1.0-\operatorname{Cos}(A S I N((X P(L)-X T) / R C T))$)
1625		$N \times N Y(L)=(X T-X P(L)) /(R C T+R T-Y W(L))$
1626		GO TO 100
1627	C	
1628	90	YW(L) $=$ RT $2+(X P(L)-X T 2) * T A N(A N E)$
1629		$\operatorname{NXNY}(L)=-\operatorname{TAN}(A N E)$
1630	C	

```
1631
1632
1633
1634
1635 C
1636 C
1637 C
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672 C
1673 C
1674 C
1875
1676
1677
1678
1679
1680
1681
1682
1683
1f84
1685
1000
1687
1688
1689
1690
1691
1692 C
1693
1694
1695
1696 C
1697
1698
1699
1700
1701
1702
```

```
100 IF (L.EQ. 1) GO TO 110
```

100 IF (L.EQ. 1) GO TO 110
IF (YW(L).LT.YW(LT)) LT=L
IF (YW(L).LT.YW(LT)) LT=L
110 CONTINUE
110 CONTINUE
GO TO 210
GO TO 210
GENERAL WALL CASE - INPUT WALL COORDINATES
GENERAL WALL CASE - INPUT WALL COORDINATES
120 WRITE (6.240)
120 WRITE (6.240)
WRITE (6.230)
WRITE (6.230)
YW(1)=YWI(1)
YW(1)=YWI(1)
YW(LMAX)=YWI(NWPTS)
YW(LMAX)=YWI(NWPTS)
RI=YW(1)
RI=YW(1)
RE=YW(LMAX)
RE=YW(LMAX)
LT=1
LT=1
DO 130 L=2,NWPTS
DO 130 L=2,NWPTS
IF (YWI(L).LE.YWI(LT)) LT=L
IF (YWI(L).LE.YWI(LT)) LT=L
130 CONTINUE
130 CONTINUE
XT-XWI(LT)
XT-XWI(LT)
RT=YWI(LT)
RT=YWI(LT)
IF (IUI.EQ.1) WRITE (6, 290) XT,RT.IINT.IDIF
IF (IUI.EQ.1) WRITE (6, 290) XT,RT.IINT.IDIF
IF (IUI.EQ.2) WRITE (6,300) XT.RT.IINT,IDIF
IF (IUI.EQ.2) WRITE (6,300) XT.RT.IINT,IDIF
LT=1
LT=1
L1=LMAX-1
L1=LMAX-1
IPP=1
IPP=1
DO 140 L=2.L1
DO 140 L=2.L1
CALL MTLUP (XP(L),YW(L).IINT,NWPTS,NWPTS, 1,IPP,XWI,YWI)
CALL MTLUP (XP(L),YW(L).IINT,NWPTS,NWPTS, 1,IPP,XWI,YWI)
IF (L.EO.1) GO TO 110
IF (L.EO.1) GO TO 110
IF (YW(L).LE.YW(LT)) LT=L
IF (YW(L).LE.YW(LT)) LT=L
140 CONTINUE
140 CONTINUE
LOUM=NWPTS
LOUM=NWPTS
IF (LMAX.GT.NWPTS) LDUM= LMAX
IF (LMAX.GT.NWPTS) LDUM= LMAX
DO 160 L=1.LDUM
DO 160 L=1.LDUM
IF (L.GT.LMAX) GO TO 150
IF (L.GT.LMAX) GO TO 150
SLOPE=DIF(L,IDIF,LMAX,XP,YW)
SLOPE=DIF(L,IDIF,LMAX,XP,YW)
NXNY(L)=-SLOPE
NXNY(L)=-SLOPE
150 IF (L.LE.NWPTS.AND.L.LE.LMAX) WRITE (6,330) L,XWI(L),YWI(L),XP(L)
150 IF (L.LE.NWPTS.AND.L.LE.LMAX) WRITE (6,330) L,XWI(L),YWI(L),XP(L)
i .YW(L), SLOPE
i .YW(L), SLOPE
IF (L.GT.NWPTS.AND.L.LE.LMAX) WRITE (6,340) L,XP(L),YW(L),SLOPE
IF (L.GT.NWPTS.AND.L.LE.LMAX) WRITE (6,340) L,XP(L),YW(L),SLOPE
IF (L.LE.NWPT'S.AND.L.GT.LMAX) WRITE (6,350) L,XWI(L),YWI(L)
IF (L.LE.NWPT'S.AND.L.GT.LMAX) WRITE (6,350) L,XWI(L),YWI(L)
1GO CONTINIJT.
1GO CONTINIJT.
GO TO 210
GO TO 210
GĖNERAL WALL CASE - INPUT WALL RADIUS ANO SLOPE
GĖNERAL WALL CASE - INPUT WALL RADIUS ANO SLOPE
170 WRITE (0.240)
170 WRITE (0.240)
WRITE (6.230)
WRITE (6.230)
RI=YW(1)
RI=YW(1)
RE=YW(LMAX)
RE=YW(LMAX)
LT=1
LT=1
DO 180 L=2.LMAX
DO 180 L=2.LMAX
IF (YW(L).LE.YW(LT)) LT=L
IF (YW(L).LE.YW(LT)) LT=L
180 CONTINUE
180 CONTINUE
XT=XP(LT)
XT=XP(LT)
RT=YW(I_T)
RT=YW(I_T)
IF (IUI.EQ.1) WRITE (6,310) XT.RT
IF (IUI.EQ.1) WRITE (6,310) XT.RT
Ir (IUI.[0.2) WRITE (E.32O) MT;MT
Ir (IUI.[0.2) WRITE (E.32O) MT;MT
DO 190 L=1. LMAX
DO 190 L=1. LMAX
SLOPE = -NXNY(L)
SLOPE = -NXNY(L)
WRITE (6.360) L.XP(L).YW(L).SLOPE
WRITE (6.360) L.XP(L).YW(L).SLOPE
190 CONTINUE
190 CONTINUE
GO TO 210
GO TO 210
200 WRITE (6.390)
200 WRITE (6.390)
IERR=1
IERR=1
RETURN
RETURN
210 IF (JFLAG.EQ.O) RETURN
210 IF (JFLAG.EQ.O) RETURN
XWL = XP(LJET-1)
XWL = XP(LJET-1)
IF (JFLAG.EO.-1) GO TO 22O
IF (JFLAG.EO.-1) GO TO 22O
IF (IUI.EQ.1) WRITE (6.370) XWL.LUET, LMAX
IF (IUI.EQ.1) WRITE (6.370) XWL.LUET, LMAX
IF (IUI.EO.2) WRITE (6.380) XWL.LJET.LMAX
IF (IUI.EO.2) WRITE (6.380) XWL.LJET.LMAX
RETURN

```
    RETURN
```

220 IF (IUI.EQ.1) WRITE (6.400) XWL IF (IUI.EQ.2) WRITE (6.410) XWL RETURN

FORMAT STATEMENTS

230 FORMAT (1 HO. 10X, 15 HDUCT GEOMETRY -)
240 FORMAT ($1 \mathrm{H}_{1}$)
250 FORMAT (1 HO, 2OX, 46HA CONSTANT AREA DUCT HAS BEEN SPECIFIED BY XI = 1 .F8.4. 1 OH (IN). RI=.F8.4.14H (IN). AND XE=,F8.4.5H (IN))
260 FORMAT (1 HO. 2OX. 46 HA CONSTANT $A R E A$ DUCT HAS BEEN SPECIFIEO BY XI $=$
$1 . F 8.4 .1 O H(C M), R I=. F 8.4 .14 H(C M)$. $A N D \quad X E=. F 8.4 .5 H(C M))$
270 FORMAT (1 HO. 2OX. 56HA CIRCULAR-ARC. CONICAL NOZZLE HAS BEEN SPECIFI 1ED BY XI=,F8.4.10H (IN), RI =,F8.4.6H (IN)., /, 21X, 3HRT =, F8, 4. 10 H (I $2 N$). $X E=, F 8.4,11 H(I N), R C I=, F 8.4 .11 H(I N), R C T=, F 8.4,12 H$ (IN), ANG $3 I=, F 6.2 .7 H$ ($D E G$)../. $21 \times .9 H A N D ~ A N G E=. F 6.2 .35 H$ (DEG). THE COMPUTED V 4ALUES ARE $X T=, F 8.4 .13 H$ (IN) $A N D R E=, F 8.4 .6 H$ (IN).)
280 FORMAT (1 HO. 2OX. 5GHA CIRCULAR-ARC. CONICAL NOZZLE HAS BEEN SPECIFI 1 ED BY $\mathrm{XI}=, \mathrm{F} 8.4 .10 \mathrm{H}(\mathrm{CM}), \mathrm{RI}=, \mathrm{F} 8.4 .6 \mathrm{H}(\mathrm{CM}) . / 1,21 \mathrm{X}, 3 \mathrm{HRT}=, \mathrm{FB} .4 .10 \mathrm{H}(\mathrm{C}$ $2 M), X E=. F 8.4 .11 H(C M), R C I=, F 8.4,11 H(C M), R C T=, F 8.4,12 H$ (CM), ANG $3 I=, F 6.2 .7 H$ (DEG)../.21X.9HAND $A N G E=. F 6.2 .35 H$ (DEG). THE COMPUTED V 4ALUES ARE $X T=. F 8.4 .13 H$ (CM) $A N D R E=. F 8.4 .6 H$ (CM).)
290 FORMAT (1 HO. 20X, 45HA GENERAL WALL HAS BEEN SPECIFIED BY THE FOLL. 2 1 1HOWING PARAMETERS, $X T=, F 8.4,10 H(I N) . R T=. F 8.4,6 H$ (IN), $/, 21 X, 5 H$ $2 \mathrm{IINT}=. \mathrm{I} 1.7 \mathrm{H}, \mathrm{IDIF}=\mathrm{I} 1,1 \mathrm{H}, / / 22 \mathrm{X}, 1 \mathrm{HL}, 10 \mathrm{X}, 7 \mathrm{HXWI}(\mathrm{IN}), 10 \mathrm{X}, 7 \mathrm{HYWI}(\mathrm{IN}), 11$ $3 X, 6 H X P(I N), 11 X, 6 H Y W(I N), 12 X, 5 H S L O P E, /)$
300 FORMAT (IHO, 2OX, 45HA GENERAL WALL HAS BEEN SPECIFIED BY THE FOLL. 2 1 IHOWING PARAMETERS, XT=.F8.4.1OH (CM). RT=.F8.4.6H (CM)../. 21 X .5 H $2 \mathrm{IINT}=, \mathrm{I} 1,7 \mathrm{H}, \mathrm{IDIF}=\mathrm{I} 1,1 \mathrm{H}, . / / 22 \mathrm{X}, 1 \mathrm{HL}, 10 \mathrm{X}, 7 \mathrm{HXWI}(\mathrm{CM}), 10 \mathrm{X}, 7 \mathrm{HYWI}(\mathrm{CM}), 11$ $3 \mathrm{X}, 6 \mathrm{HXP}(\mathrm{CM}) .11 \mathrm{X}, 6 \mathrm{HYW}(\mathrm{CM}) .12 \mathrm{X}, 5 \mathrm{HSLOPE} . /)$
310 FORMAT ($1 H O, 20 X, 45 H A$ GENERAL WALL HAS BEEN SPECIFIED BY THE FOLL, 2 1 IHOWING PARAMETERS, XT=,F8.4.1OH (IN), RT =, FB. $4,6 \mathrm{H}$ (IN), $/ / 22 \mathrm{X}, \mathrm{iH}$ 2L. $11 \mathrm{X}, 6 \mathrm{HXP}$ (IN), $11 \mathrm{X}, 6 \mathrm{HYW}($ IN $), 12 \mathrm{X}, 5 \mathrm{HSLOPE} . /)$
320 FORMAT (1 HO. 2OX, 45HA GENERAL WALL HAS BEEN SPECIFIED BY THE FOLL. 2 1 1HOWING PARAMETERS. XT = F8.4.1OH (CM). RT =, F8.4.6H (CM).. $/ / 22 \mathrm{C}, 1 \mathrm{H}$ 2L, 11X, 6HXP (CM), $11 X, 6 H Y W(C M), 12 X, 5 H S L O P E . /)$
330 FORMA ($1 \mathrm{H}, 20 \mathrm{X}, \mathrm{I} 2,7 \mathrm{X}, \mathrm{F} 10.4 \mathrm{~T}, \mathrm{XX}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
340 FORMAT ($1 \mathrm{H}, 20 \mathrm{X}, 12.41 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
350 FORMAT ($1 \mathrm{H}, 20 \mathrm{X}, \mathrm{I} 2,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
360 FORMAT (1 H , 20X, I2, $7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
370 FORMAT (1 HO, 2OX, 43HA FREE-JET CALCULATION HAS BEEN REQUESTED. . 2 OH 1 THE WALL ENDS AT $X=$. F8.4.11H (IN). THE./. $21 \times .14$ HMESH PIINTS $L=$ 2 . I $3,6 \mathrm{H}$ TO $L=, I 3.55 \mathrm{H}$ ARE AN INITIAL APPROXIMATION TO THE FREE-JET 3BOUNDARY.)
380 FORMAT (1 HO, $20 X, 43 H A$ FREE-JET CALCULATION HAS BEEN REQUESTED. . $2 O H$ 1 THE WALL ENDS AT $X=. F 8.4 .11 H$ (CM). THE./. $21 \mathrm{X}, 14$ HMESH POINTS L= 2 .I3.6H TO $L=. I 3,55 H$ ARE AN INITIAL APPROXIMATION TO THE FREE-JET 3BOUNDARY.)
$3 Э 0$ FORMAT ($1 H 0.44 H * * *$ R RCI OR RET WAS SPECIFIEU AS 2ERO *****)
400 FORMAT (1 HO, 2OX, 54HTHE WALL CONTOUR HAS AN EXPANSION CORNER LOCATE 10 AT $X=, F 8.4,6 H$ (IN).)
410 FORMAT (1 HO, $20 \times, 54$ HTHE WALL CONTOUR HAS AN EXPANSION CORNER LOCATE 10 AT $X=, F 3.4 .6 H$ (CM).) END

1757 SUBROUTINE GEOMCB		
1758	C	
1759	C	**
1760	C	
1761	C	THIS SUBROUTINE CALCULATES THE CENTERBODY RADIUS AND SLOPE
1762	C	
1763	C	**
1764	C	
1765	*CALL.	. MCC
1766		GO TO (10,30,120,160). NGCB
1767	C	
1768	C	CYLINDRICAL CENTERBOOY CASE
1769	C	
1770	10	IF (IUI..EQ.1) WRITE (6.210) XICB.RICB.XECB
1771		IF (IUI.EQ.2) WRITE (6.220) XICE.RICE.XECB
1772		DO $20 \mathrm{~L}=1 . \operatorname{LMAX}$
1773		$\operatorname{YCB}(L)=R I C B$
1774		NXNYGR(I)=
1775	20	CONT INUE
1776		RETURN
1777	C	
1778	C	CIRCULAR-ARC. CONICAL CENTERBOOY CASE
1779	C	
1780	30	RICB $=2.0 * R T C B-R I C 8$
1781		IF (RCICB.EO.O.O.OR.RCTCB.EQ.O.O) GO TO 190
1782		$A N I=A N G I C B * 3.141593 / 180.0$
1783		$\triangle N E=\triangle N G F C R * 3.141593 / 180.0$
1784		XTAN $=X I C B+R C 1 C B * S I N(A N I)$
1785		RTAN=RICB+RCICB* ($\operatorname{COS}(A N I)-1.0)$
1786		
1787		XT 1 = XTAN+ (RTAN-RT1)/TAN(ANI)
1788		IF (XTi.GE.XTAN) GO TO 40
1789		XT $1=\mathrm{XTAN}$
1790		RT $1=$ RTAN
1791	40	$X T C B=X T 1+R C T C 8 * S I N(A N I)$
1792		$X T 2=X T C B+R C T C B * S I N(A N E)$
1793		RT2 =RTCB + RCTCB* (1.0-COS (ANE))
1794		RECB $=$ RT $2+(X E C B-X T 2)+T A N(A N E) ~$
1795		RICB $=2 . \mathrm{O} *$ RTCB-RICB
1796		RECB $=2.0 *$ RTCB-RECB
1797		IF (IUI.EQ.1) WRITE (6.230) XICB.RICB,RTCB, XECB,RCICB,RCTCB,ANGICB
1798		1. ANGECB, XTCB, RECB
1799		IF (IUI,EQ.2) WRITE (E.240) XICB.RICB,RTCB, XECB,RCICB,RCTCB, ANGICB
1800		1 , ANGECB, XTCB.RECB
1001		RICB=2.0*ПTCE-RIGE
1802		RECB $=2.0 *$ RTCB-RECB
1803		OO $110 \mathrm{~L}=1$. LMAX
1804		IF (XP(L).LE.XTAN) GO TO 50
1805		IF (XP(L).GT. XTAN.AND.XP(L).LE.XT1) GO TO 60
1806		IF (XP(L).GT.XT1.AND.XP(L).LE.XTCB) GO TO 70
1807		F (XP(L).GT. XTCB.AND.XP(L).LE.XT2) GO TO 80
1808		GO TO 90
1809	C	
1810	50	YCB (L) $=$ RICB+RCICB* ($\operatorname{COS}(\operatorname{ASIN}((X P(L)-X I C B) / R C I C B))-1.0)$
1811		NXNYCB(L) $=(\times P(L)-X I C B) /(Y C B(L)-R I C B+R C I C B)$
1812	,	GOTO 100
1813	C	
1814	60	CB $(L)=R T 1+(X T 1-X P(L))+T A N(A N I)$
1815		NXNYCB(L) = TAN(ANI)
1816		6010100
1817	C	
1818	70	CB (L) =RTCB+RCTCB*(1.O-COS (ASIN((XTCB-XP(L))/RCTCB)))
1819		$\operatorname{NXNYCB}(L)=(X T C B-X P(L)) /(R C T C B+R T C B-Y C B(L))$
1820		GO TO 100
1821	C	
1822	80	$Y C B(L)=R T C B+R C T C B *(1 . O-C O S(A S I N(~ X P(L)-X T C B) / R C T C B)))$
1823		NXNYCB (L) = (XICE-XP(L))/(RCTCB+RTCB-YCB(L))
1824		GO TO 100
1825	C	
1826	90	$\mathrm{YCB}(L)=R T 2+(X P(L)-X T 2) * T A N(A N E)$
1827		$\operatorname{NXNYCB}(L)=-\operatorname{TAN}($ ANE $)$.
1828		

```
    100 YCB(L)=2.0*RTCB-YCB(L)
    NXNYCB(L)=-NXNYCB(L)
    IF (YCB(L).GE.O.O.OR.NDIM.EQ.O) GO TO 110
    YCB(L)=0.0
    NXNYCB(L)=0.0
    110 CONTINUE
    RETURN
C
120 WRITE (6.200)
    IF (IUI.EQ.1) WRITE (G.250) IINTCB,IDIFCB
    IF (IUI.EQ.2) WRITE (6.260) IINTCB,IDIFCB
    L1=LMMAX-1
    IPP=1
    DO 130 L= 1. LMAX
    CALL MTLUP (XP(L),YCB(L),IINTCB,NCBPTS,NCBPTS,I,IPP,XCBI,YCBI)
    130 CONTINUE
    LDUM=NCBPTS
    IF (LMAX.GT.NCBPTS) LDUM= LMAX
    DO 150 L=1.LDUM
    IF (L.GT.LMAX) GO TO 140
    SLOPE=DIF(L,IDIFCB, LMAX,XP,YCB)
    NXNYCB(L)=-SLOPE
    IF (YCB(L).GE.O.O.OR.NDIM.EQ.O) GO TO 140
    YCB(L)=0.O
    NXNYCB(L)=0.O
    SLOPE = -NXNYCB(L)
    140 IF (L.LE.NCBPTS.AND.L.LE.LMAX) WRITE (6.290) L.XCBI(L),YCBI(L),XP
    1 (L).YCB(L).SLOPE
    IF (L.GT.NCBPTS.AND.L.LE.LMAX) WRITE (6,300) L,XP(L),YCB(L),SLOPE
    IF (L.LE.NCBPTS.AND.L.GT.LMAX) WRITE (6,310) L,XCBI(L),YCBI(L)
    150 CONTINUE
    RETURN
    gENERAL CENTEREODY CASE - INPUT CENTERBODY RADIUS AND SLOPE
    160 WRITE (6.200)
    IF (IUI.EQ.1) WRITE (6.270)
    IF (IUI.EQ.2) WRITE (6.280)
    DO 180 L=1. LMAX
    IF (YCB(L).GE.O.O.OR.NDIM.EO.O) GO TO 17O
    YCB(L)=0.0
    NXNYCB(L)=0.O
    170 SLOPE=-NXNYCB(L)
    WRITE (6.32O) L,XP(L),YCB(L),SLOPE
    180 CONTINUE
    RETURN
C
    190 WRITE (6,330)
    IERR=1
    RETURN
    FORMAT STATEMENTS
    2OO FORMAT (1H1)
    210 FORMAT (1HO.2OX,52HA CYLINDRICAL CENTERBODY HAS BEEN SPECIFIED BY
        IXICR=,FR 4.1 OH (IN). RICB=.F8.A,16H (IN). AND XECB=, 「0.4, SII (IN))
    220 FORMAT (1HO.2OX,52HA CYLINDRICAL CENTERBODY HAS BEEN SPECIFIED BY
        1XICB=,F8.4,12H (CM), RICB=,F8.4,16H (CM), AND XECB=,F8.4,5H (CM))
    20 FORMAT ( IIIO, 2OX,G2IIA CIRCULAR-ARC. CONICAL CENTERBUUYY HAS BEHN SPE
        ICIFIED BY XICB=,F8.4.5H (IN).7H, RICB=.F8.4.6H (IN),./.21X,5HRTCB=
        2,FR.4.7H (IN).,5HXECB=,F8.4.5H (IN).8H, RCICB=,F8.4,5H (IN).8H.
        3RCTCB=.F8.4.5H (IN),9H. ANGICB=,F6.2,7H (DEG),./, 21X.11HAND ANGECB
        4=.F6.2.8H (DEG). . 29HTHE COMPUTED VALUES ARE XTCB=.F8.4.5H (IN), 10
        5 H AND RECB=,F8.4.6H (IN).)
    24O FORMAT (1HO.2OX.62HA CIRCULAR-ARC. CONICAL CENTERBODY HAS BEEN SPE
        1CIFIED BY XICB=.F8.4,5H (CM),7H, RICB=.F8.4.6H (CM)../.21X,5HRTCB=
        2,F8.4,7H (CM). . 5HXECB=,FR.4,5H (CM), RH, RCICB=,F8.4,5H (GM),8H,
        3RCTCB=,F8.4.5H (CM),9H, ANGICB=,F6.2.7H (DEG),./.21X.11HAND ANGECB
        4=,F6.2.8H (DEG). . 29HTHE COMPUTED VALUES ARE XTCB=.F8.4.5H (CM). 10
        5 H AND RECB=,F8.4.6H (CM).)
```

 250 FORMAT (1 HO, 2OX, 47HA GENERAL CENTERBODY HAS BEEN SPECIFIED BY THE
 1 . 29HFOLLOWING PARAMETERS. IINTCB = I I . 9H. IDIFCB =, I \(1.1 \mathrm{H}, . / / 22 \mathrm{X}, 1 \mathrm{HL}\)

3LOPE./)
260 FORMAT (1 HO, 20X. 47 HA GENERAL CENTERBODY HAS BEEN SPECIFIED BY THE
1 . 29HFOLLOWING PARAMETERS. IINTCB=.11.9H. IDIFCB=,11. $1 \mathrm{H}, . / / 22 \mathrm{X} .1 \mathrm{HL}$
$2,10 \mathrm{X}, 8 \mathrm{HXCBI}(\mathrm{CM}), 10 \mathrm{X}, 8 \mathrm{HYCBI}(\mathrm{CM}), 10 \mathrm{X}, 6 \mathrm{HXP}$ (CM), $10 \mathrm{X}, 7 \mathrm{HYCB}(\mathrm{CM}), 11 \mathrm{X}, 5 \mathrm{HS}$
3LOPE./)
270 FORMAT (1 HO, 2OX. 47HA GENERAL CENTERBODY HAS BEEN SPECIFIED BY THE
1,21 HFOLLOWING PARAMETERS., $/ / 22 \mathrm{X}, 1 \mathrm{HI} .12 \mathrm{X}, \mathrm{GHXP}(\mathrm{IN}) .10 \mathrm{X}, 7 \mathrm{HYCB}(\mathrm{IN}) .11$
$2 \times$ 5HSLOPE./)
280 FORMAT (1 HO, 20X. 47 HA GENERAL CENTERBODY HAS BEEN SPECIFIED BY THE
1.2 1HFOLLOWING PARAMETERS.. $/ / 22 \mathrm{X}, 1 \mathrm{HL}, 12 \mathrm{X}, 6 \mathrm{HXP}(\mathrm{CM}), 10 \mathrm{X} .7 \mathrm{HYCB}(\mathrm{CM}) .11$
$2 \dot{X} .5$ HSLOPE./)
290 FORMAT (1H, 20X. I2, $7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
300 FORMAT ($1 \mathrm{H}, 20 \mathrm{X}, 12,41 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
310 FORMAT (1H , 20X.I2. 7 X.F $10.4,7 \times .710 .4$)
320 FORMAT ($1 \mathrm{H}, 20 \mathrm{X}, \mathrm{I} 2,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4,7 \mathrm{X}, \mathrm{F} 10.4$)
330 FORMAT ($1 \mathrm{HO}, 48 \mathrm{H} * * * * * \operatorname{RCICB}$ OR RCTCB WAS SPECIFIED AS ZERO *****)
END

1921		Subroutine geomlu
1922	C	
1923	C	****
1924	C	
1925	C	this subroutine calculates the dual flow space boundary radius
1926	C	AND SLOPES
1927	C	
1928	C	*********************
1929	C	
1930	*CALL	. MCC
1931		Ģo TO (10.100), NDFS
1932	C	
1933	C	INPUT DUAL FLOW SPACE BOUNDARY COORDINATES
1934	C	
1935	10	WRITE (6.120)
1936		WRITE (6.140)
1937		IF (IUI.EQ.1) WRITE (6.180) IINTDFS.IDIFDFS
1938		IF (IUI.EO.2) WRITE (6.190) IINTDFS, IDIFDFS
1939		IPP = 1
1940		DO 20 L=LDFSS. LDFSF
1941		CALL MTLUP (XP(L), YL(L).IINTDFS.NLPTS.NLPTS.1.IPP, XLI, YLI)
1942	20	CONTINUE
1943		LDUM=NLPTS
1944		IF (LDFSF.GT.NLPTS) LDUM=LDFSF
1945		LDF $=0$
1946		DO $30 \mathrm{~L}=$ LDFSS. LDFSF
1947		LDF $=$ LDF +1
1948		XWI (LDF) $=\mathrm{XP}(\mathrm{L})$
1949		YWI (LDF) $=\mathrm{YL}(\mathrm{L}$)
1950	30	CONTINUE
1951		LMDF = LDF SF-LDFSS +1
1952		LDF $=0$
1953		DO $50 \mathrm{~L}=1$. LDUM
1954		LDFS $=0$
1955		IF (L.GE.LDFSS. ANO.L.LE.LDFSF) LDFs= 1
1956		IF (LDFS.EO.O) GO to 40
1957		$L D F=L D F+1$
1958		SLOPE=DIF (LDF, IDIFDFS. LMDF, XWI, YWI)
1959		NXNYL(L) =-SLOPE
1960		IF (YL(L).GE.O.O.OR.NDIM.EQ.O) GO TO 40
1961		$\mathrm{YL}(\mathrm{L})=0.0$
1962		NXNYL(L) $=0.0$
1963		SLOPE $=-$ NXNYL (L)
1964		IF (L.LE.NLPTS.AND.LDFS.EQ.1) WRITE (6.220) L.XLI(L). YLI(L).XP(L)
1965		1 , YL(L), SLOPE
1966		IF (L.GT.NLPTS.AND.LDFS.EQ. 1) WRITE (6,230) L.XP(L), YL(L), SLOPE
1967		IF (L.LE.NLPTS.AND.LDFS.EQ.O) WRITE (6,240) L.XLI(L), YLI(L)
1968	50	CONT INUE
1969	c	
1970		WRITE (6.130)
1971		IF (IUI.EQ.1) WRITE (6,200)
1972		IF (IUI.EQ.2) WRITE (6,210)
1973		IPP = 1
1974		DO 60 L=LDFSS.LDFSF
1975		CALL MTLUP (XP(L), YU(L).IINTDFS.NUPTS,NUPTS, 1,IPP.XUI, YUI)
1976	60	CONTINUE
1977		LDUM=NUPTS
1978		IF (LDFSF.GT.NUPTS) LDUM=LDFSF
1979		LDF $=0$
1980		DO 70 L=LDFSS. LDFSF
1981		$L O F=L D F+1$
1982		XWI(LOF) $=\mathrm{XP}(\mathrm{L})$
1983		YWI (LDF) = YU(L)
1984	70	CONTINUE
1985		LMDF = LDF SF -LDF SS +1
1986		LDF $=0$
1987		DO $90 \mathrm{~L}=1$. LDUM
1988		LDFS $=0$
1989		IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
1990		IF (LDFS.EQ.O) GO TO BO
1991		$L D F=L D F+1$
1992		SLOPE=DIF(LDF.IOIFDFS, LMDF.XWI, YWI)

```
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004 c
2005 C
2006 C
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017 C
2018 C
2019 C
2020
2021
2022
2023
2O24
2025
2026
2027
2028
2029
2030
2031
2032
207%
2034
2035
2036
2037
2038
2039
2040
2041
2042
2O43
2044
2045
    NXNYU(L)=-SLOPE
    IF (YU(L).GE.O.O.OR.NDIM.EQ.O) GO TO 8O
    YU(L)=0.0
    NXNYU(L)=0.O
    SLOPE = NXNYU(L)
    80 IF (L.LE.NUPTS.AND.LDFS.EQ.1) WRITE (6.220) L.XUI(L),YUI(L),XP(L)
    1. YU(L),SLOPE
        IF (L.GT.NUPTS.AND.LDFS.EQ.1) WRITE (6.230) L.XP(L),YU(L),SLOPE
        IF (L.LE.NUPTS.AND.LDFS.EQ.O) WRITE (6.240) L.XUI(L).YUI(L)
    90 CONTINUE
    RETURN
C
C
100 WRITE (6.120)
    WRITE (6,140)
    IF (IUI.EQ.1) WRITE (6.150)
    IF (IUI.EO.2) WRITE (6.160)
    DO 110 L=LDFSS.LDF\overline{S}\overline{F}
    SLOPEL=-NXNYL(L)
    SLOPEU=-NXNYU(L)
    WRITE (6.170) L.XP(L).YL(L).SLOPEL,YU(L),SLOFEU
    11O CONTINUE
    RETURN
C
    FORMAT STATEMENTS
    120 FORMAT (1H1)
    13O FORMAT ( 1HO)
    140 FORMAT ( 1HO, tOX. 35HDUAL FLOW SPACE ROUNDARY GEOMETRY -)
    150 FORMAT ( 1HO,2OX,41HGENERAL BOUNDARIFS HAVF REEN SPECIFIED BY, 26H T
        1HE FOLLOWING PARAMETERS..//22X,1HL, 11X,6HXP(IN).11X.6HYL(IN).11X,G
        2 HSLOPEL,11X,6HYU(IN),11X,6HSLOPEU./)
    160 FORMAT ( 1HO.20X.41HGENERAL BOUNDARIES HAVE BEEN SPECIFIED BY. 26H T
        1HE FOLLOWING PARAMETERS..//22X.1HL.11X.6HXP(CM).11X.6HYL(CM).11X.6
        2 HSLOPEL,11X.6HYU(CM).11X.6HSLOPEU./)
    170 FORMAT (1H ,2OX,I2.7X,F10.4,7X.F10.4,7X,F1O.4.7X.F1O.4.7X.F10.4)
    180 FORMAT (1HO,2OX,46HGENERAL BOUNDARIES HAVE BEEN SPECIFIED BY THE .
        1 3OHFOLLOWING PARAMETERS. IINTDFS=.I1,10H, IDIFDFS=.I1,1H..//22X,i
        2 HL.10X.7HXLI(IN).10X.7HYLI(IN).11X.6HXP(IN).11X.6HYL(IN).11X.6HSL
        :H1PF1./)
    190 FORMAT (1HO,2OX.46HGENERAL EOUNDARIES HAVE BEEN SPECIFIED bY THE .
        1 3OHFOLLOWING PARAMETERS, IINTDFS=.I1,1OH, IDIFDFS=.I 1.1H..//22X.1
        2 HL.10X.7HXLI(CM).10X.7HYLI(CM),11X.6HXP(CM),11X.6HYL(CM).11X.6HSL
        3OPEL./)
    200 FORMAT (1HO, 21X, 1HL, 10X,7HXUİ(IN),10X,7HYUI(IN), 1 1X,6HXP(IN), 11X,6
    1 HYU(IN).11X.6HSLOPEU./)
210 ГORMAT (1HO.21X.1HL.10X.7HXUI(CM).10X.7HYUI(CM).11X.6HXP(CM), 11X.6
    1 HYU(CM).11X.6HSLOPEU./)
    220 FORMAT (1H.2OX.12.7X.F10.4.7X.F1O.4.7X.F1O.4.7X,F1O.4.7X.F1O.4)
    2 3 0 ~ F O R M A T ~ ( 1 H . , 2 0 X , I 2 , 4 1 X , F 1 O . 4 . 7 X , F 1 0 . 4 . 7 X , F 1 0 . 4 ) ,
    240 FORMAT (1H,20X.12.7X.F1O.4.7X.F1O.4)
        END
```

```
```

 SUBROUTINE MTLUP (X,Y,M,N,MAX,NTAB,I.VARI,VARD)
    ```
```

```
    SUBROUTINE MTLUP (X,Y,M,N,MAX,NTAB,I.VARI,VARD)
```

```
    ***************************************************************
```

 THIS SUBROUTINE IS CALLED BY SUBROUTINES GEOM, GEOMCB. AND GEOMLI
 THIS SUBROUTINE IS CALLED BY SUBROUTINES GEOM, GEOMCB. AND GEOMLI
 TO INTERPOLATE FOR WALL COORDINATES FOR THE TABULAR INPUT CASE.
 TO INTERPOLATE FOR WALL COORDINATES FOR THE TABULAR INPUT CASE.
 SUBROUTINE MTLUP WAS TAKEN FROM THE NASA-LANGLEY PROGRAM
 SUBROUTINE MTLUP WAS TAKEN FROM THE NASA-LANGLEY PROGRAM
 LIBRARY. THE DATE OF THIS VERSION IS O9-12-69.
 LIBRARY. THE DATE OF THIS VERSION IS O9-12-69.
 MODIFICATION OF LIBRARY INTERPOLATION SUBROUTINE FTLUP
 MODIFICATION OF LIBRARY INTERPOLATION SUBROUTINE FTLUP
 MULTIPLE TABLE LOOK-UP ON ONE INDEPENDENT VARIABLE TABLE
 MULTIPLE TABLE LOOK-UP ON ONE INDEPENDENT VARIABLE TABLE
 USES AN EXTERNAL INTERVAL POINTER (I) TO START SEARCH
 USES AN EXTERNAL INTERVAL POINTER (I) TO START SEARCH
 I LESS THAN O WILL CHECK MONOTONICITY
 I LESS THAN O WILL CHECK MONOTONICITY
 DIMENSION VARI(1). VARD(MAX, 1). Y(1). V(3), YY(2)
 DIMENSION VARI(1). VARD(MAX, 1). Y(1). V(3), YY(2)
 LOGICAL EX
 LOGICAL EX
 IF (M.EQ.O) GO TO 170
 IF (M.EQ.O) GO TO 170
 IF (N.LE.1) GO TO 170
 IF (N.LE.1) GO TO 170
 EX=.FALSE.
 EX=.FALSE.
 IF (I.GE.O) GO TO }6
 IF (I.GE.O) GO TO }6
 IF (N.LT.2) GO TO 60
 IF (N.LT.2) GO TO 60
 MONOTONICITY CHECK
 MONOTONICITY CHECK
 IF (VARI(2)-VARI(1)) 20.20.40
 IF (VARI(2)-VARI(1)) 20.20.40
 ERROR IN MONOTONICITY
 ERROR IN MONOTONICITY
 10K=LOCF(VARI(1))
10K=LOCF(VARI(1))
WRITE (6.190) J.K.(VARI(J).J=1,N)
WRITE (6.190) J.K.(VARI(J).J=1,N)
CALL EXIT
CALL EXIT
MONOTONIC. DFCRFASING
MONOTONIC. DFCRFASING
2O DO 30 U=2.N
2O DO 30 U=2.N
IF (VARI(J)-VARI(J-1)) 30,10.10
IF (VARI(J)-VARI(J-1)) 30,10.10
3O CONTINUE
3O CONTINUE
go TO }6
go TO }6
MONOTONIC INCREASING
MONOTONIC INCREASING
40 DO 5O J=2,N
40 DO 5O J=2,N
IF (VARI(U)-VARI (U-1)) 10.10,50
IF (VARI(U)-VARI (U-1)) 10.10,50
SO CONTINUE
SO CONTINUE
INTERPOLATION
INTERPOLATION
60 IF (I.LE.O) I=1
60 IF (I.LE.O) I=1
IF (I.GE.N) I=N-1
IF (I.GE.N) I=N-1
LOCATE I INTERVAL (X(I).LE.X.LT.X(I+1))
LOCATE I INTERVAL (X(I).LE.X.LT.X(I+1))
IF ((VARI(I)-X)*(VARI(I+1)-X)) 100,100.70
IF ((VARI(I)-X)*(VARI(I+1)-X)) 100,100.70
IN GIVES DIRECTION FOR SEARCH OF INTERVALS
IN GIVES DIRECTION FOR SEARCH OF INTERVALS
70 IN=SIGN(1.O.(VARI(I+1)-VARI(I))*(X-VARI(I)))
70 IN=SIGN(1.O.(VARI(I+1)-VARI(I))*(X-VARI(I)))
IF X OUTSIDE ENDPOINTS. EXTRAPOLATE FROM END INTERVAL
IF X OUTSIDE ENDPOINTS. EXTRAPOLATE FROM END INTERVAL
80 IF ((I+IN).LE.O) GO TO 90
80 IF ((I+IN).LE.O) GO TO 90
IF ((I+IN).GE.N) GO TO 90
IF ((I+IN).GE.N) GO TO 90
I=I+IN
I=I+IN
IF ((VARI(I)-X)*(VARI(I+1)-X)) 100.100.80
IF ((VARI(I)-X)*(VARI(I+1)-X)) 100.100.80
EXTRAPOI.ATION
EXTRAPOI.ATION
90 EX=.TRUE.
90 EX=.TRUE.
100 IF (M.EO.2) GO TO 12O

```
100 IF (M.EO.2) GO TO 12O
```

2047 C
2048 C
2049 C
2050 C
2051 C
2052 C
2053 C
2054 C
2055 C
2056 C
2057 C
2058 C
2059 C
2060 C
2061 C
2062
2063
2064 C
2065
2066
2067
2068
2069
2070 C
2071 C
2072 C
2073
2074 C
2075 C
2076 C
2077
2078
2079
2080 C
2OR 1 C
2082 C
2083
2084
2085
2086
2087 C
2088 C
2089 C
2090
2091
2092
2093 C
2094 C
2095 C
2096
2097
2098 C
2099 C
2100 C
2101
2102 C
2103 C
2104 C
2105
2106 C
2107 C
2108 C
2109
2110
2111
2112
2113 C
2†14 C
2115 C
2116
2117

```
2118 C
2119 C
2120 C
2121 DO 110 NT=1.NTAB
2122
2123
2124
2125
2126 C
2127 C
2128 C
2129
2130
2131
2132 C
2133 C
2134 C
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149 C
2150 C
2151C
2152
2153
2154
2155 C
2156 C
2157 C
2158 190 FORMAT ( IHI.49H TABLE BELOW OUT OF ORDER FOR MTLUP AT POSITION
2159
2180
110 Y(NT)=(VARD(I.NT)*(VARI (I+1)-X)-VARD(I+I.NT)*(VARI(I)-X))/(VARI(I+
        1 1)-VARI(I))
        IF (EX) I=I+IN
    RETURN
C
120 IF (N.EO.2) GO TO 10
    IF (I.EQ.(N-1)) GO TO 140
    IF (I.EO.1) GO TO 130
    PICK THIRD POINT.
    SK=VARI(I+1)-VARI(I)
    IF ((SK*(X-VARI(I-1))).LT.(SK*(VARI(I+2)-X))) GO TO 140
    130 L= I
    GO TO 150
    140L=I-1
    1FO V(1)-VARI(L)|X
    V(2)=VARI(L+1)-X
    V(3)=VARI (L+2)-x
    DO 160 NT=1.NTAB
    YY(1)=(VARD(L.NT)*V(2)-VARD(L+1.NT)*V(1))/(VARI(L+1)-VARI(L))
    YY(2)=(VARD(L+1,NT)*V(3)-VARD(L+2,NT)*V(2))/(VARI(L+2)-VARI(L+1))
160 Y(NT)=(YY(1)*V(3)-YY(2)*V(1))/(VARI(L+2)-VARI(L))
    IF (EX) I=I+IN
    RETURN
    ZERO ORDER
    170 DO 180 NT=1,NTAB
    180 Y(NT)=VARD (1.NT)
    RETURN
C
C
2159
    FIRST ORDER
    FORMAT STATEMENTS
    1,I5,/31H X TABLE IS STORED IN LOCATION ,OG.//(8G15.8))
    END
```

2161
2162 C
2163 C 2164 C 2165 C 2166 C 2167 C 2168 C 2169 C 2170 C
2171 C 2172 C 2173 C 2171 C 2175 C 2176 C 2177 C 2178 C 2179 C
2180 C
2181 C
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
20ก8
2209
2210
2211
2212
2213
2214
2215
2216
FUNCTION DIF (L, M,NP, VARI, VARD)
THIS FUNCTION IS CALLED BY SUBROUTINES GEOM, GEOMCB, AND GEOMLU TO
CALCULATE THE WALL SLOPE FOR THE TABULAR INPUT CASE. FUNCTION DIF
WAS TAKEN FROM THE NASA-LANGLEY PROGRAM LIBRARY. THE DATE OF
THIS VERSION IS 8-1-68.
THIS FUNCTION SUBPROGRAM FINDS THE DERIVATIVE AT A GIVEN POINT,
L, FOR THE DESIRED X AND Y IN A GIVEN TABLE. THE N-POINT
LAGRANGIAN FORMULA IS USED WHERE N IS ODD.
$L=I N T E G E R$, THE POINT OF X AND Y AT WHICH DERIVATIVE IS FOUND
$M=$ INTEGER, $1-5$, TO DETERMINE THE POINT FORMULA, N. $N=2+M+1$
NP = INTEGER, THE NUMBER OF POINTS IN TABLE OF VARIABLES
VARI = ARRAY OF INDEPENDENT VARIABLE. X. VARI (NP)
VARD $=$ ARRAY OF DEPENDENT VARIABLE. $\dot{Y} . \quad \operatorname{VARD}(N P)$
OIMENSION VARI(NP), VARD(NP), X(11), Y(11)
DIF $=17770000000000000000 B$
IF (M.LT.1) RETURN
$N=2 * M+1$
IF (M.GT.5.OR.N.GT.NP) RETURN
$M 1=M+1$
$M 2=N P-M+1$
$K=L$
IF (L.LE.M1.OR.N.EQ.NP) GO TO 10
$K=M 1$
IF (L.LT.M2) GO TO 10
$K=L-(N P-N)$
$10 M X=L-K$
DO $20 \mathrm{~J}=1, \mathrm{~N}$
$M J=M X+J$
$X(U)=\operatorname{VARI}(M J)$
$20 \mathrm{Y}(\mathrm{J})=\operatorname{VARD}(\mathrm{MJ})$
$A=1$.
$B=0$.
$C=0$.
DO $40 \quad J=1, N$
IF (U.EQ.K) GO To 40
$P=1$.
DO $30 I=1 . N$
IF (I.EQ.J) GO TO 30
$P=P *(X(J)-X(I))$
30 CONT \dagger NIIE
$T=X(K)-X(U)$
$B=B+Y(J) /(P+T)$
$A=A * T$
$C=C+1 . / T$
$4 O$ CONTINUE
$D I F=A * B+Y(K) * C$
RETURN
END

| 2217 | | SUBRUUTINE ONEDIM |
| :---: | :---: | :---: |
| 2218 | C | |
| 2219 | C | ** |
| 2220 | C | |
| 2221 | C | this subroutine calculates the 1-D initial-data surface |
| 2222 | C | |
| 2223 | C | *** |
| 2224. | C | |
| 2225 | *CALL | MCC |
| 2226 | | IF (PT(1).NE.O.O.AND.TT(1).NF.O.O) GO TO 10 |
| 2227 | | IERR=1 |
| 2228 | | WRITE (6.200) |
| 2229 | | RETURN |
| 2230 | 10 | MN3 $=0.01$ |
| 2231 | | IF (N1D.EQ.-1.OR.N1D.GT.2) MN3 $=2.0$ |
| 2232 | | NXCK=O |
| 2233 | | $A C O E F=2.0 /(G A M M A+1.0)$ |
| 2234 | | $B C$ EEF $=($ GAMMA -1.0$) /($ GAMMA +1.0$)$ |
| 2235 | | CCOEF $=(\mathrm{GAMMA}+1.0) / 2.0 /(\mathrm{GAMMA}-1.0)$ |
| 2236 | | IF (NID.LT.O) GO TO 30 |
| 2237 | C | |
| 2238 | C | OVERALL LOOP |
| 2239 | C | |
| 2240 | | IF (NGCB.NE.O.OR.MDFS.NE.O) GO TO 20 |
| 2241 | | RSTAR=RT |
| 2242 | | RSTARS = RT * RT |
| 2243 | | GO TO 30 |
| 2244 | 20 | RSTAR = YW (LT)-YU(LT)+YL(LT)-YCB(LT) |
| 2245 | | RSTARS $=Y W(L T) * * 2-Y U(L T) * * 2+Y L(L T) * * 2-Y C B(L T) * * 2$ |
| 2246 | 30 | DO $180 \mathrm{~L}=1 . \mathrm{LMAX}$ |
| 2247 | | IF (L.EQ.1.AND.ISUPER.EQ.1) GO TO 180 |
| 2248 | | IF (N1D.LT.O) GO TO 60 |
| 2249 | | IF (NGCB.NE.O) GO TO 40 |
| 2250 | | IF (MDFS.NE.O) GO TO 40 |
| 2251 | | IF (XP(L).LT.XT) GO TO 60 |
| 2252 | | IF (XP(L).GT.XI) GO TO 50 |
| 2253 | | MN3 $=1.0$ |
| 2254 | | GO TO 110 |
| 2255 | 40 | IF (L.LT.LT) GO TO 60 |
| 2256 | | IF (L.GT.LT) GO TO 50 |
| 2257 | | MN'3 $=1.0$ |
| 2258 | | GO TO 110 |
| 2259 | 50 | |
| 2260 | | IF (N10.EQ.1.OR.N10.EQ.3) $M N 3=1.1$ |
| 2261 | | IF (N1D.EQ.2.OR.N1D.EQ.4) MN3 $=0.9$ |
| 2262 | | NXCK=1 |
| 2263 | 60 | IF (NDIM.EQ.1) GO TO 70 |
| 2264 | | $R A D=\dot{Y} W(L)-Y U(L)+Y L(L)-Y C B(L)$ |
| 2265 | | ARATIO=RAD/RSTAR |
| 2266 | | GO TO 80 |
| 2267 | 70 | RADS $=\mathrm{YW}(\mathrm{L}) * * 2-Y U(L) * * 2+Y L(L) * * 2-Y C B(L) * * 2$ |
| 2268 | | APATIOEDACS/RSTARS |
| 2269 | C | |
| 2270 | C | NEWTON-RAPHSON ITERATION LOOP |
| 2271 | C | |
| 2272 | 80 | DO 100 ITER=1, 100 |
| 2273 | | $\triangle B M=A C O E F+B C O E F * M N 3 * M N 3$ |
| 2274 | | $A B M C=A B M * * C C O E F$ |
| 2275 | | FM=ABMC/MN3-ARATIO |
| 2276 | | FPM=ABMC* (2.O*BCOEF*CCOEF/ABM-1.O/(MN3*MN3)) |
| 2277 | | OMN3 = MN3 |
| 2278 | | MN3 $=0$ MN3 -FM/FPM |
| 2279 | | IF (OMN3.GT.O.99.AND.OMN3.LT.1.O1) MN3 = O. 5* (OMN3+MN3) |
| 2280 | | IF (MN3.GT. 1.O.AND.OMN3.LT.1.0) MN3 $=0.99$ |
| 2281 | | IF (MN3.LT. 1.O.AND.OMN3.GT.1.O) IN $^{\text {I }}$ ($=1.01$ |
| 2282 | | IF (N1D.EQ.-1.AND.MN3.LE.1.0) MN3 = 1.01 |
| 2283 | | IF (N1D.EQ.-2.AND.MN3.GE.1.0) $M N 3=0.99$ |
| 2284 | | IF (MN3.GT.50.O) MN3 $=50.0$ |
| 2285 | | IF (MN3.GE.O.O) GO TO 90 |
| 2286 | | MN3 $=-\mathrm{MN} 3$ |
| 2287 | | GO TO 100 |
| 2288 | 90 | IF (ABS (MN3-OMN3)/OMN3.LE.O.OOO5) GO TO 110 |

```
2289 100 CONTINUE
2290 WRITE (6.190) L
2291 C
2292 C
2293 C
2294
2295
2296
2297
2298
2299
2300
2301
2302
303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
*34
2335
2336
2337
2338
2339
2340 C
2341 C
2342 C
2343
2344
2345
2346
2347
```

```
        FILL IN 2-D ARRAYS LOOP
```

 FILL IN 2-D ARRAYS LOOP
 110 LDFS=0
 110 LDFS=0
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 OEM=1.O+GAM2 + MN3 + MN3
 OEM=1.O+GAM2 + MN3 + MN3
 DEMP = DEM * +GAM 1
 DEMP = DEM * +GAM 1
 DNXNY = (NXNY(L)-NXNYCB(L))/FLOAT(M1)
 DNXNY = (NXNY(L)-NXNYCB(L))/FLOAT(M1)
 IF (MOFS.EQ.O.OR.LDFS.EO.O) GO TO 120
 IF (MOFS.EQ.O.OR.LDFS.EO.O) GO TO 120
 DNXNY 1= (NXNYL(L)-NXNYCB(L))/FLOAT(MDFS-1)
 DNXNY 1= (NXNYL(L)-NXNYCB(L))/FLOAT(MDFS-1)
 ONXNY2 = (NXNY(L)-NXNYU(L))/FLOAT(MMAX-MDFS)
 ONXNY2 = (NXNY(L)-NXNYU(L))/FLOAT(MMAX-MDFS)
 120 DO 170 M=1.MMAX
 120 DO 170 M=1.MMAX
 IF (MDFS.EQ.O.OR.LDFS.EQ.O) GO TO }15
 IF (MDFS.EQ.O.OR.LDFS.EQ.O) GO TO }15
 IF (L.NE.1) GO TO 130
 IF (L.NE.1) GO TO 130
 IF (ISUPER.EO.2.AND.M.LT.MDFS) GO TO 170
 IF (ISUPER.EO.2.AND.M.LT.MDFS) GO TO 170
 IF (ISUPER.EQ.3.AND.M.GT.MDFS) GO TO 170
 IF (ISUPER.EQ.3.AND.M.GT.MDFS) GO TO 170
 IF (ISUPER.EQ.2.AND.M.EQ.MDFS) GO TO 150
 IF (ISUPER.EQ.2.AND.M.EQ.MDFS) GO TO 150
 130 IF (M.LT.MOFS) DNXNY=ONXNY1
 130 IF (M.LT.MOFS) DNXNY=ONXNY1
 IF (M.GT.MDFS) DNXNY=ONXNY2
 IF (M.GT.MDFS) DNXNY=ONXNY2
 IF (M.NE.MDFS) GO TO }15
 IF (M.NE.MDFS) GO TO }15
 PL(L, 1)=PTL/DEMP
 PL(L, 1)=PTL/DEMP
 TEMP = TTL/DEM
 TEMP = TTL/DEM
 ROL(L, 1)=PL(L, 1)/(RG +TEMP)
 ROL(L, 1)=PL(L, 1)/(RG +TEMP)
 OQ=MN3*SORT(GAMMA * PL(L,1)/ROL(L,1))
 OQ=MN3*SORT(GAMMA * PL(L,1)/ROL(L,1))
 IF (NXNYL(L).ED.O.O) GO TO 14O
 IF (NXNYL(L).ED.O.O) GO TO 14O
 UL(L.1)=OQ/SORT(1.O+NXNYL(L)*NXNYL(L))
 UL(L.1)=OQ/SORT(1.O+NXNYL(L)*NXNYL(L))
 VL(L. 1) =-UL(L. 1) +NXNYL(L)
 VL(L. 1) =-UL(L. 1) +NXNYL(L)
 GO TO 150
 GO TO 150
 14O UL (L, 1)=OO
 14O UL (L, 1)=OO
 VL(L,1)=0.0
 VL(L,1)=0.0
 150 IF (ISUPER.EQ.3.AND.(M.EO.MDFS.AND.L.EO.1)) GO TO 170
 150 IF (ISUPER.EQ.3.AND.(M.EO.MDFS.AND.L.EO.1)) GO TO 170
 P(L.M,1)=PT(M)/DEMP
 P(L.M,1)=PT(M)/DEMP
 TEMP =TT(M)/DEM
 TEMP =TT(M)/DEM
 RO(L,M,1)=P(L,M, 1)/(RG*TEMP)
 RO(L,M,1)=P(L,M, 1)/(RG*TEMP)
 OO=MN3+SORT(GAMMA+P(L.M.1)/RO(L.M.1))
 OO=MN3+SORT(GAMMA+P(L.M.1)/RO(L.M.1))
 DN=NXNYCB(L)+DNXNY*FLOAT(M-1)
 DN=NXNYCB(L)+DNXNY*FLOAT(M-1)
 IF (LDFS.NE.O.AND.M.GE.MDFS) DN=NXNYU(L)+DNXNY*FI_OAT(M-MDFS)
 IF (LDFS.NE.O.AND.M.GE.MDFS) DN=NXNYU(L)+DNXNY*FI_OAT(M-MDFS)
 DNS = DN * DN
 DNS = DN * DN
 IF (DNS.EQ.O.O) GO TO 160
 IF (DNS.EQ.O.O) GO TO 160
 SIGN=1.O
 SIGN=1.O
 IF (DN.GT.O.O) SIGN=-1.O
 IF (DN.GT.O.O) SIGN=-1.O
 U(L,M,1)=QQ/SORT(1.O+DNS)
 U(L,M,1)=QQ/SORT(1.O+DNS)
 V(L,M.1)=SIGN+OO/SORT(1.O+1.O/DNS)
 V(L,M.1)=SIGN+OO/SORT(1.O+1.O/DNS)
 GO TO 170
 GO TO 170
 160 U(L,M, 1)=00
 160 U(L,M, 1)=00
 V(L,M,1)=0.0
 V(L,M,1)=0.0
 170 CONTINUE
 170 CONTINUE
 180 CONTINUE
 180 CONTINUE
 RETURN
 RETURN
 C
190 FORMAT
190 FORMAT
190 FORMAT (1HO,10X,47H***** THE 1-D SOLUTION FOR THE INITIAL-DATA SUR
190 FORMAT (1HO,10X,47H***** THE 1-D SOLUTION FOR THE INITIAL-DATA SUR
1. 47HFACE FAILED TO CONVERGE IN 1OO ITERATIONS AT L=,12,6H *****)
1. 47HFACE FAILED TO CONVERGE IN 1OO ITERATIONS AT L=,12,6H *****)
200 FORMAT (1HO,10X,48H***** THE STAGNATION CONDITIONS FOR THE 1-D INI
200 FORMAT (1HO,10X,48H***** THE STAGNATION CONDITIONS FOR THE 1-D INI
IT,.4 IMIAL-DATA SURFACE WERE NOT SPECIFIEUO *****)
IT,.4 IMIAL-DATA SURFACE WERE NOT SPECIFIEUO *****)
END

```
    END
```

```
2348
2349 C
2350 C
2351 C
2352 C
2353 C
2354 C
2355 C
2356 +CALL,MCC
2357 C
2358 C
2359 C
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2377.
2373
2374
2375
2376 C
2377 C
2378 C
2379
2380
2381
2382 C
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
.7399 r.
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
    SUBROUTINE MAP
    SINGLE FLOW SPACE
    IF (IP.EQ.-1) GO TO 40
    IF (LMAP.GE.LDFSS.AND.LMAP.LE.LDFSF) GO TO 10
    YP = YCB (LMAP) +VN(MMAP)*(YW(LMAP)-YCB(LMAP))
    IF (IP.EQ.O) RETURN
    OM1=OZDX(LMAP)
    OM2 = DZDX (LMAP+1)
    BL=1.U/(YW(LMAP) -'CB(LMAP))
    BE3=DYDVN(MMAP)*BE
    BE4 = DYDVN(MMAP+1)*BE
    AL = NXNYCB (LMAP) +VN(MMAP) * (NXNY (LMAP) -NXNYCB (LMAP))
    AL3=BE3*AL
    ALA =BE4*AL
    DE = - VN(MMAP) * XWI (LMAP )
    DE3 = BE3 *DE
    DE4=BE4*DE
    RFTURN
    DUAL FLOW SPACE
    10 IF (MMAP.LT.MDFS) GO TO 20
    IF (MMAP.GT.MDFS) GO TO 30
    IF (IB.EQ.4) GO TO 30
    C
    20 YP=YCB(LMAP) +VN(MMAP)*(YL(LMAP)-YCB(LMAP))/CC
    IF (IP.EQ.O) RETURN
    OM1= DZDX(LMAP)
    OM2 = DZDX (LMAP+1)
    BE=CC/(YL(LMAP) - YCB(LMAP))
    BE 3}=\operatorname{DYDVN(MMAP)*BE
    BE4 = DYDVNN(MMAFI 1) +DE
    AL=(VN(MMAP) *NXNYL(LMAP)-(VN(MMAP)-CC) +NXNYCB(LMAP))/CC
    AL3=BE3*AL
    AL4=BE4*AL
    DE3=0.0
    DE4=0.0
    IF (MMAP:NE.MDFS) RETURN
    AL4=AL3
    BE4=BE3
    RETURN
r
    THIS SUBROUTINE CALCULATES THE MAPPING FUNCTIONS
    30 YP=YU(LMAP) +(VN(MMAP)-CC) +(YW(LMAP)-YU(LMAP) )/(1.O-CC)
    IF (IP.EQ.O) RETURN
    OMY=DZDX(LMAP)
    OM2 = DZDX (LMAP +1)
    BE =(1.U-LU'i/(YW(LMAP) - TU(LMAP))
    BE3=DYDVN(MMAP) +BE
    BE4=DYDVN(MMAF+1)+BE
    AL=((VN(MMAP)-CC)*NXNY (LMAP)-(VN(MMAP)-1.O)*NXNYU(LMAP))/(1.O-CC)
    AL3=BE3*AL
```

```
2410
2411
2412
2413
2414
2415
2416
2417
2418 C
2419 C
2420 C
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465 C
2466
2467
2468
```

```
    DE=(VN(MMAP)-CC) +XWI (LMAP)/(1.O-CC)
```

 DE=(VN(MMAP)-CC) +XWI (LMAP)/(1.O-CC)
 DE3=BE3*DE
 DE3=BE3*DE
 DE4=BE4*DE
 DE4=BE4*DE
 IF (MMAP.NE.MDFS) RETURN
 IF (MMAP.NE.MDFS) RETURN
 AL3=AL4
 AL3=AL4
 BE3=BE4 &
 BE3=BE4 &
 DE3=DE4
 DE3=DE4
 RETURN
 RETURN
 CALCULATE THE MAPPING FUNCTIONS FOR THE INITIAL SET-UP
 CALCULATE THE MAPPING FUNCTIONS FOR THE INITIAL SET-UP
 4O DO 5O L=1,LMAX
 4O DO 5O L=1,LMAX
 X(L) = XP(1) +FLOAT(L-1)*DX
 X(L) = XP(1) +FLOAT(L-1)*DX
 5O CONTTNIIE
 5O CONTTNIIE
 DO 60 L= 1.L1
 DO 60 L= 1.L1
 DZDX(L+1)=(X(L+1)-X(L))/(XP(L+1)-XP(L))
 DZDX(L+1)=(X(L+1)-X(L))/(XP(L+1)-XP(L))
 6 0 ~ C O N T I N U E
 6 0 ~ C O N T I N U E
 DZDX(1)=OZDX(2)
 DZDX(1)=OZDX(2)
 DZDX(LMAX+1)=DZDX(LMAX)
 DZDX(LMAX+1)=DZDX(LMAX)
 IF (MDFS.EQ.O) GO TO 70
 IF (MDFS.EQ.O) GO TO 70
 LVN=LDFSS
 LVN=LDFSS
 IF (LDFSS.EQ.1.AND.LDFSF.NE.LMAX) LVN=LDFSF
 IF (LDFSS.EQ.1.AND.LDFSF.NE.LMAX) LVN=LDFSF
 CC=(YL(LVN)-YCB(LVN))/(YW(LVN)-YU(LVN)+YL(LVN)-YCB(LVN))
 CC=(YL(LVN)-YCB(LVN))/(YW(LVN)-YU(LVN)+YL(LVN)-YCB(LVN))
 IF (LDFSS.EQ.I.OR.LDFSF.EQ.LMAX) GO TO 70
 IF (LDFSS.EQ.I.OR.LDFSF.EQ.LMAX) GO TO 70
 CCD=(YL'(LDFSF)-YCB(LDFSF))/(YW(LDFSF)-YU(LDFSF) +YL(LDFSF)-YCB
 CCD=(YL'(LDFSF)-YCB(LDFSF))/(YW(LDFSF)-YU(LDFSF) +YL(LDFSF)-YCB
 1 (LDFSF))
 1 (LDFSF))
 IF (ABS(CCD-CC)/CC.LE.O.O1) GO TO 70
 IF (ABS(CCD-CC)/CC.LE.O.O1) GO TO 70
 WRITE (6,140)
 WRITE (6,140)
 IERR=1
 IERR=1
 RETURN
 RETURN
 70 DO 8O M=1. MMAX
 70 DO 8O M=1. MMAX
 Y(M)=FLOAT(M-1)*DY
 Y(M)=FLOAT(M-1)*DY
 8O CONTINUE
 8O CONTINUE
 IF (IST.NE.O) GO TO 100
 IF (IST.NE.O) GO TO 100
 DO 9O M=1,MMAX
 DO 9O M=1,MMAX
 VN(M)= Y(M)
 VN(M)= Y(M)
 DYOVN(M)=1.O
 DYOVN(M)=1.O
 YI(M)=Y(M)
 YI(M)=Y(M)
 90 CONTINUE
 90 CONTINUE
 DYDVN(MMAX+1)=1.0
 DYDVN(MMAX+1)=1.0
 RETURN
 RETURN
 100 DO 120 M=1.MMAX
100 DO 120 M=1.MMAX
VN(M)=(YI(M)-YCB(1))/(YW(1)-YCB(1))
VN(M)=(YI(M)-YCB(1))/(YW(1)-YCB(1))
IF (MDFS.EQ.O.OR.LDFSS.NE.1) GO TO 120
IF (MDFS.EQ.O.OR.LDFSS.NE.1) GO TO 120
IF (M.GE.MDFS) GO TO 110
IF (M.GE.MDFS) GO TO 110
VN(M)=CC*(YI(M) - YCB(1))/(YL(1)-YCB(1))
VN(M)=CC*(YI(M) - YCB(1))/(YL(1)-YCB(1))
GO TO 12O
GO TO 12O
110 VN(M)=CC+(1.O-CC)*(YI(M)-YU(1))/(YW(1)-YU(1))
110 VN(M)=CC+(1.O-CC)*(YI(M)-YU(1))/(YW(1)-YU(1))
12O CONT INUE
12O CONT INUE
DO 130 M=1,M1
DO 130 M=1,M1
DYDVN(M+1)=(Y(M+1)-Y(M))/(VN(M+1)-VN(M))
DYDVN(M+1)=(Y(M+1)-Y(M))/(VN(M+1)-VN(M))
130 CONTINUE
130 CONTINUE
DYDVN(1)=DYDVN(2)
DYDVN(1)=DYDVN(2)
DYDVN(MMAX + 1)=\operatorname{DYDVN}(MMAX)
DYDVN(MMAX + 1)=\operatorname{DYDVN}(MMAX)
RETURN
RETURN
140 FORMAT (1HO, 1OOH***** DUAL FLOW SPACE WALLS DO NOT BEGIN AND END A
140 FORMAT (1HO, 1OOH***** DUAL FLOW SPACE WALLS DO NOT BEGIN AND END A
1T APPROXIMATELY THE SAME PROPORTIONAL HEIGHT *****)
1T APPROXIMATELY THE SAME PROPORTIONAL HEIGHT *****)
END

```
    END
```

```
2470 C
2471 C
2472 C
2473 C
2474 C
2475 C
2476 C
2477 C
2478 *CALL.MCC
2479 LC2=LC*LC
2480 C
2481 C
2482 C
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
250.5
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
252n
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2bS! &
2532 C
2533 C
2534
2535
2536
2537
2538
2539
\begin{tabular}{|c|c|c|}
\hline 2469 & & SUBROUT INE MASFLO \\
\hline 2470 & C & \\
\hline 2471 & C & *********************************************************** \\
\hline 2472 & C & \\
\hline 2473 & C & THIS SUBROUTINE CALCULATES THE INITIAL-DATA OR SOLUTION SURFACE \\
\hline 2474 & C & MASS FLOW AND MOMENTUM THRUST \\
\hline 2475 & C & \\
\hline 2476 & C & ************** \\
\hline 2477 & C & \\
\hline 2478 & *CALL & . MCC \\
\hline 2479 & & LC2 \(=\mathrm{LC} * \mathrm{LC}\) \\
\hline 2480 & C & \\
\hline 2481 & C & CALCULATE AND PRINT THE MASS FLOW AT EACH L LOCATION \\
\hline 2482 & C & \\
\hline 2483 & & \(I P=0\) \\
\hline 2484 & & \(N D=N 3\) \\
\hline 2485 & & IF (N.EQ.O) \(N D=1\) \\
\hline 2486 & & \(N P=N+N S T A R T\) \\
\hline 2487 & &  \\
\hline 2488 & & IF (IUO.EQ.2) WRITE (6.90) NP \\
\hline 2489 & & DO \(70 \mathrm{~L}=1\), LMAX \\
\hline 2490 & & LMAP \(=\mathrm{L}\) \\
\hline 2491 & & XMASS \(=0.0\) \\
\hline 2492 & & THRUST \(=0.0\) \\
\hline 2493 & & IF (MDFS.NE.O) IB=3 \\
\hline 2494 & & LDFS \(=0\) \\
\hline 2495 & & IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS \(=1\) \\
\hline 2496 & & DO \(50 \mathrm{M}=2\), MMAX \\
\hline 2497 & & MMAP \(=\) M \\
\hline 2498 & & CALL MAP \\
\hline 2499 & & MMAP \(=\) M-1 \\
\hline 2500 & & \(Y P 1=Y P\) \\
\hline 2501 & & CALL MAP \\
\hline 2502 & & IF (M.NE.MDFS.OR.LDFS.EO.O) GO TO 10 \\
\hline 2503 & & \(R O U=(R O L(L, N D)+U L(L . N D)+R O(L, M-1 . N D) * U(L . M-1 . N D)) * 0.5\) \\
\hline 2504 & & ROU2 \(=(R O L(L, N D) * U L(L, N D) * * 2+R O(L, M-1 . N D) * U(L . M-1 . N D) * * 2) * 0.5\) \\
\hline 7505 & & \(\mathrm{T} R=4\) \\
\hline 2506 & & GO TO 20 \\
\hline 2507 & 10 & \(R O U=(R O(L, M, N D) * U(L, M, N D)+R O(L, M-1, N D)+U(L, M-1, N D)) * O .5\) \\
\hline 2508 & & ROU2 \(=(R O(L, M, N D) * U(L, M, N D) * * 2+R O(L, M-1, N D) * U(L, M-1, N D) * * 2)+0.5\) \\
\hline 2509 & 20 & IF (NDIM.EQ.1) GO TO 30 \\
\hline 2510 & & AREA= (YF1, YP)/LC2 \\
\hline 2511 & & GO TO 40 \\
\hline 2512 & 30 & AREA \(=3.141593+(Y P 1 * * 2-Y P *+2) / L C 2\) \\
\hline 2513 & 40 & \(X M A S S=X M A S S+R O U+A R E A+G\) \\
\hline 2514 & & THRUST \(=\) THRUST+ROU2 \({ }^{\text {* }}\) AREA \\
\hline 2515 & 50 & CONT I NUE \\
\hline 2516 & & IF (L.EQ.1) XMASSI=XMASS \\
\hline 2517 & & XMFR \(=0.0\) \\
\hline 2518 & & IF (XMASSI.NE.O.O) XMFR=XMASS/XMASSI \\
\hline 2519 & & IF (L.EQ.1) THRUSI = THRUST \\
\hline 2520 & & \(T \mathrm{R}=\mathrm{O} \cap\) \\
\hline 2521 & & IF (THRUSI.NE.O.O) TR=THRUST/THRUSI \\
\hline 2522 & & IF (IUO.NE.2) GO TO 60 \\
\hline 2523 & & XMASS = XMASS \(* 0.1536\) \\
\hline 2524 & & THRUST \(=\) THRUST*4.4477 \\
\hline 2525 & & IF (NDIM.NE.O) GO TO 60 \\
\hline 2526 & & XMASS = XMASS/2.54 \\
\hline 2527 & & THRUST = THRUST/2.54 \\
\hline 2528 & 60 & WRITE (6, 100) L.XMASS, XMFR.THRUST, TR \\
\hline 2529 & 70 & CONTINUE \\
\hline 2530 & & RETURN \\
\hline 2bs & \(\because\) & \\
\hline 2532 & C & FORMAT STATEMENTS \\
\hline 2533 & C & \\
\hline 2534 & 80 & FORMAT ( 1 H1, 20X, 36HMASS FLOW AND THRUST CALCULATION, \(\mathrm{N}=, \mathrm{I} 6, / / 30 \mathrm{X}, 1\) \\
\hline 2535 & & \(1 \mathrm{HL} .7 \mathrm{X} .9 \mathrm{HMF}(L E M / S) .8 \mathrm{X}\), 6HMF/MF1.8X.6HT (LBF) , 11 X , 41HT/TI./) \\
\hline 2536 & 90 & FORMAT ( \(1 \mathrm{H} 1.20 \mathrm{X}, 36 \mathrm{HMASS}\) FLOW AND THRUST CALCULATION, \(\mathrm{N}=.16, / / 30 \mathrm{X}, 1\) \\
\hline 2537 & & \(1 \mathrm{HL}, 8 \mathrm{X}, 8 \mathrm{HMF}(\mathrm{KG} / 5) .8 \mathrm{X}, \mathrm{GHMF} / \mathrm{MF}\) I , 10X, \(4 \mathrm{HT}(\mathrm{N}), 11 \mathrm{X}, 4 \mathrm{HT} / \mathrm{TI}, /)\) \\
\hline 2538 & 100 & FORMAT ( 1 H , 20X, 110.F16. 5, F 14.4 .2 F 15.4 ) \\
\hline 2539 & & END \\
\hline
\end{tabular}
```

| 2540 | | SUBROUTINE PLOT (TITLE.T.NP.IVPTS) |
| :---: | :---: | :---: |
| 2541 | C | |
| 2542 | C | **************************************+t********************* |
| 2543 | C | |
| 2544 | C | THIS SUBROUTINE PLOTS the Velocity vectors and dependent variable |
| 2545 | C | CONTOUR PLOTS |
| 2546 | C | |
| 2547 | C | ** |
| 2548 | C | |
| 2549 | | DIMENSION CON(9), XCO(4), YCO(4). TITLE(10) |
| 2550 | *CALL | MCC |
| 2551 | C | |
| 2552 | C | SET UP THE PLOT SIZE |
| 2553 | C | |
| 2554 | | IP = O |
| 2555 | | $\mathrm{ND}=\mathrm{N} 3$ |
| 2556 | | IF (N.EQ.O) $\mathrm{ND}=1$ |
| 2557 | | $X X L=X I$ |
| 2558 | | $X R=X E$ |
| 2559 | | $Y T=Y W(1)$ |
| 2560 | | $Y B=Y C B(1)$ |
| 2561 | | DO $10 \mathrm{~L}=2 . \mathrm{LMAX}$ |
| 2562 | | $Y T=A M A X T(Y T, Y W(L))$ |
| 2563 | | $Y B=A M I N T(Y B, Y C B(L))$ |
| 2564 | 10 | CONTINUE |
| 2565 | | $V V=-0.1 * D X$ |
| 2566 | | DO 70 IDUM $=1$, IVPTS |
| 2567 | | $V V=V V+D X$ |
| 2568 | | FIYB $=900.0$ |
| 2569 | | $X D=(X R-X X L) /(Y T-Y B)$ |
| 2570 | | FIR $=(1022.0-1022.0 / F L O A T(L 1)-F L O A T(I D U M) * 1022.0 / F L O A T(L 1)) / 884.0$ |
| 2571 | | IF (XD.LE.FIR) GO TO 20 |
| 2572 | | FIXL= 1022.O/FLOAT (L. ${ }^{\text {(}}$) |
| 2573 | | FIXR = 1022.O-FIXL-FLOAT (IDUM)*1022.O/FLOAT (L1). |
| 2574 | | FIYT $=900.0-(F I X R-F I X L) / X D$ |
| 2575 | | GO TO 30 |
| 2576 | 20 | $F I X L=511.0-450.0 * \times D$ |
| 2577 | | $F I \times R=511.0+450.0 * X D$ |
| 2578 | | F I Y T $=16.0$ |
| 2579 | 30 | $X C O N V=(F I X R-F I X L) /(X R-X X L)$ |
| 2580 | | $Y C O N V=(F I Y T-F T Y B) /(Y T-Y B)$ |
| 2581 | C | |
| 2582 | C | generate the velocity vector plot |
| 2583 | C | |
| 2584 | | VMAX $=0.0$ |
| 2585 | | DO $40 \mathrm{~L}=1$. LMAX |
| 2586 | | DO $40 \mathrm{M}=1$. MMAX |
| 2587 | | |
| 2588 | 40 | CONT INUE |
| 2589 | | IF (VMAX.LT. 1.OE-10) GO TO 80 |
| 2590 | | DROU = VV/VMAX |
| 2591 | | CALL ADV (1) |
| 2592 | | DO $60 \mathrm{~L}=1.1 . \mathrm{MAX}$ |
| 2593 | | LMAP $=\mathrm{L}$ |
| 2594 | | IF (MDFS.NE.O) $18=3$ |
| 2595 | | LDFS $=0$ |
| 2596 | | IF (L.GE.LDFSS. AND.L.LE.LDFSF) LDFS $=1$ |
| 2697 | | $1 \times 1=F I X L+(X P(L)-X I) * X C O N V$ |
| 2598 | | DO $60 \mathrm{M}=1$. MMAX |
| 2599 | | MMAP $=$ M |
| 2600 | | CALL MAP. |
| 2601 | | F (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 50 |
| 2602 | | IY $1=F I Y B+(Y P-Y B) * Y C O N V$ |
| 2603 | | $1 \times 2=I \times 1+U L(L, N D) * D R O U * X C O N V$ |
| 2604 | | I Y $2=1 Y 1+V L(L, N O)+$ URUU + YCONV |
| 2605 | | CALL DRV ($1 \times 1 . I Y 1 . I \times 2,1 Y 2)$ |
| 2606 | | CALL PLT (JX1.IY1,16) |
| 2607 | | $B=4$ |
| 2 OOB | | CALL MAP |
| 2609 | 50 | $\begin{aligned} & Y 1=F I Y B+(Y P-Y B)+Y C O N V \\ & X 2=I X 1+U(L, M, N D)+D R O U * X C O N V \\ & Y 2=I Y 1+V(L, M, N D) * D R O U * Y C O N V \end{aligned}$ |
| 2610 | | |
| 2611 | | |

```
    CALL DRV (IX1,IY1,IX2,IY2)
    CALL PLT (IXI,IY1,16)
    6 0 ~ C O N T I N I J E ~
        CALL LINCNT (58)
        WRITE (7.580) IDUM,NP.T
    WRITE (7,500) TITLE
    7O CONIINUE
    RESET PLOT SIZE FOR CONTOUR PLOTS
    80 IF (XD.LE.FIR) GO TO 90
    FIXR=1022.O-FIXL-1022.O/FLOAT(L1)
    FIYT=900.O-(FIXR-FIXL)/XD
    XCONV=(FIXR-FIXL)/(XR-XXL)
    YCONV=(FIYT-FIYB)/(YT-YB)
    gENERATE THE PHYSICAL SPACE GRID
    90 CALL ADV (1)
    DO 110 L=2. LMAX
    IF (MDFS.NE.O) IB=3
    IX1=FIXL+(XP(L-1)-XI)*XCONV
    IX2=FIXL+(XP(L)-XI)*XCONV
    LDFS=0
    IF (L.GE.LDFSS.AND.L.LE.LDTST) LDFS=1
    DO 110 M=1,MMAX
    IMAP=I-1
    MMAP =M
    CALL MAP
    LMAP =L
    YP1=YP
    CALL MAP
    IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 100
    IY I=FIYB+(YPI-YB)*YCONV
    IY2=FIYB+(YP-YB)*YCONV
    CALL DRV (IXI,IY1,IX2,IY2)
    IB=4
    LMAP = L-1
    CALL MAP
    LMAP =L
    YP1= YP
    CALL MAP
    100 IYI-FIYDI(YPI YD) + YCONV
    IY2=FIYB+(YP-YE) +YCONV
    CALL DRV (IXI,IY1,TX2,TYZ)
    110 CONT INUE
    DO 130 L=1.LMAX
    IXI=FIXL+(XP(L)-XI)*XCONV
    IYI=FIYB+(YCB(L)-YB)*YCONV
    IF (MDFS.EQ.O) GO To }12
    IF (L.LF.LDFSG.OR.L.GT.LDFST) GO TO 12O
    IY2=FIYB+(YL(L)-YB)*YCONV
    CALL ORV (IX1,IY1,IX1,IY2)
    IYI=FIYB+(YU(L)-YB)*YCONV
    120 IY2=FIYB+(YW(L)-YB)*YCONV
    CALL ORV (IX1.IY1,IX1,IY2)
    130 CONTINUE
    CALL LINCNT (58)
    WRITE (7.590) NP,T
    WRITE (7.500) TITLE
    FILL THE plOTTING ARRAY CO FOR THE CONTOUR PLOTS
    MDUM=MMAX
    IF (MDFS.NE.O) MDUM=MMAX+1
    IUC=1.O
    IF (IUO.EQ.2) IUC=0.0
    IDUM=4
    IF (ITM.EQ.2) IDUM=5
    IF (ITM.EQ.3) IDUM=6
    DO 490 I=1.,IDUM
```

```
2684 C
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720 C
2721 C
2722 C
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2 7 3 9
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
```

```
    DO 270 L=1.LMAX
```

 DO 270 L=1.LMAX
 LDFS=0
 LDFS=0
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 DO 270 M=1.MDUM
 DO 270 M=1.MDUM
 IF (LUFS.EQ.O.AND.M.EQ.MMAX+1) GO TO 270
 IF (LUFS.EQ.O.AND.M.EQ.MMAX+1) GO TO 270
 MD 1 = M
 MD 1 = M
 IF (LDFS.NE.O.AND.M.GT.MDFS) MD 1=M-1
 IF (LDFS.NE.O.AND.M.GT.MDFS) MD 1=M-1
 IF (M.NE.MDFS.OR.LDFS.EO.O) GO TO 200
 IF (M.NE.MDFS.OR.LDFS.EO.O) GO TO 200
 GO TO (140.150.160, 170,180,190). I
 GO TO (140.150.160, 170,180,190). I
 140 CO(L,M)=ROL(L.ND)*G*(16.O2-IUC*15.02)
 140 CO(L,M)=ROL(L.ND)*G*(16.O2-IUC*15.02)
 GO TO 270
 GO TO 270
 150 CO(L.M)=PL(L.ND)/PC*(6.8948-IUC*5.8948)
 150 CO(L.M)=PL(L.ND)/PC*(6.8948-IUC*5.8948)
 GO TO 270
 GO TO 270
 160 CQ(L,M)=PL(L.ND)/(ROL(L.ND)*RG)*(O.555556+IUC*O.444444)
 160 CQ(L,M)=PL(L.ND)/(ROL(L.ND)*RG)*(O.555556+IUC*O.444444)
 GO TO 270
 GO TO 270
 170 CQ(L.M)=SQRT((UL(L,ND)**2+VL(L.ND)**2)/(GAMMA*PL(L,ND)/ROL(L.ND)))
 170 CQ(L.M)=SQRT((UL(L,ND)**2+VL(L.ND)**2)/(GAMMA*PL(L,ND)/ROL(L.ND)))
 GO TO 270
 GO TO 270
 180 CO(L,M)=OL(L.ND)*(0.0929+IUC*0.9071)
 180 CO(L,M)=OL(L.ND)*(0.0929+IUC*0.9071)
 GO TO 270
 GO TO 270
 190 CO(L,M)=EL(L,ND)*(0.0929+IUC*O.9071)
 190 CO(L,M)=EL(L,ND)*(0.0929+IUC*O.9071)
 GO TO 270
 GO TO 270
 200 GO TO (210.220.230.240.250.260). I
 200 GO TO (210.220.230.240.250.260). I
 210 CO(L.M)=RO(L.MD1.ND)*G*(16.02-IUC+15.O2)
 210 CO(L.M)=RO(L.MD1.ND)*G*(16.02-IUC+15.O2)
 GO TO 27O
 GO TO 27O
 22O CO(L.M)=P(L.MD1.ND)/PC*(6.8948-IUC*5.8948)
 22O CO(L.M)=P(L.MD1.ND)/PC*(6.8948-IUC*5.8948)
 GO TO 270
 GO TO 270
 230 CO(L,M)=P(L,MD1.ND)/(RO(L.MD1.ND)*RG)*(0.555556*1IUC*O.444444)
 230 CO(L,M)=P(L,MD1.ND)/(RO(L.MD1.ND)*RG)*(0.555556*1IUC*O.444444)
 GO TO 270
 GO TO 270
 240 CO(L,M)=SORT((U(L,MD1.ND)**2+V(L,MD1.ND)**2)/(GAMMA*P(L,MD 1,ND)/RO
 240 CO(L,M)=SORT((U(L,MD1.ND)**2+V(L,MD1.ND)**2)/(GAMMA*P(L,MD 1,ND)/RO
 1 (L.MD1.ND)))
 1 (L.MD1.ND)))
 go to 270
 go to 270
 250 CQ(L.M)=Q(L,MD1.ND)*(0.0929+IUC*O.9071)
 250 CQ(L.M)=Q(L,MD1.ND)*(0.0929+IUC*O.9071)
 GO TO 270
 GO TO 270
 260 CO(L.M)=E(L.MD 1.ND)*(0.0929+IUC*O.9071)
 260 CO(L.M)=E(L.MD 1.ND)*(0.0929+IUC*O.9071)
 270 CONTINUE
 270 CONTINUE
 DETERMINF THE PLOTTING LINE QUANTITIES AND LABEL THE FRAMES
 DETERMINF THE PLOTTING LINE QUANTITIES AND LABEL THE FRAMES
 OMN=1.OEO6
 OMN=1.OEO6
 OMX = -OMN
 OMX = -OMN
 DO 280 L=1.LMAX
 DO 280 L=1.LMAX
 LDFS=0
 LDFS=0
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 OO 28O M=1.MDUM
 OO 28O M=1.MDUM
 IF (LDFS.EQ.O.AND.M.EQ.MMAX+1) GO TO 280
 IF (LDFS.EQ.O.AND.M.EQ.MMAX+1) GO TO 280
 OMN=AMIN1(CO(L,M).QMN)
 OMN=AMIN1(CO(L,M).QMN)
 OMX=AMAX1(CO(L.M).OMX)
 OMX=AMAX1(CO(L.M).OMX)
 280 CONTINUE
280 CONTINUE
XX=OMX -OMN
XX=OMX -OMN
DO=0.1*XX
DO=0.1*XX
DO 290 K=1.9
DO 290 K=1.9
CON(K)=QMN+(FLOAT(K))*DQ
CON(K)=QMN+(FLOAT(K))*DQ
290 CONTINUE
290 CONTINUE
K=9
K=9
CALL ADV (1)
CALL ADV (1)
CALL LINCNT (58)
CALL LINCNT (58)
GO TO (300,310.320,330.340.350). I
GO TO (300,310.320,330.340.350). I
300 WRITE (7.510) NP.T
300 WRITE (7.510) NP.T
GO TO 360
GO TO 360
310 WRITE (7.520) NH.I
310 WRITE (7.520) NH.I
GO TO 360
GO TO 360
320 WRITE (7.530) NP.T
320 WRITE (7.530) NP.T
GO TO 360
GO TO 360
330 WRITE (7.540) NP.T
330 WRITE (7.540) NP.T
GO TO 360
GO TO 360
340 WRITE (7,550) NP,T
340 WRITE (7,550) NP,T
GO TO 360
GO TO 360
35n WRITE (7.560) NP,T
35n WRITE (7.560) NP,T
36O WRITE (7,570) OMN,OMX,CON(1),CON(K),DO
36O WRITE (7,570) OMN,OMX,CON(1),CON(K),DO
WRITE (7.500) TITLE

```
    WRITE (7.500) TITLE
```

```
2755 C
2756 C
2757 C
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2773
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2811
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2824
DETERMINE THE LOCATION OF EACH CONTOUR LINE SEGIMENT AND PLOT IT
00 470 L=2.LMAX
    OO 470 L=2.LMAX 
    XCO(1) =XP(L-1)
    XCO(2)=XP(L)
    xCO(3) = x CO(1)
    xco(4)=x co(2)
    LDFS=O
    IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
    DO 470 M=2.MMAX
    MD2 =M
    MD3=M
    IF (MDFS.EQ.O.OR.M.LE.MDFS) GO To 370
    IF (L.GE.LDFSS.AND.L.LE.LDFSF) MD 2=M+1
    IF (L.GE.LDFSS+1.AND.L.LE.LDFSF+1) MD3 =M+1
370 LMAP=L-1
    MMAP-M-1
    CALL MAP
    LMAP=L Y Y Y (1) YP
    YCO(1)=YP
    CALL MAP
    LMAP = L-1
    MMAP =M
    YCO(2)=YP
    CALL MAP
    LMAP = L
    YCO(3)=yP
    CALL MAP
    CALL MAP
    IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 380
    IB=4
380 DO 460 KK=1,K
    K. 1=0
    k2=0
    k.3=0
    K4=0
    IF (CQ(L-1,MD3-1).LE.CON(KK)) K1=1
    IF (CQ(L.MD2-1).LE.CON(KK)) K2=1
    IF (CQ(L-i,MD3).LE.CON(KKI) K'3=1
    IF (CO(L.MD2).LE.CON(KK)) KA=1
    IF (K1*K2*K3*K4.NE.O) GO TO 460
    IF (K1+K2+K3+K4.EQ.O) GO TO 460
    LL=O
    IF (K1+K3.NEE.1) GO TO 390
    IC1=1
    IC2-3
    LP1=L-1
    MP1=MD3-1
    LP2 = L-1
    MP2 =MO3
    ASSIGN 390 TO KR1
    go to 420
390 IF (K1+K2.NE.1) GO TO 400
    IC1=1
    IC1=1
    LP1=L-1
    MP1=MD3-1
    LP2=L
    MP2 =MD2-1.
    ASSIGN 400'TO KR1
    GO TO 420
400 IF (K2+K4.NE.1) GO TO 410
    IC1=2
    IC1=2
    IC2=4
    LP1=L
    MP1=MD2-1
    LP2=1.
    MP2 = MD2
    ASSIGN 410 TO KR1
    GO TO 42O
```

```
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854 C
2855 C
2856 C
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878 C
2879 C
2880 C
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2.897
```

410 IF (K3+K4.NE. 1) GO TO 460
IC $1=3$
IC2 $=4$
LP $1=\mathrm{L}-1$
$M P 1=M D 3$
$L P 2=L$
MP $2=$ MD 2
ASSIGN 460 TO KR1
420 LL=LL+1
$X X=(\operatorname{CON}(K K)-C O(L P 1, M P 1)) /(C O(L P 2, M P 2)-C O(L P 1, M P 1))$
IF (LL.EQ.2) GO TO 430
$I X 1=F I X L+(X C O(I C 1)+X X *(X C O(I C 2)-X C O(I C 1))-X X L) * X C O N V$
$I Y 1=F I Y B+(Y C O(I C 1)+X X *(Y C O(I C 2)-Y C O(I C 1))-Y B)+Y C O N V$
GO TO KR1. (390,400.410,460)
430 IX2 $=F I X L+(X C O(I C 1)+X X *(X C O(I C 2)-X C O(I C 1))-X X L) * X C O N V$
$I Y 2=F I Y E+(Y C O(I C 1)+X X *(Y C O(I C 2)-Y C O(I C 1))-Y B)+Y C O N V$
CALL DRV (IX1.IY1,IX2.IY2)
IF (KK.NE.1) GO TO 440
CALL PLT (IX1, IV1,35)
440 IF (KK.NE.K) GO TO 450
CALL PLT (IX1.IY1.24)
$450 \mathrm{LL}=0$
IF (LP2.NE.L) GO TO 460
IF (MP2.NE.MD2-1) GO TO 460
GO TO 400
460 CONT INUE
470 CONTINUE
DRAW THE GEOMETRY EOUNDARIES FOR THE CONTOUR PLOTS
DO $480 L=2$, LMAX
$I X 1=F I X L+(X P(L-1)-X I)+X C O N V$
$I X 2=F I X L+(X P(L)-X I) \cdot X C O N V$
$I Y 1=F I Y B+(Y C B(L-1)-Y B)+Y C O N V$
$I Y 2=F I Y B+(Y C B(L)-Y B) * Y C O N V$
$1 Y 3=F I Y B+(Y W(L-1)-Y B)+Y C O N V$
I $Y 4 \div F I Y B+(Y W(L)-Y B) * Y C O N V$
$I Y 5=F I Y B+(Y L(L-\mathbf{1})-Y B) * Y C O N V$
$I Y 6=F I Y B+(Y L(L)-Y B)+Y C O N V$
$I Y 7=F I Y B+(Y U(L-1)-Y B)+Y C O N V$
I Y $8=F I Y B+(Y U(L)-Y B)$ *YCONV
CALL DRV (IX1.IY1, IX2,IY2)
CALL DRV (IX1,IY3, IX2, IY4)
IF (MDFS.EQ.O) GO TO 480
IF (L.LE.LDFSS.OR.L.GT.LDFSF) GO TO 480
CALL DRV (IX1.IY5.IX2.IYG)
CALL DRV (IXI.IY7.IX2.IY8)
480 CONT INUE
490 CONT INUE
CALL ADV (1)
RETURN
FORMAT STATEMENTS
500 FORMAT ($1 \mathrm{H}, 1048$)
510 FORMAT ($1 \mathrm{H}, 7 \mathrm{HDENSITY}, 24 \mathrm{X}, 2 \mathrm{HN}=, \mathrm{I} 6,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 10.4,4 \mathrm{H}$ SEC)
520 FORMAT ($1 \mathrm{H}, 8 \mathrm{HPRESSURE}, 23 \mathrm{X}, 2 \mathrm{HN}=, \mathrm{I} 6,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 10 . .4,4 \mathrm{H}$ SEC)
530 FORMAT (1 H .1 HTEMPERATURE. $20 \mathrm{X}, 2 \mathrm{HN}=. \mathrm{I} 6,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 10.4,4 \mathrm{H}$ SEC)
540 FORMAT ($1 \mathrm{H}, 11 \mathrm{HMACH}$ NUMBER, $2 \mathrm{OX}, 2 \mathrm{HN}=, I 6,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 10.4,4 \mathrm{H}$ SEC)
550 FORMAT ($1 \mathrm{H}, 17 \mathrm{HTURBULENCE}$ ENERGY, $20 \mathrm{X}, 2 \mathrm{HN}=, 16,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 10.4,4 \mathrm{H}$ SE 1C)
560 FORMAT ($1 \mathrm{H}, 16 \mathrm{HDISSIPATION}$ RATE, $20 \mathrm{X}, 2 \mathrm{HN}=, 16,2 \mathrm{X}, 2 \mathrm{HT}=, 1 P E 10.4,4 \mathrm{H}$ SEC 1)
570 FORMAT ($1 \mathrm{H}, 10 \mathrm{HLOW}$ VALUE $=$. 1 PE11.4, $2 \mathrm{X}, 1 \mathrm{HH} \mathrm{H} \mathrm{GH}$ VALUE $=. \mathrm{E} 11.4 .2 \mathrm{X}, 12 \mathrm{HLO}$ 1W CONTOUR =, E $11.4, /, 1 \mathrm{X}, 13 \mathrm{HHIGH}$ CONTOUR $=, \mathrm{E} 11.4,2 \mathrm{X}, 14 \mathrm{HDELTA}$ CONTOUR $=$ 2 .E11.4)
580 FORMAT ($1 \mathrm{H}, 18 \mathrm{HVELOCITY} \operatorname{VECTORS}(, I 1,2 H X), 10 \mathrm{X}, 2 \mathrm{HN}=, 16,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 1$ 10.4 .4 H SEC)

590 FORMAT ($1 \mathrm{H}, 19 \mathrm{HPHYSICAL}$ SPACE GRID, $10 \mathrm{X}, 2 \mathrm{HN}=, I 6,2 \mathrm{X}, 2 \mathrm{HT}=, 1 \mathrm{PE} 10.4,4 \mathrm{H}$ 1SEC)
END

| 2898 | | SUBROUTINE SWITCH (ISWITCH) |
| :---: | :---: | :---: |
| 2899 | C | |
| 2900 | C | |
| 2901 | C | |
| 2902 | C | THIS SUBROUTINE SWITCHES THE DUAL FLOW SPACE BOUNDARY SOLUTIONS |
| 2903 | C | between the dummy arrays and the solution arrays |
| 2904 | C | |
| 2905 | C | |
| 2906 | C | |
| 2907 | C | ISWITCH=2 SWITCHES THE FLOW VARIABLES. BOUNDARY CONDITIONS. AND |
| 2908 | C | VISCOUS terms at n and $\mathrm{N+1}$. ISWItche3 SWItches the flow variables |
| 2909 | C | at N. iswitches switches the flow variables at n and stores the |
| 2910 | C | VISCOUS TERMS. |
| 2911 | C | |
| 2912 | *CALL, | , MCC |
| 2913 | C | |
| 2914 | C | SWItch the flow variables at N |
| 2915 | C | |
| 2916 | | Uu iU L=LEP33.LEFSF |
| 2917 | | UDFS $=$ UL (L.N1) |
| 2918 | | VDFS $=\mathrm{VL}(\mathrm{L} . \mathrm{NT} 1$) |
| 2919 | | PDFS $=$ PL(L, N1) |
| 2920 | | RODFS $=$ ROL (L.N1) |
| 2921 | | UL(L,N1) =U(L, MDFS.N1) |
| 2922 | | VL(L.N1) =V(L.MDFS,N1) |
| 2923 | | PL(L.N1) =P(LemDFS.N1) |
| 2924 | | ROL(L,N1) $=$ RO(L.MDFS,N1) |
| 2925 | | U(L.MOFS.N1) = UDF S |
| 2926 | | V(L.MDFS, N1) = VDFS |
| 2927 | | P(L.MDFS.N4) = PDFS |
| 2928 | | RO(L.MDFS.N1) $=$ RODFS |
| 2929 | | IF (ITM.LE.1) GO TO 10 |
| 2930 | | ODFS $=$ QL (L,N1) |
| 2931 | | EDFS $=E L(L, N 1)$ |
| 2932 | | OL (L, N1) $=0$ (L, MDFS.N1) |
| 2933 | | EL(L,N1) =E(L, MDFS.N1) |
| 29.34 | | O(1, MDFS.N1)=ODFS |
| 2935 | | E(L.MDFS.N1) $=$ EDFS |
| 2936 | 10 | CONT INUE |
| 2937 | | IF (ISWITCH.EQ.3) RETURN |
| 2938 | | If (ISWITCH.EQ.5) GO to 70 |
| 2939 | C | |
| 2940 | C | SWITCH THE FLOW Variables at n+1 |
| 2941 | C | |
| 2942 | | DO 20 L=LDFSS.LDFSF |
| 2943 | | UbFES $=$ UL (L, N3) |
| 2944 | | VDFS $=$ VL (L, N3) |
| 2945 | | PDFS $=$ PL(L, N3) |
| 2946 | | RODF S $=$ ROL (L.N3) |
| 2947 | | UL(L.N3) $=\mathrm{U}(\mathrm{L}, \mathrm{MDFS} . \mathrm{N} 3)$ |
| 2948 | | VL(L.N3) $=\mathrm{V}(\mathrm{L}$. MDFS.N3) |
| 2949 | | PL(L, N3) $=$ P(L.MDFS.N3) |
| 2950 | | ROL (L, N3) $=$ RO(L, MDF S , N3) |
| 2951 | | U(L, MDFS.N3) = UDF S |
| 2952 | | V(L.MDFS.N3) = VDFS |
| 2953 | | P(L. MDF S.N3) = PDF S |
| 2954 | | RO(L, MUI S.NS)=RUUI |
| 2955 | | IF (ITM.LE.1) GO TO 20 |
| 2956 | | ODFS $=$ QL (L.N3) |
| 2957 | | FOFSEFI (1, N3) |
| 2958 | | QL(L, N3) $=0(\mathrm{~L}, \mathrm{MDFS} . \mathrm{N} 3)$ |
| 2959 | | $E L(L, N 3)=E(L . M D F S . N 3)$ |
| 2960 | | Q(L.MDFS, N3) = QDF S |
| 2961 | | E(L.MDFS.N3)=EDFS |
| 2962 | 20 | CONT INUE |
| 2963 | C | |
| 2964 | C | SWITCH THE BOUNDARY CONDITIONS |
| 2965 | C | |
| 2966 | | IF (LDFSS.NE. 1) GO to 40 |
| 2967 | | IF (ISUPER.GE.2) GO TO 40 |
| 2968 | | IF (ISUPER.EQ.1) GO TO 30 |
| 2969 | | PTDFS $=$ PTL |

```
2970
2971
2972
2 9 7 3
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986 C
2987 C
2988 C
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2 9 9 9
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012 C
3013 C
3014 C
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
    TTDFS=TTL
    THE TDFS = THETAL
    PTL=PT(MDFS)
    TTL=TT(MDFS)
    THETAL=THEIA(MDFS)
    PT(MDFS) = PTDFS
    TT(MDFS)=TTDFS
    THETA(MDFS)=THETDFS
    GO TO 40
30 PIDFS=PIL
    PIL=PI(MDFS)
    PI(MDFS)=PIDFS
4O IF (LDFSF.NE.LMAX) GO TO 5O
    PEDFS=PEL
    PEL=PE(MDFS)
    PE(MDFS)=PEDFS
    SWITCH THE viscous terms
    5O IF (CAV.EQ.O.O.AND.CHECK.EQ.O.O) RETURN
    DO 60 L=LDFSS.LDFSF
    OUDFS=OUTL(L)
    OVDFS=OVTL(L)
    OPDFS=OPTL(L)
    ORODFS=OROTI.(I)
    QuTL(L)=QUT(L,MDFS)
    QVTL(L)=QVT(L,MDFS)
    QPTL(L)=QPT(L,MDFS)
    OROTL(L)=OROT(L.MDFS)
    QUT(L,MDFS)=OUDFS
    QVT(L,MDFS)=QVDFS
    QPT(L.MDFS)=QPDFS
    QROT(L,MDFS)=QRODFS
    IF (ITM.LE.1) GO TO 60
    QODFS=OQTL(L)
    OEDFS=OETL(L)
    OOTL(L)=0OT(L,MDFS)
    QETL(L)=QET(L,MDFS)
    OQT(L, MDFS)=OQDFS
    QET(L,MDFS)=QEDFS
6 0 ~ C O N T I N U E
    RETURN
    store the viscous terms
70 DO 80 L=LDFSS,LDFSF
    QUTL(L)=QUT(L,MDFS)
    QVTL(L)=QVT(L,MOFS)
    UPTL(L) =UPI(L.MUPS)
    QROTL(L)=QROT(L.MDFS)
    IF (ITM.LE.1) GO TO 8O
    OOTL(L)=OQT(L.MDFS)
    OETL(L)=OET(L.MDFS)
    80 CONTINUE
    RETURN
    END
```


3098
3099 3100 3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148 3149 3150 3151 3152 3153 3154 315 3156 3157 3158 .3159 3160 3161 3162 3163 3164 3165 31 G6 3167 3168 3169

LP2MT $1=0.0$
LP2MT2 $=0.0$
LP2MT3 $=0.0$
LP2MT4 $=0.0$
LPMT $=0.0$
$T M L=0.0$
$\mathrm{RMU}=0.0$
RMU $1=0.0$
RMU2 $=0.0$
RMU3 $=0.0$
RMU4 $=0.0$
RLA $=0.0$
RLA $1=0.0$
RLA2 $=0.0$
$R L A 3=0.0$
RLAA $=0.0$
RK $=0.0$
RK $1=0.0$
RK2 $=0.0$
RK3 $=0.0$
RK $4=0.0$
RLP 2M $=0.0$
RLP2M1 $=0.0$
RLP2M2 $=0.0$
RLP2M3 $=0.0$
RLP2M4 $=0.0$
RLPM $=0.0$
$\mathrm{RRO}=0.0$
RRO $1=0.0$
RRO2 $=0$: 0
RRO3 $=0.0$
RRO4 $=0.0$ RODIFF $=0.0$
EROT $=0.0$
TLMUR $=0.0$ AVMUR $=0.0$
DEL=0.0
OSMO=O.O
ESMO=O.O
ROXY $1=0.0$
ROXY2 $=0.0$
ROXY3 $=0.0$
ROXY $4=0.0$ ROXY $12=0.0$
BROY $1=0.0$
BROY2 $=0.0$ BROY3=0.0 BROY4 $=0.0$ BROY $34=0.0$ UROT $=0.0$ VROT $=0.0$
PROT $=0.0$ ODISS=0. 0 OPROD $=0.0$ QDIFF $=0.0$ OROTI $=0.0$ $E P R O D=0.0$ EDIFF=0.0 EDISS=0.O $E L O W R=0.0$ ROOX $=0.0$ ROOY $=0.0$ ATERM=0.0 ATERM1 $=0.0$ ATERM2 $=0.0$ ATERM3=0.0 ATERM4 $=0.0$ UVTA $=0.0$ VVTA $=0.0$ PVTA $=0.0$ PCTA $=0.0$ RODIFFA $=0.0$

```
3170
3171
3172
3173
3174
3175
317G
3177
3178
3179
3180
3181
3182
3183
3184
3185 C
3186
3187
3188
3189
3190
3191
3192
3193
3194 C
3195 C
3196 C
3197
3198
3199
3200
3201
3202
3203
3204 C
3205
3206
3207
3208
3209
31%10
3211
7717
321.3
3244
3215
3216
3217
3218
3219
3220
3771
3222 C
3223 C
3224 C
3225
3226
3227
3228
3229
3230
3231
3232
3233 C
3234 C
3235 C
3236. C
3237
3238
3239
3240
3241
```

```
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
327
3272
3273
3274
3275 C
3276 C
3277 C
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292 C
3293 C
3294 C
3295
3296
3297
3298
3299
3300
3001
3302
3303
3304 C
3305 C
3306 C
3307
3308
3309
3310
3311
3312
3313
```

```
    IF (MDFS.NE.O) GO TO 100
```

 IF (MDFS.NE.O) GO TO 100
 IF (NGCB.NE.O) GO TO 90
 IF (NGCB.NE.O) GO TO 90
 MT = M1
 MT = M1
 MMAP = MMAX
 MMAP = MMAX
 GO TO 110
 GO TO 110
 90 MT=2
 90 MT=2
 MMAP = 1
 MMAP = 1
 GO TO 110
 GO TO 110
 1OO MMAP = MDFS
1OO MMAP = MDFS
IBD=IB
IBD=IB
IB=4
IB=4
MT =MDFS + 1
MT =MDFS + 1
110 CALL MAP
110 CALL MAP
IF (L.EQ.1.OR.L.EO.LMAX) GO TO 12O
IF (L.EQ.1.OR.L.EO.LMAX) GO TO 12O
UAVG=0.25*(U(L-1,MT,N1)+U(L+1.MT,N1)+2.O+U(L,MT.N1))
UAVG=0.25*(U(L-1,MT,N1)+U(L+1.MT,N1)+2.O+U(L,MT.N1))
VAVG=0.25*(V(L-1,MT,N1)+V(L+1,MT,N1)+2.O*V(L,MT,N1))
VAVG=0.25*(V(L-1,MT,N1)+V(L+1,MT,N1)+2.O*V(L,MT,N1))
GO TO 130
GO TO 130
120 UAVG=U(L.MT.N1)
120 UAVG=U(L.MT.N1)
VAVG=V(L,MT,N1)
VAVG=V(L,MT,N1)
130 TAUW=ABS(BE3*UAVG+AL3*VAVG)*DYR
130 TAUW=ABS(BE3*UAVG+AL3*VAVG)*DYR
IF (MDFS.EQ.O) GO TO 160
IF (MDFS.EQ.O) GO TO 160
TAUWP = TAUW
TAUWP = TAUW
IB=3
IB=3
CALL MAP
CALL MAP
MT = MOFS-1
MT = MOFS-1
IF (L.EQ.1.OR.L.EQ.LMAX) GO TO 140
IF (L.EQ.1.OR.L.EQ.LMAX) GO TO 140
UAVG=0.25*(U(L-1.MT.N1)+U(L+1.MT.N1)+2.O*U(L.MT,N1))
UAVG=0.25*(U(L-1.MT.N1)+U(L+1.MT.N1)+2.O*U(L.MT,N1))
VAVG=O.25+(V(L-1.MT.N1)+V(L+1.MT.N1)+2.O+V(L.MT.N1))
VAVG=O.25+(V(L-1.MT.N1)+V(L+1.MT.N1)+2.O+V(L.MT.N1))
GO TO 150
GO TO 150
14O UAVG=U(L.MT.N1)
14O UAVG=U(L.MT.N1)
VAVG=V(L,MT,NI)
VAVG=V(L,MT,NI)
150 TAUWM=ABS(BE3*UAVG+AL3*VAVG)*DYR
150 TAUWM=ABS(BE3*UAVG+AL3*VAVG)*DYR
IB = I BD
IB = I BD
BEGIN THE M OR Y DO LOOP
BEGIN THE M OR Y DO LOOP
160 DO 140O M=MIS.MIF
160 DO 140O M=MIS.MIF
IF (IVC.EQ.O) GO TO 190
IF (IVC.EQ.O) GO TO 190
IF (NVC.NE.1) GO TO 190
IF (NVC.NE.1) GO TO 190
IF (MVCB.NE.1) GO TO 170
IF (MVCB.NE.1) GO TO 170
IF (M.EU.1) GO 10 1400
IF (M.EU.1) GO 10 1400
GO TO 180
GO TO 180
170 IF (MVCT.NE.MMAX) GO TO 180
170 IF (MVCT.NE.MMAX) GO TO 180
IF (M.EQ.MMAX) GO TO 1400
IF (M.EQ.MMAX) GO TO 1400
180 IF (M.LT.MVCB.OR.M.GT.MVCT) GO TO }19
180 IF (M.LT.MVCB.OR.M.GT.MVCT) GO TO }19
GO TO 1400
GO TO 1400
190 IES=O
190 IES=O
IF (M.EQ.MMAX) IES=1
IF (M.EQ.MMAX) IES=1
IF (M.EQ.1.AND.NGCB.NE.O) IES=1
IF (M.EQ.1.AND.NGCB.NE.O) IES=1
IF (M.EQ.MOFS.AND.LDFS.NE.O) IES=1
IF (M.EQ.MOFS.AND.LDFS.NE.O) IES=1
calculate the turbulent mixing lengTh
calculate the turbulent mixing lengTh
IF (ITM.EQ.O.OR.ITM.EQ.3) GO TO 210
IF (ITM.EQ.O.OR.ITM.EQ.3) GO TO 210
IF (NVC.NF.1) GO TO 200
IF (NVC.NF.1) GO TO 200
IF (M.EQ.MIS) CALL MIXLEN (L.M)
IF (M.EQ.MIS) CALL MIXLEN (L.M)
IF (M.EQ.MVCT+1. AND.MVCB.EO, 1)* CALL MIXLEN (L,M)
IF (M.EQ.MVCT+1. AND.MVCB.EO, 1)* CALL MIXLEN (L,M)
IF (M.EQ.MVCT+1.AND.(MDFSC.NE.O.AND.LDFS.NE.O)) CALL MIXLEN (L.M) .
IF (M.EQ.MVCT+1.AND.(MDFSC.NE.O.AND.LDFS.NE.O)) CALL MIXLEN (L.M) .
GO TO 210
GO TO 210
200 IT (M,LO.MVCB) CALL MIXLEN (L,M)
200 IT (M,LO.MVCB) CALL MIXLEN (L,M)
IF (M.EQ.MDFS.AND.(LDFS.NE.O.AND.IDFS.NE.O)) CALL MIXLEN (L,M)
IF (M.EQ.MDFS.AND.(LDFS.NE.O.AND.IDFS.NE.O)) CALL MIXLEN (L,M)
IF (M.EQ.MDFS+1.AND.MDFS.NE.O) CALL MIXLEN (L.M)
IF (M.EQ.MDFS+1.AND.MDFS.NE.O) CALL MIXLEN (L.M)
SET SPECIAL CONDITIONS FOR L=1 OR LMAX
SET SPECIAL CONDITIONS FOR L=1 OR LMAX
210 IF (L.NE.LMAX.AND.L.NE. 1) GO TO 230
210 IF (L.NE.LMAX.AND.L.NE. 1) GO TO 230
TML=O.O
TML=O.O
MUT =0.0
MUT =0.0
TLMUR=0.O
TLMUR=0.O
AVMUR=0.O
AVMUR=0.O
IF (M.EQ.1.OR.M.EQ.MMAX) GO TO 1340
IF (M.EQ.1.OR.M.EQ.MMAX) GO TO 1340
IF (L.EQ.1) GO TO 22O

```
    IF (L.EQ.1) GO TO 22O
```

```
33.14
3315
3316
3317 C
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3.31
3332 C
3333 C
3334 C
3335
3336
3337
3338
3339
3340
3341
3342
3342
3344
3345
3346
3347
3348
3349
3349
3351
3352
3353 C
3354 C
3355 C
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3.367
3368
3305
3370
3371
3371
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
33
```

33.14

```
    IF (LDFSF.EO.LMAX.AND.M.EQ.MDFS) GO TO 1340
    GO TO 230
220 IF (LDFSS.EQ.1.AND.M.EQ.MDFS) GO TO 1340
230 RORR=1.O/RO(L,M,N1)
    MMAP = M
    CALL MAP
    OM=2.O*OM1*OM2/(OM1+OM2)
    BE=2.O*BE3*BE4/(BE3+BE4)
    AL34=AL3+AL4
    DE34=DE3 +DE4
    IF (AL34.EO.O.O) AL34=1.0
    IF (DE34.EQ.O.O) DE34=1.0
    AL=2.O*AL 3*AL4/AL34
    DE=2.O*DE3*DE4/DE34
    IF (YP.NE,O,O) RYP=1.O/YP
    YP3 =YP-O.5*DY/BE3
    YPA = YP+\cap.5*ПY/RF.4
    CHECK FOR ARTIFICAL VISCOSITY
    IF (CAV.EQ.O.O) GO TO 250
    IF (L.LT.LSS.AND.CHECK.EQ.O.O) GO TO 1340
    IF (L..GT.LSF.AND.CHECK.EQ.O.O) GO TO 1340
    IF (M.LT.MSS.AND.CHECK.EQ.O.O) GO TO 1340
    IF (M.GT.MSF.AND.CHECK.EQ.O.O) GO TO 134O
    XV=U(L,M,N1)+U(L,M,N1)+V(L,M,N1)+V(L,M,N1)
    XA=GAMMA *P(L.M,N1)*RORR
    XM=XV/XA
    SMT = 1.0
    IF (NOSLIP.NE.O.AND.XM.LT.1.O) SMT = XM
    IF (SMACH.EO.O.O) GO TO 250
    IF (XM.LT.SMACH*SMACH.AND.CHECK.EQ.O.O) GO TO 24O
    GO TO 250
    240 OUT (L,M)=0.O
    QvT(L,M)=0.O
    QPT(L,M)=0.O
    QROT (L.M)=0.O
    GO TO 134O
    calculate the x derivatives
250 T=P(L,M,N1)/(RO(L,M,N1)*RG)
    A=SORT(GRG*T)
    It (L.EU.i). GO TO 280
    ULM=U(L-1,M,N1)
    VLM=V(L-1,M,N1)
    PLM=P(L-1,M,N1)
    ROLM=RO(L-1.M,Ni)
    OLM=O(L-I,M,Ni)
    ELM=E(L-1,M,N1)
    IF (L.EO.LMAX) GO TO 28O
260 ULP =U(L+1,M,NI)
    VIP=V(II+1,M,N1)
    PLP=P(L+1,M,N1)
    ROLP=RO(LII,M,N1)
    ROLP=RO(L'I,M,N1)
    QLP=Q(L+1,M,N1)
    ELP=E(L+1,M,N1)
    IF (L.EQ.'i) GO TO 290
    IF (M.NE.MUFS) GO TO 280
    IF (L.NE.LDFSS-1) GO TO 270
    ULP=0.5*(ULP+UL(L+1.N1))
    VLP=0.5*(VLP+VL(L+1.N1))
    rLP=0.5*(PLP+PL(L+1.N1))
    ROLP=0.5*(ROLP+ROL(L+1,N1))
    IF (ITM.LE.1) GO TO 28O
    QLP=0.5*(QLP+QL(L+1.N1))
    QLP=0.5*(QLP+QL(L+1,N1))
    GO TO 280
270 IF (L.NE.LDFSF+1) GO TO* 280
    ULM=0.5*(ULM+UL(L-1.N1))
    VLM=0.5*(VLM+VL(L-1,N1))
```

```
    PLM=0.5*(PLM+PL(L-1.N1))
```

 PLM=0.5*(PLM+PL(L-1.N1))
 ROLM=0.5*(ROLM+ROL(L~1,N1))
 ROLM=0.5*(ROLM+ROL(L~1,N1))
 IF (ITM.LE.1) GO TO 280
 IF (ITM.LE.1) GO TO 280
 QLM=O.5+(OLM+OL(L-1.N1))
 QLM=O.5+(OLM+OL(L-1.N1))
 ELM=0.5+(ELM+EL(L-1,N1))
 ELM=0.5+(ELM+EL(L-1,N1))
 280UX1=(U(L.M.NI)-ULM)+OXR
280UX1=(U(L.M.NI)-ULM)+OXR
VX1=(V(L.M.N1)-VLM)*DXR
VX1=(V(L.M.N1)-VLM)*DXR
TLM=PLM/(ROLM+RG)
TLM=PLM/(ROLM+RG)
TX1=(T-TLM) *DXR
TX1=(T-TLM) *DXR
ROX1=(RO(L.M,NI)-ROLM)*DXR
ROX1=(RO(L.M,NI)-ROLM)*DXR
IF (ITM.GE. 2) ROOX=(RO(L.M.N1.)*O(L.M.N1)-ROLM*QLM)*DXR
IF (ITM.GE. 2) ROOX=(RO(L.M.N1.)*O(L.M.N1)-ROLM*QLM)*DXR
IF (L.EQ.LMAX) GO TO 340
IF (L.EQ.LMAX) GO TO 340
290 UX2=(ULP-U(L,M,N1))+DXR
290 UX2=(ULP-U(L,M,N1))+DXR
V\times2=(VLP-V(L,M,N1)) +DXR
V\times2=(VLP-V(L,M,N1)) +DXR
TLP=PLP/(ROLP*RG)
TLP=PLP/(ROLP*RG)
TX2=(TLP-T)*DXR
TX2=(TLP-T)*DXR
ROX2=(ROLP-RO(L,M,N1))+DXR
ROX2=(ROLP-RO(L,M,N1))+DXR
IF (ITM.GE.2) ROQX=(ROLP*OLP-RO(L,M,N1)*Q(L,M,N1))*DXR
IF (ITM.GE.2) ROQX=(ROLP*OLP-RO(L,M,N1)*Q(L,M,N1))*DXR
IF (L.EQ.1) GO TO 3AO
IF (L.EQ.1) GO TO 3AO
IF (CAV.EO.O.O) GO TO 300
IF (CAV.EO.O.O) GO TO 300
IF (ISS.EO.O) GO TO 300
IF (ISS.EO.O) GO TO 300
ALP = SQRT (GRG * TLP)
ALP = SQRT (GRG * TLP)
ALM=SORT(GRG *TLM)
ALM=SORT(GRG *TLM)
AX1=(A-ALM)*DXR
AX1=(A-ALM)*DXR
AX2=(ALP-A)*DXR
AX2=(ALP-A)*DXR
300 IF (ITM.LE.1) GO TO 32O
300 IF (ITM.LE.1) GO TO 32O
ROQX = (ROLP*QLP-ROLM*QLM)*DXR*O.5
ROQX = (ROLP*QLP-ROLM*QLM)*DXR*O.5
QX1=(Q(L.M.N1)-QLM)*DXR
QX1=(Q(L.M.N1)-QLM)*DXR
QX2=(OLP-Q(L,M,N1))*DXR
QX2=(OLP-Q(L,M,N1))*DXR
Q2X=0.5*(SQRT (QLP) - SORT (QLM))*DXR
Q2X=0.5*(SQRT (QLP) - SORT (QLM))*DXR
IF (ITM.EQ.3) GO TO 310
IF (ITM.EQ.3) GO TO 310
ROSQ=RO(L,M,N1)*SQRT(Q(L,M,N1))
ROSQ=RO(L,M,N1)*SQRT(Q(L,M,N1))
ROSQ1=RO(L-1,M,N1)*SQRT(Q(L-1,M,N1))
ROSQ1=RO(L-1,M,N1)*SQRT(Q(L-1,M,N1))
ROSQ2=RO(L+1,M,N1)*SORT(O(L+1,M,N1))
ROSQ2=RO(L+1,M,N1)*SORT(O(L+1,M,N1))
GO TO 320
GO TO 320
310 EX1=(E(L,M,N1)-ELM)*DXR
310 EX1=(E(L,M,N1)-ELM)*DXR
EX2=(ELP-E(L,M,N1))*DXR
EX2=(ELP-E(L,M,N1))*DXR
MUT=CQMU*RO(L,M,N1)*Q(L,M,N1)*Q(L,M,N1)*LC/E (L,M,N1)
MUT=CQMU*RO(L,M,N1)*Q(L,M,N1)*Q(L,M,N1)*LC/E (L,M,N1)
MUT 1=CQMU*ROLM*GLM*QLM*LC/ELM
MUT 1=CQMU*ROLM*GLM*QLM*LC/ELM
MUT 2 = CQMU*ROLP*QLP*QLP*LC/ELP
MUT 2 = CQMU*ROLP*QLP*QLP*LC/ELP
320 IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 330
320 IF (M.NE.MDFS.OR.LDFS.EQ.O) GO TO 330
IF (IB.EO.3) GO TO 680
IF (IB.EO.3) GO TO 680
GO TO 490
GO TO 490
330 IF (M.EQ. 1) GO TO 490
330 IF (M.EQ. 1) GO TO 490
IF (M.EQ.MMAX) GO TO 68O
IF (M.EQ.MMAX) GO TO 68O
BEGIN THE INTERIOR POINT Y DERIVATIVE CALCULATION
BEGIN THE INTERIOR POINT Y DERIVATIVE CALCULATION
34U UYP=UY/BE
34U UYP=UY/BE
UMP=U(L,M+1,N1)
UMP=U(L,M+1,N1)
UMM=U(L,M-1,N1)
UMM=U(L,M-1,N1)
VMP = V(L,M+1,N1)
VMP = V(L,M+1,N1)
VMM=V(L,M-1,N1)
VMM=V(L,M-1,N1)
PMP = P(L.M+1,N1)
PMP = P(L.M+1,N1)
PMM=P(L,M-1,N1)
PMM=P(L,M-1,N1)
ROMP =RO(L,M+1,N1)
ROMP =RO(L,M+1,N1)
ROMM=RO(L,M-1,N1)
ROMM=RO(L,M-1,N1)
QMP=Q(L,M+1,N1)
QMP=Q(L,M+1,N1)
OMM=Q(L,M-1,N1)
OMM=Q(L,M-1,N1)
EMP = E(L,M+1,N1)
EMP = E(L,M+1,N1)
EMM=E(L,M-Y,N1)
EMM=E(L,M-Y,N1)
IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 350
IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 350
ULPMP=U(L+1,M+1,N1)
ULPMP=U(L+1,M+1,N1)
ULMMP =U(L-1,M+1,N1)
ULMMP =U(L-1,M+1,N1)
ULPMM=U(L+1,M-1,N1)
ULPMM=U(L+1,M-1,N1)
ULMMM=U(L-1.M-1,N1)
ULMMM=U(L-1.M-1,N1)
VLPMP =V (L+1,M+1,N1)
VLPMP =V (L+1,M+1,N1)
VLMMP =V (L-1,M+1,N1)
VLMMP =V (L-1,M+1,N1)
VLPMM=V(L+1,M-1,N1)
VLPMM=V(L+1,M-1,N1)
VLMMM =V(L-1,M-1,N1)
VLMMM =V(L-1,M-1,N1)
PLPMP = P(L+1,M+1,N1)
PLPMP = P(L+1,M+1,N1)
PLMMP = P(L-1,M+1,N1)
PLMMP = P(L-1,M+1,N1)
PLPMM=P(L+1,M-1,N1)
PLPMM=P(L+1,M-1,N1)
PLMMM=P(L-1.M-1,N1)

```
    PLMMM=P(L-1.M-1,N1)
```

| 3460 | | RULPMP $=$ RO ($L+1, M+1, N 1)$ |
| :---: | :---: | :---: |
| 3461 | | ROLMMP $=$ RO ($L-1, M+1, N 1)$ |
| 3462 | | - ROLPMM $=$ RO ($L+1, M-1, N 1$) |
| 3463 | | ROLMMM $=$ RO ($L-1, M-1, N 1$) |
| 3464 | | QLPMP $=0(L+1, M+1, N 1)$ |
| 3465 | | QLMMP $=0(L-1, M+1, N 1)$ |
| 3466 | | $Q L P M M=Q(L+1, M-1, N 1)$ |
| 3467 | | QLMMM $=$ Q (L-1, M-1, N1) |
| 3468 | | $E L P M P=E(L+1, M+1, N 1)$ |
| 3469 | | $E L M M P=E(L-1, M+1, N 1)$ |
| 3470 | | $E L P M M=E(L+1, M-1, N 1)$ |
| 3471 | | $E L M M M=E(L-1, M-1, N 1)$ |
| 3472 | 350 | IF (IVC.EQ.O) GO TO 380 |
| 3473 | | IF (NVC.EQ.1) GO TO 380 |
| 3474 | | IF (M.EQ.MVCB) GO TO 360 |
| 3475 | | IF (M.EQ.MVCT) GO TO 370 |
| 3476 | | GO TO 380 |
| . 3477 | S | |
| 3478 | C | LINEAR INTERPOLATION IN TIME FOR M=MVCB |
| 3479 | C | |
| 3480 | 360 | $U M M=U(L, M-1, N N 1)+R I N D *(U(L, M-1, N N 3)-U(L, M-1, N N 1))$ |
| 3481 | | $V M M=V(L, M-1, N N 1)+R I N D *(V(L, M-1, N N 3)-V(L, M-1, N N 1))$ |
| 3482 | | $F M M=P(L, M 1, N A 1)+R I N D *(P(L, M=1, N M 3)-D(I, M-1, N N 11)$ |
| 3483 | | ROMM $=$ RO(L, M-1, NN1) +RIND* (RO(L, M-1, NN3)-RO(L, M-1, NN1)) |
| 3484 | | $Q M M=Q(L, M-1, N N 1)+R I N D *(Q(L, M-1, N N 3)-Q(L, M-1, N N 1) ~)$ |
| 3485 | | $E M M=E(L, M-1, N N 1)+$ RIND ${ }^{(1)}(E(L, M-1, N N 3)-E(L, M-1, N N i))$ |
| 3486 | | IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 390 |
| 3487 | | $U L P M M=U(L+1, M-1, N N 1)+R I N D *(U(L+1, M-1 . N N 3)-U(L+1, M-1, N N 1))$ |
| 3488 | | ULMMM $=\mathrm{U}(\mathrm{L}-1, M-1, N \mathrm{~T} 1)+\mathrm{RIND} *(U(L-1, M-1, N N 3)-U(L-1, M-1, N N 1))$ |
| 3489 | | $V L P M M=V(L+1, M-1, N N 1)+R I N D *(V(L+1, M-1, N N 3)-V(L+1, M-1, N N 1))$ |
| 3490 | | $V L M M M=V(L-1, M-1, N N 1)+$ RIND* $(V(L-1, M-1, N N 3)-V(L-1, M-1, N N 1))$ |
| 3491 | | $P L P M M=P(L+1 . M-1 . N N 1)+$ RIND* $(P(L+1, M-1 . N N 3)-P(L+1, M-1 . N N 1))$ |
| 3492 | | PLMMM $=$ P(L-1, M-1, NN1)+RIND* (P(L-1, M-1.NN3)-P(L-1.M-1.NN1)) |
| 3493 | | IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 380 |
| 3494 | | |
| 3495 | | ROLMMM $=$ RO(L-1, M-1, NN1) +RIND*(RO(L-1, M-1, NN3)-RO(L-1.M-1, NN 1)) |
| 3496 | | IF (ITM.LE. 1) GO TO 380 |
| 3497 | | $Q L P M M=Q(L+1, M-1, N N 1)+R I N D *(Q(L+1, M-1 . N N 3)-O(L+1, M-1, N N 1))$ |
| 3498 | | |
| 3499 | | $E L P M M=E(L+1, M-1, N N 1)+$ RIND* $(E(L+1, M-1, N N 3)-E(L+1, M-1 . N N 1))$ |
| 3500 | | $E L M M M=E(L-1, M-1, N N 1)+R I N D *(E(L-1, M-1, N N 3)-E(L-1, M-1, N N 1))$ |
| 3501 | | GO TO 380 |
| 3502 | C | |
| 3503 | C | LINEAR INTERPOLATION IN TIME FOR M=MVCT |
| $35 \cap 1$ | r. | |
| 3505 | 370 | UMP = UU 1 (L) +RIND + (UU2 (L) - UU 1 (L)) |
| 3506 | | VMP = VV1 (L) +RIND * (VV2(L)-VV1(L)) |
| 3507 | | PMP = PP 1 (L) +RIND* (PP2(L)-PP1(L)) |
| 3508 | | ROMP = RORO 1 (L) + RIND* (RORO2 (L)-RORO $1(L)$) |
| 3509 | | QMP = QOi(L) + RINU + (002 (L)-001 (L)) |
| 3510 | | $E M P=E E 1(L)+$ RINO* (EE2(L)-EE1(L)) |
| 3511 | | IF (L.EQ.LMAX.OR.L.EQ. 1) GO TO 390 |
| 3512 | | ULPMP = UU1 $1(L+1)+$ R1ND* (UU2 ($L+1$) - UU 1 (L+1)) |
| 3513 | | ULMMP = UU 1 (L-1) + R IND + (UU2 (L-1)-UU $1(L-1)$) |
| 3514 | | VLPMP = VV1 $(L+1)+$ RIND* (VV2 $(L+1)-\mathrm{VV} 1(L+1))$ |
| 3515 | | VLMMP = VV1 $(L-1)+$ RIND* (VV2 $(L-1)-V V 1(L-1))$ |
| 3516 | | PLPMP = PP $1(L+1)+$ RINO* $(P P 2(L+1)-P P 1(L+1))$ |
| 3517 | | PLMMP = PP 1 (L-1)+RIND + (PP2 (L-1)-PP1(L-1)) |
| 3518 | | IF (ITM.EO.O.AND.CAV.EQ.O.O) GO TO 380 |
| 3519 | | ROI, PMP = RORO $1(L+1)+$ RIND * (RORO2 $(L+1)-\operatorname{RORO} 1(L+1))$ |
| 3520 | | ROLMMP = RORO $1(L-1)+\mathrm{RIND} *(\operatorname{RORO} 2(L-1)-\operatorname{RORO} 1(L-1))$ |
| 3521 | | IF (ITM.LE. 1) GO TO 380 |
| 3522 | | QLPMP - QQ $1(L+1)+$ I IND* $($ QQ2 $(L+1)-\mathrm{OQ1}(1+1))$ |
| 3523 | | QLMMP = QQ $1(L-1)+$ RIND* (QQ2 (L-1)-OQ1 $(1-1))$ |
| 3524 | | $E L P M P=E E 1(L+1)+$ RIND*(EE2 $(L+1)-E E 1(L+1))$ |
| 3525 | | ELMMP = EE1(L-1)+RIND*(EE2(L-1)-EF1(1-1)) |
| 3526 | C | |
| 3527 | C | CALCULATE THE INTERIOR POINT Y DERIVATIVES |
| 3528 | C | |
| 3529 | 380 | IF (L.EQ.LMAX.OR.L.EQ. 1) GO TO 390 |
| 3530 | | UY $1=0.25$ * (UMP + ULMMP-UMM-ULMMM) *DYR |
| 3531 | | UY $2=0.25$ (UMP + ULPMP - UMM - ULPMM $)$ * DYR |

```
VY \(1=0.25 *(V M P+V L M M P-V M M-V L M M M) * D Y R\) VY2 \(=0.25\) * (VMP +VLPMP - VMM-VLPMM) *DYR UX3=0.25* (ULP+ULPMM-ULM-ULMMM) *DXR \(U \times 4=0.25 *(U L P+U L P M P-U L M-\) ULMMP \() * D X R\) VX3=0.25* (VLP +VLPMM-VLM-VLMMM) *DXR \(V \times 4=0.25 *(V L P+V L P M P-V L M-V L M M P) * D X R\)
\(390 \vee Y 3=(V(L, M, N 1)-V M M) * D Y R\)
VY4 \(=(V M P-V(L, M, N I)) * D Y R\)
UY3=(U(L,M,N1)-UMM)*DYR
UY4 \(=(\) UMP \(-U(L, M, N 1))\) *DYR
\(T M M=P M M /(R O M M+R G)\)
\(T M P=P M P /(R O M P * R G)\)
\(T Y 3=(T-T M M) * D Y R\)
\(T Y 4=(T M P-T) * D Y R\)
ROY3 \(=(\) RO (L, M, N1) - ROMM ) *DYR
ROY4 \(=(\) ROMP-RO(L,M,N1)) *DYR
IF (ITM.LT.2) GO TO 400
ROQY \(=(\) ROMP * QMP - ROMM \(* Q M M) * D Y R * O .5\)
IF (IQSD.EQ.O.OR.NVC.EQ. 1) GO TO 400
IF (M.EQ.MVCB.OR.M.EQ.MVCT) GO TO 400 ROOY = OQT (L.M)
400 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 4 to TLMMM = PLMMM/(ROLMMM*RG)
TLMMP = PLMMP / (ROLMMP*RG)
TLPMM \(=\) PLPMM \(/(\) ROLPMM*RG)
TLPMP = PLPMP / (ROLPMP*RG)
TY \(1=0.25 *(T M P+T L M M P-T M M-T L M M M) * D Y R\)
TY2=0.25* (TLPMP + TMP - TLPMM-TMM) *DYR
TX3=0.25* (TLP + TLPMM - TLM - TLMMM) *DXR
\(T \times 4=0.25 *(T L P M P+T L P-T L M M P-T L M) * D X R\)
IF (ITM.EQ.O. AND.CAV.EQ.O.O) GO TO 450
ROY \(1=0.25 *(\) ROMP + ROLMMP -ROMM-ROLMMM \()\) * DYR
ROY \(2=0.25 *(\) ROMP + ROLPMP -ROMM - ROLPMM \() * D Y R\)
ROX3 \(=0.25 *(\) ROLP + ROLPMM-ROLM-ROLMMM \() * D X R\)
ROX4 \(=0.25 *(\) ROLP + ROLPMP - ROLM - ROLMMP \() * D X R\)
410 IF (CAV.EQ.O.O) GO TO 430
IF (NDIM.EQ.O) GO TO 420
ATERM \(=V(L, M, N 1) * R Y P\)
ATERM3 \(=0.5 *(V(L, M, N 1)+V M M) * R Y P\)
ATERM4 \(=0.5 *(V(L, M, N 1)+V M P) * R Y P\)
IF (L.EQ. 1.OR.L.EQ.LMAX) GO TO 420 ATERM1=0.5*(V(L,M,N1)+V(L-1.M,N1))*RYP ATERM2 \(=0.5 *(V(L, M, N 1)+V(L+1, M, N 1)) * R Y P\)
420 IF (ISS.EQ.O) GO TO 430 .
\(A M P=S Q R T(G R G * T M P)\)
\(A M M=S Q R T\) (GRG*TMM)
\(A Y 3=(A-A M M) * D Y R\)
\(A Y 4=(A M P-A) * D Y R\)
430 IF (ITM.LE. 1) GO TO 450
IF (L.EO.1.OR.L.EO.LMAX) GŨ TO 450 QY \(1=0.25 *(Q M P+Q L M M P-Q M M-Q L M M M) * D Y R\) QY2 \(=0.25 *(Q M P+Q L P M P-Q M M-Q L P M M) * D Y R\) \(Q \times 3=0.25 *(O L P+Q L P M M-Q L M-O L M M M) * O X R\) QX4 \(=0.25 *(\) QLP + OLPMP - OLM-OLMMP \() * D X R\) QY3 \(=(Q(L, M, N 1)-Q M M)\) ) DYR
QY4 \(=(Q M P-O(L, M, N 1)) * D Y R\) Q2Y \(=0.5+(S Q R T(\) OMP \()-S Q R T(Q M M)) * D Y R\) IF (ITM.EO.3) GU TO 440 ROSQ3 = ROMM*SORT (QMM) ROSQ4 = ROMP + SQRT ( QMP ) GO TO 450
440 EY \(1=0.25 *(E M P+E L M M P-E M M-E L M M M) * D Y R\) \(E Y 2=0.25 *(E M P+E L P M P-E M M-E L P M M)+D Y R\) \(E \times 3=0.25 *(E L P+E L P M M-E L M-E L M M M) * O X R\) EX4 \(=0.25 *(E L P+E L P M P-E L M-E L M M P) * D X R\) \(E Y 3=(E(L, M, N 1)-E M M) * D Y R\) \(E Y 4=(E M P-E(L, M, N 1)) * D Y R\) MUT \(3=C Q M U * R O M M * Q M M * Q M M * L C / E M M\) MUT \(4=C\) CMU *ROMP * OMP * QMF * LC/EMP
```

[^1]```
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
364.4
3615
3616
3617
3618
3619
3620
352.1
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
363J
3634
3635
3636
3637
3638
3639
3840
3641
3642
364.3
3644
3645
3G40
3647
7FAR
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
JGGE
3667
3668
3669
3670
3671
3672
3673
3674
3675 C
```

```
450 IF (L.NE.LMAX.AND.L.NE.1) GO TO }85
```

450 IF (L.NE.LMAX.AND.L.NE.1) GO TO }85
IF (L.EQ.1) GO TO 460
IF (L.EQ.1) GO TO 460
UX2 = - UX1
UX2 = - UX1
V\times2 = - v \1
V\times2 = - v \1
TX2=-TX1
TX2=-TX1
ROX2=-ROX1
ROX2=-ROX1
ROLP=ROLM
ROLP=ROLM
TLP=TLM
TLP=TLM
QLP=QLM
QLP=QLM
ELP=ELM
ELP=ELM
GO TO 47O
GO TO 47O
460 UX 1= -UX2
460 UX 1= -UX2
V\times1=-v\times2
V\times1=-v\times2
TX1=-TX2
TX1=-TX2
ROX1=-ROX2
ROX1=-ROX2
ROLM=ROLP
ROLM=ROLP
TLM=TLP
TLM=TLP
QLM=QLP
QLM=QLP
ELM=ELP
ELM=ELP
470 YP 1=YP
470 YP 1=YP
YP2=YP
YP2=YP
UY 1=0.0
UY 1=0.0
UY2=0.0
UY2=0.0
VY1=0.0
VY1=0.0
VY2-0.0
VY2-0.0
UX3=0.0
UX3=0.0
U\times4=0.0
U\times4=0.0
v\times3=0.0
v\times3=0.0
VN4=0.0
VN4=0.0
TY1=0.0
TY1=0.0
TY2=0.0
TY2=0.0
1X3=0.0
1X3=0.0
TX4=0.0
TX4=0.0
ROY 1=0.0
ROY 1=0.0
ROY2=0.0
ROY2=0.0
ROX3=0.0
ROX3=0.0
ROX4-0.0
ROX4-0.0
ATERM1=ATERM
ATERM1=ATERM
ATERM2=ATERM
ATERM2=ATERM
AX1=0 O
AX1=0 O
AX2=0.0
AX2=0.0
IF (ITMM.LE.1) GO TO 850
IF (ITMM.LE.1) GO TO 850
OK1-0.0
OK1-0.0
Q\times2=0.0
Q\times2=0.0
OY1=0.0
OY1=0.0
OY2=0.0
OY2=0.0
0\times3=0.0
0\times3=0.0
0\times4=0.0
0\times4=0.0
OY 3=0.0
OY 3=0.0
QY4=0.0
QY4=0.0
EX1=0.0
EX1=0.0
E\times2 =0.0
E\times2 =0.0
E.Y 1=0.0
E.Y 1=0.0
EY2=0.O
EY2=0.O
EX'S=U.U
EX'S=U.U
EX4=0:0
EX4=0:0
EY3=0.0
EY3=0.0
EY4=0.0
EY4=0.0
IF (ITM.EQ.3) GO TO 480
IF (ITM.EQ.3) GO TO 480
ROSQ=RO(L,M,N1)*SQRT(Q(L,M,N1))
ROSQ=RO(L,M,N1)*SQRT(Q(L,M,N1))
ROSQ:=ROSQ
ROSQ:=ROSQ
ROSQ2=ROSQ
ROSQ2=ROSQ
ROSQJ=ROMM+ GORT (OMM)
ROSQJ=ROMM+ GORT (OMM)
ROSQ4 = ROMP * SORT ( QMP )
ROSQ4 = ROMP * SORT ( QMP )
GO TO 850
GO TO 850
480 MUT =CQMU*RO(L,M,N1)*Q(L,M,N1)*Q(L,M.N1)*LC/E(L,M.N1)
480 MUT =CQMU*RO(L,M,N1)*Q(L,M,N1)*Q(L,M.N1)*LC/E(L,M.N1)
MUT 1 = MUT
MUT 1 = MUT
MUT2=MUT:
MUT2=MUT:
MUT 3 = CQMU * ROMM + QMM + QMM * LC/EMM
MUT 3 = CQMU * ROMM + QMM + QMM * LC/EMM
MUT 4 = CQMU *ROMP * QMP * QMP * LC/EMP
MUT 4 = CQMU *ROMP * QMP * QMP * LC/EMP
GO TO 850
GO TO 850
C

```
\begin{tabular}{|c|c|c|}
\hline 3676 & C & BEGIN THE CENTERBODY OR UPPER DUAL FLOW SPACE BOUNDARY POINT \\
\hline 3677 & C & y derivative calculation \\
\hline 3678 & C & \\
\hline 3679 & 490 & DYP \(=\) DY/8E4 \\
\hline 3680 & & UMP \(=U(L, M+1, N 1)\) \\
\hline 3681 & & \(V M P=V(L . M+1, N i)\) \\
\hline 3682 & & PMP \(=P(L, M+1, N 1)\) \\
\hline 3683 & & \(\mathrm{ROMP}=\mathrm{RO}(\mathrm{L}, \mathrm{M}+1, \mathrm{~N} 1)\) \\
\hline 3684 & & QMP \(=\) Q (L, M \(+1, N 1\)) \\
\hline 3685 & & \(E M P=E(L, M+1, N 1)\) \\
\hline 3686 & & UX4=0.25*(U(L+1.M, N1) +U(L+1,M+1,N1)-U(L-1,M,N1)-U(L-1,M+1,N1))*DXR \\
\hline 3687 & & \(V \times 4=0.25 *(V(L+1, M, N 1)+V(L+1 . M+1, N 1)-V(L-1, M, N 1)-V(L-1, M+1 . N 1)) * D \times R\) \\
\hline 3688 & & UY4 \(=(\) UMP-U(L, M, NI \()\)) *DYR \\
\hline 3689 & & VYA \(=(\) VMP -V(L, M, N1) \() *\) DYR \\
\hline 3690 & & TMP \(=\) PMP / (ROMP * RG) \\
\hline 3691 & & TLMMP \(=P(L-1, M+1, N 1) /(R O(L-1, M+1, N 1) * R G)\) \\
\hline 3692 & & TLPMP \(=P(L+1, M+1, N 1) /(R O(L+1, M+1, N 1) * R G)\) \\
\hline 3693 & & TX4 \(=0.25 *(\) TLPMP + TLP - TLMMP - TLM) *DXR \\
\hline 3694 & & \\
\hline 3695 & & IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 500 \\
\hline 3696 & & ROX4 \(=0.25 *(R O(L+1, M, N 1)+R O(L+1, M+1, N 1)-R O(L-1, M, N 1)-R O(L-1, M+1, N 1)\) \\
\hline 3697 & & 1)*DXR \\
\hline 3698 & & ROY4 \(=(\) ROMP -RO(L,M,N1) \()\) +DYR \\
\hline 3699 & & IF (ITM.LE.1) GO TO 500 \\
\hline 3700 & & QX4 \(=0.25 *(O(L+1, M, N 1)+Q(L+1 . M+1 . N i)-Q(L-1 . M, N 1)-Q(L-1 . M+1, N 1)) *\) DXR \\
\hline 3701 & & QY4 \(=(\) OMP-Q(L,M.N1) \()\) *DYR \\
\hline 3702 & & IF (ITM.EQ.2) GO TO 500 \\
\hline 3703 & & EX4 \(=0.25 *(E(L+1, M, N 1)+E(L+1, M+1, N 1)-E(L-1, M, N 1)-E(L-1, M+1, N 1)) * D \times R\) \\
\hline 3704 & & EY4 \(=(E M P-E(L, M, N 1)) *\) PrR \\
\hline 3705 & C & \\
\hline 3706 & C & REFLECT the Centerbody or upper dual flow space boundary \\
\hline 3707 & C & CONDITIONS \\
\hline 3708 & C & \\
\hline 3709 & 500 & IF (M.EQ. \({ }^{\text {d }}\) AND.NGCB.EQ.O) GO TO 590 \\
\hline 3710 & & IF (IVBC.NE.O) Go to 600 \\
\hline 3711 & & IF (M.EQ.MDFS) GO TO 510 \\
\hline 3712 & & DNXNY = NXNYCB(L) \\
\hline 3713 & & DNXNYP = NXNYCB (L+1) \\
\hline 3714 & & DNXNYM \(=\) NXNYCB(L-1) \\
\hline 3715 & & GO TO 520 \\
\hline 3716 & 510 & DNXNY = NXNYU(L) \\
\hline 3717 & & DNXNYP = NXNYU(L+1) \\
\hline 3718 & & DNXNYM \(=\) NXNYU(L-1) \\
\hline 3719 & 520 & THEW = ATAN (-DNXNY) \\
\hline 3720 & & IF (UMP.EQ.O.O) GO TO 530 \\
\hline 3721 & & THE = \(\operatorname{ITAN(VMP/UMP)~}\) \\
\hline 3722 & & GO TO 510 \\
\hline 3723 & 530 & THE \(=0.0\) \\
\hline 3724 & 540 & IF (UMP.LT.O.O) THE=THE+3.14159 \\
\hline 3725 & & VMAG \(=\) SQRT (UMP*UMP + VMP *VMP) \\
\hline 3726 & & RTHE \(=2.0 *\) THEW - THE \\
\hline 3727 & & IF (NOSLIP .EQ.1.AND.NGCB.NE.O) RTHE=3.14159+THE \\
\hline 3728 & & IF (NOSLIP.EQ.1.AND.M.EQ.MDFS) RTHE=3.14159+THE. \\
\hline 3729 & & UMM \(=\) VMAG * COS (RTHE) \\
\hline 3730 & & VMM = VMAG*SIN(RTHE) \\
\hline 3731 & & THEW=ATAN(-DNXNYP) \\
\hline 3732 & & IF (U(L+1.M+1.N1).EO.O.O) GO TO 550 \\
\hline 3733 & & THE = ATAN(VIL+1, M + , Ni)/U(L+1, M + 1, N1) \()\) \\
\hline 3734 & & GO TO 560 \\
\hline 37.35 & 550 & THE=0.0 \\
\hline 3736 & 560 & IF (U(L+1.M+1,N1).LT.O.O) THE=THE+3.14159 \\
\hline 3737 & & VMAG \(=\) SQRT \((U(L+1, M+1, N 1) * U(L+1, M+1, N 1)+V(L+1 . M+1, N 1) * V(L+1 . M+1 . N 1))\) \\
\hline 3738 & & RTHE \(=2.0 *\) THEW - THE \\
\hline 3739 & & IF (NOSLIP.EQ. \(1 . A N D . N G C B . N E . O) ~ R T H E=3.14159+\) THE \\
\hline 3740 & & IF (NUSLIP.EO.1.AND.M.EQ.MDFS) RTHE = 3.14159+THE \\
\hline 3741 & & ULPMM \(=\) VMAG \(* \operatorname{COS}\) (RTHE) \\
\hline 3712 & & VLPMM \(=\) VMAG*SIN(RTHE) \\
\hline 3743 & & THEW=ATAN(-DNXNYM) \\
\hline 3744 & & IF (U(L-I.M+1.NT).EQ.O.O) GO TO 570 \\
\hline 3745 & & \(\operatorname{THE}=\operatorname{ATAN}(V(L-1, M+1, N 1) / U(L-1 . M+1, N 1))\) \\
\hline 3746 & & GO TO 580 \\
\hline 3747 & 570 & THE \(=0.0\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3748 & 580 & IF (U(L-1.M+1.N1).LT.O.O) \(\mathrm{THE}=\mathrm{THE}+3.14159\) \\
\hline 3749 & & \\
\hline 3750 & & RTHE \(=2.0 * T H E W-\) THE \\
\hline 3751 & & IF (NOSLIP.EQ.1. AND.NGCB.NE.O) RTHE=3.14159+THE \\
\hline 3752 & & IF (NOSLIP.EQ.1.AND.M.EQ.MDFS) RTHE \(=3.14159+\mathrm{THE}\) \\
\hline 3753 & & ULMMM = VMAG*COS (RTHE) \\
\hline 3754 & & VLMMM = VMAG*SIN(RTHE) \\
\hline 3755 & C & \\
\hline 3756 & & RFL \(=2.0 *\) DNXNY*DYP / (\(1.0+\) DNXNY * DNXNY \()\) \\
\hline 3757 & & RFLP \(=2.0 *\) DNXNYP*DYP/(1.O+DNXNYP*DNXNYP) \\
\hline 3758 & & RFLM \(=2.0 * D N X N Y M * D Y P /(1.0+D N X N Y M * D N X N Y M)\) \\
\hline 3759 & & TTERM=0.5*(OM1*TX \(1+0 \mathrm{M} 2\) * TX2) \\
\hline 3760 & & TMM \(=\) TMP + TTERM*RFL \\
\hline 3761 & & TLPMM \(=\) TLPMP + TTERM*RFLP \\
\hline 3762 & & TLMMM - TLMMP + TTERM + RFLM \\
\hline 3763 & & IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 610 \\
\hline 3764 & & ROTERM \(=0.5 *(O M 1 * R O X 1+O M 2 * R O X 2)\) \\
\hline 3765 & & \(R O M M=R O M P+R O T E R M+R F L\) \\
\hline 3766 & & \\
\hline 3757 & & ROLMMM \(=\) RO \((L-1, M+1, N 1) \neq R O T E R M * R F L M\) \\
\hline 3768 & & IF (ITM.LE.1) GO TO 610 \\
\hline 3769 & & QTERM \(=0.5 *(O M 1 * Q X 1+O M 2 * O X 2)\) \\
\hline 3770 & & QMM \(=\) QMP + QTERM + RFL \\
\hline 3771 & & \(Q L . P M M=Q(L+1 . M+1, N 1)+Q T E R M+R F L P\) \\
\hline 3772 & & \(Q L M M M=O(L-1, M+1, N 1)+Q T E R M * R F L M\) \\
\hline 3773 & & IF (ITM.EQ.2) GO TO 610 \\
\hline 3774 & & ETERM \(=0.5\) * (OM1*EX1+OM2*EX2) \\
\hline 3775 & & \(E M M=E M P+E T E R M+R F L\) \\
\hline 3776 & & \(E L P M M=E(L+1, M+1, N 1)+E T E R M * R F L P\) \\
\hline 3777 & & \(E L M M M=E(L-1, M+1, N 1)+E T E R M * R F L M\) \\
\hline 3778 & & GO TO 610 \\
\hline 3779 & C & \\
\hline 3780 & C & REFLECT THE CENTERLINE OR MIDPLANE BOUNDARY CONDITIONS \\
\hline 3781 & C & \\
\hline 3782 & 590 & \(U M M=U M P\) \\
\hline 3783 & & \(V M M=-V M P\) \\
\hline 3784 & & ULFMM-U \((L+1, M+1, N 1)\) \\
\hline 3785 & & \(V L P M M=-V(L+1, M+1, N 1)\) \\
\hline 3786 & & \(U L M M M=U(L-1, M+1, N 1)\) \\
\hline 378\% & & \(V L M M M=-V(L-1, M+1, N 1)\) \\
\hline 3788 & & TMM \(=\) TMP \\
\hline 3789 & & TI, PMM \(=\) TI, PMP \\
\hline ล7กก & & TLMMMETIMMP \\
\hline 3791 & & IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 610 \\
\hline 3792 & & ROMM = ROMP \\
\hline 3793 & & ROLPMM \(=\) RO (\(L+1, M+1, N 1\)) \\
\hline 3794 & & ROLMMM \(=\) RO (\(L-1 . M+1, N 1\)) \\
\hline 3795 & & IF (ITM.LE.1) GO TO 610 \\
\hline 3796 & & QMM \(=\) QMP \\
\hline 3797 & & QLPMM \(=Q(L+1, M+1, N 1)\) \\
\hline 3798 & & OLMMM \(=O(L-1, M+1, N 1)\) \\
\hline 3799 & & IF (ITM.EQ.2) GO TO 610 \\
\hline 3800 & & \(E M M=E M P\) \\
\hline 3801 & & \(E L P M M=E(L+1, M+1, N 1)\) \\
\hline 3802 & & \(E L M M M=E(L * I, M * 1, N I)\) \\
\hline 3803 & & GO TO 610 \\
\hline 3804 & C & \\
\hline 3805 & C & EXTRAPOLATE THE CENTERBODY OR UPPER DUAL FLOW SPACE BOUNDARY \\
\hline 3806 & C & CUNUL'TIUNS \\
\hline 3007 & C & \\
\hline 3808 & 600 & UMM \(=\mathrm{U}(\mathrm{L}, \mathrm{M}, \mathrm{N} 1)+\mathrm{F} 2 \mathrm{I} *(\mathrm{U}(\mathrm{L}, \mathrm{M}, \mathrm{N} 1)-\mathrm{UMP})\) \\
\hline 3809 & & \(V M M=V(L, M, N 1)+F 2 I *(V(L, M, N 1)-V M P)\) \\
\hline 3810 & & ULPMM \(=U(L+1 ; M ; N 1)+F 2 I+(U(L+1 ; M ; N 1)-U(L+1 ; M+1 ; N 1)\) \\
\hline 3811 & & \(V L P M M=V(L+1, M, N 1)+F 2 I *(V(L+1, M, N 1)-V(L+1, M+1, N 1)\) \\
\hline 3812 & & \\
\hline 3813 & & \(V L M M M=V(L-1, M, N 1)+F 2 I *(V(L-1, M, N 1)-V(L-1, M+1, N 1))\) \\
\hline 3814 & & TMM \(=T+F 2 I *(T-T M P)\) \\
\hline 3815 & & TLPMM \(=T L P+F 2!*(T L P-T L P M P)\) \\
\hline 3816 & & TLMMM \(=\) TLM + F 21 I* (TLM-TLMMP) \\
\hline 3817 & & IF (ITM.EQ.O.AND.CAV.EO.O.O) GO TO 610 \\
\hline 3818 & & ROMM \(=\) RO(L, M, N1) +F2I*(RO(L, M, N1)-ROMP) \\
\hline 3819 & & ROLPMM \(=R O(L+1, M, N 1)+F 2 I *(R O(L+1, M, N 1)-R O(L+1, M+1, N 1))\) \\
\hline
\end{tabular}

3894 3895
```

    AMM=SQRT(GRG*TMM)
    ```
 AMM=SQRT(GRG*TMM)
 AY3=(A-AMM)*DYR
 AY3=(A-AMM)*DYR
 AY4=(AMP - A) + OYR
 AY4=(AMP - A) + OYR
660 IF (ITM.LE.1) GO TO 850
660 IF (ITM.LE.1) GO TO 850
 ROQY =O.5*(ROMP*OMP - ROMM *QMM)*DYR
 ROQY =O.5*(ROMP*OMP - ROMM *QMM)*DYR
 QY 1=0.25*(QMP +Q(L-1,M+1,N1)-QMM-QLMMM) &DYR
 QY 1=0.25*(QMP +Q(L-1,M+1,N1)-QMM-QLMMM) &DYR
 QY2=O.25*(OMP+Q(L+1,M+1,N1)-QMM-QLPMM)+DYR
 QY2=O.25*(OMP+Q(L+1,M+1,N1)-QMM-QLPMM)+DYR
 QY 3=(Q(L,M,N1)-QMM)*DYR
 QY 3=(Q(L,M,N1)-QMM)*DYR
 Q\times3=O.25*(Q(I_+1.M.N1)+QLPMM-O(L-1.M.N1)-QLMMM) *DXR
 Q\times3=O.25*(Q(I_+1.M.N1)+QLPMM-O(L-1.M.N1)-QLMMM) *DXR
 Q2Y=0.5*(SQRT(ABS(QMP))-SORT(ARS(OMM)))*DYR
 Q2Y=0.5*(SQRT(ABS(QMP))-SORT(ARS(OMM)))*DYR
 IF (ITM.EQ.3) GO TO 670
 IF (ITM.EQ.3) GO TO 670
 ROSQ3 = ROMM + SQRT (ABS (QMM))
 ROSQ3 = ROMM + SQRT (ABS (QMM))
 ROSQ4 = ROMP * SQRT (ABS (QMP))
 ROSQ4 = ROMP * SQRT (ABS (QMP))
 GO TO 850
 GO TO 850
 670 EY1=O.25*(EMP+E(L-1,M+1.N1)-EMM-ELMMM)*DYR
 670 EY1=O.25*(EMP+E(L-1,M+1.N1)-EMM-ELMMM)*DYR
 EY2=0.25*(EMP+E(L+1.M+1,N1)-EMM-ELPMM)*DYR
 EY2=0.25*(EMP+E(L+1.M+1,N1)-EMM-ELPMM)*DYR
 EY3=(E(L,M,N1)-EMM)*DYR
 EY3=(E(L,M,N1)-EMM)*DYR
 FX3=0. 25*(E(L+1,M,N1)+ELPMM-E (L-1,M,N1)-ELMMM)*DXR
 FX3=0. 25*(E(L+1,M,N1)+ELPMM-E (L-1,M,N1)-ELMMM)*DXR
 MUT 3 = CQMU*ROMM*QMM*QMM*LC/ABS(EMM)
 MUT 3 = CQMU*ROMM*QMM*QMM*LC/ABS(EMM)
 MUT 4 = CQMU *ROMP * QMP *QMP * LC/ABS (EMP)
 MUT 4 = CQMU *ROMP * QMP *QMP * LC/ABS (EMP)
 IF (M.EQ.1.AND.NGCB.EQ.O) MUT = O.5*(MUT3+MUT4)
 IF (M.EQ.1.AND.NGCB.EQ.O) MUT = O.5*(MUT3+MUT4)
 GO TO 850
 GO TO 850
 BEGIN THE WALL OR LOWER DUAL FLOW SPACE BOUNDARY POINT
 BEGIN THE WALL OR LOWER DUAL FLOW SPACE BOUNDARY POINT
 Y DERIVATIVE CALCULATION
 Y DERIVATIVE CALCULATION
680 DYP=DY/8E3
680 DYP=DY/8E3
 UMM=U(L,M-1,N1)
 UMM=U(L,M-1,N1)
 VMM=V(L,M-1,N1)
 VMM=V(L,M-1,N1)
 PMM=P(L,M-1,N1)
 PMM=P(L,M-1,N1)
 ROMM=RO(L,M-1,N1)
 ROMM=RO(L,M-1,N1)
 QMM=Q(L,M-1,N1)
 QMM=Q(L,M-1,N1)
 EMM=E(L,M-1,N1)
 EMM=E(L,M-1,N1)
 UX3=0.25*(U(L+1.M.N1)+U(L+1,M-1.N1)-U(L-1,M.N1)-U(L-1,M-1,N1))*DXR
 UX3=0.25*(U(L+1.M.N1)+U(L+1,M-1.N1)-U(L-1,M.N1)-U(L-1,M-1,N1))*DXR
 V\times3=0.25*(V(L+1,M,N1)+V(L+1,M-1,N1)-V(L-1,M,N1)-V(L-1,M-1,N1))*OXR
 V\times3=0.25*(V(L+1,M,N1)+V(L+1,M-1,N1)-V(L-1,M,N1)-V(L-1,M-1,N1))*OXR
 UY3=(U(L,M,N1)-UMM)*DYR
 UY3=(U(L,M,N1)-UMM)*DYR
 VY3=(V(L,M,N1)-VMM)*DYP.
 VY3=(V(L,M,N1)-VMM)*DYP.
 TLPMM=P(L+1,M-1,N1)/(RO(L+1,M-1,N1)*RG)
 TLPMM=P(L+1,M-1,N1)/(RO(L+1,M-1,N1)*RG)
 TMM=PMM/(ROMM*RG)
 TMM=PMM/(ROMM*RG)
 TLMMM=P(L-1,M-1,N1)/(RO(L-1,M-1,N1)*RG)
 TLMMM=P(L-1,M-1,N1)/(RO(L-1,M-1,N1)*RG)
 TX3=0.25*(TLP+TL.PMM-TLM-TLMMM)*DXR
 TX3=0.25*(TLP+TL.PMM-TLM-TLMMM)*DXR
 TY3=(T-TMM) = DYR
 TY3=(T-TMM) = DYR
 IF (ITM, EQ.O.AND.GAV.EQ.O.O) GO TO 690
 IF (ITM, EQ.O.AND.GAV.EQ.O.O) GO TO 690
 ROX3=0.25*(RO(L+1,M,N1)+RO(L+1,M-1,N1)-RO(L-1,M,N1)-RO(L-1,M-1,N1)
 ROX3=0.25*(RO(L+1,M,N1)+RO(L+1,M-1,N1)-RO(L-1,M,N1)-RO(L-1,M-1,N1)
 1)*DXR
 1)*DXR
 ROY3=(RO(L,M,N1)-ROMM)*DYR
 ROY3=(RO(L,M,N1)-ROMM)*DYR
 IF (ITM.LE.1) GO TO 690
 IF (ITM.LE.1) GO TO 690
 Q\times3=0.25+(Q(L+1.M,N1)+Q(L+1,M-1,N1)-Q(L-1,M,N1)-Q(L-1,M-1,N1))*DXR
 Q\times3=0.25+(Q(L+1.M,N1)+Q(L+1,M-1,N1)-Q(L-1,M,N1)-Q(L-1,M-1,N1))*DXR
 QY3=(Q(L,M,N1)-QMM)*DYR
 QY3=(Q(L,M,N1)-QMM)*DYR
 IF (ITM.EQ.2) GO TO 690
 IF (ITM.EQ.2) GO TO 690
 EX3=O.25*(E(L+1,M,N1)+E(L+1,M-1,N1)-E(L-1,M,N1)-E(L-1,M-1,N1))*DXR
 EX3=O.25*(E(L+1,M,N1)+E(L+1,M-1,N1)-E(L-1,M,N1)-E(L-1,M-1,N1))*DXR
 FY:Z=(F(1,M.N1)-FMM)*חYR
 FY:Z=(F(1,M.N1)-FMM)*חYR
 REFLECT THE WALL OR LOWER DUAL FLOW SPACE BOUNDARY CONDITIONS
 REFLECT THE WALL OR LOWER DUAL FLOW SPACE BOUNDARY CONDITIONS
690 IF (IVBC.NE.O) GO TO 780
690 IF (IVBC.NE.O) GO TO 780
 IF (IWALL.EU.I.ANU.M.LU.MMAX) GU IU IUU
 IF (IWALL.EU.I.ANU.M.LU.MMAX) GU IU IUU
 IF (M.EO.MDFS) GO TO 700
 IF (M.EO.MDFS) GO TO 700
 DNXNY=NXNY(L)
 DNXNY=NXNY(L)
 ONXNYP=NXNY (L+1)
 ONXNYP=NXNY (L+1)
 DNXNYM=NXNY(L-1)
 DNXNYM=NXNY(L-1)
 GO TO 71O
 GO TO 71O
7O\cap nNXNY=NXNYI (1)
7O\cap nNXNY=NXNYI (1)
 DNXNYP=NXNYL(L+1)
 DNXNYP=NXNYL(L+1)
 DNXNYM=NXNYL(L-I)
 DNXNYM=NXNYL(L-I)
 710 THEW=ATAN(-DNXNY)
 710 THEW=ATAN(-DNXNY)
 IF (UMM.EQ.O.O) GO TO 72O
 IF (UMM.EQ.O.O) GO TO 72O
 THE = ATAN(VMM/UMM)
 THE = ATAN(VMM/UMM)
 GO TO 730
 GO TO 730
720 THE =0.O
720 THE =0.O
730 IF (UMM.LT.O.O) THE =THE+3.14!59
730 IF (UMM.LT.O.O) THE =THE+3.14!59
 VMAG = SQRT (UMM*UMM + VMM * VMM)
 VMAG = SQRT (UMM*UMM + VMM * VMM)
 RTHE =2.O*THEW-THE
```

    RTHE =2.O*THEW-THE
    ```
```

3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992 C
3993
3994
3995
3996
3997
3998
3999
4 0 0 0
4 0 0 1
4002
4 0 0 3
4004
4 0 0 5
4 0 0 6
4 0 0 7
4008
4 0 0 9
4010
4011
4012
4 0 1 3
4014
1016
4 0 1 6 ~ C
4 0 1 7 \mathrm { C }
4 0 1 8 ~ C
4019
4 0 2 0
4021
4 0 2 2
4 0 2 3
4024
4 0 2 5
4 0 2 6
4 0 2 7
4028
4 0 2 9
4 0 3 0
4 0 3 1
4 0 3 2
4 0 3 3
4 0 3 4
4 0 3 5
4 0 3 6
4037
4038

```
```

    IF (NOSLIP.EO.1) RTHE=3.14159+THE
    ```
 IF (NOSLIP.EO.1) RTHE=3.14159+THE
 UMP = VMAG * COS (RTHE)
 UMP = VMAG * COS (RTHE)
 VMP = VMAG*SIN(RTHE)
 VMP = VMAG*SIN(RTHE)
 THEW=ATAN(-DNXNYP)
 THEW=ATAN(-DNXNYP)
 IF (U(L+1,M-1,N1).EQ.O.O) GO TO 740
 IF (U(L+1,M-1,N1).EQ.O.O) GO TO 740
 THE=ATAN(V(L+1,M-1.N4)/U(L+1,M-1.N1))
 THE=ATAN(V(L+1,M-1.N4)/U(L+1,M-1.N1))
 GO TO 750
 GO TO 750
740 THE=O.O
740 THE=O.O
750 IF (U(L+1.M-1.N1).LT.O.O) THE=THE+3.14159
750 IF (U(L+1.M-1.N1).LT.O.O) THE=THE+3.14159
 VMAG=SORT(U(L+1.M-1.N1)+U(L+1,M-1.N1)+V(L+1.M-1,N1)+V(L+1.M-1.N1))
 VMAG=SORT(U(L+1.M-1.N1)+U(L+1,M-1.N1)+V(L+1.M-1,N1)+V(L+1.M-1.N1))
 RTHE =2.O+THEW - THE
 RTHE =2.O+THEW - THE
 IF (NOSLIP.EQ.1) RTHE=3.14159+THE
 IF (NOSLIP.EQ.1) RTHE=3.14159+THE
 ULPMP = VMAG*COS(RTHE)
 ULPMP = VMAG*COS(RTHE)
 VLPMP = VMAG + SIN(RTHE)
 VLPMP = VMAG + SIN(RTHE)
 THEW-ATAN(-DNXNYM)
 THEW-ATAN(-DNXNYM)
 IF (U(L-1.M-1,N1).EO.O.O) GO TO }76
 IF (U(L-1.M-1,N1).EO.O.O) GO TO }76
 THE=ATAN(V(L-1.M-1.N1)/U(L-1.M-1.N1))
 THE=ATAN(V(L-1.M-1.N1)/U(L-1.M-1.N1))
 GO TO 770
 GO TO 770
760 THE=O.O
760 THE=O.O
770 IF (U(L-1,M-1,N1).LT.O.O) THE=THE+3.14159
770 IF (U(L-1,M-1,N1).LT.O.O) THE=THE+3.14159
 VMAG=SDRT(U(L-1,M-1.N1)*U(L-1,M-1,N1)+V(L-1.M-1,N1)*V(L-1.M-1.N1))
 VMAG=SDRT(U(L-1,M-1.N1)*U(L-1,M-1,N1)+V(L-1.M-1,N1)*V(L-1.M-1.N1))
 RTHE=2.O*THEW-THE
 RTHE=2.O*THEW-THE
 IF (NOSLIP.EO.1) RTHE=3.14159+THE
 IF (NOSLIP.EO.1) RTHE=3.14159+THE
 ULMMP = VMAG* COS (RTHE)
 ULMMP = VMAG* COS (RTHE)
 VLMMP = VMAG *SIN(RTHE)
 VLMMP = VMAG *SIN(RTHE)
 RFL=2.O*DNXNY*DYP/(1.O+DNXNY*ONXNY)
 RFL=2.O*DNXNY*DYP/(1.O+DNXNY*ONXNY)
 RFLP=2.O*DNXNYP*DYP/(1.O+DNXNYP *DNXNYP)
 RFLP=2.O*DNXNYP*DYP/(1.O+DNXNYP *DNXNYP)
 RFLM=2.O*ONXNYM*OYP/(1.O+ONXNYM*DNXNYM)
 RFLM=2.O*ONXNYM*OYP/(1.O+ONXNYM*DNXNYM)
 TTERM=0.5*(OM1+TX1+OM2*TX2)
 TTERM=0.5*(OM1+TX1+OM2*TX2)
 TMP = TMM - TTERM*RFL
 TMP = TMM - TTERM*RFL
 TLPMP = TLPMM-TTERM*RFLP
 TLPMP = TLPMM-TTERM*RFLP
 TLMMP = TLMMM-TTERM*RFLM
 TLMMP = TLMMM-TTERM*RFLM
 IF (ITM.EQ.O.AND.CAV.EO.O.O) GO TO }79
 IF (ITM.EQ.O.AND.CAV.EO.O.O) GO TO }79
 ROTERM=0.5*(OM1*ROX1+OM2*ROX2)
 ROTERM=0.5*(OM1*ROX1+OM2*ROX2)
 ROMP = ROMM - ROTERM*RFL
 ROMP = ROMM - ROTERM*RFL
 ROLPMP=RO(L+1,M-1,N1)-ROTERM*RFLP
 ROLPMP=RO(L+1,M-1,N1)-ROTERM*RFLP
 ROLMMP=RO(L-1.M-1,N1)-ROTERM*RFLM
 ROLMMP=RO(L-1.M-1,N1)-ROTERM*RFLM
 IF (ITM.LE.1) GO TO 790
 IF (ITM.LE.1) GO TO 790
 OTERM=0.5*(OM1*QX1+OM2*OX2)
 OTERM=0.5*(OM1*QX1+OM2*OX2)
 OMP = OMM - QTERM +RFL
 OMP = OMM - QTERM +RFL
 OLPMP=Q(L+1,M-1.N1)-QTERM+RFLP
 OLPMP=Q(L+1,M-1.N1)-QTERM+RFLP
 OLMMP =O(L-1,M-1,N1)-OTERM+RTLM
 OLMMP =O(L-1,M-1,N1)-OTERM+RTLM
 IF (ITM.EO.2) GO TO 790
 IF (ITM.EO.2) GO TO 790
 ETERM=O.5*(OM1*EX1+OM2*EX2)
 ETERM=O.5*(OM1*EX1+OM2*EX2)
 EMP = EMM - ETERM * RFL
 EMP = EMM - ETERM * RFL
 ELPMP=E(L+1,M-1,N1)-ETERM*RFLP
 ELPMP=E(L+1,M-1,N1)-ETERM*RFLP
 ELMMP = E(L-I,M-1,NI)-ETERM*RFLM
 ELMMP = E(L-I,M-1,NI)-ETERM*RFLM
 GO TO 700
 GO TO 700
 EXTRAPQLATE THE WALL OR LOWER DUAL FLOW SPACE BOUNDARY CONDITIONS
 EXTRAPQLATE THE WALL OR LOWER DUAL FLOW SPACE BOUNDARY CONDITIONS
 780 UMP =U(L.M.Ni)+F2I*(U(L,M,N1)-UMM)
 780 UMP =U(L.M.Ni)+F2I*(U(L,M,N1)-UMM)
 VMP=V(L,M,N1)+F2I*(V(L,M,N1)-VMM)
 VMP=V(L,M,N1)+F2I*(V(L,M,N1)-VMM)
 ULPMP=U(L+1,M,N1)+F2I*(U(L+1,M,N1)-U(L+1,M-1,N1))
 ULPMP=U(L+1,M,N1)+F2I*(U(L+1,M,N1)-U(L+1,M-1,N1))
 VLPMP =V(L+1,M,N1) +F2I*(V(L+1,M,N1)-V(L+1,M-1,N1))
 VLPMP =V(L+1,M,N1) +F2I*(V(L+1,M,N1)-V(L+1,M-1,N1))
 ULMMP=U(L-1,M,N1)+F2I+(U(L-1,M,N1)-U(L-1,M-1,N1))
 ULMMP=U(L-1,M,N1)+F2I+(U(L-1,M,N1)-U(L-1,M-1,N1))
 VL.MMP =V(L-1.M.N1)+F2I*(V(L-1.M.N1)-V(L-1.M-1.N1))
 VL.MMP =V(L-1.M.N1)+F2I*(V(L-1.M.N1)-V(L-1.M-1.N1))
 TMP=T+F2I*(T-TMM)
 TMP=T+F2I*(T-TMM)
 TLPMP = TLP +F 2I ((TLP-TLPMM)
 TLPMP = TLP +F 2I ((TLP-TLPMM)
 TLMMP=TLMHF2I*(TLM-TLMMM)
 TLMMP=TLMHF2I*(TLM-TLMMM)
 IF (ITM.EO.O.AND.CAV.EQ.O.O) GO TO 790
 IF (ITM.EO.O.AND.CAV.EQ.O.O) GO TO 790
 ROMP=RO(L,M,N1)+F2I*(RO(L,M,N1)-ROMM)
 ROMP=RO(L,M,N1)+F2I*(RO(L,M,N1)-ROMM)
 ROLPMP = RO(L+1,M,N1) +F2I+(RO(L+1,M,N1)-RO(L+1,M-1,N1))
 ROLPMP = RO(L+1,M,N1) +F2I+(RO(L+1,M,N1)-RO(L+1,M-1,N1))
 ROLMMP=RO(L-1,M,N1)+F2I*(RO(L-1,M,N1)-RO(L-1,M-1,N1))
 ROLMMP=RO(L-1,M,N1)+F2I*(RO(L-1,M,N1)-RO(L-1,M-1,N1))
 IF (ITM.LF.1) GO TO 79O
 IF (ITM.LF.1) GO TO 79O
 QMP=O(L,M,NI)+F2I*(O(L,M,N1)-OMM)
 QMP=O(L,M,NI)+F2I*(O(L,M,N1)-OMM)
 QLPMP=Q(L+1,M,N1)+F2I*(O(L+1,M,N1)-O(L+1,M-1,N1))
 QLPMP=Q(L+1,M,N1)+F2I*(O(L+1,M,N1)-O(L+1,M-1,N1))
 QLMMP=Q(L-1,M,N1)+F2I*(O(L-1,M,N1)-Q(L-1,M-1,N1))
 QLMMP=Q(L-1,M,N1)+F2I*(O(L-1,M,N1)-Q(L-1,M-1,N1))
 IF (ITM.EQ.2) GO TO 790
 IF (ITM.EQ.2) GO TO 790
 EMP=E(L,M,N1)+F2T*(F(I.,M,N1)-EMM)
 EMP=E(L,M,N1)+F2T*(F(I.,M,N1)-EMM)
 ELPMP =E(L+1,M,N1)+F2I*(E(L+1,M,N1)-E(L+1,M-1,N1))
```

    ELPMP =E(L+1,M,N1)+F2I*(E(L+1,M,N1)-E(L+1,M-1,N1))
    ```
```

4 0 3 9
4 0 4 0 ~ C
4 0 4 1 ~ C ~
4 0 4 2 ~ C
4 0 4 3
4 0 4 4
4 0 4 5
4 0 4 6
4 0 4 7
4 0 4 8
4 0 4 9
4 0 5 0
4 0 5 1
4 0 5 2
4 0 5 3
4 0 5 4
4056
4 0 5 6
4 0 5 7
4 0 5 8
4 0 5 9
4 0 6 0
4061
4 0 6 2
4 0 6 3
4 0 6 4
4 0 6 5
4 0 6 6
4 0 6 7
4 0 6 8
4 0 6 9
4 0 7 0
4 0 7 1
4 0 7 2
4 0 7 3
4 0 7 4
4 0 7 5
4 0 7 6
4 0 7 7
4 0 7 8
4079
4NRO
4 0 8 1
4 0 8 2
4083
4084
4 0 8 5
4086
4087
4 0 8 8
4 0 8 9
4 0 9 0
4 0 9 1
4 0 9 2
4 0 9 3
4 0 9 4
4 0 3 5
4 0 9 6
4 0 9 7
4 0 9 8
4 0 9 9
4100
4101
4102
4 1 0 3
4104
4105
4106
4 1 0 7
4108 C
4109 C
4110 C
790 IF (M.NE.MDFS) GO TO 810
IF (L.NE.LDFSF) GO TO 800
ULPMP =U(L+1,M+1,N1)
VLPMP =V(L+1,M+1,N1)
TLPMP = P(L+1.M+1.N1)/(RO(L+1.M+1.N1)*RG)
ROLPMP=RO(L+1,M+1,N1)
IF (ITM.LE.1) Go to 810
OLPMP =Q(L+1,M+1,N1)
ELPMP =E(L+1,M+1,N1)
GO TO }81
800 IF (L.NE.LDFSS) GO TO 810
ULMMP =U(L-1,M+1,N1)
VLMMP =V(L-1,M+1,N1)
TLMMP =P(L-1,M+1,N1)/(RO(L-1,M+1,N1)*RG)
NOLMMP=RO(L-1;M+1,N1)
IF (ITM.LE.1) GO TO 810
OLMMP=Q(L-1.M+1,N1)
ELMMP =E (L-1,M+1,N1)
810 UY1=0.25*(UMN+ULPAMP-UMM-U(L-1,M-1,N1))*DYN
VYi=0.25*(VNAP +VLMMMP}-VMMM-V (L-i,M-1,N1 ) *DYF
UY2=0.25*(UMP+ULPMP-UMM-U(L+1,M-1,N1))*DYR
VY2=0.25*(VMP+VLPMP-VMM-V(L+1,M-1,N1))*DYR
UY4=(UMP-U(L,M,N1))*DYR
VY4=(VMP-V(L,M,N1)) +DYR
UX4=0.25*(U(L+1,M.N1)+ULPMP-U(L-1,M,N1)-ULMMP ) *DXR
VX4=O.25*(V(L+1,M.N1)+VLPMP-V(L-1,M,N1)-VLMMP)*DXR
TY 1=0.25*(TMP TLLMMP -TMM - TLMMM ) *DYR
TY2=0.25*(TMP+TLPMMP-TMM-TLPMM)*DYR
TX4=0.25*(TLP +TLPMP - TLM - TLMMP )*DXR
TY4=(TMP-T)*DYR
TMP = TMP
IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 850
ROY 1=O.25*(ROMP+ROLMMP-ROMM-RO(L-1,M-1,N1))*DYR
ROY2=0.25*(ROMP+ROLPMP - ROMM-RO(L+1,M-1,N1))*DYR
ROX4=0.25*(RO(L+1,M,N1)+ROLPMP-RO(L-1,M,N1)-ROLMMP)*DXR
ROY4=(ROMP-RO(L,M,N1)) *DYR
If (CAV.EQ.O.O) GO TO 830
IF (NDIM.EQ.O) GO TO 820
ATERM=V(L,M.NI)*RYP
ATERM1=0.5*(V(L,M,N1)+V(L-1,M,N1))*RYP
ATERM2=0.5*(V(L,M.N1) +V(L+1.M.N1))*RYP
ATLRM3=0.E:(V(L.M.N1) +VMM) %RYR
ATERM4=0.5*(V(L,M.N1)+VMP ) +RYP
820 IF (ISS.EQ.O) GO TO 830
AMP = SORT (GRG*TMP)
AMM=SORT(GRG*TMM)
AY3=(A-AMM) *DYR
AYA = (AMP-A ) *DYR
830 IF (ITM.LE.1) GO.TO 850
ROQY=0.5*(ROMP*OMP - ROMM*OMM )*DYR
OY 1=0.25*(OMP +OL.MMP-OMM-O(L-1.M-1,N1))*DYR
OY2=0.25*(OMP+QLPMP-OMM-O(L+1.M-1.N1))*DYR
Q\times1=0:25*(Q(L+1;M,N1)+QLPMP-Q(L-1,M,N1)=QLMMP ) *DYR
OY4=(OMP-Q(L,M,N1))*DYR
Q2Y =0.5*(SQRT(ABS(QMP))-SQRT(ABS (QMM))) +DYR
IF (ITM.EQ.3) GO TO 840
ROSOB=ROMM*SORT (ABS (OMM))
ROSO4 =ROMP*SORT (ABS (OMP ))
GO TO 850
840 EY1=U.25*(EMP+ELMMP-EMM-E(L-1.M-1.N1))+UYR
EY2=0.25*(EMP+ELPMP-EMM-E(L+1,M-1.N1) ) +DYR
EX4=0.25*(E(L+1,M,N1)+ELPMP-E(L-1,M,N1)-ELMMP)*DXR
EY4=(EMP-E (L,M,N1))*DYR
MUT3=COMU*ROMM*OMM*QMM*LC/ABS (EMM)
MUT4 = COMU*ROMP *QMP *OMP *LC/ABS(EMP)
COMBINE TERMS

```

4111
4112
41 13
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174 C
4175 C
4176 C
```

850 UXY $1=O M 1 * U X 1+A L * U Y 1$
$U X Y 2=O M 2+U X 2+A L * U Y 2$
$U X Y 3=O M+U X 3+A L 3+U Y 3$
$U X Y 4=O M * U X 4+A I 4+1 J Y 4$
UXY 12=0.5*(OM1*UX1+OM2*UX2+AL3*UY3+AL4*UY4)
$V X Y 1=O M 1+V X 1+A L * V Y 1$
$V X Y 2=O M 2 * V \times 2+A L * V Y 2$
$V \times Y 3=O M * V \times 3+A L 3 * V Y 3$
$V \times Y 4=O M+V \times 4+A L 4+V Y 4$
$V X Y 12=0.5 *(O M 1 * V X 1+O M 2 * V \times 2+A L 3 * V Y 3+A L 4 * V Y 4)$
$B U Y 1=B E+U Y 1$
BUY2 $=\mathrm{BE} * \mathrm{UY} 2$
BUY $3=B E 3$ * UY 3
BUY $4=B E 4$ +UY 4
BUY $34=0.5$ * ( BE 3 +UY $3+$ BE 4*UY4)
$B \vee Y 1=B E * V Y 1$
$B \vee Y 2=B E * V Y 2$
$B \vee Y 3=B E 3 * V Y 3$
$B \vee Y 4=B E 4 * V Y 4$
$B \vee Y 34=0.5 *(B E 3 * V Y 3+B E 4 * V Y 4)$
$T X Y 1=O M 1 * T X 1+A L * T Y 1$
$T X Y 2=O M 2 * T X 2+A L * T Y 2$
$T X Y 3=O M+T X 3+A L 3+T Y 3$
$T X Y 4=O M+T X 4+A L 4+T Y 4$
BTY3=EE3*TY3
BTY4=BE4*TY4
IF (ITM.EO.O.AND.CAV.EQ.O.O) GO TO 940
ROXY $1=0 \mathrm{M} 1$ *ROX $1+A L * R O Y 1$
ROXY $2=O M 2 * R O X 2+A L * R O Y 2$
$R O X Y 3=O M * R O X 3+A L 3 * R O Y 3$
ROXY $4=O M+R O X 4+A L 4+R O Y 4$
ROXY $12=0.5 *(O M 1 * R O X 1+O M 2 * R O X 2+A L 3 * R O Y 3+A L 4 * R O Y 4)$
BROY $1=B E+$ ROY 1
BROY $2=B E$ *ROY 2
BROY $3=8 E 3 *$ ROY 3
BROY $4=$ BE 4 * ROY 4
BROY $34=0.5 *(E E 3 * R O Y 3+B E 4 * R O Y 4)$
IF (ISS.EQ.O) GO TO 860
$A X Y 1=O M 1 * A X 1+0.5 * A L *(A Y 3+A Y 4)$
$A X Y 2=O M 2 * A X 2+O .5 * A L+(A Y 3+A Y 4)$
$A X Y 12=0.5 *(A X Y .1+A X Y 2)$
BAY3=BE3*AY3
$B A Y 4=B E 4 * A Y 4$
BAY34=0.5* (BAY3+BAY4)
860 IF (L.EQ.1.OR.L.EQ.LMAX) GO TO 870
IF (ITM.LE.1) GO TO 870
$Q X Y 1=O M 1 * Q X 1+A L * Q Y 1$
$Q \times Y 2=O M 2 * Q X 2+A L * Q Y 2$
$Q X Y 3=O M * Q X 3+A L 3 * Q Y 3$
$O X Y 4=O M * Q X 4+A L 4+O Y 4$
BQY3=BE 3*OY 3
BQY4 $=$ BE 4 *: $2 Y 4$
BQY34 $=0.5 *(B E 3 *$ OY $3+B E 4 * Q Y 4)$
$\mathrm{O} 2 \mathrm{XY}=\mathrm{OM} * \mathrm{Q} 2 X+\mathrm{AL} * \mathrm{Q} 2 Y$
$B O 2 Y=B E * Q 2 Y$
IF (ITM.EQ.2) GO TO 870
$E X Y 1=O M 1 * E X 1+A L * E Y 1$
EXY2 OUM2*EX2+AL*EY2
$E X Y 3=O M * E X 3+A L 3 * E Y 3$
$E X Y 4=O M * E X 4+A L 4 * E Y 4$
BEY $3=B E 3 * E Y 3$
BEY4=BE4 *EY4
BEY34=0.5* (BE3*EY3+BE4*EY4)
CALCULATE THE ARTIFICAL VISCOSITY COEFFICIENTS
870 IF (CAV.EO.O.O) GO TO 940
IF (L.LT.LSS) GO TO 880
IT (L.GT.LST) GD TO 000
IF (M.LT.MSS) GO TO 880
IF (M.GT.MSF) GO TO 880
IF (SMACH.EQ.O.O) GO TO 890

```
```

4183
4184
4185
4186
4187
4188
4 1 8 9
4 1 9 0
4191
4192
4 1 9 3
4 1 9 4
4 1 9 5
4196
4197
4 1 9 8
4199
4200
42n1
42n2
4 2 0 3
4 2 0 4
4205
4206
4 2 0 7
4208
4 2 0 9
4210
4211
4212
4213
4214
4215
4216
4217
4218
4 2 1 9
4220
4221
4222
4723
4224
4225
4226
4 2 2 7
4 2 2 8
4 2 2 9
4 2 3 0
4 2 3 1
4 2 3 2
4233
4 2 3 4
4 2 3 5
4 2 3 6
4 2 3 7
4 2 3 8
4239 C
4240 C
4241 C
4242
4 2 4 3
4244
4)45
4246
4247
4248
4249
4 2 5 0
4 2 5 1
4 2 5 2
4253
4254
IF (XM.LT.SMACH*SMACH) GO TO 88O
GO TO 890
880 DIV1=0.0
DIV2=0.0
DIV3=0.0
DIV4=0.0
GO TO 910
890 DIV1=UXY1+BVY1+ATERM1
DIV2=UXY2+BVY2+ATERM2
DIV3=UXY3+BVY3+ATERM3
DIV4=UXY44+BVY4+ATERM4
IF (IDIVC.NE.O) GO TO 910
IF (L.EQ.1.OR.L.EQ.LMAX) GO TO }90
IF (DIV1.GT.O.O) DIVI=0.0
IF (DIV2.GT.O.O) DIV2=0.0
900 IF (DIV3.GT.O.O) DIV3=0.0
IF (DIV4.GT.O.O) UIV4=0.0
910 IF (ISS.EQ.O) GO TO 930
IF (ISS.EO.1) GO TO 920
DIV1=ABS(DIV1)+ABS(AXY1+BAY34)
DIV2 =ABS(DIV2) +ABS(AXY2 +BAY 34)
DIV3=ABS(DIV3)+ABS(AXY12+BAY3)
DIV4=ABS(DIV4)+ABS(AXY12+BAY4)
GO TO 930
920 IF (DIV1.NE.O.O) DIV =ABS(DIV1)+ABS(AXY1+BAY34)
IF (DIV2.NE.O.O) DIV2=ABS(DIV2) +ABS(AXY2+BAY34)
IF (DIV3.NE.O.O) DIV3=ABS(DIV3)+ABS(AXY12+BAY3)
IF (DIV4.NE.O.O) DIV4=ABS(DIV4) +ABS(AXY12+BAY4)
930 DRLA=XLA*CAV*2.O*RO(L,M,N1)*DXP*DYP
RLA 1=DRLA*ABS(DIV1)
RLA2=ORLA*ABS(DIV2)
RLA3=DRLA*ABS(DIV3)*SMT
RLA4 =DRLA*ABS(DIVA)*SMT
RLA =0.25*(RLA1+RLA2+RLA3+RLA4)
XMULA = XMUS/XLA
RMU1= XMULA R RLA1
RMU2 = XMULA R RLA2
RMU3 = XMULA * RLA3
RMU4 = X.MULA * RLA44
RMU =0.25*(RMU 1+RMU2+RMU3+RMU4)
RK 1=nRK - FMM| |
RK2-DRK + RMU2
RK3 = DRK * RMU3
RK4 =DRK *RMU4
RK=0.25*(RK1+RK2+RK3+RK4)
RRO1 = XRO * RMU 1
RRO2 = XRO*RMU2
RRO3 = XRO*RMU3
RRO4 = XRU + RMU4
RRO=O.25*(RRO 1+RRO2+RRO3+RRO4)
RLP2M=RLA+2.O*RMU
RLP2M1=RLA1+2.O*RMU 1
RLP2M2 =RLA 2+2.O+RMU2
RLP2M3=RLA3+2.O*RMU3
RLP2M4 =RLA4+2.O*RMU4
RLPM=RLA +RMU
CALCULATE THE MOLECULAR VISCOSITY COEFFICIENTS
940 IF (CHECK.EO.O.O) GO TO 1t90
TCHECK=T*TLP*TLM *TMP *TMM
IF (TCHECK.GT.O.O) GO TO 950
NP=N+NSTART
WRITE (6.1510) NP.L.M.NVC
IERR=1
RETURN
950 IF (ECHECK.EQ.O.O) GO TO 960
IF (ECHECK.LT.O.O) GO TO 970
MU=CMU*T**EMU
LA=CLA*T**ELA
K=CK*T**EK
MU1 = (CMU*TLM**EMU +MU )*0.5

```
```

4 2 5 5
4 2 5 6
4 2 5 7
4258
4 2 5 9
4260
4 2 6 1
4 2 6 2
4 2 6 3
4 2 6 4
4 2 6 5
426G
4267 C
4268
4269
4 2 7 0
4 2 7 1
4272
4 2 7 3
4274
4 2 7 5
4 2 7 6
4 2 7 7
4 2 7 8
4 2 7 9
4280
4 2 8 1
4282
4 2 8 3
4 2 8 4 ~ C
4 2 8 5
4 2 8 6
4 2 8 7
4 2 8 8
4 2 8 9
4 2 9 0
4 2 9 1
4 2 9 2
4 2 9 3
4 2 9 4
4 2 9 5
4 2 9 6
4 2 9 7
4 2 9 8
4 2 9 9
4300
4 3 0 1
4302
4303
4304
4305
4306
4307
4308
4 3 0 9
4310
4311
4312
4313 C
4314 C CALCULATE THE TURBULENT VISCOSITY COEFFICIENTS
4315 C
4316
4 3 1 7
4 3 1 8
4319 C
4320
4321
4322
4323
4324
4325
4326
4 3 2 7
MU2 = (CMU*TLP**EMU+MU)*O.5
MU3 =(CMU*TMM +*EMU+MU)*0.5
MU4 =(CMU +TMP + +EMU+MU) + O. 5
LA1 =(CLA +TLM**ELA+LA)*0.5
LA2=(CLA*TLP**ELA+LA)*0.5
LA3-(CLA +TMM + ELA LLA) +O.S
LA4 = (CLA *TMP * * LLA LLA)*O.5
K1=(CK+TLM*+EK+K)*O.5
K2 =(CK*TL_P+*EK+K)*O.5
K3=(CK*TMM**EK+K)*0.5
KA = (CK*TMP**EK+K)*0.5
GO TO 980
C
960 MU = CMU
MU 1 = CMU
MU2 = CMU
MU3 = CMU
MU4 =CMU
LA=CLA
LA1=CLA
LA2=CLA
LA3=CLA
LA4=CLA
K=CK
K1=CK
K2=CK
K3=CK
K4=CK
GO TO 980
C
970 SOT =T**EMU
MU=CMU*SQT
LA=CLA*SOT
K=CK*SOT
SOTLM=(TLM**EMU+SQT)*0.5
SQTLP = (TLP**EMU + SQT )*0.5
SOTMM=(TMM**EMUISSOT)*0.5
SOTMP = (TMP **EMU +SQT ) *O. 5
MU1=CMU * SQTLM
MU2 = CMU*SOTLP
MU3 = CMU * SOTMM
MU4 = CMUJ*SOTMP
LAI=CL_A*SOTLM
LA2 =CLA*SOTLP
LA3=CLA*SQTMM
LA4 =CLA * SQTMP
K1=CK*SQTLM
K2=CK*SQTLP
K3=CK*SOTMM
K4 =CK*SQTMP
980 LP2M=LA+2.O*MU
LP2M1=LA 1+2.O*MU1
LP2M2 =LA2 +2.O*MU2
LP2M3=LA3+2.O*MU3
LP2M4=LA4+2.O*MU4
LPM=LA+MU
AVMUR=RMU/MU
IF (RLA.GT.O.O) AVMUR=RLA/MU
IF (ITM.EO.O) GO TO 1190
IF (ITM.EO.3) GO TO 1160
IF (IMIM.EQ.2) GO TO 1010
DELTAY=YSL2-YSL1
IF (IMP.NE.O) GO TO 990
IF (M.LT.MMIN) DELTAY=YMIN-YSLI
IF (M.GT.MMIN) DELTAY=YSL2-YMIN
IF (M.NE.MMIN) GO TO 990
DELTAY=0.5*(YSL2-YSL1)
DELTAY3=YMIN-YSL1
DELTAY4=YSL2-YMIN

```
```

    990 TML=CML1*ABS(DELTAY)
    IF (IMP.EQ.O) TML=CML2*ABS(DELTAY)
    IF (ITM.EQ.2) GO TO 114O
    TML 3 = TML
    TML.4 = TML
    IF (IMP.NE.O) GO TO 108O
    IF (M.EO.MMIN-1.OR.M.EO.MMIN+1) GO TO 1000
    IF (M.NE.MMIN) GO TO 108O
    TML3=CML2*DELTAY3
    TML4 = CML 2 *DELTAY4
    1000 IF (L.NE.LDFSS-1.AND.L.NE.LDFSF+1) GO TO 1080
TML =0.5*TML
TML3=0.5*TML3
TML4 =0.5*TML4
GO TO 108O
C
1010 YWB=YCB(L)
YWT=YW(L)
IF (MDFS.EQ.O) GO TO 1030
IF (IB:EQ:1:OR,M,GT.MDFS) GO TO 1020
YWT = YL(L)
TAUW = TAUWM
GO TO 105O
1020 YWB=YU(L)
TAUW = TAUWP
GO TO 1040
1030 IF (NGCB.EQ.O) GO TO 1050
104O YPD =YP-YWB
YPD3=YP3-YWB
YPD4 = YP4-YWB
GO TO 106O
1050 YPD=YWT-YP
YPD3 =YWT -YP3
YPD4 = YWT - YP4
1060 IF (YPD3.LT.O.O) YPDS=YPD4
IF (YPD4.LT.O.O) YPD4=YPD3
YDUM=SORT(RO(L,M,N1)*MU*TAUW)/(26.O*MU)
YPLUS=YPD*YDUM
YPLUS3=YPD3*YDUM
YPLUSA = YPD4*YDUM
TML =0.4*YPD*(1.O-EXP(-YFLUS))
TML3=0.4*YPD3*(1.O-EXP(-YPLUS3))
TML4=0.4=YPD4-(1.O-EXP(-YPLUS4))
IF (DEL.EO.O.O) GO TO 1070
YTERMD = O.O168*ABS (UBLE) +DELS*RO(L,M,N1)
RDEL = 1.O/DEL
MUTD=YTERMD/(1.O+5.5*(YPD*RDEL)**6)
TMLD=0.0
IF (BUY34.EQ.O.O.AND.VXY12.EQ.O.O) GO TO 1120
TMLD=SQRT(MUTD/(RO(L.M.N1)*SORT(BUY 34*BUY 34*VXY12*VXY12)))
GO TO 108O
1070 TMLD-0.0
MUTD=0.0
GO TO 1120
C
1080 MUT =TML *TML *RO(L.M,N1)*SORT(BUY 34*BUY34+VXY 42*VXY 12)
IF (IMLM.EQ.2.ANO.MUTD.LT.MUT) GO TO \$120
JF (ITM.EQ.2) GO TO 114O
MUT 1=TML *TML*RO(L.M.N1)*SORT(BUY 1*BUY1+VXY1 +VXY1)
MUT2 =TML *TML*RO(L,M,N1)*SORT(BUY2*RUY 2 +VXY2*VXY2)
IF (MOFS.EQ.O) GO TO 1090
IF (L.EQ.LDFSS) MUT 1=MUT
IF (L.EQ.LDFGF) MUT2-MUT
IF (M.GE.MMIN-1.AND.M.LE.MMIN+1) GO TO }109
IF (L.EQ.LDFSS-1) MUT2=MUT
IF (L.EQ.LDFSF+1) MUT1=MUT
1090 IF (NOSLIP.EO.O) GO TO 1110
IF (M.EQ.1.AND.NGCB.NE.O) GO TO 1100
IF (M.EQ.MMAX.AND.IWALL:EO.O) GO TO 1100
IF (M.EQ.MDFS.AND.LDFS.NE.O) GO TO 1100
GO TO 1110
1100 MUT =0.0

```
```

4400 MUT1=0.0
4402
4403
4404
4405
4406
4 4 0 7
4 4 0 8
4 4 0 9
4410
4411
4412
4 4 1 3
4414
4 4 1 5
4416
4417
4418
4419 C
4420
4 4 2 1
4422
4 4 2 3
4424
4425
4426
4427
4 4 2 8
4 4 2 9
4430
4 4 3 1
4432
4433
4434
4435
4436
4437
4 4 3 8 ~ C
4439
4440
4 4 4 1
4442
4443
4444 C
4 4 4 5
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4 4 5 7
4458
4459
4460
4 4 6 1 ~ C
4462
4463
4464
4465
4466
4467
4468
4469 LAT =0.25*(LAT 1+LAT2+LAT3+LAT4)
4470 IF (MUT.EQ.O.O) LAT=O.O
4471 KT I= TRK * MUT 1

```
```

4472
4473
4474
4475
4476
4477
4 4 7 8
4 4 7 9
4480
4481
4482
4483
4484
4 4 8 5
4 4 8 6
4487
4 4 8 8
4400
4490
4491
4 4 9 2
4 4 9 3
4494
4495
4496 C
4497 C
4 4 9 9
4 5 0 0
4 5 0 1
4502
4 5 0 3
4 5 0 4
4505
4506
4 5 0 7
4 5 0 8
4 5 0 9
45t0
1511
4512
4513
4514
4515
4518
4 5 1 7
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4 5 3 1
4532
4533
4534
4535
4536
4537
4538
4 5 3 9
4540
4541 C
4542 C CALCULATE THE VISCOSITY AND HEAT CONDUCTION TERMS
4543 C
4544

```
```

    1 +RLA2+LAT2)*BVY2-(LA1+RLA1+LAT1)*BVY1)*DXR+AL*((LP2M4+RLP2M4
    2 +LP2MT4)*UXY4-(LP2M3+RLP2M3+LP2MT3)*UXY3+(LA44+RLA4+LAT4)*EVY4-
    3 (LA3+RLA 3+LAT3)*EVY3)*DYR +BE*((MU4 +RMU4 +MUT4)*VXY4-(MU3+RMU3+MUT 3
    4 )*VXY3+(MU4+RMU4 +MUT4) *BUY4-(MU3+RMUS3+MUT3)*BUY3) *DYR
        VVT=OM * ((MU2+RMU2+MUT2) *(VXY2+BUY2)-(MU1+RMU1+MUT 1)*(VXY 1+BUY 1))
        1 *DXR+AL*((MU4 +RMU4 +MUT4)*VXY4-(MU3+RMU3+MUT 3)*VXY 3+(MU4 +RMU4 +MUT 4
    2)*BUY4-(MU3+RMU3+MUT3)*BUY3)*DYR+BE*((LA4+RLA4+LAT4)*UXY4-(LA3
    3 +RLA3+LAT3)*UXY3+(LP2M4+RLP2M4+LP2MT4)*BVY4-(LP2M3+RLP2M3+LP2MT3)
    4 *BVY3)*DYR
    PVT=(LP2M+RLP2M+DLP2MT)*(UXY12*UXY12+BVY34*BVY34)+(MU+RMU+DMUT)*
    1 (VXY12*VXY12+BUY 34*BUY 34)+2.O*(LA+RLA+DLAT)*UXY 12*BVY34+2.O*(MU
    2 +RMU+DMUT)*BUY 34*VXY 12
        PCT=OM*((K2+RK2+KT2)*TXY2-(K1+RK1+KT1)*TXY 1)*DXR+AL*((K4+RK4+KT4)
        1 *TXY4-(K3+RK3+KT3)*TXY3)*DYR+BE*((K4+RK4+KT4)*RTY4-(K3+RK3+KT3)
        2 *BTY3)*DYR
        IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 1280
        RODIFF=OM*((CAL*SMU2+RORR*RRO2)*ROXY2-(CAL*SMU1*RORR*RRO1)*ROXY.1)
    1 *DXR+AL*((CAL*SMU4+RORR*RRO4)*ROXY4-(CAL*SMU3+RORR*RRO3)*ROXY3)
    2 *DYR+BE*((CAL*SMU4+RORR*RRO4)*BROY4-(CAL*SMU3+RORR*RRO3)*BROY3)
    3 *DYR
        IF (ITM.EQ.O) GO TO 128O
        UROT = -0.67*(OM*ROQX+AL*ROQY) +CAL*(U(L,M,N1)*(OM* (SMU2**ROXY2-SMU1
    1 *ROXY 1)*DXR+AL*(SMU4*ROXY4-SMU3*ROXY3)*DYR)+BE*V(L,M,N1)*(SMU4
    2 *ROXY4-SMU3*ROXY3)*DYR)
        VROT = -0.67*BE*ROQY +CAL*(V(L,M,N1) *BE * SMU4*BROY4-SMU3*BROY 3) *DYR+U
    1 (L,M,N1)*(OM*(SMU2*BROY2-SMU 1*BROY1)*DXR+AL*(SMU4*BROY4-SMU3
    2 *BROY3)*DYR))
        RODUMT =OM*(SMU2 *ROXY2-SMU 1*ROXY 1) *DXR + AL*(SMU4 *ROXY4 - SMU3 *ROXY3)
        1 *DYR+BE*(SMU4*BROY4-SMU3*BROY3)*DYR
        PROT =-CAL*RG*T*RODUMT
        IF (IES.NE.O) GO TO 128O
        IF (L.EQ.LMAX.OR.L.EQ.1) GO TO }129
        IF (ITM.EQ.1) GO TO 1280
        OPROD=LP2MT *(UXY 12*UXY 12+BVY34*BVY34)+MUT*(VXY12*VXY12+BUY34*BUY34
    1)+2.O*LAT*UXY 12*BVY 34+2.O*MUT *BUY 34*VXY 12
        ODIFF=OM*((MU2+MUT2*SIGOR)*QXY2-(MU1+MUT1*SIGQR)*QXY1)*DXR+AL*(
    1(MU4+MUT4*SIGOR)*QXY4-(MU3+MUT3*SIGOR) *OXY3) *DYR+BE ((MU4 +MUT4
    2 *SIGQR)*BOY4-(MU3+MUT3*SIGOR)*BQY3)*DYR
        OROTT = -XITM*Q(L.M,N1)*RO(L,M,N1)*(UXY12+BVY34)
        IF (ITM.EQ.3) GO TO 1260
        QDISS=0.O
        IF (TML.NE.O.O) QDISS=2.O*MU*DELTA*Q(L,M,N1)/(TML*TML)
        GO TO 1280
    1260 EPROD=0.0
        EDISS=0.0
        IF (O(L.M.N1).EO.O.O) GO ro 1270
        EPROD=C1*E(L,M,N1)/O(L,M,N1)*(LP2MT *(UXY 12*UXY12+BVY34*BVY34)+MUT*
        1 (VXY 12*VXY 12+BUY 34 + BUY 34) +2.O*LAT +UXY 12*BVY 34+2.O*MUT*BUY 34*VXY 12
        2)
        EDISS=C2T*RO(L,M,N1)*E(L,M,N1)*(E(L,M,N1)-2.O*MU*RORR*LC*(O2XY
        1 +BQ2Y)**2)/(Q(L,M,N1)*LC)
        IF (EDISS.LT.O.O) EDISS=O.O
    1270 EDIFF=OM*((MU2+MUT 2*SIGER)*EXY2-(MU1*MUT 1*SIGER)*EXY1)*DXR+AL*(
1 (MU4 +MUT4*SIGER)*EXY4-(MU3+MUT3*SIGER)*EXY3)*DYR +BE *((MU4+MUT4
2 *SIGER)*BEY4-(MU3+MUT3*SIGER)*BEY3)*DYR
QDISS=RO(L,M,N1)*(E(L,M,N1)+2.O*MU*RORR*LC*(Q2XY+BQ2Y) + * 2)/LC
ELOWR=2.O*RORR*MU*MUT*LC*((OM*(UXY2-UXY1)*DXR+NL*(UXY4-UXYZ)*DYR)*
1*2+(OM*(VXY2-VXY1)*DXR+AL*(VXY4-VXY3)*DYR)**2+(BE*(BUY4-BUY3)*DYR
2 )**2+(BE*(BVY4-BVY3)*DYR)**2)
O AND E FOURTH ORUER SMOUYHING
IF (STBO.LE.O.O.AND.STBE.LE.O.O) GO TO 1280
OQX=QLP-2.O+Q(L.M,N1)+QLM
DOY =OMP -2.O*O(L,M,N1)+OMM
DEX=ELP-2.O*E(L.M,NI)+ELM
DEY=EMP-2.O*E(L,M,NT)+EMM
OAVGX =0.25*(OLP+2.O*O(L.M,N1)+OLM)
QAVGY =0.25+(OMP+2.O+O(L,M,N1)+OMM)
IF (QAVGX.LE.O.O) QAVGX=1.OE + 10
IF (QAVGY.LE.O.O) QAVGY=1.OE+10
EAVGX=O.25*(ELP+2.O*E(L,M,N1)+ELM)

```
```

4 6 1 7
4 6 1 8
4619
4620
4621
4 6 2 2
4 6 2 3 ~ C
4 6 2 4 ~ C
4 6 2 5 ~ C
4 6 2 6 ~ C
4 6 2 7
4 6 2 8
4 6 2 9
4 6 3 0
4 6 3 1
4632
4 6 3 3
4 6 3 4
4 6 3 5
4EJE
4 6 3 7
4 6 3 8
4 6 3 9
4640
4 6 4 1
4642
4 6 4 3
4644
4645
4 6 4 6
4 6 4 7
4 6 4 8
4649 C
4 6 5 0 ~ C
4651 C
4 6 5 2
4853
4654
4 6 5 5
4656
4657
4 6 5 8
4059
4660
4651
4 6 6 2
4 6 6 3
4 6 6 4
4665
4 6 6 6
4 6 6 7
4088
4 6 6 9
4 6 7 0
4 6 7 1
4672
4673
4674
4675
4676
4 6 7 7
4 6 7 8
4 8 7 9 ~ C
4 6 8 0 ~ C
4 6 8 1 ~ C
4 6 8 2
4 6 8 3
4 6 8 4
4685
4 6 8 6
4687
4 6 8 8

```
```

        EAVGY=O.25*(EMP +2.O*E(L,M.N1) +EMM)
    ```
 EAVGY=O.25*(EMP +2.O*E(L,M.N1) +EMM)
 AST = SQRT (AL*AL+BE*BE)
 AST = SQRT (AL*AL+BE*BE)
 OSMO=STBO*RO(L.M,N1)*((ABS(U(L,M,N1))+A)*ABS(DOX)*OM*DXR*DOX/OAVGX
 OSMO=STBO*RO(L.M,N1)*((ABS(U(L,M,N1))+A)*ABS(DOX)*OM*DXR*DOX/OAVGX
 1+(ABS(U(L,M,N1)*AL+V(L,M,N1)*BE)+AST*A)*ABS(DOY)*DYR*DOY/OAVGY)
 1+(ABS(U(L,M,N1)*AL+V(L,M,N1)*BE)+AST*A)*ABS(DOY)*DYR*DOY/OAVGY)
 ESMO=STBE *RO(L,M,N1)*((ABS(U(L,M,N1))+A)*ABS(DEX) +OM*DXR*DEX/EAVGX
 ESMO=STBE *RO(L,M,N1)*((ABS(U(L,M,N1))+A)*ABS(DEX) +OM*DXR*DEX/EAVGX
 1 +(ABS(U(L,M,N1)*AL+V(L,M,N1)*BE) +AST*A)*ABS(DEY)*DYR*DEY/EAVGY)
 1 +(ABS(U(L,M,N1)*AL+V(L,M,N1)*BE) +AST*A)*ABS(DEY)*DYR*DEY/EAVGY)
 PRINT THE TURBULENCE MODEL CONV, PROD, DISS, AND
 PRINT THE TURBULENCE MODEL CONV, PROD, DISS, AND
 DIFF TERMS FOR THE REQUESTED GRID POINT
 DIFF TERMS FOR THE REQUESTED GRID POINT
1280 IF (ITM.LE. 1) GO TO }129
1280 IF (ITM.LE. 1) GO TO }129
 IF (L.NE.LPRINT.OR.M.NE.MPRINT) GO TO 1290
 IF (L.NE.LPRINT.OR.M.NE.MPRINT) GO TO 1290
 IF (NVC.GT.2) GO TO 1290
 IF (NVC.GT.2) GO TO 1290
 IF (M.EQ.I.OR.M.EO.MMAX) GO TO 1290
 IF (M.EQ.I.OR.M.EO.MMAX) GO TO 1290
 IF (M.EQ.MDFS.AND.LDFS.NE.O) GO TO 1290
 IF (M.EQ.MDFS.AND.LDFS.NE.O) GO TO 1290
 IF (N.EQ.1) WRITE (6.147O)
 IF (N.EQ.1) WRITE (6.147O)
 UVB=U(L,M,N1)*AL+V(L,M,Ni)*BE
 UVB=U(L,M,N1)*AL+V(L,M,Ni)*BE
 QCON=-(U(L,M,N1)*OM*(O(L+1,M,N1)-O(L-1,M,N1))+DXR+UVB*(Q(L,M+1.N1)
 QCON=-(U(L,M,N1)*OM*(O(L+1,M,N1)-O(L-1,M,N1))+DXR+UVB*(Q(L,M+1.N1)
 1-O(L.M-1.N1))*DYR)*O.5*DT
 1-O(L.M-1.N1))*DYR)*O.5*DT
 ECON=-(U(L,M,N1)*OM*(E(I.+1,M,N1)-E(I.-1,M,N1))*DXR+UVB*(E(L.M+1,N1)
 ECON=-(U(L,M,N1)*OM*(E(I.+1,M,N1)-E(I.-1,M,N1))*DXR+UVB*(E(L.M+1,N1)
 1 -E(L.M-1.N1))*DYR)*O.5*DT
 1 -E(L.M-1.N1))*DYR)*O.5*DT
 QPRO = OPROD * DT *RORR
 QPRO = OPROD * DT *RORR
 ODIS = -ODISS*DT*RORR
 ODIS = -ODISS*DT*RORR
 QDIF=QDIFF*DT *RORR
 QDIF=QDIFF*DT *RORR
 EPRO = EPROD * DT *RORR
 EPRO = EPROD * DT *RORR
 EDIS =-EDISS*DT*RORR
 EDIS =-EDISS*DT*RORR
 EDIF=EDIFF*DT * RORR
 EDIF=EDIFF*DT * RORR
 ELOR=ELOWR*DT*RORR
 ELOR=ELOWR*DT*RORR
 NP = N+NSTART
 NP = N+NSTART
 WRITE (6,148O) NP,L,M,Q(L,M,N1),QCON,QPRO,QDIS,QDIF,E(L,M,N1),ECON
 WRITE (6,148O) NP,L,M,Q(L,M,N1),QCON,QPRO,QDIS,QDIF,E(L,M,N1),ECON
 1 .EPRO,EDIS,EDIF,ELOR
 1 .EPRO,EDIS,EDIF,ELOR
1290 IF (NOIM.EQ.O) GO TO 1330
1290 IF (NOIM.EQ.O) GO TO 1330
 CALCULATE THE AXISYmMETRIC TERMS
 CALCULATE THE AXISYmMETRIC TERMS
 IF (M.EO.1.AND.YCB(L).EQ.O.O) GO TO 1310
 IF (M.EO.1.AND.YCB(L).EQ.O.O) GO TO 1310
 VB=V(L,M,N1)
 VB=V(L,M,N1)
 UVTA = ((LPM+RLPM+LPMT)*VXY 12+(MU+RMU+MUT)*BUY34)/YP
 UVTA = ((LPM+RLPM+LPMT)*VXY 12+(MU+RMU+MUT)*BUY34)/YP
 VVTA = (LP2M+RLP2M+LP2MT)* (BVY 34-VB/YP)/YP
 VVTA = (LP2M+RLP2M+LP2MT)* (BVY 34-VB/YP)/YP
 PVTA = ((LP2M+RLP2M+DLP2MT)*VB*VB/YP+2.O*(LA+RLA+DLAT)*VB*(BVY34
 PVTA = ((LP2M+RLP2M+DLP2MT)*VB*VB/YP+2.O*(LA+RLA+DLAT)*VB*(BVY34
 1 +UXY 12))/YP
 1 +UXY 12))/YP
 PCTA = (K+RK +KT)*0.5*(RTY4+BTYS)/YH
 PCTA = (K+RK +KT)*0.5*(RTY4+BTYS)/YH
 IF (ITM.EQ.O.AND.CAV.EQ.O.O) CO TO 13aO
 IF (ITM.EQ.O.AND.CAV.EQ.O.O) CO TO 13aO
 RODIFFA * (CAL*MUT +RRO)*RORR*BROY 34/YP
 RODIFFA * (CAL*MUT +RRO)*RORR*BROY 34/YP
 IF (ITM FO.O) GO TO 1330
 IF (ITM FO.O) GO TO 1330
 UROTA =CAL*MUT *RORR*V(L,M,N1)*ROXY 12/YP
 UROTA =CAL*MUT *RORR*V(L,M,N1)*ROXY 12/YP
 VROTA =CAL*MUT*RORR*V(L,M,NI)*BROY 34/YP
 VROTA =CAL*MUT*RORR*V(L,M,NI)*BROY 34/YP
 PROTA=-CAL*RG*T*MUT*RORR*BROY 34/YP
 PROTA=-CAL*RG*T*MUT*RORR*BROY 34/YP
 IF (IES.NE.O) GO TO 1330
 IF (IES.NE.O) GO TO 1330
 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 1330
 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 1330
 IF (ITM.EQ.1) GO TO 1330
 IF (ITM.EQ.1) GO TO 1330
 GFRODA = (LF2MT +VB +VB/YF+2.O*LAT *VB*(EVY34+lIXV17))/YF
 GFRODA = (LF2MT +VB +VB/YF+2.O*LAT *VB*(EVY34+lIXV17))/YF
 QOIFFA=(MU+MUT *SIGQR)*BQY34/YF
 QOIFFA=(MU+MUT *SIGQR)*BQY34/YF
 QROTTA = -XITM*O(L,M,N1)*RO(L,M,NI)*VB/YP
 QROTTA = -XITM*O(L,M,N1)*RO(L,M,NI)*VB/YP
 IF (ITM.EQ.2) GO TO 1330
 IF (ITM.EQ.2) GO TO 1330
 IF (Q(L,M,N1).EQ.O.O) GO TO 1300
 IF (Q(L,M,N1).EQ.O.O) GO TO 1300
 EPRODA =C 1*E(L,M,Ni)*(L\tilde{P}2MTF*VB*VB/YP+2.O*LAT*VB*(BVY34*UXY 12))/(Q(L
 EPRODA =C 1*E(L,M,Ni)*(L\tilde{P}2MTF*VB*VB/YP+2.O*LAT*VB*(BVY34*UXY 12))/(Q(L
 1,M,N1)+YP)
 1,M,N1)+YP)
 1300 EDIFFA=(MU+MUT*SIGER)*BEY34/YP
 1300 EDIFFA=(MU+MUT*SIGER)*BEY34/YP
 ELOWRA=2.O*RORR*MU*MUT*LC*((BUY 34/YP)**2+(BVY34/YP)**2+2.O*BUY 34
 ELOWRA=2.O*RORR*MU*MUT*LC*((BUY 34/YP)**2+(BVY34/YP)**2+2.O*BUY 34
 1 *BE*(BUY4-BUY3)*DYR/YP+2.O*BVY34*BE*(BVY4-BVY3)*DYR/YP)
 1 *BE*(BUY4-BUY3)*DYR/YP+2.O*BVY34*BE*(BVY4-BVY3)*DYR/YP)
 GO TO 1330
 GO TO 1330
 CALCULATE THE AXISYMMETRIC TERMS ON THE AXIS
 CALCULATE THE AXISYMMETRIC TERMS ON THE AXIS
1310 UVTA=(LPM+RLPM+LPMT)*BE*(VXY4-VXY3)*DYR+(MU+RMU+MUT)*BE *(BUY4-BUY 3
1310 UVTA=(LPM+RLPM+LPMT)*BE*(VXY4-VXY3)*DYR+(MU+RMU+MUT)*BE *(BUY4-BUY 3
 1)*DYR
 1)*DYR
 VVTA = (LP2M+RLP2M+LP2MT)*O.5*BE*(BVY4-BVY3)*DYR
 VVTA = (LP2M+RLP2M+LP2MT)*O.5*BE*(BVY4-BVY3)*DYR
 PVTA=(LP2M+RLP2M+DLP2MT+2.O*(LA+RLA+DLAT))*BVY34*BVY34+2.O*(LA +RLA
 PVTA=(LP2M+RLP2M+DLP2MT+2.O*(LA+RLA+DLAT))*BVY34*BVY34+2.O*(LA +RLA
 1 +DLAT)*BVY34*UXY 12
 1 +DLAT)*BVY34*UXY 12
 PCTA=(K+RK+KT)*BE*(BTY4-BTY 3)*DYR
 PCTA=(K+RK+KT)*BE*(BTY4-BTY 3)*DYR
 IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 1330
```

    IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 1330
    ```
```

4 6 8 9
4690.
4 6 9 1
4 6 9 2
4 6 9 3
4 6 9 4
4 6 9 5
4696
4 6 9 7
4 6 9 8
4 6 9 9
4 7 0 0
4 7 0 1
4 7 0 2
4 7 0 3
4 7 0 4
4 7 0 5
4 7 0 6
4 7 0 7 ~ C
4 7 0 8 ~ C
4 7 0 9 ~ C
4710
4711
4 7 1 2
4713
4 7 1 4
4 7 . 1 5
4 7 1 6
4 7 1 7
4 7 1 8
4 7 1 9
4720 C
4 7 2 1 \mathrm { C }
4 7 2 2 ~ C
4 7 2 3
4 7 2 4
4725
4 7 2 6
4 7 2 7
4 7 2 8
4 7 2 9
4 7 3 0
4 7 3 1
4 7 3 2
4 7 3 3
4 7 3 4
4 7 3 5
4736
4 7 3 7
4 7 3 8
4 7 3 9
4 7 4 0
4 7 4 1
4 7 4 2
4 7 4 3
4 7 4 4
4745
4 7 4 6
4 7 4 7
4 7 4 0
4 7 4 9
4 7 5 0
4 7 5 1
4752
4 7 5 3
4 7 5 4
4 7 5 5
4 7 5 6
4 7 5 7
4 7 5 8
4 7 5 9
4 7 6 0
4 7 6 1

```
```

    RODIFFA=(CAL*MUT +RRO)*RORR*BE*(BROY4-BROY3)*DYR
    ```
 RODIFFA=(CAL*MUT +RRO)*RORR*BE*(BROY4-BROY3)*DYR
 IF (ITM.EQ.O) GO TO 1330
 IF (ITM.EQ.O) GO TO 1330
 UROTA =CAL *MUT *RORR*BVY 34*ROXY 12
 UROTA =CAL *MUT *RORR*BVY 34*ROXY 12
 VROTA =0.0
 VROTA =0.0
 PROTA = -CAL*RG*T *MUT*RORR*BE*(BROY4-BROY3)*DYR
 PROTA = -CAL*RG*T *MUT*RORR*BE*(BROY4-BROY3)*DYR
 IF (IES.NE.O) GO TO 1330
 IF (IES.NE.O) GO TO 1330
 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 1330
 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO 1330
 IF (ITM.EQ.1) GO TO 1330
 IF (ITM.EQ.1) GO TO 1330
 QPRODA (LP2MT+2.O*LAT)*BVY34*BVY34+2.O*LAT*BVY34*UXY 12
 QPRODA (LP2MT+2.O*LAT)*BVY34*BVY34+2.O*LAT*BVY34*UXY 12
 ODIFFA=(MU+MUT*SIGOR)*BE*(BOY4-BOY3)*DYR
 ODIFFA=(MU+MUT*SIGOR)*BE*(BOY4-BOY3)*DYR
 QROTTA =-XITM*Q(L,M,N1)*RO(L,M,N1)*BVY34
 QROTTA =-XITM*Q(L,M,N1)*RO(L,M,N1)*BVY34
 IF (ITM.EQ.2) GO TO 1330
 IF (ITM.EQ.2) GO TO 1330
 IF (Q(L.M.N1).EQ.O.O) GO TO 1320
 IF (Q(L.M.N1).EQ.O.O) GO TO 1320
 EPROUA=C1*E(L.M,N1)*((LP2MT+2.O*LAT)*BVY34*BVY34+2.O*LAT*BVY34
 EPROUA=C1*E(L.M,N1)*((LP2MT+2.O*LAT)*BVY34*BVY34+2.O*LAT*BVY34
 1 *UXY12)/O(L,M,N1)
 1 *UXY12)/O(L,M,N1)
1320 EOIFFA=(MU+MUT*SIGER)*BE*(BEY4-BEY3)*DYR
1320 EOIFFA=(MU+MUT*SIGER)*BE*(BEY4-BEY3)*DYR
 ELOWRA=6.O*RORR*MU*MUT*LC*((BE*(BUY4-BUY3) *OYR)**2+(BE*(BVY4-BVY3)
 ELOWRA=6.O*RORR*MU*MUT*LC*((BE*(BUY4-BUY3) *OYR)**2+(BE*(BVY4-BVY3)
 1 *DYR)**2)
 1 *DYR)**2)
 filL the viscous term arRays
 filL the viscous term arRays
1330 QUT(L.M)=(UVT+UVTA+UROT+UROTA)*RORR
1330 QUT(L.M)=(UVT+UVTA+UROT+UROTA)*RORR
 QVT(L.M) = (VVT+VVTA +VROT+VROTA)*RORR
 QVT(L.M) = (VVT+VVTA +VROT+VROTA)*RORR
 QPT(L,M)=GAM*(PVT+PVTA PCT+PCTA PROT+PROTA+QDISS)
 QPT(L,M)=GAM*(PVT+PVTA PCT+PCTA PROT+PROTA+QDISS)
 IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 1340
 IF (ITM.EQ.O.AND.CAV.EQ.O.O) GO TO 1340
 OROT(L,M)=RODIFF+RODIFFA
 OROT(L,M)=RODIFF+RODIFFA
 IF (IES.NE.O) GO TO 1340
 IF (IES.NE.O) GO TO 1340
 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO }134
 IF (L.EQ.LMAX.OR.L.EQ.1) GO TO }134
 IF (ITM.LE.1) GO TO }134
 IF (ITM.LE.1) GO TO }134
 OQT(L.M) = (QPROD+QP.RODA +ODIFF+QDIFFA OROTT+QROTTA -ODISS+QSMO)*RORR
 OQT(L.M) = (QPROD+QP.RODA +ODIFF+QDIFFA OROTT+QROTTA -ODISS+QSMO)*RORR
 QET(L.M)=(EPROD+EPRODA +EDIFF+EDIFFA-EDISS+ELOWR+ELOWRA+ESMO)*RORR
 QET(L.M)=(EPROD+EPRODA +EDIFF+EDIFFA-EDISS+ELOWR+ELOWRA+ESMO)*RORR
 PRINT THE VISCOUS TERMS
 PRINT THE VISCOUS TERMS
1340 IF (IAV.EQ.O) GO TO 1400
1340 IF (IAV.EQ.O) GO TO 1400
 IF (NC.NE.NPRINT.AND.(N.NE.NMAX.AND.ISTOP.EQ.O)) GO TO 1400
 IF (NC.NE.NPRINT.AND.(N.NE.NMAX.AND.ISTOP.EQ.O)) GO TO 1400
 IF (IAV.EQ.2) GO TO 1350
 IF (IAV.EQ.2) GO TO 1350
 IF (NVC.GT.2.AND.NVC.NE.NVCM+1) GO TO 1400
 IF (NVC.GT.2.AND.NVC.NE.NVCM+1) GO TO 1400
1350 IF (L.EQ.1.AND.(NVC.EQ.1.AND.IB.NE.4)) GO TO 1370
1350 IF (L.EQ.1.AND.(NVC.EQ.1.AND.IB.NE.4)) GO TO 1370
 IF (L.EQ.I.AND.MDFS.EQ.O) GO TO 1370
 IF (L.EQ.I.AND.MDFS.EQ.O) GO TO 1370
 IF (L.EO.1.AND.IB.EO.3) GO TO 1370
 IF (L.EO.1.AND.IB.EO.3) GO TO 1370
 IF (M.EO.MIS) GO TO 1360
 IF (M.EO.MIS) GO TO 1360
 IF (M.EQ.MVCT+1.AND.(MDFS.NE.O.AND.MDFSC.EQ.O)) GO TO 1360
 IF (M.EQ.MVCT+1.AND.(MDFS.NE.O.AND.MDFSC.EQ.O)) GO TO 1360
 IF (M.EQ.MVCT+1.AND.MVCB.EQ.1) GO TO 1360
 IF (M.EQ.MVCT+1.AND.MVCB.EQ.1) GO TO 1360
 GO TO 1370
 GO TO 1370
1360 WRITE (6,1490)
1360 WRITE (6,1490)
 NLINE =NLINE+1
 NLINE =NLINE+1
1370 NLINE =NLINE+1
1370 NLINE =NLINE+1
 IF (NLINE.LT.54) GO TO 1380
 IF (NLINE.LT.54) GO TO 1380
 WRITE (6.1460)
 WRITE (6.1460)
 NP=N+NSTART
 NP=N+NSTART
 WRITE (6.1450) NP.NVC
 WRITE (6.1450) NP.NVC
 NLINE=1
 NLINE=1
1380 DOPT=OPT(L,M)/PC*DT
1380 DOPT=OPT(L,M)/PC*DT
 DQUT=OUT(L,M) +DT
 DQUT=OUT(L,M) +DT
 DOVT=OVT(L.M)*DT
 DOVT=OVT(L.M)*DT
 DQROT=QROT(L,M)*G*DT
 DQROT=QROT(L,M)*G*DT
 DO=O(L.M.N1)
 DO=O(L.M.N1)
 DDE=E(L,M,N1)
 DDE=E(L,M,N1)
 DOOT-OOT(L.M):DT
 DOOT-OOT(L.M):DT
 DOET=OET(L,M)*DT
 DOET=OET(L,M)*DT
 OTML =TML
 OTML =TML
 IF (IUO.NE.2) GO TO 1390
 IF (IUO.NE.2) GO TO 1390
 DOUTT=DOUT *0.3048
 DOUTT=DOUT *0.3048
 DOVT =DOVT *O. 3048
 DOVT =DOVT *O. 3048
 DOPT = OQPT * 6. 8948
 DOPT = OQPT * 6. 8948
 DOROT=DOROT * 16.02
 DOROT=DOROT * 16.02
 DO=DO+0.0929
 DO=DO+0.0929
 DDE=DDE +0.0929
 DDE=DDE +0.0929
 DOOT =DOOT +0.0929
 DOOT =DOOT +0.0929
 DOET =DOET +0.0929
 DOET =DOET +0.0929
 DTML =DTML*2.54
 DTML =DTML*2.54
1390 WRITE (6.1440) L.M.DOUT,DOVT,DOPT,DQROT, AVMUR.TLMIUR,DQ.DOE.DOOT
```

1390 WRITE (6.1440) L.M.DOUT,DOVT,DOPT,DQROT, AVMUR.TLMIUR,DQ.DOE.DOOT

```
```

4/62
4 7 6 3
4764
4765
4 7 6 6
4767
4768
4 7 6 9
4770
4 7 7 1
4 7 7 2
4773
4774
4 7 7 5
4776
4777
4%%8
4779 C
4 7 8 0 ~ C
4 7 8 4 C
4 7 8 2
4 7 8 3
4 7 8 4
4 7 8 5
4786
4 7 8 7
4788
4 7 8 9
4 7 9 0
4 7 9 1
4 7 9 2
4 7 9 3
4 7 9 4
4 7 9 5
4 7 9 6
4 7 9 7
4 7 9 8
4799
4 8 0 0
4 8 0 1
48O2

```
```

    1 .DOET.DTML
    ```
 1 .DOET.DTML
1400 CONTINUE
1400 CONTINUE
1410 CONTINUE
1410 CONTINUE
 IF (MDFS.EO.O) GO TO 142O
 IF (MDFS.EO.O) GO TO 142O
 IF (NVC.EO.1.AND.MDFSC.NE.O) GO TO }142
 IF (NVC.EO.1.AND.MDFSC.NE.O) GO TO }142
 IF (MIS.EQ.1.AND.MIF.EQ.MDFS) GO TO 50
 IF (MIS.EQ.1.AND.MIF.EQ.MDFS) GO TO 50
 IF (MIS.EQ.MVCB.AND.MIF.EQ.MDFS) GO TO 50
 IF (MIS.EQ.MVCB.AND.MIF.EQ.MDFS) GO TO 50
 IF (MIS.EQ.MDFS+1.AND.IVC.EO.O) GO TO }6
 IF (MIS.EQ.MDFS+1.AND.IVC.EO.O) GO TO }6
 IF (MIS.EQ.MDFS+1.AND.NVC.NE.1) GO TO GO
 IF (MIS.EQ.MDFS+1.AND.NVC.NE.1) GO TO GO
1420 IF (IAV.EQ.O) RETURN
1420 IF (IAV.EQ.O) RETURN
 IF (NC.NE.NPRINT.AND.N.NE. NMAX) RETURN
 IF (NC.NE.NPRINT.AND.N.NE. NMAX) RETURN
 IF (IAV.EQ.2) GO TO 1430
 IF (IAV.EQ.2) GO TO 1430
 IF (NVC.NE.1.AND.NVC.NE.NVCM+1) RE FURN
 IF (NVC.NE.1.AND.NVC.NE.NVCM+1) RE FURN
1430 IF (TMUX.NE.O.O) RDUM = TMUY/TMUX
1430 IF (TMUX.NE.O.O) RDUM = TMUY/TMUX
 IF (NVC.NE.1.AND.TMUIX.NE.O.O) RDUM=TMUIY/TMU1X
 IF (NVC.NE.1.AND.TMUIX.NE.O.O) RDUM=TMUIY/TMU1X
 WRITE (6, 15OO) LDUX,MOUX, LDUY,MDUY,RDUM,NVC
 WRITE (6, 15OO) LDUX,MOUX, LDUY,MDUY,RDUM,NVC
 RE IURN
 RE IURN
 FORMAT STATEMENTS
 FORMAT STATEMENTS
1440 FORMAT (1H,2I5, 2F11.4,F11.5,F11.6,2F11.3,F12.4.E1O.3,F11.4, E1O.3
1440 FORMAT (1H,2I5, 2F11.4,F11.5,F11.6,2F11.3,F12.4.E1O.3,F11.4, E1O.3
 1 ,F11.6)
 1 ,F11.6)
1450 FORMAṪ (1H . SiHLOCAL VISCOSITY (ARTIFICAL-MOLECULAR-TURBULENT.) AND
1450 FORMAṪ (1H . SiHLOCAL VISCOSITY (ARTIFICAL-MOLECULAR-TURBULENT.) AND
 1.26H HEAT CONDUCTION TERMS. N=.I6.6H, NVC=,13//5X,1HL.4X,1HM,7X,3
 1.26H HEAT CONDUCTION TERMS. N=.I6.6H, NVC=,13//5X,1HL.4X,1HM,7X,3
 2 HOUT, 8X, 3HOVT, 8X, 3HOPPT, 7X, 4HQROT, 7X,5HAVMUR, 6X, 5HTLMUR, 8X, 1HO,9X,
 2 HOUT, 8X, 3HOVT, 8X, 3HOPPT, 7X, 4HQROT, 7X,5HAVMUR, 6X, 5HTLMUR, 8X, 1HO,9X,
 3 1HE. 1OX, 3HOQT, 6X, 3HOET, 8X, 3HTML./)
 3 1HE. 1OX, 3HOQT, 6X, 3HOET, 8X, 3HTML./)
1460 FORMAT (1H1)
1460 FORMAT (1H1)
1470 FORMAT (1H1,3X, 1HN, 3X, 1HL, 3X, 1HM,5X, 1HQ,8X,4HQCON,6X, 4HQPRO,6X,4HG
1470 FORMAT (1H1,3X, 1HN, 3X, 1HL, 3X, 1HM,5X, 1HQ,8X,4HQCON,6X, 4HQPRO,6X,4HG
 1DIS,6X, 4HODIF, 7X, 1HE, 8X, 4HECON, 6X, 4HEPRO, 6X, 4HEDIS, 6X, 4HEDIF,6X, 4H
 1DIS,6X, 4HODIF, 7X, 1HE, 8X, 4HECON, 6X, 4HEPRO, 6X, 4HEDIS, 6X, 4HEDIF,6X, 4H
 2ELOR./)
 2ELOR./)
1480 FORMAT (1H .3I4,11E1O.3)
```

1480 FORMAT (1H .3I4,11E1O.3)

```


```

    1 ,61H---------------------------------------------------------------------
    ```
 1 ,61H---
 2,18H-..-.-.-.-.....-.---)
 2,18H-..-.-.-.-.....-.---)
1500 FORMAT (1HO,1OX,2OHX TERMS GRID POINT=(,I2,1H,,I2,25H), Y TERMS
1500 FORMAT (1HO,1OX,2OHX TERMS GRID POINT=(,I2,1H,,I2,25H), Y TERMS
 1GRIU POINT=(.12,1H,.I2,22H), RATIO OF Y TO X=(,E9.3,9H), NVC=
 1GRIU POINT=(.12,1H,.I2,22H), RATIO OF Y TO X=(,E9.3,9H), NVC=
 2.I3./)
 2.I3./)
1510 FORMAT (1HO,109H***** THE TEMPERATURE USED IN THE MOLECULAR VISCOS
1510 FORMAT (1HO,109H***** THE TEMPERATURE USED IN THE MOLECULAR VISCOS
 1ITY CALCULATION IN SUBROUTINE VISCOUS BECAME NEGATIVE AT N=,IG,1H,
 1ITY CALCULATION IN SUBROUTINE VISCOUS BECAME NEGATIVE AT N=,IG,1H,
 2,/,7X,2HL=,12,4H, M=,12,6H, NVC=,13,6H *****)
 2,/,7X,2HL=,12,4H, M=,12,6H, NVC=,13,6H *****)
 FNח
```

        FNח
    ```
```

4 8 0 3
4 8 0 4 ~ C
4 8 0 5 ~ C
48O6 C
4807 C
4808 C
4 8 0 9 ~ C
4 8 1 0 ~ C
4811 *CALL,MCC
4 8 1 2 ~ C
4813 C
4 8 1 4 ~ C
4 8 1 5
4 8 1 6
4817
4818
4 8 1 9
4820
4 8 2 1
4 8 2 2
4 8 2 3
4 8 2 4
4825
4826
4 8 2 7
4 8 2 8
4 8 2 9
4830
4 8 3 1
4832
4 8 3 3
4834
4835
4836
4837
4 8 3 8
4 8 3 9
4 8 4 0
4 8 4 1
4842
4 8 4 3
4844
4845
4846
4847
4 8 4 8
4 8 4 9
4 8 5 0
4 8 5 1
4852
4853
4 8 5 4
4 8 5 5
4 8 5 6
4 8 5 7
4858
4 8 5 9
4 8 6 0
4 8 6 1
496?
4 8 6 3
4 8 6 4
4 8 6 5
4 8 6 6
4 8 6 7
4 8 6 8
4 8 6 9
4 8 7 0
4 8 7 1
4 8 7 2
4 8 7 3
4874
SUBROUTINE SMOOTH
THIS SUBROUTINE SMOOTHS THE FLOW VARIABLES IF REQUESTED
IF (SMP.EQ.1.O) GO TO 100
SMP4 =0.25*(1.0-SMP)
IF (MDFS.EQ.O) GO TO 2O
IF (LDFSS.EQ.1.AND.LDFSF.EO.LMAX) GO TO 20
IF (LDFSS.EQ.1) GO TO 10
UL(LDFSS-1.N3)=U(LDFSS-1.MDFS.N3)
VL(LDFSS-1.N3) =V(LDFSS-1.MDFS.N3)
PL(LDFSS-1,N3)=P(LDFSS-1,MDFS.N3)
ROL(LDFSS-1.N3)=RO(LDFSS-1,MDFS,N3)
QL.(LDFSS-1.N3)=O(LDFSS-1.MDFS.N3)
EL(LDFSS-1.N3)=E(LDFSS-1.MDFS.N3)
10 IF (LDFSF.EQ.LMAX) GO TO 20
UL(LDFSF+1.N3)=U(LDFSF+1,MDFS.N3)
VL(LDFSF+1,N3)=V(LDFSF+1,MDFS,N3)
PL(LDFSF+1,N3)=P(LDFSF + 1,MDFS,N3)
ROL(LDFSF+1,N3)=RO(LDFSF+1,MDFS,N3)
QL(LDFSF+1,N3 )=O(LDFSF+1,MDFS,N3)
EL(LDFSF+1,N3)=E(LDFSF+1,MDFS.N3)
20 D0 90 L=2,L1
IF (IWALL.NE.O.AND.V(L,MMAX,NT).LT.O.O) GO TO 4O
U(L,MMAX,N3)=SMP4*(U(L-1,MMAX,N3)+U(L+1,MMAX,N3)+2.O*U(L,MMAX,N3))
1 +SMP*U(L,MMAX,N3)
IF (NOSLIP.NE.O.AND.IWALL.EQ.O) U(L.MMAX,N3)=O.O
IF (IWALL.EO.O) V(L,MMAX,N3) =-U(L,MMAX,N3) *NXNY(L)+XWI (L)
IF (IWALL.NE.O) GO TO 3O
IF (JFLAG.EQ.1.AND.L.GE.LJET) GO TO }3
P(L,MMAX,N3)=SMP4*(P(L-1,MMAX,N3)+P(L+1,MMAX,N3)+2.O*P(L,MMAX,N3))
1 +SMP*F(L,MMAX,N3)
3O RO(L,MMAX,N3)=SMP4*(RO(L-1,MMAX,N3)+RO(L+1,MMAX,N3)+2.O+RO(L,MMAX
1.N3))+SMP*RO(L.MMAX,N3)
I\dot{F}(TW(1).GE.O.O)P(L,MMAX,N3)=RO(L,MMAX,N3)*RG*TW(L)
40U(L,1.N3)=SMP4*(U(L-1,1,N3)+U(L+1,1,N3)+2.O*U(L,1.N3))+SMP*U(L, 1
1,N3)
IF (NOSLIP.NE.O.AND.NGCB.NE.O) U(L.1.N3)=0.O
V(L,1,N3)=-U(L,1,N3) +NXNVCB(L)
P(L,1,N3)=SMP4*(P(L-1.1.N3)+P(L+1.1.N3)+2.O*P(L,1.N3))+SMP+P(L.1
1.N3)
RO(L,1.N3)=SMP4*(RO(L-1,1,N3)+RO(L+1,1.N3)+2.O*RO(L,1,N3))+SMP*RO
1(L,1,N3)
IF (TCB(1).GE.O.O.AND.NGCB.NE.O)P(L,1,N3)=RO(L,1,N3)*RG*TCB(L)
IF (ITM.LE. 1) GO TO 50
O(L.,MMAX.N3)=SMP4*(Q(L-1.MMAX,N3)+Q(L+1.MMAX,N3)+2.O*O(L.,MMAX.N3))
1 +SMP*Q(L,MMAX,N3)
E(L,MMAX,N3)=SMP4*(E(L-1,MMAX,N3)+E(L+1.MMAX,N3)+2.O*E(L,MMAX,N3))
1 +SMP + E(L. MMAX,N3)
O(L.1,N3)=SMP4+(O(L-1.1,N3)+Q(L+1.1.N3)+2.O*Q(L,1,N3))+SMP*Q(L,1
1 O(L. N3).N3)=SMP4*(O(L-1.1,N3)+O(L+1,1,N3)+2.O*O(L,1,N3))+SMP*Q(L,1
E(L.1.N3)=SMP4*(E(L-1.1.N3)+E(L+1,1,N3)+2.O*E(L,1.N3))+SMP*E(L.1
1.N3)
50 LDFS=0
IF (MOFS.EO.O) GO TO 6O
IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
IF (LDFS.EQ.O) GO TO 6O
UL(L,N3)=SMP4*(UL(L-1,N3)+UL(L+1,N3)+2.U*U(L,MDFS-1,N3))+SMP*UL(L
1.N3)
IF (NOSLIP.NE.O) UL(L.N3)=0.O
IF (NOSLIP.NE.O) UL(L,N3)=O
PL(L,N3)=SMP4*(PL(L-1,N3)+PL(L+1,N3)+2.O*P(L.MDFS-1.N3))+SMP*PL(L
1.N3)

```
\(!\)
```

4 8 7 5
4 8 7 6
4877
4 8 7 8
4 8 7 9
4880
4 8 8 1
4 8 8 2
4 8 8 3
4 8 8 4
4 8 8 5
4 8 8 6
4 8 8 7
4888
4 8 8 9
4 8 9 0
4 8 9 1
489?
4 8 9 3
4 8 9 4
4 8 9 5
4 8 9 6 ~ C
4 8 9 7
4898
4 8 9 9
4 9 0 0
4901
4 9 0 2
4 9 0 3
4 9 0 4
4 9 0 5
4 9 0 6
4 9 0 7
4 9 0 8
4 9 0 9
4 9 1 0
4 9 1 1
4 9 1 2
4 9 1 3
4 9 1 4
4 3 1 5
4 9 1 6
4917
4 9 1 8
4919
4 9 2 0
4 9 2 1
4 9 2 2
4 9 2 3
4 9 2 4
4 9 2 5
432G
4 9 2 7
4 9 2 8
4 9 2 9
4 9 3 0
4 9 3 1
4 9 3 2
4 9 3 3
4934
4935
4 9 3 6
4 9 3 7
4 9 3 8
4 9 3 9
4 9 4 0
4 9 4 1
4942
4 9 4 3
4 9 4 4 ~ C
4 9 4 5 ~ C

```
```

    ROL(L,N3)=SMP4*(ROL(L-1.N3)+ROL(L+1,N3)+2.O*RQ(L,MDFS-1.N3))+SMF
    ```
 ROL(L,N3)=SMP4*(ROL(L-1.N3)+ROL(L+1,N3)+2.O*RQ(L,MDFS-1.N3))+SMF
 1 *ROL(L,N3)
 1 *ROL(L,N3)
 IF (TL(1).GE.O.O) PL(L.N3)=ROL(L.N3)*RG*TL(L)
 IF (TL(1).GE.O.O) PL(L.N3)=ROL(L.N3)*RG*TL(L)
 U(L,MDFS,N3)=SMP4*(U(L-1,MDFS,N3)+U(L+1,MDFS,N3)+2.O*U(L,MDFS+1,N3
 U(L,MDFS,N3)=SMP4*(U(L-1,MDFS,N3)+U(L+1,MDFS,N3)+2.O*U(L,MDFS+1,N3
 1))+SMP*U(L.MDFS.N3)
 1))+SMP*U(L.MDFS.N3)
 IF (NOSLIP.NE.O) U(L,MDFS,N3)=0.O
 IF (NOSLIP.NE.O) U(L,MDFS,N3)=0.O
 V(L,MDFS,N3)=-U(L,MDFS,N3) =NXNYU(L)
 V(L,MDFS,N3)=-U(L,MDFS,N3) =NXNYU(L)
 P(L,MDFS,N3)=SMP4*(P(L-1,MDFS,N3)+P(L+1,MDFS,N3)+2.O*P(L.MDFS+1.N3
 P(L,MDFS,N3)=SMP4*(P(L-1,MDFS,N3)+P(L+1,MDFS,N3)+2.O*P(L.MDFS+1.N3
 1))+SMP*P(L,MDFS,N3)
 1))+SMP*P(L,MDFS,N3)
 RO(L,MDFS,N3) =SMP4 * (RO(L-1,MDFS,N3)+RO(L+1,MDFS,N3)+2.O*RO(L,MDFS +
 RO(L,MDFS,N3) =SMP4 * (RO(L-1,MDFS,N3)+RO(L+1,MDFS,N3)+2.O*RO(L,MDFS +
 1 1,N3))+SMP*RO(L,MDFS,N3)
 1 1,N3))+SMP*RO(L,MDFS,N3)
 IF (TU(1).GE.O.O) P(L,MDFS,N3)=RO(L,MDFS,N3)*RG*TU(L)
 IF (TU(1).GE.O.O) P(L,MDFS,N3)=RO(L,MDFS,N3)*RG*TU(L)
 IF (ITM.LE.1) GO TO 60
 IF (ITM.LE.1) GO TO 60
 QL(L,N3)=SMP4*(QL(L-1,N3)+QL(L+1.N3)+2.O*Q(L.MDFS-1,N3))+SMP*QL(L
 QL(L,N3)=SMP4*(QL(L-1,N3)+QL(L+1.N3)+2.O*Q(L.MDFS-1,N3))+SMP*QL(L
 1 ,N3)
 1 ,N3)
 EL(L,N3)=SMP4*(EL(L-1,N3)+EL(L+1,N3)+2.O*E(L,MDFS-1,N3))+SMP*EL(L
 EL(L,N3)=SMP4*(EL(L-1,N3)+EL(L+1,N3)+2.O*E(L,MDFS-1,N3))+SMP*EL(L
 1,N3)
 1,N3)
 Q(L,MDFS,N3)=5MP4*(Q(L-1,MDFS,N3)+Q(L+1,MDFS,N3)+2.O*Q(L,MDFS+1,N3
 Q(L,MDFS,N3)=5MP4*(Q(L-1,MDFS,N3)+Q(L+1,MDFS,N3)+2.O*Q(L,MDFS+1,N3
 1))+SMP*Q(L,MDFS.N3)
 1))+SMP*Q(L,MDFS.N3)
 E(L,MDFS,N3)=SMP4*(E(L-1,MDFS,N3)+E(L+1,MDFS,N3)+2.O*E(L.,MDFS+1,N3
 E(L,MDFS,N3)=SMP4*(E(L-1,MDFS,N3)+E(L+1,MDFS,N3)+2.O*E(L.,MDFS+1,N3
 1))+SMP*E(L,MDFS,N3)
 1))+SMP*E(L,MDFS,N3)
 60 DO 90 M=2,M1
 60 DO 90 M=2,M1
 IF (M.EQ.MDFS.AND.LDFS.EQ.1) GO TO }9
 IF (M.EQ.MDFS.AND.LDFS.EQ.1) GO TO }9
 IF (M.NE.MDFS) GO TO 8O
 IF (M.NE.MDFS) GO TO 8O
 IF (L.NE.LDFSS-1.AND.L.NE.LDFSF+1) GO TO }8
 IF (L.NE.LDFSS-1.AND.L.NE.LDFSF+1) GO TO }8
 IF (L.NE.LDFSS-1) GO TO 70
 IF (L.NE.LDFSS-1) GO TO 70
 U(L,M,N3)=SMP4*(U(L-1,M,N3)+U(L,M-1,N3)+U(L,M+1,N3)+0.5*(U(L+1,M
 U(L,M,N3)=SMP4*(U(L-1,M,N3)+U(L,M-1,N3)+U(L,M+1,N3)+0.5*(U(L+1,M
 1.,N3)+UL(L+1.N3)))+SMP*U(L,M,N3)
 1.,N3)+UL(L+1.N3)))+SMP*U(L,M,N3)
 V(L,M,N3)=SMR4*(V(L-1,M,N3)+V(L,M-1,N3)+V(L,M+1,N3)+O.5*(V(L+1,M
 V(L,M,N3)=SMR4*(V(L-1,M,N3)+V(L,M-1,N3)+V(L,M+1,N3)+O.5*(V(L+1,M
 1.N3)+VL(L+1,N3)))+SMP*V(L,M,N3)
 1.N3)+VL(L+1,N3)))+SMP*V(L,M,N3)
 P(L,M,N3)=SMP4*(P(L-1,M,N3)+P(L,M-1,N3)+P(L,M+1,N3)+O.5*(P(L+1,M
 P(L,M,N3)=SMP4*(P(L-1,M,N3)+P(L,M-1,N3)+P(L,M+1,N3)+O.5*(P(L+1,M
 1.N3)+PL(L+1,N3)))+SMP*P(L,M,N3)
 1.N3)+PL(L+1,N3)))+SMP*P(L,M,N3)
 RO(L,M,N3)=SMP4*(RO(L-1,M,N3)+RO(L,M-1,N3)+RO(L,M+1,N3)+O.5*(RO(L+
 RO(L,M,N3)=SMP4*(RO(L-1,M,N3)+RO(L,M-1,N3)+RO(L,M+1,N3)+O.5*(RO(L+
 1 1,M,N3)+ROL(L+1,N3)))+SMP*RO(L,M,N3)
 1 1,M,N3)+ROL(L+1,N3)))+SMP*RO(L,M,N3)
 IF (ITM.LE.1) GO TO 90
 IF (ITM.LE.1) GO TO 90
 O(L,M,N3)=SMP4*(Q(L-1,M,N3)+O(L,M-1,N3)+Q(L,M+1,N3)+O.5*(Q(L+1,M
 O(L,M,N3)=SMP4*(Q(L-1,M,N3)+O(L,M-1,N3)+Q(L,M+1,N3)+O.5*(Q(L+1,M
 1.N3)+QL(L+1,N3)))+SMP*Q(L,M,N3)
 1.N3)+QL(L+1,N3)))+SMP*Q(L,M,N3)
 E(L,M,N3)=SMP4*(E(L-1,M,N3)+E(L,M-1,N3)+E(L,M+1,N3)+O.5*(E(L+1,M
 E(L,M,N3)=SMP4*(E(L-1,M,N3)+E(L,M-1,N3)+E(L,M+1,N3)+O.5*(E(L+1,M
 1.N3)+EL(L+1,N3)))+SMP*E(L.M.N3)
 1.N3)+EL(L+1,N3)))+SMP*E(L.M.N3)
 GO TO 9O
 GO TO 9O
 70 U(L,M,N3)=SMP4*(U(L+1,M,N3)+U(L,M-1,N3)+U(L.,M+1,N:3)+U.S*(U(L-1,M
 70 U(L,M,N3)=SMP4*(U(L+1,M,N3)+U(L,M-1,N3)+U(L.,M+1,N:3)+U.S*(U(L-1,M
 1:NO)+UL(L-1;NO)))+SMP.U(L, M,N3)
 1:NO)+UL(L-1;NO)))+SMP.U(L, M,N3)
 V(L,M,N3)=SMP4*(V(L+1,M,N3)+V(L,M-1,N3)+V(L,M+1,N3)+O.5*(V(L-1,M
 V(L,M,N3)=SMP4*(V(L+1,M,N3)+V(L,M-1,N3)+V(L,M+1,N3)+O.5*(V(L-1,M
 1,N3)+VI(I.-1,N3)))+SMP*V(L,M,N3)
 1,N3)+VI(I.-1,N3)))+SMP*V(L,M,N3)
 P(L,M,N3)=SMP4*(P(L+1,M,N3)+P(L,M-1,N3)+P(L,M+1,N3)+O.5*(P(L-1,M
 P(L,M,N3)=SMP4*(P(L+1,M,N3)+P(L,M-1,N3)+P(L,M+1,N3)+O.5*(P(L-1,M
 1.N3)+PL(L-1,N3)))+SMP*P(L.M,N3)
 1.N3)+PL(L-1,N3)))+SMP*P(L.M,N3)
 RO(L,M,N3)=SMP4*(RU(L+1,M,N3)+RO(L,M-1,N3)+RO(L,M+1,N3)+O.5*(RO(L-
 RO(L,M,N3)=SMP4*(RU(L+1,M,N3)+RO(L,M-1,N3)+RO(L,M+1,N3)+O.5*(RO(L-
 1 1,M,N3)+ROL(L-1,N3)))+SMP*RO(L,M,N3)
 1 1,M,N3)+ROL(L-1,N3)))+SMP*RO(L,M,N3)
 IF (ITM.LE.1) GO TO 90
 IF (ITM.LE.1) GO TO 90
 Q(L,M,N3)=SMP4*(O(L+1,M,N3)+O(L,M-1,N3)+Q(L,M+1,N3)+O.5*(O(L-1,M
 Q(L,M,N3)=SMP4*(O(L+1,M,N3)+O(L,M-1,N3)+Q(L,M+1,N3)+O.5*(O(L-1,M
 1,NO)+QL(L*1,NO)))IFMP+Q(L:M,NO)
 1,NO)+QL(L*1,NO)))IFMP+Q(L:M,NO)
 E(L,M,N3)=SMP4*(E(L+1,M,N3)+E(L,M-1,N3)+E(L,M+1,N3)+O.5*(E(L-1,M
 E(L,M,N3)=SMP4*(E(L+1,M,N3)+E(L,M-1,N3)+E(L,M+1,N3)+O.5*(E(L-1,M
 1.N3)+EL(L-1.N3)))+SMP*E(L,M,N3.)
 1.N3)+EL(L-1.N3)))+SMP*E(L,M,N3.)
 GO TO 90
 GO TO 90
 80 U(L,M,N3)=SMP4*(11(1-1,M,N3)+U(I+1,M,N3)+U(L,M-1.N3)+U(L.M+1.N3))
 80 U(L,M,N3)=SMP4*(11(1-1,M,N3)+U(I+1,M,N3)+U(L,M-1.N3)+U(L.M+1.N3))
 1 +SMP*U(L,M,N3)
 1 +SMP*U(L,M,N3)
 V(L,M,N3)=SMP4*(V(L-1,M,N3)+V(L+1,M,N3)+V(L,M-1,N3)+V(L,M+1,N3))
 V(L,M,N3)=SMP4*(V(L-1,M,N3)+V(L+1,M,N3)+V(L,M-1,N3)+V(L,M+1,N3))
 1 +SMP*V(L,M,N3)
```

        1 +SMP*V(L,M,N3)
    ```


```

    1+SMP*P(L.M.N3)
    ```
 1+SMP*P(L.M.N3)
 RO(L,M,N3)=SMP4*(RO(L-1,M,N3)+RO(L+1,M,N3)+RO(L,M-1,N3)+RO(L,M+1
 RO(L,M,N3)=SMP4*(RO(L-1,M,N3)+RO(L+1,M,N3)+RO(L,M-1,N3)+RO(L,M+1
 1.N3))+SMP*RO(L.M.N3)
 1.N3))+SMP*RO(L.M.N3)
 IF (ITM.LE. 1) GO TO 90
 IF (ITM.LE. 1) GO TO 90
 Q(L,M,N3)=SMP4*(Q(L-1.M,N3)+Q(L+1,M,N3)+Q(L,M-1,N3)+Q(L,M+1,N3))
 Q(L,M,N3)=SMP4*(Q(L-1.M,N3)+Q(L+1,M,N3)+Q(L,M-1,N3)+Q(L,M+1,N3))
 1 +SMP*O(L,M,N3)
 1 +SMP*O(L,M,N3)
 E(L,M,N3)=SMP4*(E(L-1,M,N3)+E(L+1,M,N3)+E(L,M-1,N3)+E(L,M+1,N3))
 E(L,M,N3)=SMP4*(E(L-1,M,N3)+E(L+1,M,N3)+E(L,M-1,N3)+E(L,M+1,N3))
 1 +SMP*E(L.M,N3)
 1 +SMP*E(L.M,N3)
 90 CONTINUE
 90 CONTINUE
 TIME SMOOTHING (NTST.EQ.1)
```

    TIME SMOOTHING (NTST.EQ.1)
    ```
```

4946 C
4947 100 IF (SMPT.EQ.1.0) RETURN
4948 IF (NTST.EQ.-1) GO TO 130
4949 NTC=NTC+1
4950 IF (NTC.NE:NTST) RETURN
4951 NTC=O
4 9 5 2
4 9 5 3 ~ C
4954
4 9 5 5
4956
4 9 5 7 ~ C
4 9 5 8
4 9 5 9
4960
4 9 6 1
4 9 6 2
4 9 6 3
4 9 6 4
4 9 6 5
4 9 6 6
4 9 6 7
4 9 6 8
4 9 6 9
4 9 7 0
4 9 7 1
4 9 7 2
4 9 7 3
4 9 7 4
4 9 7 5
4 9 7 6 ~ C
4 9 7 7 ~ C
4 9 7 8 ~ C
4 9 7 9
4 9 8 0
4 9 8 1
4982 C
4 9 8 3
4 9 8 4
4 9 8 5
4 9 8 6
4 9 8 7
4 9 8 8
4 9 8 9
4 9 9 0
4 9 9 1
4 9 9 2
4 9 9 3
4994
4 9 9 5
4 9 9 6
4 9 9 7
4 9 9 8
4999
5000
5001
5002
5003
5004
5005
5000
5007
5008
5009
5010
5 0 1 1
5012
5013
IF (NTST.NE.1) GO TO 130
DO 120 L=1.LMAX
LDFS=O
IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
OO 120 M=1,MMAX
U(L.M,N3) = SMPT*U(L,M,N3)+(1.O-SMPT)*U(L,M,N1)
V(L,M,N3)=SMPT*V(L,M,N3)+(1.O-SMPT)*V(L,M,N1)
P(L,M,N3)=SMPT*P(L,M,N3)+(1.O-SMPT) *P(L,M,N1)
RO(L,M,N3) =SMPT*RO(L,M,N3)+(1.O-SMPT)*RO(L,M,N1)
IF (ITM.LE.1) GO TO 110
O(L,M,N3)=SMPT*Q(L,M.N3)+(1.O-SMPT)*Q(L,M,N1)
E(L,M,N3)=SMPT*E(L,M,N3)+(1.O-SMPT)*E(L,M,N1)
110 IF (MDFS.EQ.O.OR.LDFS.EQ.O) GO TO 120
UL(L,N3) =SMPT*UL(L,N3) +(1.O-SMPT)*UL(L,NT)
VL(L,N3) =SMPT *VL(L,N3) +(1.0-SMPT)*VL(L,N+)
PL(L,N3)=SMPT*PL(L,N3)+(1.O-SMPT)*PL(L,N1)
ROL(L.N3)=SMPT*ROL(L.N3)+(1.O-SMPT) *ROL(L.N1)
IF (ITM.LE.1) GO TO 12O
QL(L,N3)=SMPT*QL(L,N3)+(1.O-SMPT)*OL(L,N1)
EL(L,N3) =SMPT*EL(L,N3)+(1.O-SMPT)*EL(L,N1)
120 CONTINUE
RETURN
time SmOOthing (NTST.GT.1)
130 DO 150 L=1. LMAX
LDFS=O
IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
DO 150 m=1.MMAX
U(L,M,NJ)=SMPT*U(L,M,N3)+(1.O-SMPT)*US(L,M)
V(L,M,N3)=SMPT*V(L,M,N3)+(1.O-SMPT )*VS(L,M)
P(L,M,N3) =SMPT*P(L,M,N3)+(1.0-SMPT )*PS(L,M)
RO(L.M,N3) =SMPT*RO(L,M,N3)+(1.O-SMPT )*ROS(L,M)
US(L,M)=U(L,M,N3)
VS(L,M)=V(L,M,N3)
PS(L.M)=P(L.M.N3)
ROS(L,M)=RO(L,M,N3)
IF (ITM.LE.1) GO TO 140
Q(L,M,N3)=SMPT+Q(L,M,N3) +(1.O-SMPT ) *QS(L,M)
E(L,M,NS)=SMPI+E(L,M,NJ)+(1.U-SMPI) +ES(L,M)
QS(L,M)=0(L,M,N3)
ES(L.M)=E(L,M,N3)
140 IF (MDFS.EQ.O.OR.LDFS.EQ.O) GO TO 150
UL(L,N3)=SMPT*UL(L,N3)+(1.0-SMPT)*ULS(L)
VL(L,N3) SMMPT*VL(L,N3)+(1.0-SMPT)*VLS(L)
PL(L,N3) =SMPT*PL(L,N3)+(1.0-SMPT)*PLS(L)
ROL(L,N3)=SMPT*RDL(L,N3)+(1.O-SMPT)*ROLS(L)
ULS(L)=UL(L.N3)
VLS(L)=VL(L,N3)
PLS(L)=PL(L,N3)
ROLS(L)=ROL(L,N3)
IF (ITM.LE. 1) GO TO 150
QL(L,N3)=SMPT*QL(L,N3)+(1.0-SMPT)*QLS(L)
EL(L,N3) SSMPT*EL(L,N3) +(1.O-SMPT)*ELS(L)
QLS(L)=OL(L,N3)
ELS(L)=EL(L,N3)
15O CONTINUE
RETURN
END

```

5014
5015 C
5016 C 5017 C 5018 C 5019 C 5020 C 5021 C 5022 C
5023 C
5024 *CALL, MCC
5025 C
5026 C
5027 C
5028
5029
5030
5031
50ำ2
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054 C
bubb
50.56

5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
50.73

5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
```

    SUBROUTI!GE MIXLEN (L.MV)
    C
*********************************************************+**********
THIS SUBROUTINE CALCULATES THE SHEAR LAYER WIDTH . BOUNDARY
LAYER THICKNESS AND DISPLACEMENT THICKNESS FOR THE MIXING-LENGTH
MODEL (ITM=1) AND ONE EQUATION MODEL (ITM=2)
ALL.MCC
C
CALCULATE THE SHEAR LAYER WIDTH (YSL2-YSL1)
IP=0
LMAP =L
IMP=O
IF (IMLM.EQ.2) GO TO 120
UMIN=U(L.1.N1)
DO 1O M=1.MMAX
IF (U(L,M,N1).GT.UMIN) GO TO 10
UMIN=U(L.M.N1)
MMIN=M
10 CONT INUE
IF (MMIN.EQ.1.OR.MMIN.EQ.MMAX) IMP=1
IF (U(L, 1,N1).EQ.U(L.MMAX,N1)) GO TO 20
IF (U(L.MMAX,N1).GT.U(L.1,N1)) UCHECK=(U(L.1,N1)-UMIN)/(U(L,MMAX
1.N1)-U(L.1.Ni))
IF (U(L.MMAX,N1).LT.U(L.1.N1)) UCHECK=(U(L.MMAX.N1)-UMIN)/(U(L.1
1.N1)-U(L.MMAX,N1))
IF (UCHECK.LT.O.O5) IMP=1
2O IF (IMP.NE.O) GO TO 30
UDUM=UMIN
RDUL=1.O/(U(L.1,N1)-UDUM)
RDUU=1.O/(U(L,MMAX,N1)-UDUM)
GO TO 40
30 IF (U(L,I,N1).EQ.U(L.MMAX,N1)) GO TO 110
UDUM=U(L,MMAX,N1)
RDU=1.O/(U(L,1,N1)-UDUM)
4U UU YU M=9,M1
MMAP =M!
CALL MAP
IF (M.EQ.MMIN) YMIN=YP
MMAP =M+1
YP I=YP
CALL MAP
DYP=YP-YP1
IF (IMP.NE.O) GO TO 50
RDU=RDUL
TF (M.GE,MMIN) RDUI=RDUU
50 UD 1=(U(L,M,N1)-UDUM)*RDU
UD2 = (U(L.M+1,N1)-UDUM) +RDU
IF (UD1.GE.O.9.AND.UD2.LE.O.9) GO TO 60
IF (UD1.LE.O.9.AND.UD2.GE.O.9) GO TO 60
IF (IMP.EO.O) GO TO 90
IF (UD1.GE.O.1.AND.UD2.LE.O.1) GO TO }8
GO TO 90
60 YSL2=YP1+(0.9-UD1)*DYP/(UD2-UD1)
IF (IMP.NE.O) GO TO 70
IF (M.GE.MMIN) GO TO 100
IF (M.LT.MMIN) YSL1=YSL2
GO TO 90
70 IF (UD1.GE.O.1.ANO.UO2.LE.O.1) GO TO }8
GO TO 90
80 YSLI=YP1+(0.1-UD1)*DYP/(UD2-UD1)
GO TO 100
90 CONTINUE
YSLI=YW(L)
100 IP=1
RETURN

```
```

5086 C
5087 110 YSL1=0.0
YSL2=0.0
YMIN=0.0
IP=1
RETURN
CALCULATE THE BOUNDARY LAYER THICKNESS (DEL)
120 MM3=MMAX
MM4 =0
IF (MDFS.EQ.O) GO TO 150
IF (NVC.NE.1) GO TO 130
IBD=IB
IF (MV.LT.MDFS) IB=3
IF (MV.GT.MDFS) IB=4
130 IF (IB.EQ.4) GO TO 140
MM3 = MDF S
M=MM3+1
MDEL=-1
UMAX=U(L, 1,N1)*RO(L,1,N1)
GO TO 170
140 MM4 = MDFS-1
M=MM4
MDEL=1
UMAX=U(L.MMAX,N1)*RO(L,MMAX,N1)
GO. TO 170
150 IF (IWALL.EQ.O) GO TO 160
M=MM4
MDEL=1
UMAX=U(L,MMAX,N1)*RO(L,MMAX,N1)
GO TO 170
160 M=MM3+1
MDEL = - 1
UMAX=U(L,1,N1)*RO(L,1,N1)
C
170 DO 180 MM=1,M1
M=M+MDEL
IF (M+MDEL.EQ.O) GO TO 190
IF (M+MDEL.EQ.MMAX+1) GO TO 190
UD1=U(L,M,N1)*RO(L,M,N1)/UMAX
UD2=U(L,M+MDEL,N1)*RO(L,M+MDEL,N1)/UMAX
IF (UD1.LE.O.98.AND.UD2.GE.O.98) GO TO 2OO
IF (UD1.GE.O.98.AND.UD2.LE.O.98) GO TO 200
180 CONTINUE
190 DEL=0.O
RETURN
2O0 MMAP = M
CALL MAP
MMAP = M+MDEL
YP1=YP
CALL MAP
DYP=YP-YP1
Y2=YP1+(0.98-UD 1)*DYP/(UD2-UD 1)
IF (MDFS.EQ.O) GO TO 210
IF (IB.EQ.3) DEL=YL(L)-Y2
IF (IB.EQ.4) DEL=Y2-YU(L)
GO TO 22O
210 IF (IWALL.EQ.O) DEL=YW(L)-Y2
IF (IWALL.NE.O) DEL=Y2-YCB(L)
CALCULATE THE OISPLACEMENT THICKNESS (DEIS)
220 DELS=0.0
IF (IWALL.EQ.O) GO TO 230
IF (MDFS.NE.O.AND.IB.EO.3) GO TO 230
MBLE =M+1-MM4
UBL[=U(L,MI1.N1)
ROUBLE=UBLE*RO(L,M+1,N1)
M=MM4
MDEL=1

```
```

5158
5159 C
5160
5161
5162
5163
5164
5165 C
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181

```
```

    GO TO 240
    ```
 GO TO 240
230 MBLE =MM3-M+2
230 MBLE =MM3-M+2
 UBLE=U(L,M-1,N1)
 UBLE=U(L,M-1,N1)
 ROUBLE=UBLE*RO(L,M-1,N1)
 ROUBLE=UBLE*RO(L,M-1,N1)
 M=MM3+1
 M=MM3+1
 MDEL = - . }
 MDEL = - . }
240 MBLE 1=MBLE-1
240 MBLE 1=MBLE-1
 DO 250 MM=1.MBLE1
 DO 250 MM=1.MBLE1
 M=M+MDEL
 M=M+MDEL
 MMAP =M
 MMAP =M
 CALL MAP
 CALL MAP
 MMAP = M+MDEL
 MMAP = M+MDEL
 YP1=YP
 YP1=YP
 CALL MAP
 CALL MAP
 DYP=ABS(YP-YP1)
 DYP=ABS(YP-YP1)
 DELS=DELS+(1.O-O.5*(U(L,M,N1)*RO(L,M,N1)+U(L,M+MDEL,N1)*RO(L,M
 DELS=DELS+(1.O-O.5*(U(L,M,N1)*RO(L,M,N1)+U(L,M+MDEL,N1)*RO(L,M
 1.+MDEL,N1))/ROUBLE)*DYP
 1.+MDEL,N1))/ROUBLE)*DYP
250 CONTINUE
250 CONTINUE
 IF (MDFS.NE.O.AND.NVC.EQ.1) IB=IBD
 IF (MDFS.NE.O.AND.NVC.EQ.1) IB=IBD
 IP=1
 IP=1
 RETURN
 RETURN
 END
```

    END
    ```
```

5182
5183 C
5184 C
5185 C
5186 C
5187 C
5188 C
5189 C
5190 C
5191 *CALL.MCC
5192 YII=(YI(2)-YI(1))/(YI(3)-YI (2))
5193 YIM=(YI(MMAX)-YI(M1))/(YI(M1)-YI(M2))
5194 IF (MDFS.EQ.O) GO TO 10
5195
5196
5197
5198
5199 C
5200 C
5201 C
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231 C
5232 C
5233 C
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
.1
SUBROUTINE TURBC (II)
10 GO.TO (20.70.150). II
THIS SU\&ROUTINE SETS THE BOUNDARY CONDITIONS fOR THE TURBULENCE
QUANTITIES O AND E
YIU=(YI(MDFS+1)-YI(MNFS))/(YI(MDFS +2)-YI(MDFS+1))
IF (LDFSS.EQ.1) YIL=(YL(1)-YI(MDFS-1))/(YI(MDFS-1)-YI(MDFS-2))
IF (LDFSS.NE.1) YIL=(YI(MDFS)-YI (MDFS-1) )/(YI (MDFS-1)-YI(MDFS-2))
SET QUANTITIES AFTER EACH TIME STEP
20 DO 30 M=1,MMAX
Q(1,M,N3)=FSQ(M)
E(1,M,N3)=FSE(M)
30 CONTINUE
DO 40 L=2.L1
Q(L,MMAX,N3)=Q(L,M1,N3)+YIM*(Q(L,M1,N3)-Q(L,M2,N3))
E(L,MMAX,N3)=E(L,M1,N3)+YIM*(E LL,M1,N3)-E(L,M2,N3))
IF (NOSLIP.NE.O.AND.IWALL.EQ.O) Q(L.MMAX,N3)=O.O
IF (NGCB.EO.O) GO TO 4O
Q(L,1,N3)=Q(L.2.N3)+YI 1*(O(L.2,N3)-Q(L, 3,N3))
E(L,1,N3)=E(L,2,N3)+YI1*(E(L,2,N3)-E(L, 3,N3))
IF (NOSLIP.NE.O) Q(L.1,N3)=0.O
4O CONTINUE
DO 5O M=1,MMAX
Q(LMAX,M,N3)=Q(L1,M,N3)
E(LMAX,M,N3)=E(L1,M,N3)
50 CONTINUE
IF (MDFS.EQ.O) GO TO 28O
QL (1.N3)=FSQL
EL(1,N3)=FSEL
DO 60 I =L,NFSS, I.DFSF
Q(L,MDFS,N3)=Q(L,MDFS+1,N3)+YIU*(Q(L,MDFS+1,N3)-Q(L,MDFS+2,N3))
E(L,MDFS,N3)=E(L,MDFS+1,N3)+YIU*(E(L,MDFS+1,N3)-E(L,MDFS+2,N3))
E(L,MDFS,N3)=E(L,MDFS+1,N3)+YIU*(E(L,MDFS+1,N3
EL(L,N3)=E(L,MDFS-1,N3)+YIL*(E(L,MDFS-1,N3)-E(L,MDFS-2,N3))
IF (NOSLIP.NE.O) Q(L.MDFS.N3) =0.O
IF (NOSLIP.NE.O) QL(L,N3)=0.O
60 CONTINUE
GO TO 280
C
ด\Omega
SET QUANTITIES AFTER EACH SUBCYCLE TIME STEP
-70 DO 80 M=MVCB,MVCT
Q(1,M,N3)=FSQ(M)
Q(1,M,N3)=FSQ(M)
8O CONTINUE
IF (MVCT.NE.MMAX) GO TO 100
DO. 90 L=2.L1
O(L,MMAX,N3)=Q(L,M1,N3)+YIM*(O(L,M1,N3)-Q(L,M2.N3))
E(L,MMAX.N3)=E(L.M1.N3)+YIM*(E(L,M1,N3)-E(L,M2,N3))
IF (NOSLIP.NE.O.AND.IWALL.EO.O) O(L,MMAX,N3)=0.O
9 0 ~ C O N T I N U E ~
100 IF (MVCB NE 1.OR.NGCR.FO.O) GO TO 12O
OO 110 L=2.L1
Q(L,1,N3)=Q(L, 2.N3)+YI1*(Q(L,2.N3)-Q(L.3.N3))
E(L,1,N3)=E(L,2,N3)+YI1*(E(L,2,N3)-E(L,3.N3))
IF (NOSLIP.NE.O) Q(L.I,N3)=0.O
110 CONTINUE
120 DO 130 M=MVCB,MVCT
Q(LMAX,M,N3)=O(L1,M,N3)
E(LMAX,M,N3)=E(LI,M,N3)
130 CONTINUE

```
```

    IF (MDFS.EQ.O) GO TO 280
    OL(1.N3)=FSOL
    EL(1.N3)=FSEL
    IF (MVCB.GT.MDFS.OR.MVCT.LT.MDFS) GO TO 280
    DO 140 L=LDFSS.LDFSF
    O(L.MDFS.N3) =Q(L.MDFS+1.N3)+YIU +(O(L.MDFS+1.N3)-Q(L.MDFS+2.N3))
    E(L,MDFS,N3)=E(L,MDFS+1,N3)+YIU*(E (L,MDFS+1,N3)-E(L,MDFS+2,N3))
    QL(L.N3)=Q(L,MDFS-1.N3)+YIL*(O(L.MDFS-1,N3)-Q(L,MDFS-2,N3))
    EL(L,N3)=E(L,MDFS-1,N3)+YIL*(E(L,MDFS-1,N3)-E(L,MDFS-2,N3))
    IF (NOSLIP.NE.O) Q(L.MDFS.N3)=0.O
    IF (NOSLIP.NE.O) QL(L.N3)=O.O
    140 CONT INUE
    GO TO 28O
    SET QUANTITIES AFTER ALL PREDICTOR STEPS
    150 IF (NVC.NE. 1) GO TU 190
IF (MVCT.EQ.MMAX) GO TO 170
DO 160 L=2.L1
Q(L,MMAX,N3)=Q(L,M1.N3)+YIM=(O(L,M1,N3)-O(L,M2,N3))
E(L,MMAX,N3)=E(L,M1,N3)+YIM*(E(L,M4,N3)-E(L,M2.N3))
IF (NOSLIP.NE.O.AND.IWALL.EQ.O) Q(L.MMAX.N3)=O.O
160 CONTINUE
170 DO 180 M=1. MMAX
IF (M.GE.MVCB.AND.M.LE.MVCT) GO TO 180
Q(LMAX,M,N3) = O(L1,M,N3)
E(LMAX,M,N3)=E(L1,M,N3)
180 CONT INUE
GO TO 230
190 IF (MVCT.NE.MMAX) GO TO 210
DO 200 L=2.Li
Q(L.MMAX,N3) =O(L.M1.N3)+YIM*(O(L.M1.N3)-Q(L.M2.N3))
E(L,MMAX,N3) =E(L,M1,N3)+YIM*(E(L,M1,N3)-E(L,M2,N3))
IF (NOSLIP.NE.O.AND.IWALL.EQ.O) Q(L.MMAX.N3)=0.O
2OO CONT INIJF.
210 DO 220 M=MVCB,MVCT
Q(LMAX,M,N3)=O(L1,M,N3)
E(LMAX,M,N3)=E(L1,M,N3)
220 CONTINUE
230 IF (MDFS.EQ.O) GO TO 280
IF (NVC.NE. 1) GO TO 24O
IT (MDIS.GT.MVCD.AND.MDFS.LT.MVCT) GO TO 270
GO TO 250
240 IF (MDFS.LT.MVCB.OR.MDFS.GT.MVCT) GO TO 270
250 DO 260 L=LDFSS,LDFSF

```

```

    EL(L,N3)=E(L,MDFS-1,N3)+YIL+(E(L,MDFS-1,N3)-E(I.,MDFS-2,N3))
    IF (NOSIIP.NE.O) OL(L.N3)=0.O
    260 CONTINUE
270 IF (LDFSF.NE.LMAX) GO TO 280
OL(LMAX,N3)=OL(L1,N3)
EL(LMAX,N3)=EL(L1.N3)
280 DO 290 L=1.LMAX
IF (Q(L.1.N3).LT.O.O) Q(L,1,N3)=OLOW
IF (E(L,1,N3).LT,O.O) E(L,1,N3)=ELOW
IF (O(L,MMAX,N3).LT.O.O) O(L,MMAX,N3)-OLOW
IF (E(L,MMAX,N3).LT.O.O) E(L,MMAX,N3)=ELOW
IF (MDFS.EQ.O) GO TO 290
IF (O(L.MDFS.N3).LT.O.O) Q(L,MDFS.N3)=OLOW
IF (E(L,MUFS,N3).LT.O.O) E(L,MOFS,N3)=ELUW
IF (OL(L,N3).LT.O.O) QL(L,N3)=OLOW
IF (EL(L,N3).LT.O.O) EL(L.N3)=ELOW
290 CONTINUE
RETURN
END

```

5320
5321 C
5322 C
5323 C
5324 C
5325 C
5326 C
5327 C
5328 *CALL.MCC
5329 I P = 1
5330 ATERM=0.O
5331
5332
5333
5334
5335 C
5336 C
5337 C 5338
5339
5340
5344
5342
5343
5344 C
5345 C
5346 C 5347
5348
5349 5350 5351 C 5352 C
5353 C
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5.368

5369
5370
5371
5372
5373
5374
5375
5376 C
5377 C
5378 C
5379
5380
5381
5382 5383 5.384 5385 5386 5387 5388 5389 5390 5391
.
```

SUBROUTINE INTER

```

```

THIS SUBROUTINE CAL.CIIIATES THE INTERIOR MESH POINTS
MIS=1
IF (NGCB.NE.O) MIS=2
MIF=M1
IF (ICHAR.NE. 1) GO TO 2OO
COMPUTE THE TENTATIVE SOLUTION AT T+DT
IF (IVC.EO.O) GO TO 1O
IF (NVC.EQ.1) GO TO 10
MIS = MVCB
MIF =MVCT+1
IF (MVCB.EQ.1.AND.NGCB.NE.O) MIS=2
IF (MIF.GE.MMAX) MIF=M1
BEGIN THE L OR X DO LOOP
10 DO 190 L=2.LI
LMAP = L
LDFS=0
IF (L.GE.LOFSS.AND.L.LE.LDFSF) LDFS=1
BEGIN THE M OR Y DO LOOP
DO 180 M=MIS,MIF
IF (IVC.EQ.O) GO TO 20
IF (NVC.NE.1) GO TO 2O
IF (M.LE.MVCB.AND.MVCB.NE. 1) GO TO 20
IF (M.GT.MVCT) GO TO 2O
GO TO 180
20 IF (M.EQ.MDFS.AND.LDFS.EQ.1) GO TO 180
MMAP =M
CALL MAP
OM=OM1
\DeltaL=AI. 3
BE=BE3
DE=DE3
UB=1J(L.M.NT)
VB=V(L,M,N1)
PB=P(L,M,N1)
ROB=RO(L,M,N1)
ROR=1.O/ROB
ASB =GAMMA *PB*ROR
QB=O(L.M.N1)
EB=E(L,M,NY)
IF (M.NE. 1) GO TO 6O
CALCULATE THE QUANTITIES FOR M=1
DUDX = (UB-U(L-1,M,N1))*DXR
DPDX=(PR-P(L-I.M.NT))*OXR
DRODX=(ROB-RO(L-1,M,N1))*DXR
DVDY = (4.O*V(L, 2,N1)-V(L,3,N1))*O.5*OYR
IF (ITM.LE.1) GO TO 3O
DODX=(QB-Q(L-1,M,N1))*DXR
DEDX=(EB-E(L-1.M,N1))*DXR
30 V(L,M,N3)=0.O
URHS = -UB +OM*DUDX -OM*DPDX *ROR +QUT (L.M)
RORHS = -UB*OM*DRODX -ROB*OM*DUDX - FLOAT (1+NDIM)*ROB*BE*DVDY +QROT (L,M)
PRHS = -UB *OM +DPDX +ASB + (RORHS +UB *OM*DRODX) +QPT (L,M)
IF (ITM.LE.1) GO TO f70
IF (UB.GE.O.O) GO TO 4O

```
```

        5392
        5 3 9 3
        5394
        5395
        5396
        5397
        5398
        5 3 9 9
        5 4 0 0
        5 4 0 1
        5 4 0 2
        5403
        5 4 0 4
        5 4 0 5
        5 4 0 6
        5407
        54n8 r.
        5409 C
        5410 C
        5 4 1 1
        5412
        5413 C
        5414 C
        5415 C
        5416
        541%
        5418
        5419
        5420
        5 4 . 2 1
        5422
        5423
        5424
        5425
        5426
        5427
        5428
        5429
        5430
        543!
        5432 C
        5 4 3 3
        5434
        5435
        5436
        5137
        5438
        5 4 3 9
        5440
        5441
        5442
        5443
        5444
        5445
        5446
        5447.
        5448
        5 4 4 9
        5450
        5451
        5452
        5453
        5 4 5 4
        5455
        5456
        5457
        5458 C
        5 4 5 9 ~ C
        5460 C
        5 4 6 1
        5462
    5 4 6 3
    DQDX=(Q(L+1,M,N1)-QB)*OXR
    OM=OM2
    4O ORHS = -UB*OM*DODX + OOT (L,M)
    Q(L,M,N3)=OB+QRHS *DT
    IF (Q(L,M,N3).LT.QLOW) Q(L,M,N3)=OLOW
    IF (ITM:EQ.2) GO TO 170
    ERHS = UB*OM*OEDX OET(L,M)
    E(L,M,N3)=EB+ERHS*DT
    IF (MDFS.NE.O.AND.LDFS.EQ.O) GO TO 50
    IF (O(L.M.N3).LT.BFST*FSO(M)) O(L.M,N3)=BFST*FSO(M)
    IF (E(L.M,N3).LT.BFST*FSE(M)) E(L.M.N3)=BFST*FSE(M)
    50 IF (E(L,M,N3).GT.ELOW) GO TO 17O
Q(L,M,N3)=QLOW
E(L,M,N3)=ELOW
GO TO 170
CALCULATE THE QUANTITIES FOR M NOT EQUAL TO 1
60 IF (IVC.EQ.O) GO TO 70
IF (NVC.EQ.1.OR.M.NE.MVCT+1) GO TO 70
LINEAR INTERPOLATION IN TIME FOR M=MVCT+1
UB=UU1(L)+RIND*(UU2(L)-UU1(L))
VB=VV1(L)+RIND*(VV2(L)-VV1(L))
PB=PP1(L)+RIND*(PP2(L)-PP1(L))
ROB=RORO 1(L)+RIND*(RORO2(L)-RORO1(L))
ROR=1.O/ROB
ASB=GAMMA *PB*ROR
ULM=UU1(L-1)+RIND*(UU2(L-1)-UU1(L-1))
VLM=VV1(L-1)+RIND*(VV2(L-1)-VV1(L-1))
PLM=PP1(L-1)+RIND*(PP2(L-1)-PP1(L-1))
ROLM=RORO1(L-1)+RIND*(RORO2(L-1)-RORO1(L-1))
IF (ITM.LE. 1) GO TO }8
OB=QO1(L)+RIND*(OQ2(L)-QQ1(L))
EB=EE1(L)+RIND*(EE2(L)-EE1(L))
QLM=001(L-1)+RIND*(002(L-1)-001(L-1))
ELM=EE1(L-1)+RIND*(EE2(L-1)-EE1(L-1))
GO TO 8O
70 ULM=U(L-1,M,N1)
VLM=V(L-1,M,N1)
PLM=P(L-1.M,Ni)
ROLM=RO(L-1,M,N1)
QLM=Q(L 1,M,NT)
ELM=E(L-1,M,N1)
IF (M.NE.MDFS.OR.L.NE.LDFSF+1) GO TO 80
ULM=0.5*(ULM+UL(L-1,N1))
VLM=0.5*(VLM+VL(L-1.N1))
VLM=0.5*(VLM+VL(L-1.N1))
PLM=0.5*(PLM+PL(L-1,N1))
ROLM=0.5*(ROLM+ROL(L-1,N1))
IF (ITM.LE.1) GO TO 80
OLM=0.5*(OLM+OL(L-1.N1))
ELM=0.5*(ELM+EL(L-1.N1))
80 UVB=UB*AL+VB*BE+DE
IF (NOIM.NE.O) ATTRM=ROK+VB/YP
DUDX = (UB-ULM)*DXR
DVDX=(VB-VLM)*DXR
DPDX=(PB-PLM)*DXR
DRODX = (ROB-ROLM)*DXR
IF (ITM.LE.1) GO TU go
DQDX=(QB-OLM)*DXR
UEUX=(EB-ELM) +DXR
90 IF (IVC.EQ.O) GO TO 110
IF (NVC.EQ.1.OR.M.NE.MVCB) GO To 110
LINEAR INTERPOLATION IN TIME FOR M=mVCB
UMM=U(L,M-1.NN1)+RIND*(U(L,M-1,NN3)-U(L,M-1,NN1))
VMM=V(L,M-1,NN1)+RIND*(V(L,M-1,NN3)-V(L,M-1,NN1))
PMM=P(L,M-1.NN1)+RIND*(P(L,M-1.NN3)-P(L.M-1.NN1))

```
```

5464
5465
5466
5467
5468 C
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484 C
5485 C
5486 C
5487
5488
5489
5490
5491
5492
5 4 9 3
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513 C
5514 C
5515 C
5516
5517
5518
5519
5520
5521
5522
5523
5524
55:25
5526
5527
5528
5529
5530
5531
5532
553.3
5534
5535

```
```

    ROMM=RO(L,M-1,NN1)+RIND*(RO(L,M-1.NN3)-RO(L,M-1,NN1))
    ```
 ROMM=RO(L,M-1,NN1)+RIND*(RO(L,M-1.NN3)-RO(L,M-1,NN1))
 IF (ITM.LE.1) GO TO 100
 IF (ITM.LE.1) GO TO 100
 QMM=O(L,M-1,NN1)+RIND*(O(L,M-1,NN3)-Q(L,M-1,NN1))
 QMM=O(L,M-1,NN1)+RIND*(O(L,M-1,NN3)-Q(L,M-1,NN1))
 EMM=E(L.M-1,NN1)+RIND*(E(L,M-1,NN3)-E(L,M-1,NN1))
 EMM=E(L.M-1,NN1)+RIND*(E(L,M-1,NN3)-E(L,M-1,NN1))
 100 DUÖY = (UB -UMM) *DYR
 100 DUÖY = (UB -UMM) *DYR
 DVDY = (VB-VMM)*DYR
 DVDY = (VB-VMM)*DYR
 DPOY=(PB-PMM)*DYR
 DPOY=(PB-PMM)*DYR
 DRODY = (ROB-ROMM) *OYR
 DRODY = (ROB-ROMM) *OYR
 IF (ITM.LE.1) GO TO 120
 IF (ITM.LE.1) GO TO 120
 DQDY = (OB-OMM) *DYR
 DQDY = (OB-OMM) *DYR
 DEDY = (EB-EMM)*DYR
 DEDY = (EB-EMM)*DYR
 GO TO 120
 GO TO 120
 110 DUDY = (UB-U(L,M-1,N1))*DYR
 110 DUDY = (UB-U(L,M-1,N1))*DYR
 DVDY = (VB-V(L,M-1.N4)) *DYR
 DVDY = (VB-V(L,M-1.N4)) *DYR
 DPDY = (PB-P(L,M-1,N1))*DYR
 DPDY = (PB-P(L,M-1,N1))*DYR
 DRODY = (ROB-RO(L,M-1,N1)) + OYR
 DRODY = (ROB-RO(L,M-1,N1)) + OYR
 IF (ITM.LE.1) GO TO 12O
 IF (ITM.LE.1) GO TO 12O
 DQDY = (OB-O(L.M-1.N1))*DYR
 DQDY = (OB-O(L.M-1.N1))*DYR
 DEDY = (EB-E (L,M-1,N1))*DYR
 DEDY = (EB-E (L,M-1,N1))*DYR
 SPECIAL FORM OF THE EQUATIONS USED BY THE QUICK SOLVER
 SPECIAL FORM OF THE EQUATIONS USED BY THE QUICK SOLVER
 120 IF (IQSD.EQ.O.OR.NVC.EQ.1) GO TO 130
 120 IF (IQSD.EQ.O.OR.NVC.EQ.1) GO TO 130
 IF (M.EQ.MVCB.OR.M.GE.MVCT) GO TO 130
 IF (M.EQ.MVCB.OR.M.GE.MVCT) GO TO 130
 ALS=SORT (AL*AL +BE*BE)
 ALS=SORT (AL*AL +BE*BE)
 RALS=1.O/ALS
 RALS=1.O/ALS
 AB=SQRT (ASB)
 AB=SQRT (ASB)
 ABR=AL/BE
 ABR=AL/BE
 UVBP =UVB +ALS *AB
 UVBP =UVB +ALS *AB
 UVBM=UVB - ALS*AB
 UVBM=UVB - ALS*AB
 USL = -UVB *DUDY + ABR *UVE *OVDY -UB *OM (DUDX - ABR*DVDX) -OM*DPDX * ROR + OUT (L
 USL = -UVB *DUDY + ABR *UVE *OVDY -UB *OM (DUDX - ABR*DVDX) -OM*DPDX * ROR + OUT (L
 1.M)-ABR*QVT (L.M)
 1.M)-ABR*QVT (L.M)
 PMLP = -UB * OM *DPDX -ROB * ASB *OM *DUDX - ASB * ATERM-ROB * AB *OM*RALS + (AL * (UB
 PMLP = -UB * OM *DPDX -ROB * ASB *OM *DUDX - ASB * ATERM-ROB * AB *OM*RALS + (AL * (UB
 1 *DUDX + DPDX * ROR) +BE +UB + DVOX) + OPT (L,M) +ASB *QROT(L,M) +ROB * AB +RALS *
 1 *DUDX + DPDX * ROR) +BE +UB + DVOX) + OPT (L,M) +ASB *QROT(L,M) +ROB * AB +RALS *
 2(AL*OUT(L,M)+BE*QVT(L,M))
 2(AL*OUT(L,M)+BE*QVT(L,M))
 PMLM=-UB*OM*DPOX-ROB*ASB*OM*DUDX-ASB*ATERM*ROB*AB*OM*RALS*(AL*(UB
 PMLM=-UB*OM*DPOX-ROB*ASB*OM*DUDX-ASB*ATERM*ROB*AB*OM*RALS*(AL*(UB
 1 *DUDX +DPDX *ROR) +BE *UB *DVDX) +OPT (L.M) +ASB * QROT(L.M)-ROB*AB*RALS*
 1 *DUDX +DPDX *ROR) +BE *UB *DVDX) +OPT (L.M) +ASB * QROT(L.M)-ROB*AB*RALS*
 2 (AL*QUT(L,M)+BE*QVT(L,M))
 2 (AL*QUT(L,M)+BE*QVT(L,M))
 PMLP1=-UVBP*DPDYOS(L,M,1)-ROB*AB*RALS*UVBP*(AL*DUDYOS(L,M,1) +BE
 PMLP1=-UVBP*DPDYOS(L,M,1)-ROB*AB*RALS*UVBP*(AL*DUDYOS(L,M,1) +BE
 1 *DVDYOS(L,M,1))+PMLP
 1 *DVDYOS(L,M,1))+PMLP
 PMLM 1 = -UVBM*OPDYOS(L,M,2) +ROE *AB*RALS*UVBM* (AL*DUDYOS(L,M,2) +BE
 PMLM 1 = -UVBM*OPDYOS(L,M,2) +ROE *AB*RALS*UVBM* (AL*DUDYOS(L,M,2) +BE
 1 *DVDYOS(L.,M,2))+PMLM
 1 *DVDYOS(L.,M,2))+PMLM
 VRHS =-(2.O*ROB*AB*AL*RALS*USL+OMLM1-PMLP1)/(2.O*ROB*AB*ALS/BE)
 VRHS =-(2.O*ROB*AB*AL*RALS*USL+OMLM1-PMLP1)/(2.O*ROB*AB*ALS/BE)
 PRHS =0.5*(PMLP 1+PMLM1)
 PRHS =0.5*(PMLP 1+PMLM1)
 URHS =ABR + VRHS +USL
 URHS =ABR + VRHS +USL
 RORHS = -UB * OM * DRODX -UVB * DRODY + (PRHS +UB *OM *DPDX +UVB *DPDY - OPT (L,M))
 RORHS = -UB * OM * DRODX -UVB * DRODY + (PRHS +UB *OM *DPDX +UVB *DPDY - OPT (L,M))
 1/ASE
 1/ASE
 GO TO 140
 GO TO 140
 REGULAR FORM OF THE EQUATIONS
 REGULAR FORM OF THE EQUATIONS
 130 URHS = -UB *OM * DUDX-UVB *DUDY - (OM*DPDX + AI.*DPDY) *ROR +OUT (L,M)
 130 URHS = -UB *OM * DUDX-UVB *DUDY - (OM*DPDX + AI.*DPDY) *ROR +OUT (L,M)
 VRHS = -UB*OM *DVDX -UVB*DVDY -BE *DPDY*ROR +OVT (L,M)
 VRHS = -UB*OM *DVDX -UVB*DVDY -BE *DPDY*ROR +OVT (L,M)
 RORHS = UB *OM *DRODX -UVB*DRODY - ROB * (OM*DUDX +AL *DUDY +BE *OVDY)-ATERM
 RORHS = UB *OM *DRODX -UVB*DRODY - ROB * (OM*DUDX +AL *DUDY +BE *OVDY)-ATERM
 1 +OROT(L,M)
 1 +OROT(L,M)
 PRHS = -UB *OM*DPDX -UVB *DPDY + ASB * (RORHS +UB *OM*DRODX +UVB*DRODY) +QPT (L
 PRHS = -UB *OM*DPDX -UVB *DPDY + ASB * (RORHS +UB *OM*DRODX +UVB*DRODY) +QPT (L
 1.M)
 1.M)
 140 V(L.M,N3)=VB+VRHS*OT
 140 V(L.M,N3)=VB+VRHS*OT
 IF (ITM.LE.1) GO TO 170
 IF (ITM.LE.1) GO TO 170
 IF (UB.GE.O.O) GÜ TÜ i50
 IF (UB.GE.O.O) GÜ TÜ i50
 OODX =(O(L+1,M,NI)-QB)*DXR
 OODX =(O(L+1,M,NI)-QB)*DXR
 DEDX=(E(LI\,M,NI) EB)*DXR
 DEDX=(E(LI\,M,NI) EB)*DXR
 OM=OM2
 OM=OM2
 150 QRHS = UB*OM*DODX-UVB*DQDY +QQT(L.M)
 150 QRHS = UB*OM*DODX-UVB*DQDY +QQT(L.M)
 O(L,M,N3)=QB+QRHS + OT
 O(L,M,N3)=QB+QRHS + OT
 IF (Q(L,M,N3).LT,OLOW) Q(L,M,N3)=OLOW
 IF (Q(L,M,N3).LT,OLOW) Q(L,M,N3)=OLOW
 IF (ITM.EQ.2) GO TO 170
 IF (ITM.EQ.2) GO TO 170
 FRHS=-1IR*חM*DF\capX-IIVR*DFDY + OFT(I ,M)
 FRHS=-1IR*חM*DF\capX-IIVR*DFDY + OFT(I ,M)
 E(L,M,N3)=EB+ERHS*DT
 E(L,M,N3)=EB+ERHS*DT
 IF (MDFS.NE.O.AND.LDFS.EO.O) GO TO 160
```

        IF (MDFS.NE.O.AND.LDFS.EO.O) GO TO 160
    ```
```

5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549 C
5550 C
5551 C
5552
5553
5554
5555
5556
5557
5558 C
5559 C
5560 C
5561
5562
5563
5564
5565
5566
5567
5568 C
5569 C
5570 C
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5584
5582
5583
5584
5585
5586
5587
`500
5 5 8 9
5 5 9 0
bちy1
5592
5593
5594 C
5595 C
5596 C
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607

```
```

    IF (Q(L,M,N3).LT.BFST*FSQ(M)) Q(L,M,N3)=BFST*FSQ(M)
    ```
 IF (Q(L,M,N3).LT.BFST*FSQ(M)) Q(L,M,N3)=BFST*FSQ(M)
 IF (E(L,M,N3).LT.BFST*FSE(M)) E(L.,M,N3)=BFSI*FSt(M)
 IF (E(L,M,N3).LT.BFST*FSE(M)) E(L.,M,N3)=BFSI*FSt(M)
 160 IF (E(L,M,N3).GT.ELOW) GO TO 170
 160 IF (E(L,M,N3).GT.ELOW) GO TO 170
 O(L,M,N3)=OLOW
 O(L,M,N3)=OLOW
 E(L,M:N3)=ELOW
 E(L,M:N3)=ELOW
170 U(L,M,N3)=UB+URHS*DT
170 U(L,M,N3)=UB+URHS*DT
 P(L,M,N3)=PB+PRHS*OT
 P(L,M,N3)=PB+PRHS*OT
 RO(L,M,N3)=ROB+RORHS*DT
 RO(L,M,N3)=ROB+RORHS*DT
 IF (P(L,M,N3).LE.O.O) P(L,M,N3)=PLOW*PC
 IF (P(L,M,N3).LE.O.O) P(L,M,N3)=PLOW*PC
 IF (RO(L,M,N3).LE.O.O) RO(L,M,N3)=ROLOW/G
 IF (RO(L,M,N3).LE.O.O) RO(L,M,N3)=ROLOW/G
 180 CONT INUE
 180 CONT INUE
 190 CONT INUE
 190 CONT INUE
 RETURN
 RETURN
 COMPUTE THE FINAL SOLUTION AT T+DT
 COMPUTE THE FINAL SOLUTION AT T+DT
 200 IF (IVC.EQ.O) GO TO 210
 200 IF (IVC.EQ.O) GO TO 210
 IF (NVC.EQ.1) GO TO 210
 IF (NVC.EQ.1) GO TO 210
 MIS = MYCB
 MIS = MYCB
 MIF=MYVCT
 MIF=MYVCT
 IF (MVCB.EO.1.AND.NGCB.NF,O) MIS=2
 IF (MVCB.EO.1.AND.NGCB.NF,O) MIS=2
 IF (MIF.EQ.MMAX) MIF=M1
 IF (MIF.EQ.MMAX) MIF=M1
 BEGIN THE L OR X DO LOOP
 BEGIN THE L OR X DO LOOP
 210 DO 390 L=2,L1
 210 DO 390 L=2,L1
 LM\triangleP=L
 LM\triangleP=L
 LDFS=0
 LDFS=0
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
 UOLD=U(L,1,N3)
 UOLD=U(L,1,N3)
 VOLD=V(L, 1,N3)
 VOLD=V(L, 1,N3)
 POLD=P(L, 1,N3)
 POLD=P(L, 1,N3)
 BEGIN THE M OR Y DO LOOP
 BEGIN THE M OR Y DO LOOP
 DO 38O M=MIS,MIF
 DO 38O M=MIS,MIF
 IF (IVC.EQ.O) GO TO 220
 IF (IVC.EQ.O) GO TO 220
 IF (NVC.NE.1) GO TO }22
 IF (NVC.NE.1) GO TO }22
 IF (M.LT.MVCB) GO TO 220
 IF (M.LT.MVCB) GO TO 220
 IF (M.GT.MVCT) GO TO 220
 IF (M.GT.MVCT) GO TO 220
 GO TO 38O
 GO TO 38O
220 IF (M.EQ.MDFS.AND.LDFS.EO.1) GO TO 380
220 IF (M.EQ.MDFS.AND.LDFS.EO.1) GO TO 380
 MMAP=M
 MMAP=M
 CALL MAD
 CALL MAD
 OM=OM2
 OM=OM2
 A1 =A1.4
 A1 =A1.4
 BE=BE4
 BE=BE4
 DE=DE4
 DE=DE4
 BED=BE3
 BED=BE3
 UB=U(L,M,N3)
 UB=U(L,M,N3)
 VB=V(L,M,N3)
 VB=V(L,M,N3)
 PB=P(L.M.N3)
 PB=P(L.M.N3)
 ROD-RO(L, 睢N3)
 ROD-RO(L, 睢N3)
 ROR = 1.O/ROB
 ROR = 1.O/ROB
 ASB=GAMMA * PB*ROR
 ASB=GAMMA * PB*ROR
 UB=U(L,M,N3)
 UB=U(L,M,N3)
 EB=E(L,M,N3)
 EB=E(L,M,N3)
 IF (M.NE. 1) GO TO 260
 IF (M.NE. 1) GO TO 260
 CALCULATE THE QUANTITIES FOR M=1
 CALCULATE THE QUANTITIES FOR M=1
 DUDX = (U(L+1,M,N3)-UB)*DXR
 DUDX = (U(L+1,M,N3)-UB)*DXR
 DPDX=(P(L+1,M,N3)-PB)*DXR
 DPDX=(P(L+1,M,N3)-PB)*DXR
 DRODX*(RO(L+1,M,N3)-ROB) = NXR
 DRODX*(RO(L+1,M,N3)-ROB) = NXR
 DVDY = (4.O*V(L, 2,N3)-V(L. 3.N3))*O.5*DYR
 DVDY = (4.O*V(L, 2,N3)-V(L. 3.N3))*O.5*DYR
 IF (ITM.LE.1) GO TO 230
 IF (ITM.LE.1) GO TO 230
 DODX=(Q(L+1,M,N3)-QB)*OXR
 DODX=(Q(L+1,M,N3)-QB)*OXR
 DEDX=(E(L+!.M.N3)-EB)*DXR
 DEDX=(E(L+!.M.N3)-EB)*DXR
 230 V(L,M,N3)=0.0
 230 V(L,M,N3)=0.0
 URHS = -UB *OM*DUDX-OM*DPDX*ROR*OUT (L,M)
 URHS = -UB *OM*DUDX-OM*DPDX*ROR*OUT (L,M)
 RORHS = -UB*OM*DRODX-ROB*OM*DUDX-FLOAT (1+NDIM)*ROB*BE*DVDY +OROT (L.M)
 RORHS = -UB*OM*DRODX-ROB*OM*DUDX-FLOAT (1+NDIM)*ROB*BE*DVDY +OROT (L.M)
 PRHS = -UB*OM*DPDX + ASB * (RORHS+UB*OM*DRODX) +QPT (L.M)
```

    PRHS = -UB*OM*DPDX + ASB * (RORHS+UB*OM*DRODX ) +QPT (L.M)
    ```
\begin{tabular}{|c|c|c|}
\hline 5608 & & IF (ITM.LE. 1) GO TO 370 \\
\hline 5609 & & IF (U(L.M.N1).LT.O.O) GO TO 240 \\
\hline 5610 & & DQDX \(=(\mathrm{QB}-\mathrm{Q}(\mathrm{L}-1 . \mathrm{M}, \mathrm{N} 3)) * \mathrm{DXR}\) \\
\hline 5611 & & \(D E D X=(E B-E(L-1, M, N 3)) * D X R\) \\
\hline 5612 & & OM = OM 1 \\
\hline 5613 & 240 & QRHS \(=-U B * O M * D O D X+\) OQT (L , M) \\
\hline 5614 & & \(Q(L, M, N 3)=0.5 *(Q(L, M, N 1)+\) (L, M, N3) + QRHS + DT \()\) \\
\hline 5615 & & IF (O(L.M,N3).LT.QLOW) O(L, M, N3) = OLOW \\
\hline 5616 & & IF (ITM.EO.2) GO TO 370 \\
\hline 5617 & & \(E R H S=-U B+O M+D E D X+Q E T(L, M)\) \\
\hline 5618 & & \(E(L, M, N 3)=0.5 *(E(L, M, N 1)+E(L, M, N 3)+E R H S * D T)\) \\
\hline 5619 & & IF (MDFS.NE.O.AND.LDFS.EQ.O) GO TO 250 \\
\hline 5620 & & IF (O(L.M.N3).LT.BFST*FSO(M)) Q(L.M.N3) = BFST*FSQ(M) \\
\hline 5621 & & IF (E (I, M, N3).LT, BFST*FSE(M)) E(L, M, N3) = BFST*FSE(M) \\
\hline 5622 & 250 & IF (E(L.M.N3).GT.ELOW) GO TO 370 \\
\hline 5623 & & Q(L, M, N3) = QLOW \\
\hline 5624 & & E(L, M, N3) = ELOW \\
\hline 5625 & & GO TO 370 \\
\hline 5626 & C & \\
\hline 5627 & C & CALCULATE THE QUANTITIES FOR M NOT EOUAL TO 1 \\
\hline 5628 & C & \\
\hline 5629 & 260 & IF (NDIM.NE.O) ATERM=ROB*VB/YP \\
\hline . 5630 & & \(U L P=U(L+1, M, N 3)\) \\
\hline 5631 & & \(V L P=V(L+1, M, N 3)\) \\
\hline 5632 & & PLP=P(L+1, M, N3) \\
\hline 5633 & & ROLP =RO (L+1, M, N3) \\
\hline 5634 & & OLM \(=0(L-1, M, N 3)\) \\
\hline 5635 & & \(E L M=E(L-1, M, N 3)\) \\
\hline 5636 & & IF (M.NE.MDFS.OR.L.NE.LDFSS-1) GO TO 270 \\
\hline 5637 & & \(U L P=0.5 *(U L P+U L(L+1 . N 3))\) \\
\hline 5638 & & \(V L P=0.5 *(V L P+V L(L+1 . N 3))\) \\
\hline 5639 & & PLP \(=0.5 *(P L P+P L(L+1, N 3))\) \\
\hline 5640 & & ROLP \(=0.5 *(R O L P+R O L(L+1 . N 3))\) \\
\hline 5641 & 270 & IF (M.NE.MDFS.OR.L.NE.LDFSF+1) GO TO 280 \\
\hline 5642 & & IF (ITM.I.E. 1) GD TO 280 \\
\hline 5643 & & QLM \(=0.5 *(Q L M+Q L(L-1, N 3))\) \\
\hline 5644 & & \(E L M=0.5 *(E L M+E L(L-1 . N 3))\) \\
\hline 5645 & 280 & \(U V B=U B * A L+V B * B E+D E\) \\
\hline 5646 & & DUDX \(=(\) ULP - UB \() *\) DXR \\
\hline 5647 & & DVDX \(=(\) VLP -VB) \(*\) DXR \\
\hline 5648 & & DPDX \(=(P L P-P B) *\) DXR \\
\hline 5649 & & DRODX \(=(\) ROLP -ROB \() *\) (\({ }^{\text {PR }}\) \\
\hline 5650 & & IF (ITM.LE. 1) GO TO 290 \\
\hline 5651 & & DQDX \(=(\) QB-QLM) *DXR \\
\hline 5652 & & DEDX \(=(E B-E L M) * D X R\) \\
\hline 5653 & 290 & DUDY \(=(\mathrm{U}(\mathrm{L}, \mathrm{M}+1, \mathrm{~N} 3)-\mathrm{UB}) *\) DYR \\
\hline 5654 & & DVDY \(=(V(L, M+1, N 3)-V B) * D Y R\) \\
\hline 5655 & & DPDY \(=(P(L, M+1, N 3)-P B) * D Y R\) \\
\hline 5656 & & DRODY \(=(\mathrm{RO}(\mathrm{L}, \mathrm{M}+1, \mathrm{~N} 3)-\mathrm{ROB}) *\) DYR \\
\hline 5657 & & IF (ITM.LE. 1) GO TO 300 \\
\hline 5658 & & DQDY \(=(\mathrm{Q}(\mathrm{L}, \mathrm{M}+1, \mathrm{~N} 3)-\mathrm{QB}) *\) DYR \\
\hline 5659 & & \(D E D Y=(E(L, M+1, N 3)-E B) * D Y R\) \\
\hline 5660 & C & \\
\hline 5661 & C & SPECIAL FORM OF THE EQUATIONS USED BY THE QUICK SOLVER \\
\hline 5662 & C & \\
\hline 5663 & 300 & IF (IQSD.EQ.O.OR.NVC.EQ.1) GO TO 320 \\
\hline 5664 & & IF (M.EQ.MVCB.OR.M.EQ.MVCT) GO TO 320 \\
\hline 5665 & & \(A L S=S Q R T(A L * A L+B E+B E)\) \\
\hline 5666 & & RALS \(=1 . O / A L S\) \\
\hline 5667 & & \(A B=S Q R T\) (\(A S B\)) \\
\hline 5668 & & \(A B R=A L / B E\) \\
\hline 5669 & & UVBP = UVB + ALS * AB \\
\hline 5670 & & UVBM \(=\) UVB - ALS \(* A B\) \\
\hline 5671 & & \(B E R=B E D / B E\) \\
\hline 5672 & & \\
\hline 5673 & & DVDY \(1=(\) VB - VOLD \() *\) DYR *BER \\
\hline 5674 & & DPDY \(1=(\) PB-PQLD) *DYR*BER \\
\hline 5675 & & IF (MDFS.EQ.O) GO TO 310 \\
\hline 5676 & & IF (M.NJ.MDFSi1.OR.LDFS.EQ.O) GO TO 310 \\
\hline 5677 & - & DUDY \(1=(\) UB -UL (L, N3)) *DYR*BER \\
\hline 5678 & & DVDY \(1=(\) VB -VL (L, N3)) *DYR*BER \\
\hline 5679 & & DPDY \(1=(P B-P L(L, N 3)) * D Y R * B E R\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5680 & \multicolumn{2}{|l|}{310 USL = -UVB*DUDY + ABR*UVB*DVDY-UB*OM* (DUDX-ABR*DVDX) - OM*DPDX*RUR + OU'I (L} \\
\hline 5681 & & 1 , M)-ABR* \(\operatorname{OVT}(L, M)\) \\
\hline 5682 & & \\
\hline 5683 & & 1 *DUDX + DPDX*ROR) + BE*UB*DVDX) + QPT (L, M) + ASB*QROT (L, M) +ROB*AB*RALS* \\
\hline 5684 & & 2 (\(A L * \operatorname{QUT}(L, M)+B E * \operatorname{QVT}(L, M)\)) \\
\hline 5685 & & \\
\hline 5686 & & 1 *DUDX+DPDX*ROR) + BE*UB*DVDX) + QPT (L, M) + ASB*QROT (L, M)-ROB*AB*RALS* \\
\hline 5687 & & 2 (\(A L * Q U T(L, M)+B E * \operatorname{CVT}(L, M))\) \\
\hline 5688 & & \\
\hline 5689 & & PMLM \(=-U V B M * D P D Y+R O B * A B * R A L S * U V B M *(A L * D U D Y+B E * D V D Y)+P M L M\) \\
\hline 5690 & & \\
\hline 5691 & & PRHS \(=0.5\) (\({ }^{\text {PMLP }}\) 1+PMLM 1) \\
\hline 5692 & & URHS = ABR * VRHS+USL \\
\hline 5693 & & RORHS \(=-U B\) * OM*DRODX - UVB * DRODY + (PRHS + UB *OM*DPDX + UVB*DPDY-OPT (L.M)) \\
\hline 5694 & & 1 /ASB \\
\hline 5695 & & GO TO 330 \\
\hline 5696 & C & \\
\hline 5697 & C & REGULAR FORM OF THE EQUATIONS \\
\hline 5698 & C & \\
\hline 5699 & 320 & \\
\hline 5700 & & \\
\hline 5701 & & \\
\hline 5702 & & 1 +QROT (L, M) \\
\hline 5703 & & \\
\hline 5704 & & 1 , M) \\
\hline 5705 & C & \\
\hline 5706 & 330 & IF (IOSD.EQ.O.OR.NVC.EQ: 1) GO TO 340 \\
\hline 5707 & & UOLD \(=\mathrm{U}(\mathrm{L}, \mathrm{M}, \mathrm{N} 3)\) \\
\hline 5708 & & VOLD \(=\) V(L, M, N3) \\
\hline 57.09 & & POLD \(=\) P(L.M.N3) \\
\hline 5710 & 340 & \(V(L, M, N 3)=0.5 *(V(L, M, N 1)+V(L, M, N 3)+V R H S * D T)\) \\
\hline 5711 & & IF (ITM.LE. 1) GO TO 370 \\
\hline 5712 & & IF (U(L, M, N1).GE.O.O) GO TO 350 \\
\hline 5713 & & DQDX \(=(\mathrm{Q}(\mathrm{L}+1, \mathrm{M}, \mathrm{N} 3)-\mathrm{QB}) * \mathrm{DXR}\) \\
\hline 5714 & & \(D E D X=(E(L+1, M, N 3)-E B) * D X R\) \\
\hline 5715 & & OM=OM 1 \\
\hline 5716 & 350 & QRHS \(=-U B * O M * D Q D X-U V B+D Q D Y+Q Q T(L, M)\) \\
\hline 5717 & & \(Q(L, M, N 3)=0.5 *(Q(L, M, N 1)+Q(L, M, N 3)+\) QRHS * OT\()\) \\
\hline 5718 & & IF (O(L, M., N3).LT. QLOW) Q(L,M,N3)=QLOW \\
\hline 5719 & & IF (ITM Fin j) ती Tn 370 \\
\hline 5720 & & \(E R H S=-U B * O M+D E D X-U V B * D E D Y+O E T(L . M)\) \\
\hline 5721 & & \(E(L, M, N 3)=0.5 *(E)(L, M, N 1)+E(L, M, N 3)+E R H S * D T)\) \\
\hline 5722 & & IF (MOFS.NE.O.AND.LDFS.EQ.O) G0 TO 3GO \\
\hline 5723 & & IF (Q(L, M, N3).LT. BFST*FSQ(M)) Q (L, M, N3) = BFST*FSQ(M) \\
\hline 5724 & & IF (E (L.M.N?), I.T.BFST*FSE(M)) E(L.M.N3) = BFST*FSE(M) \\
\hline 5725 & 360 & IF (E(L,M,N3).GT.ELOW) GO TO 370 \\
\hline 5726 & & Q(L, M, N3) = QLOW \\
\hline 5727 & & \(E(L, M, N 3)=E L O W\) \\
\hline 5728 & 370 & \(U(L, M, N 3)=0.5 *(U(L, M, N 1)+U(L, M, N 3)+U R H S+D T)\) \\
\hline 5729 & & \(P(L, M, N 3)=0.5 *(P(L, M, N 1)+P(L, M, N 3)+P R H S * D T)\) \\
\hline 5730 & & RO(L, M, N3) \(=0.5 *(R O(L, M, N 1)+\) RO(L, M, N3) +RORHS + DT) \\
\hline 5731 & & IF (P(L, M, N3).LE.O.O) P(L,M,N3) =PLOW*PC \\
\hline 5732 & & IF (RO(L,M,N3).LE.O.O) RO(L,M,N3) =ROLOW/G \\
\hline 5733 & 380 & CONT INUE \\
\hline 5734 & 390 & CONT INUE \\
\hline 5735 & & RETURN \\
\hline 5736 & & END \\
\hline
\end{tabular}
```

SUBROUTINE WALL

```

5737
5738 C 5739 C 5740 C 5741 C 5742 C
5743 C
5744 C
5745 C
5746 *CALL.MCC
5747
5748
5749
6750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778 C
5779 C
5780 C
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790 C
5791
5792
5793
5794
5795 C
5796 C
5797 C
5798 C
5799
5800
5801
5802
5803
5804
3805
5806
5807
5808
ALL MCC
\(I P=1\)
\(10 \quad Y 3=1.0\)
```

    ***************************************************************
    THIS SUBROUTINE CALCULATES THE BOUNDARY MESH POINTS AT THE
WALL, FREE-JET BOUNDARY, CENTERBODY AND DUAL FLOW SPACE WALLS
$Y 2=0.0$
Y 20=0.0
NOSL = NOSLIP
IF (IB.EQ. 1. AND. IWALL. NE.O) NOSL=O
IF (N.EQ.1.AND.JFLAG.NE.O) DELY=O.OOO1*YW(LJET-1)
$X W I D=0.0$
ATERM2 $=0.0$
ATERM3 $=0.0$
IF (IB.EQ.1) GO TO 10
IF (IB.GT.2) GO TO 20
Y $3=0.0$
MDUM = 1
MDUM $1=2$
SIGN=-1.0
GO TO 40
MDUM = MMAX
MDUM $1=M 1$
SIGN=1.0
GO TO 40
20 Y $3=Y($ MDFS $)$
MDUM=MDFS
IF (IB.EQ.4) GO TO 30
MDUM $1=$ MDFS -1
$S T G N=1.0$
GO TO 40
30 MDUM $1=$ MDF S +1
SIGN=-1.O
40 DYS=SIGN*DYR
MMAP = MDUM
BEGIN THE L OR $X$ DO LOOP
DO $700 \mathrm{~L}=2, \mathrm{~L} 1$
LDFS $=0$
IF (L.GE.LDFSS.AND.L.LE.LDFSF) LDFS=1
IF (IB.GE.3.AND.LDFS.EO.O) GO TO 700
LMAP = L
CALL MAP
$A L=A L 3$
$B E=B E 3$
$D E=D E 3$
IF (JFLAG.EQ.O) GO TO 70
IF (IB.NE. 1) GO TO 70
$X W I D=X W I(L)$
IF (ICHAR.EQ.1) GO TO 50
USE THE DUMMY ARRAYS TO MANIPULATE THE ONE-SIDED SOLUTIONS
FOR THE FREE-JET OR SHARP EXPANSION CORNER CASES
IF (L.NE.LJET-2) GO TO 50
$U(L+1, M D U M, N 3)=U D(3)$
$V(L+1 . M D U M, N 3)=V D(3)$
$P(L+1, M D U M . N 3)=P D(3)$
$\operatorname{RO}(L+1, M D U M, N 3)=R O D(3)$
GO TO 70
50 IF (L.NE.LUET-1) GO TO GO
IF (ICHAR.EQ.1) UOLD=U(L.MDUM,N1)
$U(L, M D U M, N 1)=U D(1)$
$V(L, M D U M, N 1)=V D(1)$

```
```

5810
5811
5812
5813
5814
5815
5816
5817 C
5818
5819
5820
5821
5822
5823
5224
5825
5936
5827
5828
5 8 2 9
5830
5331
5832
5833
5834
5 8 3 5
5836
5837
5838
5839 C
5840 C
5841
5842
5813
5844
5845
5846
5847
5848
5849
5 8 5 0
5%51
5852
5853
5 8 5 4
5855
5856
5857 C
5858 C
5859 C
5860 C
5 8 6 1
562
5 8 6 3
5864
5865
5866
5 8 6 7
5868
5869
5870
5871
5872
5 8 7 3
5874
5 8 7 5
5876
5877 C
5878 C
5879 C
5 8 8 0

```
```

    P(L.,MDUM,N1)=PD(1)
    ```
 P(L.,MDUM,N1)=PD(1)
 RO(L,MDUM,N1)=ROD(1)
 RO(L,MDUM,N1)=ROD(1)
 go to 70
 go to 70
 6 0 ~ I F ~ (L . N E . L J E T) ~ G O ~ T O ~ 7 0
 6 0 ~ I F ~ (L . N E . L J E T) ~ G O ~ T O ~ 7 0
 U(L-1.MDUM.N1)=UD(2)
 U(L-1.MDUM.N1)=UD(2)
 V(L-1,MDUM.N1)=VD(2)
 V(L-1,MDUM.N1)=VD(2)
 P(L-1,MDUM.N1)=PD(2)
 P(L-1,MDUM.N1)=PD(2)
 RO(L-1,MDUM,N1)=ROD(2)
 RO(L-1,MDUM,N1)=ROD(2)
 70 U1=U(L.MDUM.N1)
 70 U1=U(L.MDUM.N1)
 VI=V(L.MDUM.N1)
 VI=V(L.MDUM.N1)
 P1=P(L,MOUM.N1)
 P1=P(L,MOUM.N1)
 RO1=RO(L,MDUM,N1)
 RO1=RO(L,MDUM,N1)
 U2=U1
 U2=U1
 v2= v1
 v2= v1
 A1=SDRT(GAMMA*P1/RO1)
 A1=SDRT(GAMMA*P1/RO1)
 A2 =A1
 A2 =A1
 IF (IGMAR.NE.1) GO TO go
 IF (IGMAR.NE.1) GO TO go
 U3=U1
 U3=U1
 V3=V1
 V3=V1
 P3=P1
 P3=P1
 RO3=RO1
 RO3=RO1
 A3=A1
 A3=A1
 GO TO 90
 GO TO 90
 80 U3=U(L.MDUM.N3)
 80 U3=U(L.MDUM.N3)
 V3=V(L.MDUM,N3)
 V3=V(L.MDUM,N3)
 P3=F(L.MDUM,N3)
 P3=F(L.MDUM,N3)
 RO3=RO(L.MDUM.N3)
 RO3=RO(L.MDUM.N3)
 A3=SORT(GAMMA*P3/RO3)
 A3=SORT(GAMMA*P3/RO3)
 CALCULATE THE PROPERTY iNTERPOLATING POLYNOMIAL COEFFICIENTS
 CALCULATE THE PROPERTY iNTERPOLATING POLYNOMIAL COEFFICIENTS
 90 BU=(U1-U(L.MDUM1.N1))*DYS
 90 BU=(U1-U(L.MDUM1.N1))*DYS
 BV=(V1-V(L.MDUM1.N1))*DYS
 BV=(V1-V(L.MDUM1.N1))*DYS
 BP=(P1-P(L.MDUM1.N1))*DYS
 BP=(P1-P(L.MDUM1.N1))*DYS
 BRO=(RO1-RO(L.MDUM1,N1))*DYS
 BRO=(RO1-RO(L.MDUM1,N1))*DYS
 BQUT = (OUT (L,MDUM) - OUT (L,MDUM1)) *DYS
 BQUT = (OUT (L,MDUM) - OUT (L,MDUM1)) *DYS
 BQVT=(OVT(L,MDUM)-OVT(L,MDUM1))*DVS
 BQVT=(OVT(L,MDUM)-OVT(L,MDUM1))*DVS
 BQPT=(OPT(L.MDUM)-OPT(L.MDUM1))*DYS
 BQPT=(OPT(L.MDUM)-OPT(L.MDUM1))*DYS
 BOROT = OROT(L, MDUM) -OROT(L,MDUM1))*DYS
 BOROT = OROT(L, MDUM) -OROT(L,MDUM1))*DYS
 C|=|1-RII*Y.3
 C|=|1-RII*Y.3
 CV=V1-BV*Y3
 CV=V1-BV*Y3
 CP}=\textrm{P}1-\textrm{BP}+\textrm{YB
 CP}=\textrm{P}1-\textrm{BP}+\textrm{YB
 CRO=RO1-BRO*Y3
 CRO=RO1-BRO*Y3
 CQUT-GUT(L.MDUM)-BIJUT * Y3
 CQUT-GUT(L.MDUM)-BIJUT * Y3
 COVT =QVT(L.MDUM) -BOVT +Y3
 COVT =QVT(L.MDUM) -BOVT +Y3
 COPT=OPT(L.MDUM)-BOPT +Y3
 COPT=OPT(L.MDUM)-BOPT +Y3
 COROT=QROT(L.MDUM)-BOROT*Y3
 COROT=QROT(L.MDUM)-BOROT*Y3
 calculate the cross derivative interpolating polynomial
 calculate the cross derivative interpolating polynomial
 COEFFICIENTS
 COEFFICIENTS
 DU=(U1-U(L-1.MDUM.N1))*DXR
 DU=(U1-U(L-1.MDUM.N1))*DXR
 DV=(V1-V(L-1,MDUM,N1))+DXR
 DV=(V1-V(L-1,MDUM,N1))+DXR
 DP=(P1-P(L-1.MDUM.N1)). DXR
 DP=(P1-P(L-1.MDUM.N1)). DXR
 ORO=(RO1=RO(1 1,MDIM,N1))+חXR
 ORO=(RO1=RO(1 1,MDIM,N1))+חXR
 DU1=(U(L,MDUM1,N1)-U(L-1,MDUM1,N1)) *DXR
 DU1=(U(L,MDUM1,N1)-U(L-1,MDUM1,N1)) *DXR
 DV1=(V(L.MDUM1.N1)-V(L-1,MDUM1.N1)) +DXR
 DV1=(V(L.MDUM1.N1)-V(L-1,MDUM1.N1)) +DXR
 DP1=(P(L,MDUM1.NI)-P(L-1,MDUM1,N1)) +OXR
 DP1=(P(L,MDUM1.NI)-P(L-1,MDUM1,N1)) +OXR
 DRO:=(RO(L,MDUM1,N1)-RO(L-1,MDUM1,N1))*DXR
 DRO:=(RO(L,MDUM1,N1)-RO(L-1,MDUM1,N1))*DXR
 BDU=(DU-DU1)*DYS
 BDU=(DU-DU1)*DYS
 BDV=(DV-OV1) +DYS
 BDV=(DV-OV1) +DYS
 BOP=(DP-DP1)+DYS
 BOP=(DP-DP1)+DYS
 BDRO=(DRO-DRO1)*DYS
 BDRO=(DRO-DRO1)*DYS
 CDU=DU-BDU*Y3
 CDU=DU-BDU*Y3
 CDV =DV-BOV*Y3
 CDV =DV-BOV*Y3
 CDP=DP-BDP*Y3
 CDP=DP-BDP*Y3
 CDRO=ORO-BDRO*Y3
 CDRO=ORO-BDRO*Y3
 CALCULATE Y2
 CALCULATE Y2
 ALS=SQRT('AL*AL+BE*BE)
```

    ALS=SQRT('AL*AL+BE*BE)
    ```
```

5881
5882
5883
5884
5885 C
5 8 8 6
5887
588
5 8 8 9
5890
5 8 9 1
5892 C
5893
5894
5895
5896 C
5897 C
5898 C
5899
5 9 0 0
5 9 0 1
5902
5 9 0 3
5 9 0 4
5 9 0 5
5906
5907
5 9 0 8
5 9 0 9
5 9 1 0
5911
5 9 1 2
5 9 1 3
5914
5915
5916
5 9 1 7
5 9 1 8
5919 C
5920 C
5921 C
5 9 2 2
5923
5 9 2 4
5 9 2 5
5 9 2 6
5927
5928
5929
5 9 3 0
5 9 3 1
5932
5 9 3 3
5934
5 9 3 5
5936 C
5 0 3 7 ~ C
5938 C
5939
5940
5 9 4 1
5942
5943
5 9 4 4
5945
5946
5947
5948
5949
5950
5951
5 9 5 2

```
```

    UV3=U3*AL +V3*BE +DE
    ```
 UV3=U3*AL +V3*BE +DE
 DO 130 ILL=1,3
 DO 130 ILL=1,3
 UV2 = U2*AL+V2*BE+DE
 UV2 = U2*AL+V2*BE+DE
 Y2=Y3-(UV2+SIGN*ALS.*A2+UV3+SIGN*ALS*A3)*DT*O.5
 Y2=Y3-(UV2+SIGN*ALS.*A2+UV3+SIGN*ALS*A3)*DT*O.5
C
IF (IQSD.EQ.O.OR.NVC.EO.1) GO TO 100
IF (IQSD.EQ.O.OR.NVC.EO.1) GO TO 100
 IF (IB.EQ.1.AND.Y2.LT.Y(M1)) Y2=Y(M1)
 IF (IB.EQ.1.AND.Y2.LT.Y(M1)) Y2=Y(M1)
 IF (IB.EQ.2.AND.Y2.GT.Y(2)) Y2=Y(2)
 IF (IB.EQ.2.AND.Y2.GT.Y(2)) Y2=Y(2)
 IF (MDFS.EQ.O) GO TO 100
 IF (MDFS.EQ.O) GO TO 100
 IF (IB.EQ.3.AND.Y2.LT.Y(MDFS-1)) Y2=Y(MDFS-1)
 IF (IB.EQ.3.AND.Y2.LT.Y(MDFS-1)) Y2=Y(MDFS-1)
 IF (IB.EQ.4.AND.Y2.GT.Y(MDFS+1)) Y2=Y(MDFS+1)
 IF (IB.EQ.4.AND.Y2.GT.Y(MDFS+1)) Y2=Y(MDFS+1)
C
100 IF (IWALL.EQ.O.OR.IB.NE.1) GO TO 110
100 IF (IWALL.EQ.O.OR.IB.NE.1) GO TO 110
 UV1=U1*AL+V1*BE
 UV1=U1*AL+V1*BE
 Y1=Y3-(UV 1+UV3)*OT *0.5
 Y1=Y3-(UV 1+UV3)*OT *0.5
 interpolate for the properties
 interpolate for the properties
 U1=BU*Y 1+CU
 U1=BU*Y 1+CU
 V1=BV*Y1+CV
 V1=BV*Y1+CV
 P1=BP*Y1+CP
 P1=BP*Y1+CP
 RO1=BRO*Y 1+CRO
 RO1=BRO*Y 1+CRO
 110 U2=BU*Y2+CU
 110 U2=BU*Y2+CU
 V2=BV*Y2+CV
 V2=BV*Y2+CV
 P2 = BP*Y2+CP
 P2 = BP*Y2+CP
 RO2=BRO*Y2+CRO
 RO2=BRO*Y2+CRO
 AD =GAMMA *P2/RO2
 AD =GAMMA *P2/RO2
 IF (AD.GT.O.O) GO TO 12O
 IF (AD.GT.O.O) GO TO 12O
 NP=N+NSTART
 NP=N+NSTART
 WRITE (6.710) NP.L.MDUM,NVC
 WRITE (6.710) NP.L.MDUM,NVC
 IERR=1
 IERR=1
 RETURN
 RETURN
120 A2 = SORT (AD)
120 A2 = SORT (AD)
130 CONTINUE
130 CONTINUE
 QUT2=BOUT * Y 2 +COUT
 QUT2=BOUT * Y 2 +COUT
 OVT2=BQVT*Y2+COVT
 OVT2=BQVT*Y2+COVT
 QPT2=BQPT*Y2+COPT
 QPT2=BQPT*Y2+COPT
 OROT2=BQROT * Y 2+CQROT
 OROT2=BQROT * Y 2+CQROT
 INTERPOLATE FOR THE CROSS DERIVATIVES
 INTERPOLATE FOR THE CROSS DERIVATIVES
 IF (IWALL.EQ.O.OR.IB.NE.1) GO TO 140
 IF (IWALL.EQ.O.OR.IB.NE.1) GO TO 140
 DU 1=BDU*Y 1+CDU
 DU 1=BDU*Y 1+CDU
 DV1=BDV+Y1+CDV
 DV1=BDV+Y1+CDV
 DP1=BDP*Y 1+CDP
 DP1=BDP*Y 1+CDP
 DRO 1=BDRO*Y 1+CDRO
 DRO 1=BDRO*Y 1+CDRO
 GO TO 150
 GO TO 150
 14O DUI=DU
 14O DUI=DU
 DV1=DV
 DV1=DV
 DP1=DP
 DP1=DP
 DRO1=ORO
 DRO1=ORO
 150 OU2=BOU*Y2+CDU
 150 OU2=BOU*Y2+CDU
 DV2=BDV*Y2+CDV
 DV2=BDV*Y2+CDV
 DP2 = BDP*Y2+CDP
 DP2 = BDP*Y2+CDP
 DRO2 = BDRO * Y 2+CDRO
 DRO2 = BDRO * Y 2+CDRO
 gal.gulate the psi terms
 gal.gulate the psi terms
 IF (NDIM.EQ.O) GO TO 180
 IF (NDIM.EQ.O) GO TO 180
 IF (IR.EO.2) GO 10 160
 IF (IR.EO.2) GO 10 160
 ATERM2=RO2*V2/(YP-(Y3-Y2)/BE)
 ATERM2=RO2*V2/(YP-(Y3-Y2)/BE)
 GO TO 180
 GO TO 180
160 IF (YCB(L).EO.O.O) GO TO 170
160 IF (YCB(L).EO.O.O) GO TO 170
 ATERM2=RO2*V2/(YCB(L)+Y2/BE)
 ATERM2=RO2*V2/(YCB(L)+Y2/BE)
 GO TO 18O
 GO TO 18O
170 ATERM2=RO2*BE*V(L, 2,N1)*DYR
170 ATERM2=RO2*BE*V(L, 2,N1)*DYR
180 PSI21=-U1*OM1*DU1-OM1*DP1/RO1
180 PSI21=-U1*OM1*DU1-OM1*DP1/RO1
 PSIB1=-U1*OM1*DV 1
 PSIB1=-U1*OM1*DV 1
 PSI41=-U1*OM1*DP1+A1*A1*U1*OM1*DRO1
 PSI41=-U1*OM1*DP1+A1*A1*U1*OM1*DRO1
 PSI 12=-U2*OM1*DRO2-RO2*DM1*DU2 -ATERM2
 PSI 12=-U2*OM1*DRO2-RO2*DM1*DU2 -ATERM2
 PSI22=-U2*OM1*DU2-OM1*DP2/RO2
 PSI22=-U2*OM1*DU2-OM1*DP2/RO2
 PSI32 = U2 *OM1*DV2
```

    PSI32 = U2 *OM1*DV2
    ```
```

5953
5954 C
5955 C
5956 C
5957
5958
5 9 5 9
5960
5 9 6 1
5 9 6 2
5 9 6 3
5964
5965
5966
5 9 6 7
5968
5969
5 9 7 0
5971
5972
5973
5974
5975
5976
59%%
5978
5979
5 9 8 0
5 9 8 1
5 9 8 2
5983
5984
5985
5986
5 9 8 7
5988
\$989
5990
5 9 9 1
5997
5993
5994
B995
5 9 9 6
5997
5998
5999
6 0 0 0
6 0 0 1
6 0 0 2 ~ C
6003
6 0 0 4
605
6006
6007
6008.
6 0 0 9
6010
6 0 1 1
8012
6 0 1 3
6 0 1 4
6015
6 0 1 6
6 0 1 7
6 0 1 8
6 0 1 9
6 0 2 0
6 0 2 1
6 0 2 2
6 0 2 3
6 0 2 4

```
```

6 0 2 5
6 0 2 6
6 0 2 7
6 0 2 8
6 0 2 9
6 0 3 0
6 0 3 1
6 0 3 2
6 0 3 3
6 0 3 4
6 0 3 5
6 0 3 6
6 0 3 7
6 0 3 8
6 0 3 8
6 0 4 0
6 0 4 1
6 0 4 2
6 0 4 3
6 0 4 4
6 0 4 5 ~ C ~
6 0 4 6 ~ C
6 0 4 7 C
6 0 4 8
6 0 4 9
6 0 5 0
6 0 5 1
6 0 5 2
6 0 5 3
6 0 5 4
6 0 5 5
6 0 5 6
6057
6 0 5 8
6 0 5 9
6 0 6 0
6061
6 0 6 2 ~ C
6 0 6 3 ~ C
6064 C
6 0 6 5
6 0 6 6
6067
6068
6 0 6 9
6 0 7 0
6 0 7 1
6 0 7 2
6073
6 0 7 4
6 0 7 5
6 0 7 6
6077
6 0 7 8
6079
6080
6 0 8 1
6082
6083
6 0 8 4
6 0 8 5
6 0 8 6
6 0 8 7
6 0 8 8
6 0 8 9
6 0 9 0
6 0 9 1
6 0 9 2
6 0 9 3
6094
6 0 9 5

```
```

    A2D=GAMMA * P2/RO2
    ```
 A2D=GAMMA * P2/RO2
 IF (A2D.GT.O.O) GO TO 290
 IF (A2D.GT.O.O) GO TO 290
 NP=N+NSTART
 NP=N+NSTART
 WRITE (6.710) NP.L.MDUM.NVC
 WRITE (6.710) NP.L.MDUM.NVC
 IERR=1
 IERR=1
 RETURN
 RETURN
 290 ALSA2=SQRT(0.5*(A2D+A3*A3)*(ALAVG*ALAVG+BEAVG*BEAVG))
 290 ALSA2=SQRT(0.5*(A2D+A3*A3)*(ALAVG*ALAVG+BEAVG*BEAVG))
 300 CONTINUE
 300 CONTINUE
 NP=N+NSTART
 NP=N+NSTART
 WRITE (6.720) ILLOS,NP,L.MDUM,NVC,ICHAR
 WRITE (6.720) ILLOS,NP,L.MDUM,NVC,ICHAR
 IERR=1
 IERR=1
 RETURN
 RETURN
 310 AL=ALD
 310 AL=ALD
 BE=BED
 BE=BED
 DE=DED
 DE=DED
 OM2 = OMD
 OM2 = OMD
 YP=YPD
 YP=YPD
 MMAP = MDUM
 MMAP = MDUM
 A2=SQRT (A2D)
 A2=SQRT (A2D)
 320 IF (ICHAR.EQ.1) GO TO 350
 320 IF (ICHAR.EQ.1) GO TO 350
 CALCULATE the cross DERIVATIVES at the solution point
 CALCULATE the cross DERIVATIVES at the solution point
 If (JFLAG.EQ.O) GO to 330
 If (JFLAG.EQ.O) GO to 330
 IF (IB.NE.1) GO TO 330
 IF (IB.NE.1) GO TO 330
 IF (L.EQ.2) GO TO }33
 IF (L.EQ.2) GO TO }33
 IF (L.NE.LJET-1) GO TO 330
 IF (L.NE.LJET-1) GO TO 330
 GO TO 340
 GO TO 340
 330 DU3=(U(L+1,MDUM.N3)-U3)*DXR
 330 DU3=(U(L+1,MDUM.N3)-U3)*DXR
 DV3 = (V(L+1.MDUM,N3) -V3)*DXR
 DV3 = (V(L+1.MDUM,N3) -V3)*DXR
 DP3=(P(L+1,MDUM,N3)-P3)*DXR
 DP3=(P(L+1,MDUM,N3)-P3)*DXR
 DRO3=(RO(L+1 .MDUM.N3)-RO3)*DXR
 DRO3=(RO(L+1 .MDUM.N3)-RO3)*DXR
 GO TO 350
 GO TO 350
 340 DU3=(U3-U(L-1.MDUM.N3))*DXR
 340 DU3=(U3-U(L-1.MDUM.N3))*DXR
 DV3=(V3-V(L-1.MDUM,N3))*DXR
 DV3=(V3-V(L-1.MDUM,N3))*DXR
 DP3=(P3-P(L-1,MDUM,N3))*DXR
 DP3=(P3-P(L-1,MDUM,N3))*DXR
 DRO3=(RO3-RO(L-1,MDUM,N3))*DXR
 DRO3=(RO3-RO(L-1,MDUM,N3))*DXR
 ENTER THE FREE-JET BOUNDARY ITERATION LOOP
 ENTER THE FREE-JET BOUNDARY ITERATION LOOP
 350 YWI(L)=YW(L)
 350 YWI(L)=YW(L)
 DO 580 NJ=1,10
 DO 580 NJ=1,10
 IF (ICHAR.EQ. 1) GO TO 450
 IF (ICHAR.EQ. 1) GO TO 450
 IF (JFLAG.lE.O) go to 440
 IF (JFLAG.lE.O) go to 440
 IF (IB.NE. 1) GO TO 410
 IF (IB.NE. 1) GO TO 410
 IF (l.LT.LJET) GO TO 410
 IF (l.LT.LJET) GO TO 410
 IF (NJ.EQ.1) GO TO 400
 IF (NJ.EQ.1) GO TO 400
 IF (NJ.GT.2) GO TO }38
 IF (NJ.GT.2) GO TO }38
 350 YWOLD=YW(L)
 350 YWOLD=YW(L)
 POLD=P(L.MDUM,N3)
 POLD=P(L.MDUM,N3)
 IF (P(L,MDUM,N3).LT.PE(MMAX)) GO TO 370
 IF (P(L,MDUM,N3).LT.PE(MMAX)) GO TO 370
 YW(L)=YW(L)+DELY
 YW(L)=YW(L)+DELY
 GO TO 390
 GO TO 390
 370 YW(L)=YW(L)-DELY
 370 YW(L)=YW(L)-DELY
 go TO 390
 go TO 390
 380 IF (P(L.MDUM.N3).EQ.POLD) GO TO 360
 380 IF (P(L.MDUM.N3).EQ.POLD) GO TO 360
 OYDP = YW(L)-YWOLO)/(P(L.MDUM,N3)-POLD)
 OYDP = YW(L)-YWOLO)/(P(L.MDUM,N3)-POLD)
 YWNEW=YW(L)+DYDP*(PE(MMAX)-P(L.MDUM.N3))
 YWNEW=YW(L)+DYDP*(PE(MMAX)-P(L.MDUM.N3))
 YWOLD=YW(L)
 YWOLD=YW(L)
 POLD=P(L,MDUM.N3)
 POLD=P(L,MDUM.N3)
 YW(L) = YWNEW
 YW(L) = YWNEW
 390 IF (YW(L).LT.(1.O-DYW)*YWOLD) YW(L)=(1.O-DYW)*YWOLD
 390 IF (YW(L).LT.(1.O-DYW)*YWOLD) YW(L)=(1.O-DYW)*YWOLD
 IF (YW(L).GT.(1.O+DYW)*YWOLD) YW(L)=(1.O+DYW)*YWOLD
 IF (YW(L).GT.(1.O+DYW)*YWOLD) YW(L)=(1.O+DYW)*YWOLD
 400 NXNY(L) =-(YW(L)-YW(L-1))*OXR
 400 NXNY(L) =-(YW(L)-YW(L-1))*OXR
 XWI(L)=(YW(L)-YWI(L))/DT
 XWI(L)=(YW(L)-YWI(L))/DT
 XWID=XWI(L)
 XWID=XWI(L)
 CALL MAP
 CALL MAP
 AL=AL3
 AL=AL3
 BE=BE3
 BE=BE3
 DE=DE3
 DE=DE3
 ALS=SORT(AL*AL+BE*BE)
```

    ALS=SORT(AL*AL+BE*BE)
    ```
6096 C
```

6097 C CALCULATE THE PSI TERMS AT THE SOLUTION POINT
6 0 9 8 ~ C
6099
6100
6101
6102
6103
5104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6:14
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6}12
6130
6131
6132
6133
6134
6135
6136
61.77 C
6138 C
6139 C
6140 C
6141
0142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6163
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6167
6168
6169
6170
410 IF (NDIM.EQ.O).GO TO 440
IF (IB.EQ.2) GO TO 42O
ATERM3 =RO3 +V3/YP
GO TO 440
420 IF (YCE(L).EQ.O.O) GO TO 430
ATERM3 =RO3+V3/YCB(L)
GחT TO 440
430 ATERM3=RO3*BE*V(L.2.N3)*DYR
440 PSI13=-U3*OM2*DRO3-RO3*OM2*DU3-ATERM3
PSII23=-U3*OM2*DUS -OM2*DP3/RO3
PSI33=-U3*OM2+DV3
PSI43=-U3*OM2*DP3+A3*A3*U3*OM2*DRO3
450 ABR=NXNY(L)
IF.(IB.EQ.2) ABR=NXNYCB(L)
IF (IR.EO.3) ABR=NXNYL(L)
IF (IB.EQ.4) ABR=NXNYU(L)
AIR\#AI/AIS
BEB=BE/ALS
A1B=(A1+A3)*0.5
A2B=(A2+A3)*0.5
RO2B=(RO2+RO3)*0.5
IF (ICHAR.EQ.1) GO TO 460
PSI21B=(PSII21+PSI23)*O.5+QUT(L,MDUM)
PSI318=(PSI31+PSI33)=0.5+QVT(L,MDUM)
PSI41B=(PSI41+PSI43)*0.5+OPT(L.MDUM)
PSI 12B=(PSI 12+PST 13+QROT(L.MDUM) +QROT2)*0.5
PSI22B=(PSI22+PSI23+QUT(L,MDUM )+QUT2)*0.5
PSI32B=(PSI32+PSI33+QVT(L.,MDUM)+QVT2)*0.5
PSI42B=(PSI42+PSI43+OPT (L.MDUM)+OPT2)*0.5
GO TO 470
460 PSI21B=PSI21+OUT(L,MDUM)
PSI31B=PSI31+QVT(L,MDUM)
PSI41B=PSI41+OPT(L,MDUM)
PSI 12B=PSI 12+QROT2
PSI22B=PSI22+QUT2
PS132B=PSIS2+OVT2
PSI42B=PSI42+OPT2
470 IF (IWALL.EQ.O.OR.IB.NE.1) GO TO 520
solve the compatibility equations for a constant pressure
INFLOW - OUTFLOW BOUNDARY
ROAA2=SIGN*RO2B*A2B*ALB
ROAB2=\&IGN*RO2B*A2B*RFR
PSI2T=(PSI42B-OPT2+A2B*A2B*(PSI 12B-QROT2) +ROAA2*PSI 22B+ROAB2
1 *PSI32B)*DT
P(L,MDUM,N3) = PE (MMAX)
IF (IWALLO.NE.O) P(L.MDUM.N3)=2.O*P(L,MDUM1.N3)-P(L,MDUM1-1,N3)
IF (ALW.EQ.O.O) GO TO 480
P(L.MDUM,N3)=(ALW*PE(MMAX)+P2+P(L,MDUM,N1)+ROAB2*(V2-V(L,MDUM,N1))
1 +ROAA2*(U2-U(L.MDUM,N1))+PSI2T)/(2.O+ALW)
480 IF (P(L.MDUM,N3).LE.O.O) P(L,MDUM,N3) =PLOW*PC
IF (Y1.GE.Y3.AND.IWALLO.EQ.O) GO TO 510
RO(L,MDUM,N3)=KUi+(F(L,MUUM,N3)-P1-(PSI41B OFT(L,MDUM))*DT)/(A1B
1 *A18)+QROT(1.MRMMM)*DT
IF (RO(L.MDUM.N3).LE.O.O) RO(L,MUUM,N3)=RUULOW/G
PSI 1T = (PSI21B-ABR*PSI31B)*DT
If (ABR.EQ.O.O) GO TO 490
ABRT =ABR+1.0/ABR
V(L.MDUM.N3)=(ABR*V1+V2/ABR+U2-U1-PSI1T+(P2-P(L.MDUM.N3)+PSI2T)
1/ROAA2)/ABRT
GO TO 500
490 V(L,MDUM.N3) =V2+(P2-P(L,MDUM,N3)+PSI2T)/(RO2B*A2B)
500 U(L,MDUM,N3)=U1+ABR*(V(L,MDUM,N3)-V1)+PSI1T
GO TO 700
510 ND=N1
IF (ICHAR.EQ.2) ND=N3
RO(L.,MDUM,N3)=0.1*RO(1,MDUM,ND)+O.9*RO(L,MDUM,N1)
U(L,MDUM,N3)=0.1*U(1, MDUM, ND ) +O.9*U(L,MDUM,N1)
V(L,MDUM,N3)=V2+(-P(L,MDUM,N3)+P2-ROAA2*(U(L,MDUM,N3)-U2)+PSI2T)
1/ROAB2
go TO 700

```
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& 6171 \\
& 6172
\end{aligned}
\] & & SOLVE THE COMPATIBILITY EQUATIONS FOR A SOLID BOUNDARY \\
\hline 6173 & c & \\
\hline 6174 & 520 & \(U(L . M D U M, N 3)=(U 1-A B R *(V 1-X W I D)+(P S I 21 B-A B R * P S I 31 B) * D T) /(1.0+A B R\) \\
\hline 6175 & & 1 *ABR) \\
\hline 6176 & & \(V(L, M D U M, N 3)=-U(L, M D U M, N 3) * A B R+X W I D\) \\
\hline 6177 & & IF (NOSL.EQ.O) GO TO 530 \\
\hline 6178 & & \(U(L, M D U M, N 3)=0.0\) \\
\hline 6179 & & \(V(L, M D U M, N 3)=0.0\) \\
\hline 6180 & & PSI \(228=\) PSI 228 -QUT2 \\
\hline 6181 & & PSI32B=PSI32E-OVT2 \\
\hline 6182 & 530 & \\
\hline 6183 & & 1. N 3\()-\mathrm{V} 2) \mathrm{)}+(\mathrm{PSI} 42 \mathrm{~B}+\mathrm{A} 2 \mathrm{~B} * \mathrm{~A} 2 \mathrm{~B} * \mathrm{PSI} 12 \mathrm{~B}+\mathrm{SIGN} * R O 2 B * A 2 B *(A L B * P S I 22 B+B E B\) \\
\hline 6184 & & 2 *PSI32B))*DT \\
\hline 6185 & & IF (P(L. MDUM, N3).LE.O.O) P(L, MDUM, N3) =PLOW*PC \\
\hline 6186 & & RO(L. MDUM, N3) = RO \(1+(P(L, M D U M, N 3)-P 1-P S I 41 E+D T) /(A 1 B+A 1 B)\) \\
\hline 6187 & & IF (RO(L.MDUM.N3).LE.O.O) RO(L.MDUM.N3) =ROLOW/G \\
\hline 6188 & & If (IB.EO.2) GO TO 540 \\
\hline 6189 & & If (IB.EO.3) GO TO 550 \\
\hline 6190 & & IF (IB.EQ.4) GO TO 560 \\
\hline 6191 & & IF (TW(1).LT.O.O) GO TO 570 \\
\hline 6192 & & IF (JFLAG.EO. \({ }^{\text {a }}\) (AND.L.GE.LJET) GO TO 570 \\
\hline 6193 & & P(L, MDUM, N3) \(=\) RM (L, MDUM, N3)*RG*TW(L) \\
\hline 6194 & & GO TO 570 \\
\hline 6195 & 540 & IF (TCB(1).LT.O.O) GO TO 570 \\
\hline 6196 & & \(\mathrm{P}(\mathrm{L}, \mathrm{MDUM}, \mathrm{N} 3)=\mathrm{RO}(\mathrm{L}, \mathrm{MDUM}, \mathrm{N} 3) * R \mathrm{~F} * T C B(\mathrm{~L})\) \\
\hline 6197 & & GO TO 570 \\
\hline 6198 & 550 & IF (TL(1).LT.O.O) GO TO 570 \\
\hline 6199 & & P(L, MDUM, N3) \(=\) RO(L, MDUM, N3)*RG*TL(L) \\
\hline 6200 & & GO TO 570 \\
\hline 6201 & 560 & IF (TU(1).LT.O.O) GO TO 570 \\
\hline 6202 & & \(\mathrm{P}(\mathrm{L}, \mathrm{MDUM}, \mathrm{N} 3)=\mathrm{RO}(\mathrm{L}, ~ M D U M, N 3) * R G * T U(L)\) \\
\hline 6203 & C & \\
\hline 6204 & & TEST FOR CONVERGENCE OF THE FREE-JET BOUNDARY \\
\hline 6205 & C & \\
\hline 6206 & 570 & IF (JFLAG.EQ.O) GO TO 700 \\
\hline 6207 & & IF (18.NE.1) GO TO 700 \\
\hline 6208 & & IF (L.LT.LJET-1) GO TO 700 \\
\hline 6209 & & IF (L.EQ.LJET-1) GO TO 590 \\
\hline 6210 & & IF (ICHAR.EQ. 1) GO TO 700 \\
\hline 6211 & & IF (JFLAG.EQ.-1.AND.L.NE.LJET) GO to 700 \\
\hline 6212 & & IF (JFLAG.EO.-1.AND.L.EQ.LJET) GO TO 690 \\
\hline 6213 & & DELP \(=\) ABS (\((P(L, M D U M, N 3)-P E(M M A X)) / P E(M M A X))\) \\
\hline 6214 & & IF (DELP.LE.O.OO1.AND.L.NE.LJET) GO TO 700 \\
\hline 6215 & & IF (DELP.LE.O.OO1.AND.L.EQ.LJET) GO TO 690 \\
\hline 6216 & 580 & CONTINUE \\
\hline 6217 & & IF (L.EQ.LJET) GO TO 690 \\
\hline 6218 & & GO TO 700 \\
\hline 6219 & c & \\
\hline 6220 & C & SOLVE for the downstream slue of the wal.l exit point for \\
\hline 6221 & C & EITHER THE SHARP EXPANSION CORNER CASE, UNDER-EXPANDED \\
\hline 6222 & C & free-jet case or over-expanded free-jet case \\
\hline 6223 & C & \\
\hline 6224 & 590 & UD(3) = U (L. MDU̇M.N3) \\
\hline 6225 & & VD(3) \(=\) V(L. MDUM. N3) \\
\hline 6226 & & PD(3) \(=\) P(L, MOUM, N3) \\
\hline 6227 & & ROD(3) \(=\) RO(L. MDUM.N3) \\
\hline 6228 & & PO(4) -FE (MMAX) \\
\hline 6229 & & \\
\hline 6230 & & DUMD \(=1.0+\mathrm{GAM} 2+X \mathrm{M} 1+\mathrm{XM} 1\) \\
\hline 6231 & & TD=PO(3)/(ROU (3) +RG) \\
\hline 6232 & & TTD=TD*LUMD \\
\hline 6233 & & PTD \(=P D(3)+D U M D *\) +GAM 1 \\
\hline 6234 & C & \\
\hline 6235 & C & Sharp expansion corner case \\
\hline 6236 & c & \\
\hline 6237 & & If (JFLAG.NE.-1) Go ro 630 \\
\hline 6238 & & \(\mathrm{B}=\mathrm{SORT}\) (GAM3) \\
\hline 6239 & & CC 1 \(=\) XM 1-XM1-1.0 \\
\hline 6240 & & IF (CC1.LT.O.0) CCt \(=0.0\) \\
\hline 6241 & & PMA \(1=B * A T A N(S O R T(C C 1 /(B * B)))-\operatorname{ATAN}(\operatorname{SORT}(C C 1))\) \\
\hline 6242 & & PMA \(=\) ATAN(- NXNY(LUET))-ATAN(-NXNY(LUET-1)) \\
\hline
\end{tabular}
```

6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264 C
6 2 6 5 ~ C
6266 C
G2G7
6268
6269
6270 C
6271 C
6272 C
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283 C
6284 C
62R5 r
6286 C
6287
6288
6289
6290
6291
6292
6293
C804
6295
6296
6297
6298
6299
6300
6 3 0 1
6302
6303
6 3 0 4
6305
6306
6307
6308
6 3 0 9
6310
6311
6312
6313
6314

```
```

    PMAD = PMA + PMA I
    ```
 PMAD = PMA + PMA I
 XM2 = 2.O* XM1
 XM2 = 2.O* XM1
 DO 610 I= 1,10
 DO 610 I= 1,10
 CI =XM2*XM2-1.O
 CI =XM2*XM2-1.O
 PMAI =B*ATAN(SQRT(CI/(B*B)))-ATAN(SQRT(CI))
 PMAI =B*ATAN(SQRT(CI/(B*B)))-ATAN(SQRT(CI))
 IF (ABS((PMAI-PMAD)/PMAD).LE.O.OOO1) GO TO 620
 IF (ABS((PMAI-PMAD)/PMAD).LE.O.OOO1) GO TO 620
 IF (I.NE.1) GO TO 6OO
 IF (I.NE.1) GO TO 6OO
 XMO = XM2
 XMO = XM2
 XM2 =0.9* XM2
 XM2 =0.9* XM2
 PMAO=PMAI
 PMAO=PMAI
 GO TO 610
 GO TO 610
 600 DMDA = (XM2-XMO)/(PMAI -PMAO)
 600 DMDA = (XM2-XMO)/(PMAI -PMAO)
 XMO = XM2
 XMO = XM2
 XM2 = XM2 +DMDA* (PMAD - PMA I)
 XM2 = XM2 +DMDA* (PMAD - PMA I)
 PMAO = PMAI
 PMAO = PMAI
 610 CONT INUE
 610 CONT INUE
 620 DUMD = 1.O+GAM2 * XM2 * XM2
 620 DUMD = 1.O+GAM2 * XM2 * XM2
 TD = TTD/DUMD
 TD = TTD/DUMD
 PD(4)=PTD/DUMD **GAAM1
 PD(4)=PTD/DUMD **GAAM1
 ROD(4)=PD(4)/(RG*TD)
 ROD(4)=PD(4)/(RG*TD)
 GO TO 660
 GO TO 660
 UNDER=EXPANDED FREE-JET CASEE
 UNDER=EXPANDED FREE-JET CASEE
 630 IF (PE(MMAX).GT.PD(3).AND.XM1.GF. 1.O) GO TO 640
 630 IF (PE(MMAX).GT.PD(3).AND.XM1.GF. 1.O) GO TO 640
 ROD (4)=ROD (3)*(PE (MMAX)/PD(3))**(1.O/GAMMA)
 ROD (4)=ROD (3)*(PE (MMAX)/PD(3))**(1.O/GAMMA)
 GO TO 650
 GO TO 650
 OVER-EXPANDED FREE-JET CASE
 OVER-EXPANDED FREE-JET CASE
640 PRD=PE(MMAX)/PD(3)
640 PRD=PE(MMAX)/PD(3)
 ROD(4)=ROD(3)*(GAM3*FRD+1.O)/(PRD+GAM3)
 ROD(4)=ROD(3)*(GAM3*FRD+1.O)/(PRD+GAM3)
650 TE=PE(MMAX)/(ROD (4)*RG)
650 TE=PE(MMAX)/(ROD (4)*RG)
 XM2 = SORT ((TTD/TE-1.O)/GAM2)
 XM2 = SORT ((TTD/TE-1.O)/GAM2)
 660 SS = SORT (GAMMA = PD (1)/ROD (4))
 660 SS = SORT (GAMMA = PD (1)/ROD (4))
 VMAG=XM2*SS
 VMAG=XM2*SS
 UD(4)=VMAG/SORT(1.O+NXNY(LJET)*NXNY(LJET))
 UD(4)=VMAG/SORT(1.O+NXNY(LJET)*NXNY(LJET))
 VD(4)=-UD(4)*NXNY(LJET)
 VD(4)=-UD(4)*NXNY(LJET)
 IF (JFLAG.EQ.-1) GO TO 700
 IF (JFLAG.EQ.-1) GO TO 700
 IF (XMI.GE. 1.U) GU TO 7UO
 IF (XMI.GE. 1.U) GU TO 7UO
 AVERAGE IHEZ 1-STOED MACH NOS FOR THE IPNTERIOR FOINT CALCULATIONS
 AVERAGE IHEZ 1-STOED MACH NOS FOR THE IPNTERIOR FOINT CALCULATIONS
 IF THF UPSTREAM FLOW IS SUBSONIC - FREE-JET CASE
 IF THF UPSTREAM FLOW IS SUBSONIC - FREE-JET CASE
 XMR=(XM1+XM2)/2;0
 XMR=(XM1+XM2)/2;0
 IF (XMB.GE.1.O) GO TO }67
 IF (XMB.GE.1.O) GO TO }67
 DPL=1.0
 DPL=1.0
 LPR=1.0
 LPR=1.0
 GO TO 680
 GO TO 680
 670 DPL=XM2-1.O
 670 DPL=XM2-1.O
 DPR=1.O-XM1
 DPR=1.O-XM1
 XMR = 1.O
 XMR = 1.O
 680 DPLR=DPR+DPL
 680 DPLR=DPR+DPL
 DUM=1.O+GAM2*XMB*XMB
 DUM=1.O+GAM2*XMB*XMB
 TEMP = TTD/DUM
 TEMP = TTD/DUM
 P(L, MDUM,N3) =PTD/DUM**GAM1
 P(L, MDUM,N3) =PTD/DUM**GAM1
 RO(L,MDUM,N3)=P(L, MOUM,N3)/(RG* TEMP)
 RO(L,MDUM,N3)=P(L, MOUM,N3)/(RG* TEMP)
 AS =GAMMA *P(L , MDUM , N3)/RO(L , MDUM , N3)
 AS =GAMMA *P(L , MDUM , N3)/RO(L , MDUM , N3)
 QA = XMB * SORT (AS)
 QA = XMB * SORT (AS)
 DNXNY = (DPR *NXNY (LJET) +DPL*NXNY(L))/DPLR
 DNXNY = (DPR *NXNY (LJET) +DPL*NXNY(L))/DPLR
 U(L.MDUM,N3)=OA/SQRT (1.O+DNXNY *ONXNY)
 U(L.MDUM,N3)=OA/SQRT (1.O+DNXNY *ONXNY)
 V(L,MDUM,N3) =-U(L,MDUM,N3)*DNXNY
 V(L,MDUM,N3) =-U(L,MDUM,N3)*DNXNY
 CO TO 700
 CO TO 700
690 UD(1)=UD(3)
690 UD(1)=UD(3)
 VD(1)=VD(3)
 VD(1)=VD(3)
 PD(1)=PD(3)
 PD(1)=PD(3)
 ROD(1)=ROD (3)
 ROD(1)=ROD (3)
 UD(2)=UD (4)
 UD(2)=UD (4)
 VO(2)=VD(4)
 VO(2)=VD(4)
 PD(2)=PD(4)
 PD(2)=PD(4)
 ROD(2)=ROD(4)
 ROD(2)=ROD(4)
700 CONTINUE
```

700 CONTINUE

```
```

6315
6316
6317
6 3 1 8
6319
6320
6 3 2 1
6322
6323
6324
6325 C
6326 C
6327 C
6328
6329
6 3 3 0
6 3 3 1
6 3 3 2
6 3 3 3
IF (JFLAG.EQ.O) RETURN
IF (IB.GE.2) RETURN
IF (ICHAR.EQ. 1) RETURN
U(LJET-1,MMAX,N1)=UOLD
IF (JFLAG.EQ.-1) RETURN
YWI(LMAX) = YW(LMAX)
YW(LMAX)=2.O*YW(LL1)-YW(L2)
NXNY(LMAX) =- (YW(LMAX)-YW(LI))*OXR
XWI(LMAX) = (YW(LMAX)-YWI(LMAX))/DT
RETURN
C
FORMAT STATEMENTS
710 FORMAT (1HO.61H***** A NEGATIVE SQUARE RODT OCCURED IN SUBROUTINE
1WALL AT N=,16,4H, L=,12,4H, M=,12,10H. AND NVC=,13,6H *****)
72O FORMAT ( IHO.64H****** THE CHARACTERISTIC SOLUTION IN WALL FAILED TO
1 CONVERGE IN .I2,17H ITERATIONS AT N=,16,4H,L=.I2.4H, M=.I2,6H,N
2VC=.13.1H,./7X, 1OHAND ICHAR=.11.6H *****)
END

```
```

6334
6335 C
6 3 3 6 ~ C
6337 C
6338 C
6339 C
6340 C
6341 C
6342 *CALL.MCC
6343 IP=1
6344 LMAP=1
6345 LD1=2
6346 X3=XI
6347 DXP=XP(2)-X3
6348 ATERM2 =0.0
6349 ATERM3=0.O
6360 MIS=1
6351 MIF = MMAX
6352
6353
6354
6355
6356
6357
6358
6359 C
6360 C
6361 C
6362
6363
6364
6365
6 3 6 6
6367
6368
6369
6 3 7 0
6371
6372
6373
6374
6375
6 3 7 6
6377
6 3 7 7
6378
6379
6 3 8 0
6 3 8 1 ~ C
6382
6383
6384
6385
6 3 8 6
6387
6388
6389
6390
6 3 9 1
6392
6393
6394
6 3 9 5
6396
6397
6 3 9 8
6399
6400 C
6 4 0 1
6402 CALL MA
6403 BEO=2.O*BE3*BE4/(BE3+BE4)
6404 AL34=AL3+AL4
6405 IF (AL34.EQ.0.0) AL34=1.0

```
```

6406
6407
6408
6409
6 4 1 0
6411
6412
6413
6414 C
6415 C
6416 C
6417
6418
6419
6420
6 4 2 1
6422
6423 C
6424 C
6425 C
6426
6427
6 4 2 8
6429
6430
6431
6432
6433
6434
6435 C
6436
6437
6438
6 4 3 9
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452 C
6453 C
6454 C
6455 C
6456
6457
6458
6459
6460 C
6461 C
6462 C
6463
6464
6465
6466
6467
6468
6 4 6 9
6470
6471 C
6472
6473
6474
G475
6476
6477

```
```

    ALD=2.O*AL3*AL4/AL34
    ```
 ALD=2.O*AL3*AL4/AL34
 U2=U(1,M,N1)
 U2=U(1,M,N1)
 A2=SORT(GAMMA*P(1,M,N1)/RO(1,M,N1))
 A2=SORT(GAMMA*P(1,M,N1)/RO(1,M,N1))
 IF (ICHAR.NE. 1) GO TO 90
 IF (ICHAR.NE. 1) GO TO 90
 IF (ISUPER.EQ. 1) GO TO 80
 IF (ISUPER.EQ. 1) GO TO 80
 U(1,M,N3)=U2
 U(1,M,N3)=U2
 V(1,M,N3) =V(1,M,N1)
 V(1,M,N3) =V(1,M,N1)
 80 A 3=A2
 80 A 3=A2
 CALCULATE THE PROPERTY INTERPOLATING POLYNOMIAL COEFFICIENTS
 CALCULATE THE PROPERTY INTERPOLATING POLYNOMIAL COEFFICIENTS
 90 QUTB=QUT (1.M)
 90 QUTB=QUT (1.M)
 QPTB=OPT (1,M)
 QPTB=OPT (1,M)
 QROTB=OROT (I,M)
 QROTB=OROT (I,M)
 IF (IVC.EQ.O) CO TO 100
 IF (IVC.EQ.O) CO TO 100
 IF (M.EQ.MMAX) GO TO 100
 IF (M.EQ.MMAX) GO TO 100
 IF (NVC.EQ.1.OR.M.NE.MVCT+1) GO TO 100
 IF (NVC.EQ.1.OR.M.NE.MVCT+1) GO TO 100
 LINEAR INTERPOLATION IN TIME FOR M=MVCT+1
 LINEAR INTERPOLATION IN TIME FOR M=MVCT+1
 UB=UU1(1)+RIND*(UU2(1)-UU1(1))
 UB=UU1(1)+RIND*(UU2(1)-UU1(1))
 VB=VV1(1)+RIND*(VV2(1)-VV1(1))
 VB=VV1(1)+RIND*(VV2(1)-VV1(1))
 PB=PP1(1)+RIND*(PP2(1)-PP1(1))
 PB=PP1(1)+RIND*(PP2(1)-PP1(1))
 ROB=RORO1(1)+RIND*(RORO2(1)-RORO1(1))
 ROB=RORO1(1)+RIND*(RORO2(1)-RORO1(1))
 ULP=UU1(2)+RIND*(UU2(2)-UU1(2))
 ULP=UU1(2)+RIND*(UU2(2)-UU1(2))
 VLP=VV1(2)+RIND + (VV2(2)-VV1(2))
 VLP=VV1(2)+RIND + (VV2(2)-VV1(2))
 PLP=PP{(2)+RIND * (PP2(2)-PP1(2))
 PLP=PP{(2)+RIND * (PP2(2)-PP1(2))
 ROLP=RORO1(2)+RIND +(RORO2(2)-RORO1(2))
 ROLP=RORO1(2)+RIND +(RORO2(2)-RORO1(2))
 GO TO 11O
 GO TO 11O
 C
 100 UB=U(1.M.N1)
 100 UB=U(1.M.N1)
 VB=V(1,M,N1)
 VB=V(1,M,N1)
 PB=P(1,M,N1)
 PB=P(1,M,N1)
 ROB=RO(1.M,N1)
 ROB=RO(1.M,N1)
 ULP=U(2,M,N1)
 ULP=U(2,M,N1)
 VLP=V(2,M,N1)
 VLP=V(2,M,N1)
 PLP=P(2,M,N1)
 PLP=P(2,M,N1)
 ROLP=RO(2,M,N1)
 ROLP=RO(2,M,N1)
 110 BU=(ULP-UB)/DXP
 110 BU=(ULP-UB)/DXP
 BV=(VLP-VB)/DXP
 BV=(VLP-VB)/DXP
 BP=(PLP-PB)/DXP
 BP=(PLP-PB)/DXP
 RRO=(ROLP-ROB)/DXP
 RRO=(ROLP-ROB)/DXP
 CU=UB-BU* X3
 CU=UB-BU* X3
 CV =VB-BV+X3
 CV =VB-BV+X3
 CP=PB-BP * X 3
 CP=PB-BP * X 3
 CRO =ROB-BRO* X3
 CRO =ROB-BRO* X3
 CALCULATE THE CROSS DERIVATIVE INTERPOLATING POLYNOMIAL
 CALCULATE THE CROSS DERIVATIVE INTERPOLATING POLYNOMIAL
 COEFFICIENTS
 COEFFICIENTS
 IF (M.EQ.1) GO TO 130
 IF (M.EQ.1) GO TO 130
 IF (M.EO.MDFS.AND.IB.EQ.4) GO TO 14O
 IF (M.EO.MDFS.AND.IB.EQ.4) GO TO 14O
 IF (IVC.EQ.O) GO TO 12O
 IF (IVC.EQ.O) GO TO 12O
 IF (NVC.EQ.1.OR.M.NE.MVCB) GO TO 120
 IF (NVC.EQ.1.OR.M.NE.MVCB) GO TO 120
 LINEAR INTERPOLATION IN TIME FOR M=MVCB
 LINEAR INTERPOLATION IN TIME FOR M=MVCB
 ULPMM=U(2,M-1,NN1)+RIND*(U(2.M-1.NN,3)-11(2,M-1,NN1))
 ULPMM=U(2,M-1,NN1)+RIND*(U(2.M-1.NN,3)-11(2,M-1,NN1))
 VLPMM =V(2,M-1,NN1) +RIND*(V(2,M-1,NN3)-V(2,M-1,NN1))
 VLPMM =V(2,M-1,NN1) +RIND*(V(2,M-1,NN3)-V(2,M-1,NN1))
 PLPMM=P(2,M-1,NN1)+RIND.(P(2,M-1,NN3)-P(2,M-1,NN1))
 PLPMM=P(2,M-1,NN1)+RIND.(P(2,M-1,NN3)-P(2,M-1,NN1))
 ROLPMM=RO(2.M-1,NN1)+RTND*(RO(2,M-1,NN3)-RO(2,M 1,NN1))
 ROLPMM=RO(2.M-1,NN1)+RTND*(RO(2,M-1,NN3)-RO(2,M 1,NN1))
 UMM=U(1,M-1,NN1)+RIND + (U(1,M-1,NN3)-U(1,M-1,NN1))
 UMM=U(1,M-1,NN1)+RIND + (U(1,M-1,NN3)-U(1,M-1,NN1))
 VMM=V(1,M-1,NN1)+R1ND*(V(1,M-1,NN3)-V(1,M-1,NN1))
 VMM=V(1,M-1,NN1)+R1ND*(V(1,M-1,NN3)-V(1,M-1,NN1))
 PMM=P(1,M-1,NN1)+RIND*(P(1,M-1,NN3)-P(1,M-1,NN1))
 PMM=P(1,M-1,NN1)+RIND*(P(1,M-1,NN3)-P(1,M-1,NN1))
 ROMM=RO(1,M-1,NN1)+RIND*(RO(1,M-1,NN3)-RO(1,M-1,NN1))
 ROMM=RO(1,M-1,NN1)+RIND*(RO(1,M-1,NN3)-RO(1,M-1,NN1))
 DU=(ULP - ULPMM)(OYR
 DU=(ULP - ULPMM)(OYR
 DV=(VLP-VLFMM)*DYR
 DV=(VLP-VLFMM)*DYR
 DP=(PLP-PLPMM) +DYR
 DP=(PLP-PLPMM) +DYR
 DRO=(ROLP-RUL PMM)*DYR
 DRO=(ROLP-RUL PMM)*DYR
 DUI=(UB-UMM) *DYR
 DUI=(UB-UMM) *DYR
 OV1=(VB-VMM) * DYR
```

    OV1=(VB-VMM) * DYR
    ```
```

6478
6 4 7 9
6 4 8 0
6 4 8 1
6482
6 4 8 3
6 4 8 4
6 4 8 5
6486
6487
6 4 8 8
6 4 8 9
6 4 9 0
6 4 9 1
6 4 9 2
6 4 9 3
6 4 9 4
6 4 9 5
G43G
6497
6498
6 4 9 9
6500
6 5 0 1
6502
6503
6504
6505
6506
6507
6508
6 5 0 9
6510
6511
6512
6513
6514
6515
6516 C
6517 C
6518 C
6 5 1 9 .
6520
6 5 2 1
6522
0520
6524
6 5 2 5
6526
6527
6528
6529
6530
6531
6532
6533.
6534 C
6 5 3 5 ~ C
6536 C
6537
6538
6539
6540
6541 C
6542 C
6543 C
6544
6545
6546
6547
6548
6549

```
```

    DPI=(PB-PMM) +DYR
    ```
 DPI=(PB-PMM) +DYR
 DRO1=(ROB-ROMM)*DYR
 DRO1=(ROB-ROMM)*DYR
 GO TO }15
 GO TO }15
12O DU=(ULP-U(2,M-1.N1))*DYR
12O DU=(ULP-U(2,M-1.N1))*DYR
 DV=(VLP-V(2,M-1.N1))*DVR
 DV=(VLP-V(2,M-1.N1))*DVR
 OP=(PLP-P(2,M-1,N1))*DYR
 OP=(PLP-P(2,M-1,N1))*DYR
 DRO=(ROLP-RO(2,M-1,N1))*DYR
 DRO=(ROLP-RO(2,M-1,N1))*DYR
 OU1=(UB-U(1,M-1,N1))*DYR
 OU1=(UB-U(1,M-1,N1))*DYR
 DV1=(VB-V(1,M-1,N1))*DYR
 DV1=(VB-V(1,M-1,N1))*DYR
 DP1=(PB-P(1,M-1,N1))*DYR
 DP1=(PB-P(1,M-1,N1))*DYR
 DRD1=(RUB-RO(1,M-1,N1))*DYR
 DRD1=(RUB-RO(1,M-1,N1))*DYR
 go To }15
 go To }15
130 IF (NGCB.NE.O) GO TO 140
130 IF (NGCB.NE.O) GO TO 140
 DU=0.O
 DU=0.O
 DV=(4.O*V(2,2,N1)-V(2,3,N1))*O.5*DYR
 DV=(4.O*V(2,2,N1)-V(2,3,N1))*O.5*DYR
 DP=0.0
 DP=0.0
 nRO=O n
 nRO=O n
 vu1=0.0
 vu1=0.0
 DV1=(4.O*V(1.2.N1)-V(1.3.N1))+O.5*DYR
 DV1=(4.O*V(1.2.N1)-V(1.3.N1))+O.5*DYR
 DP1=0.0
 DP1=0.0
 ORO 1=0.0
 ORO 1=0.0
 GO TO 150
 GO TO 150
140 DU=(U(2,M+1,N1)-ULP)*DYR
140 DU=(U(2,M+1,N1)-ULP)*DYR
 DV=(V(2,M+1.N1)-VLP)*DYR
 DV=(V(2,M+1.N1)-VLP)*DYR
 DP=(P(2,M+1.N1)-PLP)*DYR
 DP=(P(2,M+1.N1)-PLP)*DYR
 DRO=(RO(2,M+1,N1)-ROLP) :DYR
 DRO=(RO(2,M+1,N1)-ROLP) :DYR
 DUI=(U(1,M+1.N1)-UB)*DYR
 DUI=(U(1,M+1.N1)-UB)*DYR
 DV1=(V(1,M+1,N1)-VB)*DYR
 DV1=(V(1,M+1,N1)-VB)*DYR
 DP 1=(P(1,M+1,N1)-PB)*DYR
 DP 1=(P(1,M+1,N1)-PB)*DYR
 DRO1=(RO(1,M+1,N1)-ROB) *DYR
 DRO1=(RO(1,M+1,N1)-ROB) *DYR
150 BDU=(DU-DU1)/DXP
150 BDU=(DU-DU1)/DXP
 BDV=(DV-DV1)/DXP
 BDV=(DV-DV1)/DXP
 BDP =(DP-DP1)/DXP
 BDP =(DP-DP1)/DXP
 BDRO=(DRO-DRO1)/DXP
 BDRO=(DRO-DRO1)/DXP
 CDU=DU1-BDU*X3
 CDU=DU1-BDU*X3
 CDV=DV1-BDV**3
 CDV=DV1-BDV**3
 CDP=DP 1-BDP*x3
 CDP=DP 1-BDP*x3
 CDRO=DRO1-BUKU*X3
 CDRO=DRO1-BUKU*X3
 CALCULATE THE COEFFICIENTS FOR THE QUICK SOLVER
 CALCULATE THE COEFFICIENTS FOR THE QUICK SOLVER
 IF (IOSD.EQ.O.OR.NVC.EQ.1) GO TO 160
 IF (IOSD.EQ.O.OR.NVC.EQ.1) GO TO 160
 IF (M.LE.MVCB.ÖR.M.GE.MVCY) GÜ TO 160
 IF (M.LE.MVCB.ÖR.M.GE.MVCY) GÜ TO 160
 It (M.EO.MOFS.AND.LDISS.EQ.1) तn TO 160
 It (M.EO.MOFS.AND.LDISS.EQ.1) तn TO 160
 OUDYQ2=0.5*(DUDYQS(2.M.1)+DUDYO5(2,M.2))
 OUDYQ2=0.5*(DUDYQS(2.M.1)+DUDYO5(2,M.2))
 OVOYO2=O. 5*(nvnYOS(2.M.1)+DYOYOSS(2,M.2))
 OVOYO2=O. 5*(nvnYOS(2.M.1)+DYOYOSS(2,M.2))
 DPOYQ2=0.5*(DPDYOS(2.M.1)+\operatorname{DPDYOS}(2.M,2))
 DPOYQ2=0.5*(DPDYOS(2.M.1)+\operatorname{DPDYOS}(2.M,2))
 DUDYO1=0.5*(DUDYOS(1.M.1)+DUDYOS(1.M.2))
 DUDYO1=0.5*(DUDYOS(1.M.1)+DUDYOS(1.M.2))
 DVDYOt=0.5*(UVUYUS(1.M.1)+DVDYOS(1.M.2))
 DVDYOt=0.5*(UVUYUS(1.M.1)+DVDYOS(1.M.2))
 DPDYO1=0.5*(DPDYOS(1,M,1)+DPDYOS(1,M,2))
 DPDYO1=0.5*(DPDYOS(1,M,1)+DPDYOS(1,M,2))
 BDUOS = (DUDYO2-DUDYO1)/DXP
 BDUOS = (DUDYO2-DUDYO1)/DXP
 BDVQS=(DVOYO2-DVDYO1)/DXP
 BDVQS=(DVOYO2-DVDYO1)/DXP
 BCPUS = (OPDYO2 DPOYQ1)/DXR
 BCPUS = (OPDYO2 DPOYQ1)/DXR
 CDUOS=DUDYO1-BDUQS*X3
 CDUOS=DUDYO1-BDUQS*X3
 CDVQS=DVDYQ1-BDVQS*X3
 CDVQS=DVDYQ1-BDVQS*X3
 CDPQS=DPDYQ1-BUPOS*X3
 CDPQS=DPDYQ1-BUPOS*X3
 CALCULATE X2
 CALCULATE X2
 160 IF (ICHAR.NE.1) A3=SORT(GAMMA*P(1.M.N3)/RO(1,M.N3))
 160 IF (ICHAR.NE.1) A3=SORT(GAMMA*P(1.M.N3)/RO(1,M.N3))
 DO 170 IL=1.2.
 DO 170 IL=1.2.
 X2= X3-((U(1,M.N3)-A3)*OM2+(U2-A2)*OM2)*O.5*DT
 X2= X3-((U(1,M.N3)-A3)*OM2+(U2-A2)*OM2)*O.5*DT
 IF (X2-X3.LE.O.05*DXP) X2=X3+0.05*DXP
 IF (X2-X3.LE.O.05*DXP) X2=X3+0.05*DXP
 INTERPOLATE FOR THE PROPERTIES
 INTERPOLATE FOR THE PROPERTIES
 U2=BU**2+CU
 U2=BU**2+CU
 P2=BP*X2+CP
 P2=BP*X2+CP
 RO2=BRO* X2+CRO
 RO2=BRO* X2+CRO
 A2=SQRT (GAMMA*P2/RO2)
 A2=SQRT (GAMMA*P2/RO2)
 170 CONTINUE
 170 CONTINUE
 v2=BV**2+CV
```

    v2=BV**2+CV
    ```
```

6 5 5 0
6551 C
6552 C
6553 C
6554
6555
6556
6557
6558 C
6559
650
6561
6562
6563
6564
6565 C
6566 c
6567 C
6568
6569
6570
6571
6572
6572
6574
6575
6575
6576 C
6577
6578
6579
6580
6 5 8 1
6581
6583
6584 C
6585 c
6586 c
6587
6588
6588
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6 6 0 1
6 6 0 2
6603
6604 C
6 6 0 6 ~ C ~
6607
6608
6609
66 }1
6611
6611
6613
6613
6614
6616 C
6617
6}1
6618
6619
6620
6621
UV2=U2*AL3+V2*BE3
INTERPOLATE FOR the CROSS DERIVATIVES
C
DU2=BDU* }22+CD
DU2=BDU*\times2 +CDU
DV2=BDV*\times2+CDV
DRO2=BDRO * X 2+CDRO
IF (IOSD.EQ.O.OR.NVC.EQ.1) GO TO 180
IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO 180
IF (M.EQ.MDFS.AND.LOFSS.EQ.1) GO To 180
DU2OS=BDUQS + X2+CDUOS
DV2OS = BOVOS * x 2 +CDVOS
DP2OS=BDPQS * *2+CDPOS
C
c
180 IF (NDIM.EQ.O) GO TO 200
IF (M.EO.1.AND.YCB(1).EQ.O.O) GO TO 190
ATERM2=RO2*V2/YP
GO TO 200
190 ATERM2=RO2*BE3*DV2
200 PSI 12=-UV2*DRO2-RO2*AL3*DU2-RO2*BE3*DV2-ATERM2
PSI 22=-UV2*DU2-AL3*DP2/RO2
PSI42=-UV2*DP2+A2*A2*UV2*DRO2
IF (IOSO.EO.O.OR.NVC.EQ.1) GO TO 210
IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO 210
IF (M.EQ.MDFS.AND.LDFSS.EQ.1) GO To 210
PSI 12=-UV2*DRO2-RD2*ALD*DU2OS-RO2*BED*DV2OS-ATERM2
UV2=U2*ALD+V2*BED
PSI22=-UV2*DU2OS-ALO*DP2OS/RO2
210 IF (ICHAR.EQ.1) GO TO 280
C
C
calculate the cross derivatives at the solution point
IF (M.EQ.1.AND.NGCB.EQ.O) GO TO 22O
IF (M.EQ.MDFS.AND.IB.EQ.3) GO TO 230
IF (M.EQ.MMAX) GO To 230
DU3=(U(1,M+1.N3)-U(1,M,N3))*DYR
DV3 = (V(1.M+1,N3) -V(1.M.N3) )*DYR
DP3={P(1,M+1,N3)-P(1,M,N3))*DYR
DRO3=(RO(1,M+1.N3)-RO(1,M,N3))*OYR
GO TO 240
220 DU3=0.0
DV3=(4.O*V(1,2.N3)-V(1.3,N3))*O.5*DYR
DP3=0.0
DRO3=0.0
GO TO 240
230 DU3=(U(1,M,N3)-U(1,M-1,N3))*DYR
DV3=(V(1,M,N3)-V(1,M-1,N3))*DVR
DP3=(P(1,M,N3)-P(1,M-1,N3))*DYR
ORO3=(RO(1,M,N3)-RO(1,M-1,N3) )*DYR
calculate the psi terms at the solution point
240 IF (NDIM.EQ.O) GO TO 260
IF (M.EQ.1.AND.YCB(1).EQ.O.O) GO TO 250
ATERM3=RO(1,M,N3)*V(1,M,N3)/YP
GO TO 260
250 ATERM3=RO(1,M,N3)*BE4*DV3
260 UV3=U(1,M,N3)*AL4+V(1,M,N3)*BE4
PSI 13=-UV3*DRO3-RO(1,M,N3)*AL4*DU3-RO(1,M,N3)*BE4*DV3-ATERM3
PSI23=-UV3*DU3-AL4*DP3/RO(1.M.N3)
PSI43=-UV3*DP3+^3**A3*UV3*DRO3
C
IF (IQSD.EQ.O.OR.NVC.EQ.1) GO TO 290
IF (M.LE.MVCB.OR.M.GE.MVCT) GO Tח 290
IF (M.EQ.MDFS.AND.LDFSS.EQ.1) GO TO 290
DUDY 1=0.5*(U(1,M+1,N3)-UOLD)*DYR
DVDY 1=0.5*(V(1,M+1,N3) -VOLD)*DYR

```
```

6622
6623
6624
6625
6626
6627
6 6 2 8
6629
6 6 3 0
6631
6632
6 6 3 3
6634
6635
6636
6637
6638
6639
640
6441
6642 C
6643 C
6644 C
645
6646
6647
6648
6 6 4 9
6 6 4 9
6 6 5 0
6 6 5 1
6652
6653
6654
6655
6656
6 6 5 7
6658
6659
6 6 6 0
Gr,G1
6 6 6 2
6663
6664
6665
GEGO C
6667 C
6 6 6 8 ~ C
6 6 6 9
G670
6671
6 6 7 2
6673
6674
6675
6676
G677 C
6678
6679
6 6 8 0
6881
6682
6 6 8 3
6684
6685
6686
6687
6688
6689
6690
6 6 9 1
692
6 6 9 3

```
```

    DPDY 1=0.5*(P(1,M+1-,N3)-POLD)*DYR
    ```
 DPDY 1=0.5*(P(1,M+1-,N3)-POLD)*DYR
 IF (MDFS.EQ.O) GO TO 27O
 IF (MDFS.EQ.O) GO TO 27O
 IF (M.NE.MDFS+1.OR.LDFSS.NE.1) GO TO 270
 IF (M.NE.MDFS+1.OR.LDFSS.NE.1) GO TO 270
 DUDY 1=0.5*(U(1,M+1,N3)-UL(1,N3))*DYR
 DUDY 1=0.5*(U(1,M+1,N3)-UL(1,N3))*DYR
 DVDY 1=0.5.*(V(1.M+1,N3)-VL(1,N3))*DYR
 DVDY 1=0.5.*(V(1.M+1,N3)-VL(1,N3))*DYR
 DPDY 1=0.5*(P(1,M+1,N3)-PL(1.N3))*DYR
 DPDY 1=0.5*(P(1,M+1,N3)-PL(1.N3))*DYR
270 PSI13=-UV3*DRO3-RO(1,M,N3) *ALD*DUDY1-RO(1.M.N3)*BED*DVDY1-ATERM3
270 PSI13=-UV3*DRO3-RO(1,M,N3) *ALD*DUDY1-RO(1.M.N3)*BED*DVDY1-ATERM3
 UV3 =U(1,M,N3)*ALD+V(1,M.N3)*BED
 UV3 =U(1,M,N3)*ALD+V(1,M.N3)*BED
 PSI23=-UV3*DUDY1-ALD*DPDY 1/RO(1,M.N3)
 PSI23=-UV3*DUDY1-ALD*DPDY 1/RO(1,M.N3)
 GO TO 290
 GO TO 290
280 PSI23=PSI22
280 PSI23=PSI22
 PSI43=PSI42
 PSI43=PSI42
 PSI13=PSI 12
 PSI13=PSI 12
290 IF (IQSO.EQ.O.OR.NVC.EQ.1) GO TO 300
290 IF (IQSO.EQ.O.OR.NVC.EQ.1) GO TO 300
 UOLD=U(1,M,N3)
 UOLD=U(1,M,N3)
 VOLD=V(1,M,N3)
 VOLD=V(1,M,N3)
 POLD=P(1,M,N3)
 POLD=P(1,M,N3)
 3\cap\cap PSI 1B=0.5*(PSI 12+PSI13)+QROTB
 3\cap\cap PSI 1B=0.5*(PSI 12+PSI13)+QROTB
 PSI2B=0.6*(PSI22+PSI2%)+OLITB
 PSI2B=0.6*(PSI22+PSI2%)+OLITB
 PSI4B=0.5*(PSI42+PSIA.3)+OPTB
 PSI4B=0.5*(PSI42+PSIA.3)+OPTB
 SOLVE THE COMPATIBILITY EQUATION FOR P OR U
 SOLVE THE COMPATIBILITY EQUATION FOR P OR U
 IF (ISUPER.EQ.O) GO TO 340
 IF (ISUPER.EQ.O) GO TO 340
 IF (ISUPER.EQ.2.AND.IB.EQ.4) GO TO }34
 IF (ISUPER.EQ.2.AND.IB.EQ.4) GO TO }34
 IF (ISUPER.EO.3.AND.IB.EO.3) GO TO 34O
 IF (ISUPER.EO.3.AND.IB.EO.3) GO TO 34O
 ROAB=0.5*(RO2*A2+RO(1,M,N3)*A3)
 ROAB=0.5*(RO2*A2+RO(1,M,N3)*A3)
 AB=0.5*(A2+A3)
 AB=0.5*(A2+A3)
 IF (INBC.NE.O) GO TO 320
 IF (INBC.NE.O) GO TO 320
 PSIT=(PSI 4B-ROAB*(PSI 2B-QUTB) +AB*AB*(PSI 1B-QROTB))*OT
 PSIT=(PSI 4B-ROAB*(PSI 2B-QUTB) +AB*AB*(PSI 1B-QROTB))*OT
 IF (ALI.EO.O.O) GO TO 310
 IF (ALI.EO.O.O) GO TO 310
 U(1.M.N3)=(ROAB*ALI*UI(M)+ROAB*(U2+U(1.M.N1))+P(1.M.N1)-P2-PSIT)/
 U(1.M.N3)=(ROAB*ALI*UI(M)+ROAB*(U2+U(1.M.N1))+P(1.M.N1)-P2-PSIT)/
 1 (ROAB*(2.O+ALI))
 1 (ROAB*(2.O+ALI))
 310 P(1.M.N3)=P2+ROAB*(U(1,M.N3)-U2)+PSIT
 310 P(1.M.N3)=P2+ROAB*(U(1,M.N3)-U2)+PSIT
 IF (P(1.M,N3).LE.O.O) P(1.M,N3)=PLOW*PC
 IF (P(1.M,N3).LE.O.O) P(1.M,N3)=PLOW*PC
 GO 10 400
 GO 10 400
 320 IF (M.EQ.MMAX.AND.IWALL.NE.O) GO TO 400
 320 IF (M.EQ.MMAX.AND.IWALL.NE.O) GO TO 400
 PSIT = (PSI 4B-OPTB-ROAB *PSI 2B +AB*AB*(PSI 1B-OROTB))*DT
 PSIT = (PSI 4B-OPTB-ROAB *PSI 2B +AB*AB*(PSI 1B-OROTB))*DT
 IF (ALI.EQ.O.O) GO TO 330
 IF (ALI.EQ.O.O) GO TO 330
 P(1.M,N3)=(ALI +PI(M)*PC+ROAB*(U(1,M,N1)-U2)+P2+P(1,M,N1)+PSIT)/(2.
 P(1.M,N3)=(ALI +PI(M)*PC+ROAB*(U(1,M,N1)-U2)+P2+P(1,M,N1)+PSIT)/(2.
 1 O+ALI)
 1 O+ALI)
 IF (P(1,M,N3).LE.O.O)P(1,M,NG)=PLUW&FC
 IF (P(1,M,N3).LE.O.O)P(1,M,NG)=PLUW&FC
 33UU U(I,M.N3)-U2I(F(1,M,NO)-R2-P&IT)/ONAR
 33UU U(I,M.N3)-U2I(F(1,M,NO)-R2-P&IT)/ONAR
 GO TO 400
 GO TO 400
 SOLVE THE COMPATIBILITY EQUATIONS FOR U. V. P. AND RO
 SOLVE THE COMPATIBILITY EQUATIONS FOR U. V. P. AND RO
 34O MN3=SORT(U'(1,M,N3)*U(1,M,N3)+V(1,M,N3)*V(1,M,N3))/AJ
 34O MN3=SORT(U'(1,M,N3)*U(1,M,N3)+V(1,M,N3)*V(1,M,N3))/AJ
 T2=P2/(RO2*RG)
 T2=P2/(RO2*RG)
 TTHETA=TAN(THETA(M))
 TTHETA=TAN(THETA(M))
 UCORR=1.O
 UCORR=1.O
 1F (NOSLIP.EQ.O) 60 TO 350
 1F (NOSLIP.EQ.O) 60 TO 350
 IF (M.EQ.MMAX. AND.IWALL.EQ.O) UCORR=O.O
 IF (M.EQ.MMAX. AND.IWALL.EQ.O) UCORR=O.O
 IF (M.EQ.1.AND.NGCB.NE.O) UCORR=O.O
 IF (M.EQ.1.AND.NGCB.NE.O) UCORR=O.O
 IF (M.EO.MDFS.ANU.LUHSS.EUG.1) UCORR=0.O
 IF (M.EO.MDFS.ANU.LUHSS.EUG.1) UCORR=0.O
 350 DO 380 ITER=1,20
 350 DO 380 ITER=1,20
 DEM=(1.O+GAM2 *MN3*MN3)
 DEM=(1.O+GAM2 *MN3*MN3)
 P(1,M,N3)=PT(M)/(DEM**GAM1)
 P(1,M,N3)=PT(M)/(DEM**GAM1)
 T3=TT(M)/UEM
 T3=TT(M)/UEM
 IF (M.EQ.MMAX.AND.TW(1).GT.O.O) T3=TW(1)
 IF (M.EQ.MMAX.AND.TW(1).GT.O.O) T3=TW(1)
 IF (M.EQ.1.AND.TCB(1).GT.O.O) T3=TCR(1)
 IF (M.EQ.1.AND.TCB(1).GT.O.O) T3=TCR(1)
 IF (M.NE.MDFS.OR.LDFSS.NE. 1) GO TO 360
 IF (M.NE.MDFS.OR.LDFSS.NE. 1) GO TO 360
 IF (IB.EQ.3.AND.TL(1).GT.O.O) T3=TL(1)
 IF (IB.EQ.3.AND.TL(1).GT.O.O) T3=TL(1)
 IF (IB.EQ.4.AND.TU(1).GT.O.O) T3=TU(1)
 IF (IB.EQ.4.AND.TU(1).GT.O.O) T3=TU(1)
 360 PAVG=(P2+P(1,M,N3))*O.5
 360 PAVG=(P2+P(1,M,N3))*O.5
 TAVG=(T2+T3)*0.5
 TAVG=(T2+T3)*0.5
 ROAVG=PAVG/(TAVG*RG)
 ROAVG=PAVG/(TAVG*RG)
 AS =GAMMA*PAVG/ROAVG
 AS =GAMMA*PAVG/ROAVG
 U(1,M,N3)=U2+DT*PSI 2B+(P(1,M,N3)-P2-(PSI4B+AS*PSI1B)*DT)/(ROAVG
 U(1,M,N3)=U2+DT*PSI 2B+(P(1,M,N3)-P2-(PSI4B+AS*PSI1B)*DT)/(ROAVG
 1 *SQRT(AS))
 1 *SQRT(AS))
 U(1,M,N3)=U(1,M,N3)*UCORR
```

    U(1,M,N3)=U(1,M,N3)*UCORR
    ```
```

6694
6 6 9 5
6 6 9 6
6 6 9 7
6 6 9 8
6 6 9 9
6700
6 7 0 1
6 7 0 2
6 7 0 3
6704
6705
6 7 0 6
6707
6 7 0 8
6709 C
6 7 1 0 ~ C ~
6711 C
6712
6713
6714
6715
6716
6717
6718
6719
6 7 2 0
6 7 2 1
6722
6723
6724 C
6725 C
6726 C
6727
6728
6729

```
```

    V(1,M,N3)=U(1,M,N3) *TTHETA
    ```
 V(1,M,N3)=U(1,M,N3) *TTHETA
 OMN3=MN3
 OMN3=MN3
 AS =GAMMA + RG + T3
 AS =GAMMA + RG + T3
 MN3=SQRT((U(1,M,N3)*U(1,M,N3)+V(1,M,N3)+V(1,M,N3))/AS)
 MN3=SQRT((U(1,M,N3)*U(1,M,N3)+V(1,M,N3)+V(1,M,N3))/AS)
 IF (OMN3.NE.O.O) GO TO 370
 IF (OMN3.NE.O.O) GO TO 370
 IF (ABS(MN3-OMN3).LE.O.OOO1) GO TO 390
 IF (ABS(MN3-OMN3).LE.O.OOO1) GO TO 390
 GO TO 380
 GO TO 380
 370 IF (ABS((MN3-OMN3)/OMN3).LE.O.OO1) GO TO 390
 370 IF (ABS((MN3-OMN3)/OMN3).LE.O.OO1) GO TO 390
 380 CONTINUE
 380 CONTINUE
C
 NP=N+NSTART
 NP=N+NSTART
 WRITE (6.430) M.NP
 WRITE (6.430) M.NP
 390 RO(1,M,N3)=P(1,M,N3)/(RG*T3)
 390 RO(1,M,N3)=P(1,M,N3)/(RG*T3)
 400 CONTINUE
 400 CONTINUE
 IF (IWALL.NE.O) P(1,MMAX,N3)=PE(MMAX)
 IF (IWALL.NE.O) P(1,MMAX,N3)=PE(MMAX)
 ZERO THE CORNER U FOR THE P.V,RO - NO SLIP BOUNDARY CONDITION CASE
 ZERO THE CORNER U FOR THE P.V,RO - NO SLIP BOUNDARY CONDITION CASE
 IF (NOSLIP.EQ.O.OR.INPC.EO.O) RETURN
 IF (NOSLIP.EQ.O.OR.INPC.EO.O) RETURN
 IF (ISUPER.EO.O) RETURN
 IF (ISUPER.EO.O) RETURN
 IF (ISUPER.EQ.2.AND.IB.EQ.4) RETURN
 IF (ISUPER.EQ.2.AND.IB.EQ.4) RETURN
 IF (ISUPER.EQ.3.AND.IB.EQ.3) RETURN
 IF (ISUPER.EQ.3.AND.IB.EQ.3) RETURN
 IF (NVC.EQ.1.AND.MVCB.EO.1) GO TO 410
 IF (NVC.EQ.1.AND.MVCB.EO.1) GO TO 410
 IF (NGCB.NE.O) U(1,1,N3)=0.0
 IF (NGCB.NE.O) U(1,1,N3)=0.0
 410 IF (NVC.EQ.I.AND.MVCT.EQ.MMAX) GO IU 420
 410 IF (NVC.EQ.I.AND.MVCT.EQ.MMAX) GO IU 420
 IF (IWALL.EQ.O) U(1,MMAX,N3)=0.0
 IF (IWALL.EQ.O) U(1,MMAX,N3)=0.0
 420 IF (MDFS.EQ.O) RETURN
 420 IF (MDFS.EQ.O) RETURN
 IF (NVC.EQ.1.AND.(MDFS.GT.MVCB.AND.MDFS.LT.MVCT)) RETURN
 IF (NVC.EQ.1.AND.(MDFS.GT.MVCB.AND.MDFS.LT.MVCT)) RETURN
 U(1,MDFS,N3)=0.O
 U(1,MDFS,N3)=0.O
 RETURN
 RETURN
 FORMAT STATEMENTS
 FORMAT STATEMENTS
 430 FORMAT (1HO.55H***** THE SOLUTION FOR THE ENTRANCE BOUNDARY POINT
 430 FORMAT (1HO.55H***** THE SOLUTION FOR THE ENTRANCE BOUNDARY POINT
 1(1,.I2,IH,,I6,43H) FAILED TO CONVERGE IN 2O ITERATIONS *****)
 1(1,.I2,IH,,I6,43H) FAILED TO CONVERGE IN 2O ITERATIONS *****)
 END
```

    END
    ```

```

6 8 0 2
6 8 0 3
6 8 0 4
6 8 0 5
6 8 0 6
6 8 0 7
6 8 0 8
6 8 0 9 ~ C
6810 C
6811 C
6812
6813
6814
6815
6816
6817
6818
6819 C
6 8 2 0 ~ c
6 8 2 1 ~ C
6822
6 8 2 3
6824
6825
6826
6827
6828
6 8 2 9
6 8 3 0
6831 C
6832
6833
6834
6 8 3 5
6836
6837
6838
6839
6840
644
6442
6843
6844
6845
6846
6847
6 8 4 8 ~ C ~
6 8 4 9 ~ C ~
bybu c
6851 C
6852
6 8 5 3
6854
655
6 8 5 6 ~ C
6 8 5 7 ~ C ~
6858 C
6859
6 8 6 0
6 8 6 1
6862
6863
6 8 6 4
6865
6 8 6 6
6 8 6 7 ~ C ~
6868
6869
6870
6 8 7 1
6872
6 8 7 3

```
```

    U2=U1
    ```
 U2=U1
 A2=A1
 A2=A1
 IF (ICHAR.NE. 1) GO TO 60
 IF (ICHAR.NE. 1) GO TO 60
 U(LMAX,M,N3)=U1
 U(LMAX,M,N3)=U1
 P(LMAX,M,N3)=P(LMAX,M,N1)
 P(LMAX,M,N3)=P(LMAX,M,N1)
 RO(LMAX,M,N3)=RO(LMAX,M,N1)
 RO(LMAX,M,N3)=RO(LMAX,M,N1)
 A3=A1
 A3=A1
 CALCULATE THE PROPERTY INTERPOLATING POLYNOMIAL COEFFICIENTS
 CALCULATE THE PROPERTY INTERPOLATING POLYNOMIAL COEFFICIENTS
 60 QUTB=OUT (LMAX,M)
 60 QUTB=OUT (LMAX,M)
 QVTB=QVT(LMAX,M)
 QVTB=QVT(LMAX,M)
 QPTB=QPT(LMAX.M)
 QPTB=QPT(LMAX.M)
 QROTB=QROT (LMAX,M)
 QROTB=QROT (LMAX,M)
 IF (IVC.EQ.O) GO TO 7O
 IF (IVC.EQ.O) GO TO 7O
 IF (M.EQ.MMAX) GO TO }7
 IF (M.EQ.MMAX) GO TO }7
 IF (NVC.EQ.1.OR.M.NE.MVCT+1) GO TO }7
 IF (NVC.EQ.1.OR.M.NE.MVCT+1) GO TO }7
 LINEAR INTERPOLATION IN TIME FOR M=MVCT+1
 LINEAR INTERPOLATION IN TIME FOR M=MVCT+1
 UB =UU1(LMAX) +R IND * (UU2 (LMAX) -UU 1 (LMAX))
 UB =UU1(LMAX) +R IND * (UU2 (LMAX) -UU 1 (LMAX))
 VB=VV1(LMAX)+RIND*(VV2(LMAX)-VV1(LMAX))
 VB=VV1(LMAX)+RIND*(VV2(LMAX)-VV1(LMAX))
 PB=PP1(LMAX)+RIND* (PP2 (LMAX) -PP 1 (LMAX))
 PB=PP1(LMAX)+RIND* (PP2 (LMAX) -PP 1 (LMAX))
 ROB = RORO 1 (LMAX) +RIND * (RORO2 (LMAX)-RORO1 (LMAX))
 ROB = RORO 1 (LMAX) +RIND * (RORO2 (LMAX)-RORO1 (LMAX))
 ULM=UU1(L1)+RIND*(UU2(L1)-UU1(L1))
 ULM=UU1(L1)+RIND*(UU2(L1)-UU1(L1))
 VLM=VV1(L1)+RIND*(VV2(L1)-VV1(L1))
 VLM=VV1(L1)+RIND*(VV2(L1)-VV1(L1))
 PLM=PP1(L1)+RIND*(PP2(L1)-PP1(L1))
 PLM=PP1(L1)+RIND*(PP2(L1)-PP1(L1))
 ROLM=RORO 1(L1)+RIND *(RORO2(L1)-RORO1(L1))
 ROLM=RORO 1(L1)+RIND *(RORO2(L1)-RORO1(L1))
 GO TO 8O
 GO TO 8O
70 UB=U(LMAX,M,N1)
70 UB=U(LMAX,M,N1)
 VB=V(LMAX,M,N1)
 VB=V(LMAX,M,N1)
 PB=P(LMAX,M,N1)
 PB=P(LMAX,M,N1)
 ROB=RO(LMAX,M,N1)
 ROB=RO(LMAX,M,N1)
 ULM=U(L1,M,N1)
 ULM=U(L1,M,N1)
 VLM=V(L1,M,N1)
 VLM=V(L1,M,N1)
 PLM=P(L1,M,N1)
 PLM=P(L1,M,N1)
 ROLM=RO(LI,M,NI)
 ROLM=RO(LI,M,NI)
80 BU=(UB-ULM)/DXP
80 BU=(UB-ULM)/DXP
 BV=(VB-VLM)/DXP
 BV=(VB-VLM)/DXP
 BP=(PB-PLM)/DXP
 BP=(PB-PLM)/DXP
 BRO=(ROB-ROLM)/DXP
 BRO=(ROB-ROLM)/DXP
 CU=UB-BU*X3
 CU=UB-BU*X3
 CV=VB-BV*X3
 CV=VB-BV*X3
 CP=PB-BP*X3
 CP=PB-BP*X3
 CRO=ROB - BRO * X3
 CRO=ROB - BRO * X3
 CALCULATE THE CROSS DERIVATIVE INTERPOLATING POLYNOMIAL
 CALCULATE THE CROSS DERIVATIVE INTERPOLATING POLYNOMIAL
 CUEF+ICIENIS
 CUEF+ICIENIS
 IF (M.EQ.1). GO TO 100
 IF (M.EQ.1). GO TO 100
 IF (M.EQ.MDFS.AND.IB.EQ.4) GO TO 110
 IF (M.EQ.MDFS.AND.IB.EQ.4) GO TO 110
 IF (IVC.EQ.O) GO TO 90
 IF (IVC.EQ.O) GO TO 90
 IF (NVC.EO.1.OR.M.NE.MVCB) GO TO 90
 IF (NVC.EO.1.OR.M.NE.MVCB) GO TO 90
 LINEAR INTERPOLATION IN TIME FOR M=MVCB
 LINEAR INTERPOLATION IN TIME FOR M=MVCB
 UMM-U(LMAX,M-1,NN1) +RIND*(U(LMAX,M-1,NM3)-U(LMAX,M-1,NN1))
 UMM-U(LMAX,M-1,NN1) +RIND*(U(LMAX,M-1,NM3)-U(LMAX,M-1,NN1))
 VMM=V(LMAX,M-1,NN1)+RIND*(V(LMAX,M-1,NN3)-V(LMAX,M-1,NN1))
 VMM=V(LMAX,M-1,NN1)+RIND*(V(LMAX,M-1,NN3)-V(LMAX,M-1,NN1))
 PMM= P(LMAX,M-1.NN1)+RIND*(P(LMAX,M-1, NN3)-P(LMAX,M-1, NN1))
 PMM= P(LMAX,M-1.NN1)+RIND*(P(LMAX,M-1, NN3)-P(LMAX,M-1, NN1))
 ROMM=RO(LMAX,M-1,NN1)+RIND*(RO(LMAX,M-1,NN3)-RO(LMAX,M-1,NN1))
 ROMM=RO(LMAX,M-1,NN1)+RIND*(RO(LMAX,M-1,NN3)-RO(LMAX,M-1,NN1))
 ULMMM=U(L1,M-1,NN1)+RIND*(U(L1,M-1,NN3)-U(L1,M-1,NN1))
 ULMMM=U(L1,M-1,NN1)+RIND*(U(L1,M-1,NN3)-U(L1,M-1,NN1))
 VLMMM = V(L1,M-1,NN1)+RIND*(V(L1,M-1,NN3)-V(L1,M-1,NN1))
 VLMMM = V(L1,M-1,NN1)+RIND*(V(L1,M-1,NN3)-V(L1,M-1,NN1))
 PLMMM=P(L1,M-1.NN1)+RIND*(P(L1,M-1,NN3)-P(L1,M-1,NN1))
 PLMMM=P(L1,M-1.NN1)+RIND*(P(L1,M-1,NN3)-P(L1,M-1,NN1))
 ROLMMM=RO(L1,M-1.NN1)+RIND*(RO(LI.M-1.NN3)-RO(I_1,M-1.NN1))
 ROLMMM=RO(L1,M-1.NN1)+RIND*(RO(LI.M-1.NN3)-RO(I_1,M-1.NN1))
 DU=(UB-UMM)*DYR
 DU=(UB-UMM)*DYR
 DV = (VB-VMM) *DYR
 DV = (VB-VMM) *DYR
 חP=(PR-PMM)*חYR
 חP=(PR-PMM)*חYR
 DRO=(ROB-ROMM)*DYR
 DRO=(ROB-ROMM)*DYR
 DU1=(ULM-ULMMM)}\starDY
 DU1=(ULM-ULMMM)}\starDY
 DV1=(VLM-VLMMM)*DYR
```

    DV1=(VLM-VLMMM)*DYR
    ```
```

6 8 7 4
6 8 7 5
6 8 7 6
6877
6 8 7 8
6 8 7 9
6880
6881
6 8 8 2
6 8 8 3
6 8 8 4
685
6886
6887
6 8 8 8
6 8 8 9
0 8 9 0
6 8 9 1
8892
6 8 9 3
6 8 9 4
6 8 9 5
6 8 9 6
6897
6898
6 8 9 9
6900
6 9 0 1
6902
6 9 0 3
6 9 0 4
6 9 0 5
6 9 0 6
6907
6908
6 9 0 9
6910
6911
6912 C
6913 C
6Y44 C
6015
6916
6917
6918
6919
6 9 2 0
6 9 2 1
6 9 2 2
6923
6 9 2 4
6 9 2 5
6 9 2 6
6927
6928
6 9 2 9
6 0 3 0 ~ G
6931 C
6 9 3 2 ~ C ~
6 9 3 3
6934
6935
6 9 3 6
6937
6 9 3 8
6 9 3 9 ~ C ~
6940 C
6 9 4 1 ~ C ~
9942
6942
6 9 4 3 .
6944
6945
6946

```
```

    DP1=(PLM-PLMMM) +DYR
    ```
 DP1=(PLM-PLMMM) +DYR
 DRO1=(ROLM-ROLMMM)*DYR
 DRO1=(ROLM-ROLMMM)*DYR
 GO TO 120
 GO TO 120
 90 DU=(UB-U(LMAX.M-1.N1))*DYR
 90 DU=(UB-U(LMAX.M-1.N1))*DYR
 DV=(VB-V(LMAX,M-1,N1))*DYR
 DV=(VB-V(LMAX,M-1,N1))*DYR
 DP=(PB-P(LMAX,M-1,N1))*DYR
 DP=(PB-P(LMAX,M-1,N1))*DYR
 DRO=(ROB-RO(I,MAX,M-1,N1))*DYR
 DRO=(ROB-RO(I,MAX,M-1,N1))*DYR
 DU1=(ULM-U(L1,M-1.N1))*DYR
 DU1=(ULM-U(L1,M-1.N1))*DYR
 DV1=(VLM-V(L1,M-1,N1))*DYR
 DV1=(VLM-V(L1,M-1,N1))*DYR
 DP1=(PLM-P(L1,M-1.N1))*DYR
 DP1=(PLM-P(L1,M-1.N1))*DYR
 DRO1=(ROLM-RO(L1,M-1,N1))*DYR
 DRO1=(ROLM-RO(L1,M-1,N1))*DYR
 GO TO 120
 GO TO 120
 100 IF (NGCB.NE.O) GO TO 110
 100 IF (NGCB.NE.O) GO TO 110
 OU=0.0
 OU=0.0
 DV=(4.O*V(LMAX.2.N1)-V(LMAX.3.N1))*O.5*DYR
 DV=(4.O*V(LMAX.2.N1)-V(LMAX.3.N1))*O.5*DYR
 DP=0.0
 DP=0.0
 DRO=0.0
 DRO=0.0
 DUT=0.0
 DUT=0.0
 OVI-(4.U.V(LI,2.NI)-V(LI.3.NI))=O.5.DTRR
 OVI-(4.U.V(LI,2.NI)-V(LI.3.NI))=O.5.DTRR
 DP1=0.0
 DP1=0.0
 ORO1=0.0
 ORO1=0.0
 GO TO 120
 GO TO 120
 110 DU=(U(LMAX,M+1,N1)-UB)*UYR
 110 DU=(U(LMAX,M+1,N1)-UB)*UYR
 DV=(V(LMAX,M+1.N1)-VB)*DYR
 DV=(V(LMAX,M+1.N1)-VB)*DYR
 DP = (P(LMAX,M+1.N1)-PB)*DYR
 DP = (P(LMAX,M+1.N1)-PB)*DYR
 DRO=(RO(LMAX,M+1,N1)-ROB)*DYR
 DRO=(RO(LMAX,M+1,N1)-ROB)*DYR
 DU1=(U(L1,M+1,N1)-ULM)*DYR
 DU1=(U(L1,M+1,N1)-ULM)*DYR
 DV1=(V(L1,M+1,N1)-VLM)*DYR
 DV1=(V(L1,M+1,N1)-VLM)*DYR
 DP1=(P(LI,M+1,N{)-PLM)*DYR
 DP1=(P(LI,M+1,N{)-PLM)*DYR
 DRO1=(RO(L1,M+1,N1)-ROLM)*DYR
 DRO1=(RO(L1,M+1,N1)-ROLM)*DYR
 120 BDU=(DU-DU1)/DXP
 120 BDU=(DU-DU1)/DXP
 BDV=(DV-DV1)/DXP
 BDV=(DV-DV1)/DXP
 BDP=(DP-DP1)/DXP
 BDP=(DP-DP1)/DXP
 BDRO=(DRO-DRO1)/DXP
 BDRO=(DRO-DRO1)/DXP
 CDU=DU-BDU*X3
 CDU=DU-BDU*X3
 CDV=DV-BDV*x3
 CDV=DV-BDV*x3
 CDP =DP-BDP * X3
 CDP =DP-BDP * X3
 CDRO=DRO-BDRO*X3
 CDRO=DRO-BDRO*X3
 CALCULATE THE COEFFICIENTS FOR THE OUICK SOLVER
 CALCULATE THE COEFFICIENTS FOR THE OUICK SOLVER
 IF (IQSD.EQ.O.OR.NVC.EQ.1) CO TO 130
 IF (IQSD.EQ.O.OR.NVC.EQ.1) CO TO 130
 IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO 130
 IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO 130
 IF (M.EQ.MDFS.AND.LDFSF.EQ.LMAX) GO TO 130
 IF (M.EQ.MDFS.AND.LDFSF.EQ.LMAX) GO TO 130
 DUDYOLX=0.5*(DUDYOS(LMAX,M,1)+DUDYOS(LMAX.M.2))
 DUDYOLX=0.5*(DUDYOS(LMAX,M,1)+DUDYOS(LMAX.M.2))
 DVDYOLX=0.5*(DVDVOS(LMAX.M,1)+DVDVOS(LMAX,M.2))
 DVDYOLX=0.5*(DVDVOS(LMAX.M,1)+DVDVOS(LMAX,M.2))
 DPDYQLX=0.5*(DPDYOS(LMAX,M,1)+DPDYOS(LMAX,M,2))
 DPDYQLX=0.5*(DPDYOS(LMAX,M,1)+DPDYOS(LMAX,M,2))
 DUDYQL1=0.5*(DUDYOS(L1,M,1)+DUDYOS(L1,M,2))
 DUDYQL1=0.5*(DUDYOS(L1,M,1)+DUDYOS(L1,M,2))
 DVOYQL1=0.5*(DVDYOS(L,1,M,1)+DVDYGS(L1,M,2))
 DVOYQL1=0.5*(DVDYOS(L,1,M,1)+DVDYGS(L1,M,2))
 DPDYOL 1=0.5*(DPDYQS(L1,M,1)+DPDYQS(L1,M,2))
 DPDYOL 1=0.5*(DPDYQS(L1,M,1)+DPDYQS(L1,M,2))
 BDUQS = (OUDYOLX-DUDYQL 1)/DXP
 BDUQS = (OUDYOLX-DUDYQL 1)/DXP
 BDVQS=(DVDYOLX-DVDYOL 1)/DXP
 BDVQS=(DVDYOLX-DVDYOL 1)/DXP
 BDPQS =(DPDYQLX -DPDYQL 1)/DXP
 BDPQS =(DPDYQLX -DPDYQL 1)/DXP
 CDUOS =OUDYQLX-BDUQS*X3
 CDUOS =OUDYQLX-BDUQS*X3
 CDVOS=OVDYOLX-BDVQS*x3
 CDVOS=OVDYOLX-BDVQS*x3
 CDPQS=DPDYQLX-BDPQS * X 3
 CDPQS=DPDYQLX-BDPQS * X 3
 CALCULATE X1 AND X2
 CALCULATE X1 AND X2
 130 IF (ICHAR.NE.1) A3=SQRT(GAMMA*P(LMAX,M,N3)/RO(LMAX,M,N3))
 130 IF (ICHAR.NE.1) A3=SQRT(GAMMA*P(LMAX,M,N3)/RO(LMAX,M,N3))
 DO 140 IL=1,2
 DO 140 IL=1,2
 X1=X3-(U(LMAX,M,N3)*OM1+U1*OM1)*O.5*DT
 X1=X3-(U(LMAX,M,N3)*OM1+U1*OM1)*O.5*DT
 X2=X3-((U(LMAX,M,N3)+A3)*OM1+(U2+A2)*OM1)*O.5*DT
 X2=X3-((U(LMAX,M,N3)+A3)*OM1+(U2+A2)*OM1)*O.5*DT
 IF (X3-X1.LT.O.05*DXP) X1=X3-0.05*DXP
 IF (X3-X1.LT.O.05*DXP) X1=X3-0.05*DXP
 IF (X3-X2.LT.O.05*DXP) X2=x3-0.05*DXP
 IF (X3-X2.LT.O.05*DXP) X2=x3-0.05*DXP
 INTERPOLATE fOR THE PROPERTIES
 INTERPOLATE fOR THE PROPERTIES
 U1=BU*X1+CU
 U1=BU*X1+CU
 U2=BU*X2+CU
 U2=BU*X2+CU
 P2 =BP* X2+CP
 P2 =BP* X2+CP
 RO2=BRO*X2+CRO
 RO2=BRO*X2+CRO
 A2=SORT(GAMMA*P2/RO2)
```

    A2=SORT(GAMMA*P2/RO2)
    ```
```

    140 CONTINUE
    V1=BV*X1+CV
    P1=BP* * 1+CP
    RO1=BRO*X1+CRO
    UV 1=U 1*AL3+V 1*BE3+DE3
    A1=SQRT(GAMMA*P1/RO1)
    V2=BV*\times2+CV
    UV2=U2*AL3+V2*BE 3+DE3
    INTERPOLATE FOR THE CROSS DERIVATIVES
    DV 1=BDV* \1+CDV
    DP 1=BDP*X 1 +CDP
    DRO 1=8DRO*X 1+CDRO
    DU2=BDU*\times2+CDU
    DV2=BOV* X2 +CDV
    DP2=BDP* X2+CDP
    DRO2=BDRO*X2+CDRO
    C
IF (IQSD.EQ.O.OR.NVC.EQ.1) GO TO 150
IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO }15
IF (M.EQ.MDFS.AND.LDFSF.EQ.LMAX) GO TO 150
DVIOS=BDVQS*X 1+CDVQS
DP10S=BDPQS**1+CDPQS
DU2OS=BDUQS**2+CDUQS
DV2OS=BDVOS**2+CDVQS
DP2OS=BDPQS**2+CDPQS
CALCULATE THE PSI TERMS
150 IF (NDIM.EQ.O) GO TO 170
IF (M.EQ.1.AND.YCB(LMAX).EQ.O.O) GO TO 160
ATERM2=RO2*V2/YP
GO TO 170
160 ATERM2=RO2*BE3*DV2
170 PSI31=-UV1*DV1-BE3*DP1/RO1
PSI41=-UV1*DP1+A1*A1*UV 1*DRO 1
PSI 12=-UV2*DRO2-RO2*AL3*DU2-RO2*BE3*DV2-ATERM2
PSI22=-UV2*DU2-AL3*DP2/RO2
PSI 42=-UV2*DP2*A2*A2*UV2*DRO2
IF (IOSD.EQ.O.OR.NVC.EQ.1) GO TO 18O
IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO 180
IF (M.EQ.MDFS.AND.LDFSF.EQ.LMAX) GO TO 180
UV1=U1*ALD+V1*BED+DED
PSI31=-UV1*DV1OS-BED*DP1OS/RO1
PSI 12=-UV2*DRO2-RO2*ALD*DU2OS-RO2*BED*DV2OS-ATERM2
IIV2=112*AI_D+V2*BED+DED
PSI 22=-UV2*DU2OS-ALD*DP2QS/RO2
180 IF (ICHAR.EQ.1) GO TO 270
CALCULATE the CROSS DERIVATIVES AT the SOLUTION POINT
IF (M.EQ.I.AND.NGCB.EQ.O) GO TO 190
IF (M.EQ.MDFS.AND.IB.EQ.3) GO TO 2OO
IF (M.EQ.MMAX) GO TO 200
DU3=(U(LMAX,M+1,N3) - U(LMAX,M,N3))*DYR
DV3=(V(LMAX,M+1.N3)-V(LMAX,M,N3))*DYR
DP3 = (P(LMAX,M+1,N3)-P(LMAX,M,N3)) *DYR
DRO3=(RO(LMAX,M+1,N3)-RO(LMAX,M,N3))*DYR
GO TO 210
190 DU3=0.0
DV3=(4.O*V(LMAX,2.N3)-V(LMAX, 3.N3))*O.5*UYR
DP3=0.0
DRO3=0.0
go to 210
200 DU3=(U(LMAX,M,N3)-U(LMAX,M-1,N3))*DYR
DV3=(V(LMAX,M,N3) -V(LMAX,M-1,N3))*DYR
UP3=(P(LMAX,M.N3)-P(LMAX,M-1,N3))*DYR
DRO3=(RO(LMAX.M,N3)-RO(LMAX.M-1,N3))*DYR
calculate the psi terms at the solution point

```

7019 C
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030 C
7031
7032
7033
7034
7035
7000
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
70.59

7060
7061 C
7062 C
7063 C
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082 c
7083 C
7084 C
7085
7086
7087
7088
7089
7090
```

210 IF (NDIM.EQ.O) GO TO 230
IF (M.EQ.1.AND.YCB(LMAX).EQ.O.O) GO TO 22O
ATERM3=RO(LMAX,M.N3)*V(LMAX.M.N3)/YP
GO TO 230
220 ATERM3=RO(I.MAX, 1.N3)*BE4*DV3
230 UV3=U(LMAX,M,N3)*AL4+V(LMAX,M,N3)*BE4+DE4
PSI 13=-UV3*DRO3-RO(LMAX.M.N3) +(AL4*DU3+BE4*DV3)-ATERM3
PSI23=-UV3*DU3-AL4*DP3/RO(LMAX,M,N3)
PSI33=-UV3*DV3-BE4*DP3/RO(LMAX,M,N3)
PSI43=-UV3*DP3*A3*A3*UV3*DRO3
IF (IOSD.EQ.O.OR.NVC.EQ.1) GO TO 250
IF (M.LE.MVCB.OR.M.GE.MVCT) GO TO 250
IF (M.EQ.MDFS.AND.LDFSF.EQ.LMAX) GO TO 250
OUDY 1=0.5*(U(LMAX.M+1.N3)-UOLD)*DYR
DVDY 1=0.5*(V(LMAX.M+1,N3)-VOLD)*DYR
DPDYI=O.S.(P(LMAK,M+1,NS)-PULU)*UYK
IF (MDFS.EO.O) GO T0 240
IF (M.NE.MDFS+1.OR.LDFSF.NE.LMAX) GO TO 240
DUDY1=0.5*(U(LMAX,M+1.N3)-UL(LMAX.N3))*DYR
DVDY1=0.5*(V(LMAX,M+1,N3)-VL(LMAX,N3))*DYR
DPDY 1=0.5*(P(LMAX,M+1,N3)-PL(LMAX,N3))*DYR
240 PSI 13=-UV3*DRO3-RO(LMAX,M,N3)*(ALD*DUDY 1+BED*DVDY1)-ATERM3
UV3=U(LMAX,M,N3) *ALD+V(LMAX,M,N3)*BED+DED
PSI23=-UV3*DUDY1-ALD*DPDY1/RO(LMAX,M.N3)
PSI33=-UV3*DVDY1-BED*DPDY 1/RO(LMAX,M,N3)
250 IF (IOSD.EQ.O.OR.NVC.EQ.1) GO TO 260
UOLD=U(LMAX,M,N3)
VOLD=V(LMAX,M,N3)
POLD=P(LMAX.M.N3)
260 PSI31B=(PSI31+PSI33)*0.5+QVTB
PSI41B=(PSI41+PSI43)*0.5
PSI 12B=(PSI 12+PSI 13)*0.5
PS122B=(PSI22+PSI23)*0.5+QUTB
PSI42B=(PSI42+PSI43)*0.5
GO TO 280
270 PSI31B=PSI31+OVTB
PSI41B=PSI41
PSI12B=PSI12
PSI22B=PSI22+QUTB
PS142B=PSI42
SOLVE THE COMPATIBILITY EQUATIONS FOR U.V AND RO
280 P(LMAX,M,N3)=RNNPE*PE(M)+(1.O-RNNPE)*PEI
AB=0.5*(A2+A.3)
ROAVG=O. 5*(RO2+RO(LMAX,M,N3))
PSIT=(PSI 428+ROAVG*AB*PSI 228+AB*AB*PSI 12B)*DT
IF (ALE.EQ.O.O) GO TO 290
PSIT=PSIT+OPTB*DT
PSI41B=PSI4 1B+QPTB
P(LMAX,M,N3)=(ALE*PE(M)+ROAVG*AB*(U2-U(LMAX,M,N1))+P2+P(LMAX,M,N1)
1 +PSIT)/(2.O+ALE)
290 RO(LMAX,M.N3)=RO 1+2.O*(P(LMAX,M,N3)-P1-DT*PSI4 1B)/(A3*A3+A1*A1)
| IDROTA+DT
IF (RO(LMAX,M,N3).LE.O.O) RO(LMAX,M,N3)=ROLOW/G
U(LMAX,M,N3)=142+(PSIT-P(LMAX,M,N3) +P2)/(ROAVG*AB)
V(LMAX,M,N3) =V1+DT*PSI31B
IF (NOSLIP.EQ.O) GO TO 300
IF (M.EQ.1.AND.NGCB.NE.O) U(LMAX,M.N3)=O.O
IF (M.EQ:MMAX.AND.IWALL.EQ.O) U(LMAX,M.N3)=O.O
IF (M.EQ.MDFS.AND.LDFSF.EQ.LMAX) U(LMAX,M,N3)=0.O
CHECK FOR INFLOW AND IF SO, SET THE CORRECT BOUNDARY CONDITIONS
300 IF (U(LMAX.M,N3).GE.O.O) GO TO 320
RO(LMAX.M,N3)=0.5*(RO(L.MAX,1,N1)+RO(LMAX,MMAX,N1))
IF (U(LMAX,2,N1).GT.O.O.AND.U(LMAX.M1.N1).LT.O.O) RO(LMAX.M.N3)=RO
1 (LMAX,MMAX,N1)
IF (U(LMAX,2.N1).LT.O.O.AND.U(LMAX,M1,N1).GT.O.O) RO(LMAX,M,N3)=RO
1 (LMAX, 1,N1)

```
```

    V(LMAX,M,N3) = - U(LMAX,M,N3)*(NXNYCB(LMAX) +(YP-YCB(LMAX))/(YW(LMAX)
    ```
 V(LMAX,M,N3) = - U(LMAX,M,N3)*(NXNYCB(LMAX) +(YP-YCB(LMAX))/(YW(LMAX)
 1-YCB(LMAX))*(NXNY(LMAX)-NXNYCB(LMAX)))
 1-YCB(LMAX))*(NXNY(LMAX)-NXNYCB(LMAX)))
 IF (MDFS.EQ.O.OR.LDFSF.NE.LMAX) GO TO 32O
 IF (MDFS.EQ.O.OR.LDFSF.NE.LMAX) GO TO 32O
 IF (IB.EQ.4) GO TO 310
 IF (IB.EQ.4) GO TO 310
 RO(LMAX,M,N3)=0.5*(RO(LMAX, 1,N1)+RO(LMAX,MDFS,N1))
 RO(LMAX,M,N3)=0.5*(RO(LMAX, 1,N1)+RO(LMAX,MDFS,N1))
 IF (U(LMAX,2,N1).GT.O.O.AND.U(LMMAX,MDFS-1,N1).LT.O.O) RO(LMAX,M,N3
 IF (U(LMAX,2,N1).GT.O.O.AND.U(LMMAX,MDFS-1,N1).LT.O.O) RO(LMAX,M,N3
 1)=RO(LMMAX,MDFS,N1)
 1)=RO(LMMAX,MDFS,N1)
 IF (U(LMAX,2,N1).LT.O.O.AND.U(LMAX,MDFS-1,N1).GT.O.O) RO(LMAX.M.N3
 IF (U(LMAX,2,N1).LT.O.O.AND.U(LMAX,MDFS-1,N1).GT.O.O) RO(LMAX.M.N3
 1)=RO(LMAX, 1,N1)
 1)=RO(LMAX, 1,N1)
 V(LMAX;M,N3) = - U(LMAX,M,N3) *(NXNYCB (LMAX) +(YP-YCB(LMAX))/(YL(LMAX)
 V(LMAX;M,N3) = - U(LMAX,M,N3) *(NXNYCB (LMAX) +(YP-YCB(LMAX))/(YL(LMAX)
 1-YCB(LMAX))*(NXNYL(LMAX)-NXNYCB(LMAX)))
 1-YCB(LMAX))*(NXNYL(LMAX)-NXNYCB(LMAX)))
 GO TO 320
 GO TO 320
310 RO(LMAX,M.N3)=0.5.(RO(IMAX.MIIFS.N1)PRO(I.MAX.MMAX,N1))
310 RO(LMAX,M.N3)=0.5.(RO(IMAX.MIIFS.N1)PRO(I.MAX.MMAX,N1))
 IF (U(I.MAX.MOFS+I.NI).GI.O.O.ANI.UGIMAX.MI.NIJ.LT.O.O) RO(IMAX.M
 IF (U(I.MAX.MOFS+I.NI).GI.O.O.ANI.UGIMAX.MI.NIJ.LT.O.O) RO(IMAX.M
 1.NS)=FO(I.MAX,MMAX,NI)
 1.NS)=FO(I.MAX,MMAX,NI)
 IF (U(IMAX.MOFS+I.NI).L.I.D.O.ANI).U(LMAX.M1.N1).GT.O.O) RO(LMAX.M
 IF (U(IMAX.MOFS+I.NI).L.I.D.O.ANI).U(LMAX.M1.N1).GT.O.O) RO(LMAX.M
 1.N3)=RO(LMAX.MOTS.N1)
 1.N3)=RO(LMAX.MOTS.N1)
 V(L.MAX,M,N3) = -U(I.MAX,M,N3) + (NXNYU(IMAX.) + (YF-VU(LMAX))/(YW(L.MAX)-Y(J
 V(L.MAX,M,N3) = -U(I.MAX,M,N3) + (NXNYU(IMAX.) + (YF-VU(LMAX))/(YW(L.MAX)-Y(J
 1(LMAX))+(NXNY(LMAX)-NXNYU(LMAX)))
 1(LMAX))+(NXNY(LMAX)-NXNYU(LMAX)))
 AVERAGF. THE SOI.UTION IF THE MACH NUMBER IS ALTERNATING
 AVERAGF. THE SOI.UTION IF THE MACH NUMBER IS ALTERNATING
 ABOVE AND BEI.OW 1.O
 ABOVE AND BEI.OW 1.O
320 IF (JCHAR.FO.1.OR.IEXITT.NE.O) GO TO 330
320 IF (JCHAR.FO.1.OR.IEXITT.NE.O) GO TO 330
 SM3=U(I_MAX,M,N3) + +2/(GAMMA +P(LMAX,M,N3)/RO(I.MAX,M,N3))
 SM3=U(I_MAX,M,N3) + +2/(GAMMA +P(LMAX,M,N3)/RO(I.MAX,M,N3))
 IF (SM.ILT.1.O.AND.SM.LT.1.O) GO TO 330
 IF (SM.ILT.1.O.AND.SM.LT.1.O) GO TO 330
 IF (SMB.GT.1.O.AND.SM.GT.1.O) GO TO 33O
 IF (SMB.GT.1.O.AND.SM.GT.1.O) GO TO 33O
 F(IMAX.M,N3)=RNNPE*PE (M)+(1.O-RNNPE) *PEI
 F(IMAX.M,N3)=RNNPE*PE (M)+(1.O-RNNPE) *PEI
 330 cONTtPNE.
 330 cONTtPNE.
 SET [OOIJNDARY CONDITIONS AT THE CORNER MFSH FOINTS
 SET [OOIJNDARY CONDITIONS AT THE CORNER MFSH FOINTS
 IF (IWAI.L. FO.O) GO IO .340
 IF (IWAI.L. FO.O) GO IO .340
 IF (V(IMAX,MMAX.NI).G1.O.O) GO IO 340
 IF (V(IMAX,MMAX.NI).G1.O.O) GO IO 340
 NO)=NI
 NO)=NI
 IF (1OHAR.EO.2) NO=N3
 IF (1OHAR.EO.2) NO=N3
 U(LMAX,MMAX,N3)=0.1+U(1. MMAX,ND)) +O. O+U(LMAX.MMAX,NI)
 U(LMAX,MMAX,N3)=0.1+U(1. MMAX,ND)) +O. O+U(LMAX.MMAX,NI)
 RO(LMAX,MMAX,N3)=O.1*RO(1.tAMAX.ND) +O. S+RO(LMAX,MMAX.Ni)
 RO(LMAX,MMAX,N3)=O.1*RO(1.tAMAX.ND) +O. S+RO(LMAX,MMAX.Ni)
 340 JF (NVC.EO.1.AND.MVCT.ED.MMAX) GO TO 350
 340 JF (NVC.EO.1.AND.MVCT.ED.MMAX) GO TO 350
 IF (MOFS.NE.O.AND.IG.EO.3) GO TO 350
 IF (MOFS.NE.O.AND.IG.EO.3) GO TO 350
 IF (IWAI.L.EQ.O) V(L.MAX.MMAX.N.3)=-U(LMAX.MMAX.N3)+NXNY(LMAX)+XWI
 IF (IWAI.L.EQ.O) V(L.MAX.MMAX.N.3)=-U(LMAX.MMAX.N3)+NXNY(LMAX)+XWI
 I (L.MAX)
 I (L.MAX)
 IF (TW(1).GT.O.O.AND.P(LMAX.MMAX.N3).EQ.PE(MMAX)) RO(L.MAX.MMAX.N3)
 IF (TW(1).GT.O.O.AND.P(LMAX.MMAX.N3).EQ.PE(MMAX)) RO(L.MAX.MMAX.N3)
 1 =P(LMAX,MMAX.N3)/(RG+TW(LMAX))
 1 =P(LMAX,MMAX.N3)/(RG+TW(LMAX))
 IF (TW(1).GT.O.O.AND.P(LMAX,MMAX,N3).NE.PE(MMAX)) P(I.MAX,MMAX,N3)
 IF (TW(1).GT.O.O.AND.P(LMAX,MMAX,N3).NE.PE(MMAX)) P(I.MAX,MMAX,N3)
 1 -RO(LMAX,MMAX.N.3)+RG.TW(I_MAX)
 1 -RO(LMAX,MMAX.N.3)+RG.TW(I_MAX)
350 1F (NVC.FO.I.AND.MVCB.EO.1) GO IO 3fO
350 1F (NVC.FO.I.AND.MVCB.EO.1) GO IO 3fO
 IF (MIOFS.NF.O.AND.「P.EO.4) GO TO 36O
 IF (MIOFS.NF.O.AND.「P.EO.4) GO TO 36O
 V(LMAX, 1,NO)= U(I_MAX, 1, N:3) +NXPNYCB(IMAX)
 V(LMAX, 1,NO)= U(I_MAX, 1, N:3) +NXPNYCB(IMAX)
 IF (TCR(1).GT O.O.AND.P(LMAX.1.N3).EO.FE(I)) RO(LMAX.I.N3)=P(LMAX.
 IF (TCR(1).GT O.O.AND.P(LMAX.1.N3).EO.FE(I)) RO(LMAX.I.N3)=P(LMAX.
 1.1.N3)/(RG+TCP(LMAX))
 1.1.N3)/(RG+TCP(LMAX))
 IF (TCB(1).GT.O.O.AND.P(LMAX.1.N3).NE.PE(1)) F(LMAX,1.N3)=RO(IMAX.
 IF (TCB(1).GT.O.O.AND.P(LMAX.1.N3).NE.PE(1)) F(LMAX,1.N3)=RO(IMAX.
 1 1.N3) +RG*TCB(I.MAX)
 1 1.N3) +RG*TCB(I.MAX)
 SET BOUNDARY CONOITIONS FOR THE DUAI. FLOW SPACE
 SET BOUNDARY CONOITIONS FOR THE DUAI. FLOW SPACE
360 IF (MDFS.EO.O.OR.LDFSF.NE.IMAX) RETURN
360 IF (MDFS.EO.O.OR.LDFSF.NE.IMAX) RETURN
 IF (NVC.EO.I.AND.(MUFS.GT.MVCR.AND.MDFS.LT.MVCT)) RETURN
 IF (NVC.EO.I.AND.(MUFS.GT.MVCR.AND.MDFS.LT.MVCT)) RETURN
 IF (IR.EQ.4) GO TO 370
 IF (IR.EQ.4) GO TO 370
 V(LMAX.MDFS.N3) = U(LMAX.MDFS.N3) +NXNYL (I.MAX)
 V(LMAX.MDFS.N3) = U(LMAX.MDFS.N3) +NXNYL (I.MAX)
 IF (TI.'1).GT.O.O.AND.R(LMAX,MDFS,NZ),EN,PE(MNFS)) RO(LMAX,MOFS,NM)
 IF (TI.'1).GT.O.O.AND.R(LMAX,MDFS,NZ),EN,PE(MNFS)) RO(LMAX,MOFS,NM)
 1 = F(LMAX,MDFS.N3)/(RG+TI.(LMAX))
 1 = F(LMAX,MDFS.N3)/(RG+TI.(LMAX))
 IF (TI_({).GT.O.O.AND.P(IMAX.MDFS.N3).NF.RE(MDFS)) F(LMAX.MDFS.N.3)
 IF (TI_({).GT.O.O.AND.P(IMAX.MDFS.N3).NF.RE(MDFS)) F(LMAX.MDFS.N.3)
 I = RO(I.MAX.MDFS.N3)*RG•TL(LMAX)
 I = RO(I.MAX.MDFS.N3)*RG•TL(LMAX)
 RETIIRN
 RETIIRN
 3%0 V(LMAX,MDFS,N3)=-U(LMAX.MDFS.N3) +NXNYU(LMAX)
 3%0 V(LMAX,MDFS,N3)=-U(LMAX.MDFS.N3) +NXNYU(LMAX)
 IF (IU(1).GT.O.O.AND.P(LMAX.MDFS.NB).EO.PE(MDFS)) RO(IMAX.MDFS.N.S)
 IF (IU(1).GT.O.O.AND.P(LMAX.MDFS.NB).EO.PE(MDFS)) RO(IMAX.MDFS.N.S)
 1 =P(LM^X,MIIFS.N3)/(RG*IU(LMAX))
```

        1 =P(LM^X,MIIFS.N3)/(RG*IU(LMAX))
    ```
```

7159
7160
7161
7162 C
7163
7164
7165
IF (TU(1).GT.O.O.AND.P(LMAX,MOFS.N3).NE.FE(MDFS)) P(LMAX.MDFS.N3)
1 = RO(LMAX,MDFS,N3) + RG* TU(LMAX)
RETURN
38O FORMAT ( }1+10.57H+++++ A NEG SOUND SPFED OCCURED IN SURROUTINE FXITT,
1 AT N=,I6,4H, M=, I2.6H, NVC=,I3.11H AND ICHAR=,I1,6H *****)
END

```
\begin{tabular}{|c|c|c|}
\hline 7166 & & SUBROUTINE OSOLVE \\
\hline 7167 & C & \\
\hline 7168 & C & ******** \\
\hline 7169 & C & \\
\hline 7170 & C & this subroutine calculates the velocity and pressure derivatives \\
\hline 7171 & C & IN THE SUBCYCLED MESH AS PART OF THE OUICK SOLVER PACKAGE \\
\hline 7172 & C & \\
\hline 7173 & C & \\
\hline 7174 & C & \\
\hline 7175 & *CALL. & . MCC \\
\hline 7176 & & IP = 1 \\
\hline 7177 & & YWB \(=0.0\) \\
\hline 7178 & & \(Y W T=1.0\) \\
\hline 7179 & & \(\mathrm{Y}_{1}=0.0\) \\
\hline 7180 & & \(\mathrm{Y} 2=0.0\) \\
\hline 7181 & & \(\mathrm{Y} 10=0.0\) \\
\hline 7182 & & \(\mathrm{Y} 2 \mathrm{O}=0.0\) \\
\hline 7183 & & MIS \(=\) MVCB 1 \\
\hline 7184 & & MIF \(=\) MVCT 1 \\
\hline 7185 & & IF (MDFS.EQ.O) GO TO 20 \\
\hline 7186 & C & \\
\hline 7187 & & IB \(=3\) \\
\hline 7188 & & CALL SWITCH (3) \\
\hline 7189 & & GO TO 20 \\
\hline 7190 & 10 & MIS \(=\) MDFS +1 \\
\hline 7191 & & MIF \(=\) MVCT 1 \\
\hline 7192 & & IB=4 \\
\hline 7193 & & \(Y W B=Y(M D F S)\) \\
\hline 7194 & & \(Y W T=1.0\) \\
\hline 7195 & & CALL SWITCH (3) \\
\hline 7196 & C & \\
\hline 7197 & C & BEGIN THE L OR \(\times\) DO LOOP \\
\hline 7198 & C & \\
\hline 7199 & & DO \(510 \mathrm{~L}=1 . \mathrm{Lmax}\) \\
\hline 7200 & & LMAP \(=1\) \\
\hline 7201 & & LDFS \(=0\) \\
\hline 7202 & & IF. (L.GE, LDFSS. AND.L.LE.LDFSF) LDFS = 1 \\
\hline 7203 & & YPB= \(\mathrm{YCB}(\mathrm{L})\) \\
\hline 7204 & & YPT \(=\mathrm{YW}(\mathrm{L}\)) \\
\hline 7205 & & IF (MDFS.EQ.O) GO TO 50 \\
\hline 7206 & & IF (LDFS.NE.O) GO to 30 \\
\hline 7207 & & IF (IB.EO.4) GO TO 510 \\
\hline 7208 & & MIF \(=\) MVCT 1 \\
\hline 7209 & & YWT \(=1.0\) \\
\hline 7210 & & Go to 50 \\
\hline 7211 & 30 & IF (IB.EQ.4) GO TO 40 \\
\hline 7212 & & MIF \(=\) MDFS-1 \\
\hline 7213 & & \(Y W T=Y(\) MDFS \()\) \\
\hline 7214 & & \(Y P T=Y L(L)\) \\
\hline 7215 & & GO TO 50 \\
\hline 7218 & 40 & YPB=YU(L) \\
\hline 7217 & 50 & If (MVCB.NE.1) go to 60 \\
\hline 7218 & & MMAP \(=1\) \\
\hline 7219 & & \(M M=1\) \\
\hline 7220 & & RFLD \(=-2.0 * N \times N Y C B(L) /(1.0+N X N Y C E(L) * * 2)\) \\
\hline 7221 & & GO TO 80 \\
\hline 7222 & 60 & If (mVCt. Ne.mmax) go to 70 \\
\hline 7223 & & MMAP \(=\) MMAX \\
\hline 7224 & & MM = MMAX \\
\hline 7225 & & RFI.D=2.O*NXNY(L)/(1.O+NXNY(L)**2) \\
\hline 7226 & & GO TO 80 \\
\hline 7227 & 70 & IF (MDFS.EQ.O) GO TO 110 \\
\hline 7228 & & IF (LDFS.EQ.O) GU IU 110 \\
\hline 7229 & & MMAP \(=\) MDF S \\
\hline 7230 & & MM \(=\) MDF \(S\) \\
\hline 7231 & & IF (18.EO.3) RFLD \(=2.0 * N \times N Y L(L) /(1.0+N \times N Y L(L) * * 2)\) \\
\hline 7232 & & IF (IB.fo.4) RFLD \(=-2.0 * \operatorname{NXNYU}(\mathrm{~L}) /(1.0+\mathrm{NXNYU}(\mathrm{L}) * * 2)\) \\
\hline 7233 & 80 & call map \\
\hline 7234 & & OM11 \(=2 . O * O M 1 * O M 2 /(O M 1+O M 2)\) \\
\hline 7235 & & ALI 1 =AL3 \\
\hline 7236 & & BE \(11=\) BE3 \\
\hline 1237 & & DE \(11=\) DE 3 \\
\hline
\end{tabular}
```

7238
7239
7240
7 2 4 1
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254 C
7255 C
7256 ^
7257
7258
7259
7260
7261
7262
7263
7264
7 2 6 5
7266 C
7267
7268
7269
7270
7271
7272
72%3
7273
7215
7276
7276
7278 C
7279 C
728O
I2Ui
7282
7287
7284
7285
7 2 8 6
7287
7288
7289
7 2 9 0
7291
7292
7293
7 2 9 1
7 2 9 5
7296
7297
7298
7 2 9 9
7 3 0 0
7301
7302
703
7304
7304
7 3 0 6
7306
7307
7308
7309

```
```

    ALS11=SQRT(AL11*AL11+BE11*BE!1)
    ```
 ALS11=SQRT(AL11*AL11+BE11*BE!1)
 UV 11=DE 11
 UV 11=DE 11
 RFLD=RFLD/BE 11
 RFLD=RFLD/BE 11
 IF (L.EQ.1) GO TO 90
 IF (L.EQ.1) GO TO 90
 IF (L.EQ.LMAX) GO TO 100
 IF (L.EQ.LMAX) GO TO 100
 PTERM=0.5*OM11*(P(L+1,MM,N1)-P(L-1,MM,N1))*DXR
 PTERM=0.5*OM11*(P(L+1,MM,N1)-P(L-1,MM,N1))*DXR
 ROTERM=0.5*OM11*(RO(L+1,MM,N1)-RO(L-1,MM,N1))*DXR
 ROTERM=0.5*OM11*(RO(L+1,MM,N1)-RO(L-1,MM,N1))*DXR
 QTERM=0.5*OM11*(Q(L+1.MM,N1)-O(L-1,MM,N1))*DXR
 QTERM=0.5*OM11*(Q(L+1.MM,N1)-O(L-1,MM,N1))*DXR
 GO TO 110
 GO TO 110
90 PTERM=OM11*(P(2,MM,N1)-P(1,MM,N1))*DXR
90 PTERM=OM11*(P(2,MM,N1)-P(1,MM,N1))*DXR
 ROTERM=OM11*(RD(2,MM.N1)-RO(1,MM,N1))*DXR
 ROTERM=OM11*(RD(2,MM.N1)-RO(1,MM,N1))*DXR
 QTERM=OM11*(Q(2,MM,N1)-Q(1,MM,N1))*DXR
 QTERM=OM11*(Q(2,MM,N1)-Q(1,MM,N1))*DXR
 GO TO 11O
 GO TO 11O
100 PTERM=OM11*(P(LMAX,MM,N1)-P(L1,MM,N1))*DXR
100 PTERM=OM11*(P(LMAX,MM,N1)-P(L1,MM,N1))*DXR
 ROTERM=OM11*(RO(LMAX,MM,N1)-RO(L1,MM,N1))*DXR
 ROTERM=OM11*(RO(LMAX,MM,N1)-RO(L1,MM,N1))*DXR
 QTERM=OM11*(Q(LMAX,MM,N1)-Q(L1,MM,N1))*DXR
 QTERM=OM11*(Q(LMAX,MM,N1)-Q(L1,MM,N1))*DXR
 BEGIN THE M UR Y GO LOOP
 BEGIN THE M UR Y GO LOOP
110 DO 500 M=MIS.MIF
110 DO 500 M=MIS.MIF
 MMAP =M
 MMAP =M
 CALL MAP
 CALL MAP
 BE=2.O*BE3*BE4/(BE3+BE4)
 BE=2.O*BE3*BE4/(BE3+BE4)
 BCD=D[3
 BCD=D[3
 YPD=YP
 YPD=YP
 YO=Y(M)
 YO=Y(M)
 YPP=YP+DY/BE4
 YPP=YP+DY/BE4
 YPM=YP-DY/BE3
 YPM=YP-DY/BE3
 U3=U(L,M,N1)
 U3=U(L,M,N1)
 V3=V(L,M,N1)
 V3=V(L,M,N1)
 P3=P(L,M,N1)
 P3=P(L,M,N1)
 RO3=RO(L,M,N1)
 RO3=RO(L,M,N1)
 Q3=Q(L,M,N1)
 Q3=Q(L,M,N1)
 A3=SQRT (GAMMA * P 3/RO3)
 A3=SQRT (GAMMA * P 3/RO3)
 UV3=U3 + AL3+V3*BE3+DE3
 UV3=U3 + AL3+V3*BE3+DE3
 ALS=SQRT (AL3*AL3+BE3*BE3)
 ALS=SQRT (AL3*AL3+BE3*BE3)
 UV3D =UO - AL 4 +V3 *RF 4+DF 4
 UV3D =UO - AL 4 +V3 *RF 4+DF 4
 ALSD=SQRT (AL4*AL4 +BE4*BE4)
 ALSD=SQRT (AL4*AL4 +BE4*BE4)
 CALCULATE Yi (SECANT - FALSE POSITION METHOD)
 CALCULATE Yi (SECANT - FALSE POSITION METHOD)
 ILLI=0
 ILLI=0
 MMOEO
 MMOEO
 DO 270 ILL=1,ILLOS
 DO 270 ILL=1,ILLOS
 IF (ILLI,NE.O) GO TO 150
 IF (ILLI,NE.O) GO TO 150
 IF (ILL.NE.1) GO TOO 120
 IF (ILL.NE.1) GO TOO 120
 UVAO=(UV3+ALS*A3)*DT
 UVAO=(UV3+ALS*A3)*DT
 YIUO=Y3
 YIUO=Y3
 FY3=-UVAO
 FY3=-UVAO
 Y 1= Y (M-1)
 Y 1= Y (M-1)
 GO TO 190
 GO TO 190
120 UVAVG=O.5*((U1+U3)*ALAVG+(V1+V3)*BEAVG)+DEAVG
120 UVAVG=O.5*((U1+U3)*ALAVG+(V1+V3)*BEAVG)+DEAVG
 UVA = (UVAVG+ALSA1) *DT
 UVA = (UVAVG+ALSA1) *DT
 FY1=Y3-UVA-Y1
 FY1=Y3-UVA-Y1
 IF (FYI*FY3.LT.O.O) GO TO 14O
 IF (FYI*FY3.LT.O.O) GO TO 14O
 IIVAO=UVA
 IIVAO=UVA
 Y 100 = Y 1
 Y 100 = Y 1
 FY3=FY1
 FY3=FY1
 IF (ILL.LT.M) Yi=Y(M-ILL)
 IF (ILL.LT.M) Yi=Y(M-ILL)
 IF (2+1IL-M.EQ.MMAX+1) GO TO 130
 IF (2+1IL-M.EQ.MMAX+1) GO TO 130
 IF (ILL.GE.M) Y I=2.O*YWB-Y(2+ILL-M)
 IF (ILL.GE.M) Y I=2.O*YWB-Y(2+ILL-M)
 GO TO 190
 GO TO 190
130 NP=N+NGTART
130 NP=N+NGTART
 WRITE (6.560) NP.L.M.NVC
 WRITE (6.560) NP.L.M.NVC
 IERR=1
 IERR=1
 RETURN
 RETURN
140 ILLI=1
140 ILLI=1
 Y10= Y
 Y10= Y
 GO TO 180
 GO TO 180
150 UVAVG=0.5*((U1+U3)*ALAVG+(V1+V3)*BEAVG)+OEAVG
150 UVAVG=0.5*((U1+U3)*ALAVG+(V1+V3)*BEAVG)+OEAVG
 UVAT =(UVAVG+ALSA1)*DT
```

    UVAT =(UVAVG+ALSA1)*DT
    ```
\begin{tabular}{|c|c|c|}
\hline 7310 & & FY \(1=Y 3-U V A T-Y 1\) \\
\hline 7311 & & FY \(10=Y 3\)-UVA-Y 10 \\
\hline 7312 & & IF (FYi*FY10.LT.O.O) GO TO 160 \\
\hline 7313 & & GO TO 170 \\
\hline 7314 & 160 & UVAO=UVA \\
\hline 7315 & & Y \(100=Y 10\) \\
\hline 7316 & 170 & UVA = UVAT \\
\hline 7317 & & \(Y 10=Y 1\) \\
\hline 7318 & 180 & \\
\hline 7319 & & IF (Y1.LT.2.O*YWB-Y(MVCT)) Y \(1=2 . O * Y W B-Y(M \vee C T)\) \\
\hline 7320 & & IF (MVCB.NE.1.AND.Y1.LT.Y(MVCB)) \(Y\) ¢ \(=Y(M \vee C B)\) \\
\hline 7321 & & IF (Y1.GT.Y(M1)) \(\mathrm{Y} 1=\mathrm{Y}(\mathrm{Mi})\) \\
\hline 7322 & & IF (Y1*Y10.EQ.O.O) GO TO 290 \\
\hline 7323 & & IF (Y10.EQ.O.O) GO TO 190 \\
\hline 7324 & & \\
\hline 7325 & C & \\
\hline 7326 & C & INTERPOLATE FOR THE PROPERTIES AT Y=Y 1 \\
\hline 7327 & C & \\
\hline 7328 & 190 & \(I Y 1=0\) \\
\hline 7329 & & IF (Y1.GE.YWB) GO TO 200 \\
\hline 7330 & & Y \(1=2 . O * Y W B-Y 1\) \\
\hline 7331 & & \(\mathrm{I} Y \mathrm{C}=1\) \\
\hline 7332 & 200 & DO \(210 \mathrm{MM=1}, \mathrm{M} 1\) \\
\hline 7333 & & IF (Y1.GE.Y(MM).AND.Y1.LE.Y(MM+1)) GO TO 220 \\
\hline 7334 & 210 & CONT INUE \\
\hline 7335 & 220 & RDY \(=(\mathrm{Y} 1-\mathrm{Y}(\mathrm{MM}))\)) DYR \\
\hline 7336 & & \(\mathrm{U} 1=\mathrm{U}(\mathrm{L}, \mathrm{MM}, \mathrm{N} 1)+(\mathrm{U}(\mathrm{L}, \mathrm{MM}+1, \mathrm{~N} 1)-\mathrm{U}(\mathrm{L}, \mathrm{MM}, \mathrm{N} 1)\)) *RDY \\
\hline 7337 & & \(V 1=V(L, M M, N 1)+(V(L, M M+1, N 1)-V(L, M M, N 1)) * R D Y\) \\
\hline 7338 & & P1=P(L.MM.N1)+(P(L.MM+1,Ni)-P(L.MM.N1)) +RDY \\
\hline 7339 & & RO1=RO(L.MM.N1) + (RO(L.MM+1.N1)-RO(L,MM.N1)) *RDY \\
\hline 7340 & & Q1=Q(L, MM, N1) + (Q (L, MM+1.Ni)-Q(L.MM, Nit) + RDY \\
\hline 7341 & & IF (IY1.EQ.O) GO TO 230 \\
\hline 7342 & & U1=-U1 \\
\hline 7343 & & \(V 1=-V i\) \\
\hline 7344 & & \(R F L=R F L D *(Y 1-Y W B)\) \\
\hline 7345 & & 「1=P1-PTERM*RFL \\
\hline 7346 & & RO1-RO 1-ROTERM*RFL \\
\hline 7347 & & O1= OT-OTERM*RFL \\
\hline 7348 & 230 & IF (MM.EQ.MMO) GO TO 240 \\
\hline 7349 & & \(M M O=M M\) \\
\hline 7350 & & MMAP = MM \\
\hline 7351 & & IP = 0 \\
\hline 7352 & & CALL MAP \\
\hline 7353 & & \(Y P M M=Y P\) \\
\hline 7354 & & MMAP \(=M M+1\) \\
\hline 7355 & & IP = 1 \\
\hline 7356 & & CALL MAP \\
\hline 7357 & & YPMM \(1=Y P\) \\
\hline 7358 & 240 & \(Y P 1=Y P M M+(Y P M M 1-Y P M M) * R D Y\) \\
\hline 7359 & & IF (IY1.EQ.O) GO TO 250 \\
\hline 7360 & & Y \(1=2.0: Y W B-Y 1\) \\
\hline 7361 & & \(Y P 1=2 . O * Y P B-Y P 1\) \\
\hline 7362 & 250 & IF (YPD.FQ.YPi) GO TO 280 \\
\hline 7363 & & BEAVG=(Y3-Y1)/(YPD-YP1) \\
\hline 7364 & & ALAVG \(=A L 3 * B E A V G / B E 3\) \\
\hline 7365 & & DEAVG \(=\mathrm{DE} 3 * B E A V G / B E 3\) \\
\hline 7366 & & A 1D = GAMMA * P 1/RO1 \\
\hline 7367 & & IF (A10.GT.O.O) GO TO 260 \\
\hline 7368 & & NP = N+NSTART \\
\hline 7369 & & WRITE (6.520) NP,L.M.NVC \\
\hline 7370 & & IERR=1 \\
\hline 7371 & & RETURN \\
\hline 7372 & 260 & \\
\hline 7373 & 270 & CONT INUE \\
\hline 7374 & 280 & NP \(=\mathrm{N}+\mathrm{NSTART}\) \\
\hline 7375 & & WRITE (6,540) ILLQS.NP.L.M.NVC \\
\hline 7376 & & IERR=1 \\
\hline 7377 & & RETURN \\
\hline 7378 & C & \\
\hline 7379 & C & CALCULATE DUDYUS, DVUYOS AND DPDYQS AT Y=Y1 \\
\hline 7380 & C & \\
\hline 7381 & 290 & \(U 3 D=U 3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 7382 & & \(\mathrm{V} 3 \mathrm{D}=\mathrm{V} 3\) \\
\hline 7383 & & P3D=P3 \\
\hline 7384 & & \(\mathrm{RO} 3 \mathrm{D}=\mathrm{RO} 3\) \\
\hline 7385 & & Q3D \(=03\) \\
\hline 7386 & & IF (Y1.GEP.Y(M-1)) GO TO 300 \\
\hline 7387 & & \\
\hline 7388 & & \(1-Y P M) /(Y P P-Y P M)\)) \\
\hline 7389 & & \\
\hline 7390 & & \(1-Y P M) /(Y P P-Y P M)\)) \\
\hline 7391 & & P3D \(=\) SQS*P3+(1.O-SQS \() *(P(L, M-1, N 1)+(P(L, M+1, N 1)-P(L, M-1, N 1)) *(Y P D\) \\
\hline 7392 & & 1 -YPM)/(YPP-YPM)) \\
\hline 7393 & & \\
\hline 7394 & & 1 (YPD-YPM)/(YPP-YPM) \\
\hline 7395 & & Q3D \(=\) SOS*Q3+(1.O-SOS \() *(Q(L, M-1, N 1)+(Q(L, M+1, N 1)-Q(L, M-1, N 1)) *(Y P D\) \\
\hline 7396 & & 1 -YPM)/(YPP-YPM)) \\
\hline 7397 & 300 & RDYD \(=1.0 /((Y P D-Y P 1) * B E D)\) \\
\hline 7398 & & DUDYQS(L, M, 1) = (U3D-U1J*RUYU \\
\hline 7.399 & & \(\operatorname{DVDYQS}(L, M, 1)=(V 3 D-V 1) *\) RDYD \\
\hline 7400 & & \\
\hline 7401 & & \\
\hline 7402 & C & \\
\hline 7403 & & Calculate y2 (SECANT - FALSE POSITION METHOD) \\
\hline 7404 & C & \\
\hline 7405 & & ILLI \(=0\) \\
\hline 7406 & & MMO \(=0\) \\
\hline 7407 & & DO 460 ILL \(=1, \mathrm{ILLQS}\). \\
\hline 7408 & & If (ILLI.NE.O) GO TO 340 \\
\hline 7409 & & IF (ILL.NE.1) GO TO 310 \\
\hline 7410 & & UVAD \(=(\) UV3D-ALSD*A3)*DT \\
\hline 7411 & & \(Y 200=Y 3\) \\
\hline 7412 & & FY3=-UVAO \\
\hline 7413 & & \(\mathrm{Y} 2=\mathrm{Y}(\mathrm{M}+1)\) \\
\hline 7414 & & GO TO 380 \\
\hline 7415 & 310 & \\
\hline 7416 & & UVA \(=(\) UVAVG -ALSA2 \()\)-DT \\
\hline 7417 & & FY2 \(=\) Y3-UVA - 22 \\
\hline 7418 & & IF (FY2+rYo.LT.O.O) G0 to 330 \\
\hline 7419 & & UVAO \(=\) UVA \\
\hline 7420 & & \(Y 200=Y 2\) \\
\hline 7421 & & FY: \(3=\mathrm{FY} 2\) \\
\hline 7422 & & IF (M+ILL.LE.MMAX) \(\mathrm{Y} 2=\mathrm{Y}(\mathrm{M}+\mathrm{ILL})\) \\
\hline 7423 & & IF (MMAX+MMAX-M-ILL.EO.O) GO TO 320 \\
\hline 7424 & & IF (M+ILL.GT. MMAX) Y2=2.O*YWT-Y(MMAX+MMAX-M-ILL) \\
\hline 7425 & & GO TO 380 \\
\hline 7126 & 320 & \(\mathrm{NP}=\mathrm{N}+\mathrm{NST}\) TART \\
\hline 7427 & & WRITE (6.570) NP.L.M.NVC \\
\hline 7428 & & IERR=1 \\
\hline 7429 & & RETURN \\
\hline 7430 & 330 & ILLI \(=1\) \\
\hline 7431 & & \(\mathrm{Y} 2 \mathrm{O}=\mathrm{Y} 2\) \\
\hline 7432 & & GO TO 370 \\
\hline 7433 & 340 & UVAVG=0.5*((U2+U3)*ALAVG+(V2+V3)*BEAVG)+DEAVG \\
\hline 7434 & & UVAT = (UVAVG-ALSA2)*DT \\
\hline 7435 & & FY2 Y Y \(3-U V A T-Y 2\) \\
\hline 7436 & & +Y'2U\#Y3-UVA-Y20 \\
\hline 74.37 & & IF (FY2*FY20.LT.O.O) GO TO 350 \\
\hline 7438 & & GO TO 360 \\
\hline 7439 & 350 & UVAO=UVA \\
\hline 7440 & & \(Y 200=Y 20\) \\
\hline \%411 & 360 & UVA = UVAT \\
\hline 7442 & & \(Y 20=Y 2\) \\
\hline 7443 & 370 & Y2=Y20+(Y20-Y200)*(Y3-UVA-Y20)/(UVA-UVAO+Y20-Y200) \\
\hline 7444 & & IT (Y2.GT:2:0*YWT = Y (MURR)) Y \(=2.0 * Y W T-Y(M V C B)\) \\
\hline 7445 & & IF (MVCT.NE.MMAX.AND.Y2.GT.Y(MVCT)) \(\mathrm{Y} 2=Y(M V C T)\) \\
\hline 7446 & & IF (Y2.LT.Y(2)) Y2=Y(2) \\
\hline 7447 & & IF (ABS (\(\mathrm{Y} 2-\mathrm{Y} 20\))/Y20).LE.CQS) GO TO 480 \\
\hline 7448 & C & \\
\hline 7449 & C & INTERPOLATE FOR THE PROPERTIES AT \(Y=Y 2\) \\
\hline 7450 & C & \\
\hline 7451 & 380 & \(1 \mathrm{Y} 2=0\) \\
\hline 7452 & & IF (Y2.LE.YWT) GO TO 390 \\
\hline 7453 & & \(Y 2=2.0 * Y W T-Y 2\) \\
\hline
\end{tabular}

7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501 C
7502 C
\(7503 . C\)
7504
7505
7506
7507
7508
7509
7510
7511
.7512
7613
7514
7515
7518
7517
75.18

7519
7520
7521
7522
7523
7524
7525
```

$1 Y 2=1$
390 DO $400 \mathrm{MM}=1 . \mathrm{M1}$
IF (Y2.GE.Y(MM).AND.Y2.LE. Y(MM+1)) GO TO 410
400 CONTINUE
$410 \operatorname{RDY}=(\mathrm{Y} 2-Y(M M)) * D Y R$
$U 2=U(L, M M, N 1)+(U(L, M M+1, N 1)-U(L, M M, N 1)) * R D Y$
$V 2=V(L, M M, N 1)+(V(L, M M+1, N 1)-V(L, M M, N 1)) * R D Y$
$P 2=P(L, M M, N 1)+(P(L, M M+1, N 1)-P(L, M M, N 1)) * R D Y$
$R 02=R O(L, M M, N 1)+(R O(L, M M+1, N 1)-R O(L . M M, N 1)) * R O Y$
$Q 2=Q(L, M M, N 1)+(Q(L, M M+1, N 1)-Q(L, M M, N 1)) * R D Y$
IF (IY2.EQ.O) GO TO 420
$\mathrm{U} 2=-\mathrm{U} 2$
$\mathrm{V} 2=-\mathrm{V} 2$
$R F L=R F L D *(Y W T-Y 2)$
$P 2=P 2-P T E R M * R F L$
RO2 $=$ RO2-ROTERM + RFL
O2 = Q2-QTERM $+R F L$
420 IF (MM.EO.MMO) GO TO 430
$M M O=M M$
MMAP $=$ MM
$I P=0$
CALL MAP
$Y P M M=Y P$
MMAP $=M M+1$
I $P=1$
CALL MAP
$Y P M M I=Y P$
430 YP2 = YPMM + (YPMM 1-YPMM) *RDY
IF (IY2.EQ.O) GO TO 440
$Y 2=2 . O+Y W T-Y 2$
$Y P 2=2 . O * Y P T-Y P 2$
440 IF (YP2.EQ.YPD) GO TU $470^{\circ}$
BEAVG $=(Y 2-Y 3) /(Y P 2-Y P D)$
$A L A V G=A L 3 * B E A V G / B E 3$
DEAVG=DE 3 *BEAVG/8E3
$A 2 D=G A M M A * P 2 / R O 2$
IF (A2D.GT.O.O) GO TO 450
$N P=N+N S T A R T$
WRITE (6,530) NP,L,M,NVC
I $E R R=1$
RETURN
450 ALSA2 $=\operatorname{SQRT}(0.5 *(A 2 D+A 3 * A 3) *(A L A V G * A L A V G+B E A V G * B E A V G))$
460 CONTINUE
470 NP $=N+N S T A R T$
WRITE (6.550) ILLQS,NP,L,M,NVC
I $E R R=1$
RETURN
CALCULATE DUDYQS, DVDYQS, AND DPDYQS AT Y=Y2
480 U3D $=\mathrm{U} 3$
$V 3 D=V 3$
$P 30=P 3$
$R 030=R 03$
Q3D $=$ Q3
IF (Y2.LE.Y(M+1)) GO TO 490
$U 3 D=S Q S * U 3+(1 . O-S Q S) *(U(L, M-1, N 1)+(U(L, M+1, N 1)-U(L, M-1, N 1)) *(Y P D$
$1-Y P M) /(Y P P-Y P M))$
$V 3 D=S Q S * V 3+(1 . O-S Q S) *(V(L . M-1, N 1)+(V(L . M 11, N 1)-V(L ., M-1, N 1)) *(Y P D$
1 =YFM)/(YPP-YPM))
$P 3 D=S Q S * P 3+(1 . O-S Q S) *(P(L, M-1, N 1)+(P(L, M+1, N 1)-P(L, M-1, N 1)) *(Y P D$
$1-Y P M) /(Y P P-Y P M))$
$R 030=S 0 S * R 03+(1 . O-S O S) *(R O(L, M-1, N 1)+(R O(L, M+1, N 1)-R O(L, M-1, N 1)) *$
1 (YPD-YPM)/(YPP-YPM))
$Q 3 D=S U S * 03+(1 . O-S Q S) *(Q(L, M-1, N 1)+(Q(L, M+1, N 1)-Q(L, M-1, N 1)) *(Y P D$
$1-Y P M) /(Y P P-Y P M))$
490 RDYO $=1 . O /((Y P 2-Y P D) * B E D)$
DUOYOS (L, M, 2) $=($ U2-U3D $) *$ RDYD
$\operatorname{DVDYOS}(L, M, 2)=(V 2-V 3 D) * R D Y D$
$\operatorname{DPDYOS}(L, M, 2)=(P 2-P 3 D) * R D Y D$
DROQDY2* (RO2*Q2-RU3D*Q3D)/( (YP2-YPD)*BE)
QQT (L.M) =0.5* (DROQDY 1+DROQQY2)

```

7526
7527
7528
7529
7530
7531 C
7532 C
7533 C
7534
7535
7536
7537
17538
7539
7540
7541
7542
7543
7544
7545
1548
7547
7548

500 CONTINUE
510 CONTINUE IF (MDFS.NE.O.AND.MIS.EQ.MVCB1) GO TO 10 RE TURN
C
520 FORMAT (1HO.63H***** A NEG SOUND SPEED (A1) OCCURED IN SUBROUTINE 1QSOLVE AT \(N=.16,4 \mathrm{H}, \mathrm{L}=.12,4 \mathrm{H}, \mathrm{M}=. \mathrm{I} 2,9 \mathrm{H}\) AND \(\mathrm{NVC}=, \mathrm{I} 3,6 \mathrm{H} * * * * *\))
530 FORMAT (1 HO, 63H***** A NEG SOUND SPEED (A2) OCCURED IN SUBROUTINE 1QSOLVE AT \(N=.16,4 \mathrm{H}, \mathrm{L}=.12,4 \mathrm{H}, \mathrm{M}=.12,9 \mathrm{H}\) AND NVC=.13.6H *****)
540 FORMAT (1 HO. \(84 \mathrm{H} * * * * *\) THE CHARACTERISTIC SOLUTION FOR YI IN SUBROUT IINE QSOLVE FAILED TO CONVERGE IN .I2,17H ITERATIONS AT N=,I6,4H, L \(2=, 12.4 \mathrm{H}, \mathrm{M}=.12 . /, 7 \mathrm{X}, 6 \mathrm{H}\). \(\mathrm{NVC}=.13,6 \mathrm{H} * * * *+\))
550 FORMAT (\(1 \mathrm{HO}, 84 \mathrm{H} * * * * *\) THE CHARACTERISTIC SOLUTION FOR Y2 IN SUBROUT 1INE QSOLVE FAILED TO CONVERGE IN , 12.17H ITERATIONS AT N=,16,4H. L \(2=, 12,4 \mathrm{H}, \mathrm{M}=.12, / .7 \mathrm{X}, 8 \mathrm{H}, \mathrm{NVC}=, 13,6 \mathrm{H} * * * * *)\)
560 FORMAT (\(1 \mathrm{HO}, 59 \mathrm{H} * * * * *\) THE SOLUTION FOR Y 1 FAILED IN SUBROUIINE OSOL IVE AT \(N=, 16,4 \mathrm{H} . \mathrm{L}=.12,4 \mathrm{H}, \mathrm{M}=.12,6 \mathrm{H} . \mathrm{NVC}=.13,6 \mathrm{H} * * * * *)\)
S7O FORMAT (1HO.59H***** THE SOLUTION FOR Y2 FAILED IN SUBROUTINE OSOL 1VE AT \(N=, 16,4 \mathrm{H}, \mathrm{L}=, \mathrm{I} 2,4 \mathrm{H}, \mathrm{M}=, 12, \mathrm{BH}, \mathrm{NVC}=13,6 \mathrm{H} * * * * *)\) END
```

CASE NO. 1 - CONVERGING-DIVERGING NOZZLE (45 DEG INLET, 15 DEG EXIT)
\$CNTRL LMAX=21.MMAX=8. NMAX=400, TCONV=0.003 \$
\$IVS \$
\$GEMTRY NGEOM=2,XI=0.31,RI=2.5,RT=0.8,XE=4.O5,RCI=O.8.RCT=0.5,ANGI = 44.88,
ANGE=15.0 \$
\$GCBL \$
\$BC PT=70.O.TT=540.0}
\$AVL \$
\$RVL \$
\$TURBL \$
\$OFSL \$
\$VCL \$
NASA CASE 1 - MIXING LENGTH MODEL (REUBUSH 3, SOLID SIMULATOR. MACH=0.8)
\$CNTRL LMAX=40, MMAX=25.NMAX=750.NPRINT=-750,NPLOT=250, IPUNCH=1,
LPP 1=15.MPP 1=1,LPP2=1,MPP2=2.LPP3=25,MPP3=1.FDT 1=0.7 \$
\$IVS N1D=O,V=1025*O.O.P=1025*9.45.
U(1,1,1)=41*O.O.U(1,2.1)=41*396.0.U(1,3.1)=41*509.0.
U(1,4,1)=41*579.0,U(1,5,1)=41*640.0.U(1,6,1)=41*700.0.
U(1,7,1)=41*780.O,U(1;8,1)=41*885.O,U(1,9,1)=697*917.0.
RO(1,1,1)=41*0.04223,RO(1.2,1)=41*0.04300.RO(1,3,1)=41*0.04380.
RO(1,4,1)=41*0.04421,RO(1.5,1)=41*0.04462,RO(1,6,1)=41*0.04505,
RO(1.7.1)=41*0.04548,RO(1.8.1)=41*0.04683,RO(1.9.1)=697*0.04730 \$
\$GEMTRY NGEOM=1,XI=36.O.XE=72.O,RI=18.0 \$
\$GCBL NGCB=4.
YCB=13*3.0.2.9872.2.9487,2.8844,2.7943.2.6782,2.5357.2.3667,2.1707.
1.9942,1.8253,1.6695,16*1.53.
NXNYCB=12*-0.0.0.0064,0.02565.0.0514.0.0772,0.1031.0.1293.0.15575,
0.1825.0.2096.0.2316.0.2512.0.2672.0.1395.15*-0.0 \$
\$BC ISUPER=O.NSTAG=1,PE=9.531.IWALL=1,NOSLIP=1.THETA=25*O.O.
PT=9.45,10.21.10.74.11.14.11.55,11.96.12.56,13.56.14.38.16*14.5.
TT=588.95.592.2.593.1.593.7.594.3.594.9.595.8.18*596.1 \$
\$AVL NST=1000.SMPT=0.5,SMPTF=0.5.NTST=0. IAV=1 \$
\$RVL CMU=0.465E-O7,EMU=0.5,CLA=-0.11E-O7.ELA=0.5,CK=0.143E-03,EK=0.5 \$
\$TURBL ITM=1.IMLM=2 \$
\$DFSL \$
\$VCL IST=1.MVCB=1.MVCT=9.IOS=1.
XP=36.0.37.0.38.0.39.0.40.0.41.0.42.0.43.0.44.0.45.0.46.0.47.0.48.0.
49.0.50.0.51.0.52.0.53.0.54.0,55.0.56.0,56.8.57.5.58.1,58.61,59.1,
59.7.60.4.61.2,62.0.63.0.64.0.65.0.66.0.67.0.68.0.69.0,70.0.71.0.72.0.
YI=3.0,3.0025,3.0075,3.0173,3.0358.3.0700,3.1317,3.2397,3.4232.
3.7260,4.2105,4.9615,5.98.7.0.8.0.9.0.10.0,11.0,12.0,13.0.14.0.15.0,
16.0,17.0.18.0 \$

```
```

CASE No. 6 - turbulent plaNe jet in a parallel stream - two eouation
\$CNTRL LMAX=41,MMAX=17. NMAX=6000.,RGAS=287.O,IUI=2.IUO=2.NPLOT=500.
NPRINT = 6000, FDT =1.O,IPUNCH=1 \$
\$IVS N1D=0.U(1,7, 1)=779*7.5895.V=1025*O.O.P=1025*101.35.RO=1025*1.2047.
U(1,1,1)=47.366,47.0.46.5.46.0,45.5,45.0.44.5.44.0.43.5.43.0.42.5.
42.0.41.5.41.0.40.5.40.0.39.5.39.0.38.5.38.0.37.5.37.0.36.5.36.0.
35.5,35.0.34.5.34.0.33.5.33.0.32.5.32.0.31.5.31.0.30.5,30.0.29.5.
29.0.28.5.28.0.27.5.
u(1,2,1)=47.366.46.5.45.5.44.5,43.5.43.0.42.5.42.0.41.5,41.0.40.5.
40.0.39.5.39.0.38.5.38.0.37.5.37.0.36.5.36.0.35.5.35.0,34.5.34.0.
33.5.33.0.32.5.32.0.31.5.31.0.30.5.30.0.29.5.29.0.28.5.28.0.27.5.
27.0.26.5.26.0.25.5.
U(1,3,1)=47.366,45.5,43.5,41.5,39.5.39.0.38.5,38.0.37.5,37.0.36.5.
36.0.35.5.35.0.34.5.34.0.33.5.33.0.32.5.32.0.31.5.31.0.30.5.30.0.
29.5.29.0,28.5.28.0.27.5,27.0.26.5,26.0.25.5.25.0,24.5,24.0.23.5.
23.0,22.5.22.0.21.5.
U(1.4,1)=5*0.0.36*18.0, UL=5*0.O, VL=5*O.O. PL=5*101.35, ROL=5*1.2047.
U(1.5,1)=5*7.5859.36*15.0.
U(1,6,1)=5*7..४४59,38*11.0 \$
\$GEMTRY NDIM=0.NGEOM=1.RI=5.O.XI=-1:9050. XE=38.1 \$
\$GCBL \$
\$BC ISUPER=1,PE=101.35.UIL=0.O.VIL=0.O.PIL=101.35,ROIL=1.2047,
UI=3*47.366.0.0.13*7.5895,VI=17*O.0.PI= 17*101.35,ROI=17*1.2047.
ALI=0.1.ALE=0.1,ALW=0.1,IWALL=1.NOSLIP=1 \$
\$AVL IAV=1 \$
\$RVL CMU=1.813E-05.CLA=-1.208E-05
\$TURBL ITM=3,FSQL=0.0.FSEL=10200.0.
FSO=0.0.0.0,4.4,0.0.0.11.12*0.0.
FSE=0.1,0.1,10200.0.18.4.18.4,12*0.1 \$
\$DFSL MDFS = 4, LDFSS = 1, LDFSF =5,NDFS = 2.
YL=5*0.47625.NXNYL=5*O.O.YU=5*0.47625,NXNYU=5*0.0 \$
\$VCL IST=1.
XP=-1.9050,-1.4288, -0.9525,-0.47625,0.0.0.47625,0.9525.1.4288.1.9050.
2.3813.2.8816,3.4072,3.9594,4.5395,5.1489.5.7891,6.4617,7.1683,7.9107,
8.6905.9.5098,10.3704.11.2746,12.2245,13.2224.14:2708, 15.3722,16.5292,
17.7447,19.0217, 20.3632, 21.7725.23.2531.24.8085,26.4426,28.1592, 29.9627,
31.8573,33.8476.35.9386.38.1.
Y = 0.0.0.15875,0.3175,0.47625,0.635,0.79375,0.9525,1.1375,1.3531.
1.6042.1.8970.2.2380.2.6355.3.0987.3.6384.4.2673.5.0 \$

```

Printed in the United States of America Available from
National Technical Information Service
US Department of Commerce
5285 Port Royal Road Springfield, VA 22161
Microfiche \(\$ 3.50\) (A01)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Page Range & Domestic Price & \begin{tabular}{l}
NTIS \\
Price Code
\end{tabular} & Page Range & Domestic Price & \[
\begin{gathered}
\text { NTIS } \\
\text { Price Code } \\
\hline
\end{gathered}
\] & Page Range & \begin{tabular}{l}
Domestic \\
Price
\end{tabular} & NTIS
Price Code & Page Range & Domestic Price & \begin{tabular}{l}
NTIS \\
Price Code
\end{tabular} \\
\hline 001-025 & \$ 5.00 & A02 & 151-175 & \$11.00 & A08 & 301-325 & \$17.00 & A14 & 451-475 & \$23.00 & A20 \\
\hline 026-050 & 6.00 & A03 & 176-200 & 12.00 & A09 & 326-350 & 18.00 & A15 & 476-500 & 24.00 & A21 \\
\hline \(051-075\) & 7.00 & A04 & 201-225 & 13.00 & A10 & 351-375 & 19.00 & A16 & 501-525 & 25.00 & A22 \\
\hline 076-100 & 8.00 & A05 & 226-250 & 14.00 & A11 & 376-400 & 20.00 & A17 & 526-550 & 26.00 & A 23 \\
\hline 101-125 & 9.00 & A06 & 251-275 & 15.00 & A12 & 401425 & 21.00 & A18 & \(551-575\) & 27.00 & A24 \\
\hline 126-150 & 10.00 & A07 & 276-300 & 16.00 & A13 & \(426-450\) & 22.00 & A19 & 576-600 & 28.00 & A25 \\
\hline & & & & & & & & & 601-up & \(\dagger\) & A99 \\
\hline
\end{tabular}
\(\dagger\) Add \(\$ 1.00\) for each additional 25 -page increment or portion thereof from 601 pages up.
```


[^0]:    ***** EXPECT FILM OUTPUT FOR N= 500 *****

[^1]:    SET THE BOUNDARY CONDITIONS FOR L=1 OR LMAX

