The US Hot Dry Rock Geothermal Energy Development Program

PDF Version Also Available for Download.

Description

Recent accomplishments of the program are highlighted by a successful limited term flow test of the Phase 2 reservoir at the Fenton Hill site near Los Alamos. This reservoir connection was established by sidetracking one of the deep wells into hydraulically fractured areas, identified by microseismic data after original fracture attempts failed to connect the two wells. Hydraulic communication was improved by supplemental fracturing. Preliminary testing indicated a reservoir with fracture volume and heat production area surpassing the values from the earlier Phase 1 reservoir. Following completion of the downhole reservoir system, preparations were made for a reservoir-energy-extraction test. This ... continued below

Physical Description

Pages: 7

Creation Information

Franke, P.R. January 1, 1987.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent accomplishments of the program are highlighted by a successful limited term flow test of the Phase 2 reservoir at the Fenton Hill site near Los Alamos. This reservoir connection was established by sidetracking one of the deep wells into hydraulically fractured areas, identified by microseismic data after original fracture attempts failed to connect the two wells. Hydraulic communication was improved by supplemental fracturing. Preliminary testing indicated a reservoir with fracture volume and heat production area surpassing the values from the earlier Phase 1 reservoir. Following completion of the downhole reservoir system, preparations were made for a reservoir-energy-extraction test. This Initial Closed Loop Flow Test (ICFT) was needed to obtain operating characteristics for planning a much longer test for thorough reservoir evaluation. The 30-day ICFT succeeded with final production of about 10 MWt at 192/sup 0/C, while injecting 285 gpm at 4600 psi and producing 206 gpm at 500 psi. The water loss rate and flow impedance were high, 27% and 18 psi/gpm respectively, but were declining. Radioactive tracer tests indicated reservoir volume growth during the experiment which was continuously monitored for acoustic or microseismic activity. Following the flow test, experiments were continued for several months during the venting process. Preparations are now underway for the Long Term Flow Test (LTFT). To understand as much as possible about the Phase 2 reservoir and to demonstrate the commercial feasibility of energy from HDR reservoirs, a flow test of approximately one year's duration is deemed necessary. Part of the preparation for the LTFT is the workover and repair of the production well and the installation of a competent overall flow loop and energy exchange system. 7 refs., 5 figs.

Physical Description

Pages: 7

Notes

NTIS, PC A02/MF A01; 1.

Source

  • Symposium on geothermal energy, New Orleans, LA, USA, 10 Jan 1988

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE88000523
  • Report No.: LA-UR-87-3085
  • Report No.: CONF-880103-2
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5656993
  • Archival Resource Key: ark:/67531/metadc1093263

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1987

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • May 25, 2018, 5:53 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Franke, P.R. The US Hot Dry Rock Geothermal Energy Development Program, article, January 1, 1987; New Mexico. (digital.library.unt.edu/ark:/67531/metadc1093263/: accessed November 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.