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ABSTRACT
An overview is given of special bpumerical methods for
tracking discontinuous fronts and interfaces. These methods
include: surface tracking methods based on connected marker

points along the interface, volume-tracking methods that truck
the volume occupied by the solution regions bounded by the
interfaces, and moving mesh methods where the underlying amaesh is
aligned and moved with the interface. The pros and cons of the
current methods are discussed, and a new method is proposed that
overcomes some of the difficulties encountered in approximating
equations with multiply interacting interfaces.



I. INTRODUCTION

Interface tracking methods are often necessary to effeciently compute
accurate numerical approximations to partial differential equations with
moving discontinuous interfaces in the solution. There are a faw well
established algorithms that account for these discontinuities but most are
numerical achelel* still in their early developmental stages. No simple
rules exist for choosing the best method for the more difficult probleuws.
In this paper I will give an overview of the current methods in order of
their ability to handle problems of increasing difficulty. I will then
introduce a new adaptive moving mesh scheme and speculate on what will be
the more significant future developments.

Much of our understanding of the laws of nature is based on integral
equations and constitutive relationships that hold across discontinuous
interfaces. Awvay from these discontinuities, where the solution is smooth,
these equations ran be well approximated by partial ditferential equations
(PDEs). Most numerical predictions of the laws of nature are based on
discrete approximations to these PDEs. For these numerical wmethods to be
accura®e near discontinuities where the PDEs fail to approximate the
integral equations, they must treat the discontinuity as a special case.
Otherwise, the method may not accurately approximate the physically
relevant solution.

Two commonly used approaches are to smear the interface by adding
artificial dissipation or viscosity to the PDEs and solving this nearby

problem or t) treat the discontinuity as an internal boundary, solving

* Sch.we - (def): an especially sly or devious plan of action. The
Ranu :m House Dictionary of the English Language, 1967, Random ‘ouse,
New York.




the PDEs away from the discontinuity and imposing the appropriate jump
conditions across it.

The better artificial dissipation methods are extremely casy to
implement, perform excellently for a restricted class of problems, but are
not well understood theoretically. One of the more important problems they
cannot treat adequately is tracking » moving internal material interface or
s8lip line when the equation-of-state for the two materisls is radically
different. For example, the water/air interface of a bubble should not be
artificially smeared or the method will not accurately account for the
effect of surface tension on its motion.

Another difficulty with the artificial dissipation meth)d occurs when
they are used in conjuction with an adaptive static rezone method [2,18].
These adaptive methods automatically adjust the mesh so it is dense in
regions with sharp transitions, and sparse where the solution is smooth.
The artificially smeared discontinujties are likely to have the large
gradients causing the adaptive mesh algorithm to introduce mesh points that
resolve the structure of the transition layer. This structure is often an
artifact of the artiticial dissipation and does not significantly affect
the behavior of the solution. (if it did then the artificisl dissipation
method would not .ave been appropriate.) These extra mesh points cen
greatly increase the computational expense without significantly enhancing
the accuracy of the calculation.

The interface tracking methods described in thiz paper were developed
to overcome the deficiencies of the artificial diswipation approach. The
tracking methods have little or no artificial dissipation near the

interface since the singularity is directly computed and treated



explicitly as a discontinuity. These methods «res mcre difficult to
implement, perform excellently for a larger class of problems, but, like
artificial dissipation methods, are not well understood theoretically for
the more difficult probleams.

Interface tracking methods can »e divided intc three catagories. In
order of increasing flexibility and computational complexity these are:
surface tracking methods, volume tracking methods, and moving mesh methods.

Surface tracking methods track the lo-ation of the interface by
interpolating between marker particles along the interface. Since this is
a8 lower dimensional problem, the additional effort to accurately resolve
small subgrid scale structure in the interface is usually small compared to
the overall solution time. The surface tracking methods are the simplest
to implement, until the single valuedness or the interactions occur that
change the topology of the interface during the computation.

Volume tracking methods overcome the changing topology problems by
dividing the domain into a union of disjoint solution regioas. The
boundary between these regions is the interface location. The regions are
identified by marker points or, alternately, the fractional volume of each
solution region located ‘. esach computational cell is calculated and
advanced during the computation by solving an auxiliary evolutionary PDE.
These fractional volumes can be used to 1reconstruct an approximate
interface location at any time. Unlike the surface tracking methods, very
little subgrid scale structure is retained during the calculation.

Moving mesh methods can be used to track the lccation, account for
changes in the interface topology, end resolve small scale structures in
the interfaces. Here a wmultivalued solution is defined at mesh pointne

located on the interface. The interface mesh points move with the



interface in a Lagrangian manner. To prevent the mesh from tangling a
dynamic data structure is used so the moving mesh points can cha:nge their
nearest neighbors during the calculation. Also, new points are added when
the mesh becomes sparse or a new interface appears, and mesh points are
removed when they are more dense than necessary for an accurate
calculati(n.

In all the above methods the location of the interface is advanced by
solving a lower dimensional PDE derived from an appropriate constitutive
jump condition. The effect of the interface muvement is transferred to the
solution to the original PDEs on either side where the interface is treated

as a moving boundary.

II. SURFACE TRACKING METHODS

In surface tracking methods the interface is specified by an ordered
set of marker points located on the interface [11,12,22,25]. Between these
points its position is approximated by an interpolant, wusually a
piecewise-polynomial. These time dependent interfaces divide the problem
domain into conuected regions. The solution defined at the marker points
and along the interpolated interface may be multivalued to account for

discontinuities.

A. Surface Representation

The wmarker points may be represented by the distance from some
reference surface such as the chain of line segments defined by a height
function in Fig. la or by a parametric interpolant as shown in Fig. 1b.

The distance function is simpler to implement, but the interface

deformation is severely limited since this representation bresks down if
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Fig. la. Multiple distance functions Fig. 1b. A parametric inter-
designate the locations of the inter- poelant designates the locations
faces. of the interfaces.

the curve becomes multivalued with respect to the reference surtface. The
parameter representation does not have these limitations and is only
slightly more complicated to implement.

Both of there methods can provide the fine resolution and detail
needed to track amall subgrid scsie structures in the interface in two and
three space dimensions. This is especially important when tracking an
unstable interface, The wunderlying computational grid resolution is
urually chosen to resolve the structure of the smooth solution away from
the interface and is rarely sufficient to resolve the fine scale interface
detail, such as the onset of a slip line Helmholtz instability rollup.

Tne surface tracking methods are hybrid numerical schemes - splitting

the solution process into two parts: the interface tracking and the smooth



sclution algorithm. Both the smooth solution and the interface are treated
as separate computational objects. The interface position is ctored and
dynamically updated along with the smooth solution sway from the interface.
The numerical method may be implemented to do this simultaneously or

operator splitting may be used, first sadvancing one and then the other.

B. Surface Evolution

The evolution equations for the interface are lower dimensional
differential equations derived from constitutive relationships usually
obtained by applying the divergence theorem to an integral formulation of
the physical model. Similar methods are used to define an accurate
approximation to the smooth solution near an interface. This approach,
sometimes called the finite volume method, results in equations for the
interface - not for the marker points. In practice, however, it is the
merker points that are evolved. Because of this, extra care is needed to
maintain the appropriate relationships, such as the conservation laws, near
the interface.

When the underlying PDE system is hyperbolic, the equations for the
interface can be derived by solving one-dimensional Riemann problems vormal
to the interface. A Riemann problem is a type of a nonlinear normal mode
expansion for a one-dimensiocal Cauchy problem with initial data that is
everywhere constant except for a single jump discontinuity. The solution
evolves into nonlinear waves that propagate coherently in time. For

example, a material interface discontinuity moves with the underlying fluid



velocity and a shock wave moves with the speed given by the Rankine-
Hugonoit jump conditions. When used to advance a 2-D interface in the
normal direction, curvature effects can be encorporated as source terms.

When multiple waves are emitted in the Riemann problem, then a single
wave, such as the contact discontinuity corresponding to a material
interface, must be selected and tracked at all the points along the same
interface. Alternat=ly, additional interfaces can be inserted to track the
new discontinuities that arise.

The constant states used for the Riemann problem are the bounding
states on either side of the interface. A slightlv improved version could
be implemented by using & linear or quadratic variation in the states
normal to the front, extending the ideas of van Leer [28]). The velocities
for the marker points is taken to be the tracked wave velocities normal to
the interface. The tangentisl velocities of the underlying solution also
contribute to the interface movement, but are less important since the
marker points are displaced tangentially when they remain on the interface.

In addition tc the Riemann problem equetions, the evolution equations
may contain alditional terms to approximate the effects of surface tension
[{15,21], flame propagation [1,3,26] or phase changes. These all influence
the boundary conditions imposed on the smooth solution at the interface.
¥or example, if the interface is a flame front that converts the fuel ahead
of the interface to burned material behind it, the interface boundary
corditions would be conservative outflow or inflow conditions, respective-
ly, with the appropriate heat source term to account for the energy

released at the interface.



Instead of solving Riemann problems, the vortex methods [3,26]
introduce small lines on surfaces of vorticity along the interface. The
vortex motion is defined by a Hamiltonian system of ordinary differential
equations with a Coulomb-type interaction term. For viscous PDFs, these
equations also contain a diffugive term.

The contour dynamics method of Overman and Zabusky [25] follows the
motion of point vortices along & closed contour line bounding a region of
constant density or vorticity. The contour velocity is obtained from
boundary integral equations derived by applying Green's theorem to the area
integral in Green's function solution of a Poisson equation.

The above procedure is simplified if a local curvilinear coordinate
system orthogonal to the interface is employed. The orthogonal coordinate
system also simplifies the interface boundary conditions that connect the
smooth solution to the interface. Additionally, when approximating the
spatial derivatives this coordinate system can be mapped smooth onto a
fixed regular computational grid [19,24].

Sometimes the evolution of the interface is sensitive to small amounts
of noise in the computed suivtion on either side and it may be necessary to
regularize or smooth the solution states in the tangential direction.
Glimm and McBryan [11,121 average in a circle about each marker point on
the interface to filter out short wavelength fluctuations. Another way to
reduce the effects of small errors on the motion of the interface is to
modify the interface evolution equations by adding artificial surface

tension along the interface.
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C. Interpolants

The accuracy of the surface tracking methods depends strongly on
stability and accuracy of the interpolation method approximating the
interface location between the marker points. The shape preserving Hermite
piecewise-polynomial interpolants [16,28] remsin consistently well behaved
and smooth by retaining the coavexity and monotonicity properties of thLe
original daeta. Therefore, extraneous bumps or wiggles are not introduced
between the data points. This is particularly important for unstable
interfaces such as a Rayleigh-Taylor or Buckely-Levert interface.

The piecewise linear interpolant is the simplest shape and area
preserving interpolant, but introduces fictitious corners in the interface
location. In fluid flows, these corners cun create unrealistic velocities
in the smooth solution that eventually destroy the global accuracy of the
calculation. The higher order Hermite piecewise-polynomial interpolants
are smoother but can still easily accomodate necessary corners in the
interface by retaiuning left and right derivatives at the marker points.
Usually, cubic piecewise-polynomials are sufficient.

As the interface grows or shrinks, the distribution of the interface
marker points muat change to continually resolve the interface. The static
rezone methods [2,18] use a mesh function or performance index based on the
arc length and curvature of the interface as a guide when removing
extraneous mesh points or adding new ones when the existing points are too
dense or sparse. Alternatively, a fixed number of marker points can be
continnwously redistributed so as to best resolve the interface. The first
approach is usually more efficient in 2-D calculations where the marker

points are essily reordered as points are added or deleted. The data
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structure is simpler in the second approach and it is more commonly used in

3-D calculations.

D. Interactions

In many <alculations the topology of the interfactes is constantly
changing. The interfaces can interact with each other, spontaneonsly
disappear, or new ones can be created when an existing interface bifurcates
or is formed by, say, a compression wave, a flame ignition, or a phase
change. Multiple interaction points where three or more interfaces neet
are common occurrences and also require special data structures.

Fortunately, the interactions are usually a lower dimensional event;
in 2-D calculations the 1-D interfaces intersect at points; in 3-D, the 2-D
surfaces interact along 1-D lines. Therefore, it takes little computer
time to identify and track the interactions. Unfortunately, the data
structure and algorithms needed by surface tracking methods to account for
interactions greatly increases the program complexity [11,12]. Also, near
the interaction many of the lower di>ensional interface evolution equations
based on 1-D Riemann problems are no longer valid. That is, near an
interaction point, the solution often is intrinsically 2-D or 3-D and the
interface motion cannot be well approximated by a 1-D Riemann approxima-
tion. The reason for this is that near the interface the components of the
solution normal t, the interface interact strongly with the interface
through the interface boundary conditions, while the tangential components
have a weak, if any, interaction with the interface. Therefore, away from
interactions, applying the 1-D jump conditions normal to the interfacc is a

valid approximation. Near an interaction, however, the solution cannot be
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split into components that are normal and tangential to both interfaces
simultaneously and the snlitting algorithm is no longer valid.

This is not a problem for simple material interfaces which move with
the underlying fluid velocity, but for more complicared iateractions, such
as .n oblique ghock reflection, then a 1local grid refinement may be
necessary to reduce the gplitting errors.

These hybrid methods, combining an interface tracking algorithm with
local grid refinement, are slso excellent when there 18 a boundary layer in
the solution adjacent to the interfsce. This might be caus>d by the energy
generated in a flame front, or governed by an internal mixing length. If
each rcgion is being separately fitted with an interface fitted curvilinear
coordinate system, then standard methods can be used to resolve the
boundary layer [24].

Because of the complexity of handling interactions and adaptively
refining the interface in 3-D, to my knowledge, the only surface tracking
codes that resolve multiple interactions are in 1- and Z-D. Most 2-D codes
with interface interactions, and all 3-D codes T know of, track the

interfaces with u volume tracking method.

III. VOLUME TRACKING I!IETHODS

The volume tracing methods are less capable than the surface tracking
methods in providing subgrid =cale resolution but they can simply and
sccurately account for the interactions of many dif{ercnt smoothly varying
interfaces. Here, the interface tracking equations have the same dimension
as the underlying PDEs and, therefore, are potentially more expenmive than

the surface tracking methods. In practice, however, the interface data
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need only be stored, and the equations solved, in the cells along or near
the interface. This tactic increases the computational complexity but

improves the efficiency when the interfaces are well separated.

A. Marker and Cell

One of the earliest volume tracking methods for material interfaces is
Lhe marker and cell (MAC) method [29]. Marker particles are scattered
initially to identify each material region in tie calculation. These are
transported in a Lagrangian manuer along with the materisls. Their
presence in a computational cell indicates the presence of the marked
material. The material boundary is recoustructed using the marker particle
densities in the mixed cells with marker particles of two or more
materials The interface reconstruction scheme may also use the density of
particles in the surrounding cells to reconstruct a more accurate jinterface
location. There must be a moderate number of particles in the mixed cells
to reconstruct an accurate interface, or the interface will b~ poorly
defined and be sensitive to small errors. This often happens in expansion
regions.

To improve the efficiency the initial marker particles can be
scattered more dencsely or only near ihe interfaces or, if there are only
two materials, only using marker particles to identify one of the
materials.

The MAC wethods do not requirec special logic for colliding surfaces,
but need many marker particles per computationsl cell to get a well defined
interface. Also, numerical errors in transporting the marker particles can

cause an artificial numerical diffusive mixing near the interface resulting
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in a fuzzy interface. The fuzzy interface makes it harder to generalize
the MAC wethods for complicated interfaces such as detonations, flame
fronts or Stefan problems. To reduce the fuzziness far more marker
ptrticles than computational cells are needed increasing the computational
cost. The fractional marker volume methods were developed to overcome

these drawbacks.

B. Fractional Marker Volumes

The warker volume methods (sometimes c¢alled the volume of fluid, VOF
[14,15,21,22]), or simple line interface calculation, SLIC {[23]), methods)
define the surface by calculating the fractiopal volume of each material
occupied in each computational cell. These numbers range from zero (no
material) to one (completely filled with it). The interfaces occur in the

cells with fractional volumes as shown in Fig. 2.

2a. Originsl interface 2b. Rectangular 2c. Piecewise linear
and fractional volumes. reconstruction. reconstruction.

Fig. 2. The original interface separating two regions and the associated
volume fractions in each computational cell are shown (2a). 1Io Fig. 2b and
2c are two poosible reconatructed interiaces using the rectangular and
piecewise linear fractional volume methods.
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The volume fractions are updated during the calculation according to
the appropriate advection equations. On each time step the interface
pesition is reconstructed cellwise using the fractional volume of a cell
and its nearest neighbors. This localness is especially good for long thin
interfaces or fingers. When interfaces collide, the fraction volumes are
added and the interface intersections are simply acccinted for in the

reconstruction step.

1. Interface Reconstruction

Even though the volume fraction in the interface cells are between
zero and one, the reconstructed discontinuity is sharp. Within each cell,
the volume regions can be represented by unions of rectangles, triangles,
or regions bounded by piecewise polynomial surfaces. Thin rectangles can
be used to accommodate fingers. 7%~ curviture of the interfac: can be
estimated using finite difference approximates based on the neighboring
fractional volumes. Although the more complicated methods yield a better
approximation to the position of the interface, they are more prone to
numerical diffusion and nonphysical mixing caused by small pieces shedding
off the corners of the reconstructed interface. Imposing monotonicity and
convexity constraints [16) on the reconstructed interface greatly reduces
the shedding problems.

There are as many fractirnal volume reconstruction schemes as there
are practitioners [1,3,4,14,15,20,21,23,26]. The best reconstruction
ulgorithm depends upon the application and the importance of subgrid acale
structure. For example, Chorin [3) modified the original SLIC algorithm by

allowing for multiple rectangles in a cell and developed a SLICer one for
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flame propagation. Barr and Ashurst [1] then combined the ideas of slope
determination in the VOF method with Chorin's modifications and have one of
the SLICest methods in use for turbulent flame propagation.

Another variation of the fractional volume method is tc¢ waintein and
evolve a point on the interface in each fractional volume cell to aid the
reconstruction algorithm. These marker point3 are moved with the interface
during the evolution step. After each reconstruction, the multiple marker
points within a single cell a2re combined to form a single new point on the
reconstructed interface, and new marker points are added along the
interface in cells with no marker particles. This approach is similar to
the reconnecting dual mesh method discussed in the next section.

If the underlying mesh is not a tensor product mesh, theu the mapping
method can be used to reconstruct the interface using fractional volumes in
the uniform logical grid. The curvilinear mesh in the original domain
could be chosen adaptively to accurately resolve the solution [2,18). The
fractional volumes of the reconstructed interlace are casily transfered

from one mesh to another after a static rezone.

B. Interface Evolution

Once constructed, the interface can be advanced using the same
techniques 3sg described for the surface tracking methodas. More often,
however, they are sdvanced using a fractional step method. That is, the
interface is reconstructed and evolved in each spatial dimension
separately. The fractional step algorithms are more attractive than the
surface tracking methods for almost all inleracting surfaces in 2-D and,

more so, in 3-D calculations. The unsplit fractional volume method is more
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difficult to implement because of the odd shaped regions tkat must be
accounted for such as the one shown in Fig. 3a.

In a fractional step method, the interface reconstructed in the
x-sweep may be different from what it is in the y-sweep, as seen in
Figs. 3b,c. By alternating the sweep direction, averaging the results, or
using conservative limitor: that preserve the symmetry, much of the sweep

dependence can be reduced.

3a. Unsplit 3b. X-sweep 3c. Y-sweep
reconstruction,. reconstruction. reconatruction.
Fig. 3. The reconstructed interfaces for an unsplit algorithm, in the

x-sweep, and in the y-sweep.

IV. MOVING MESH METHODS

A. Local Adiustment Methods

When wusing either a surface or volume tracking method, if the
reconstructed interfsce is continuous then on each time step a local
adjustmeut in the underlying mesh location can be used to approximate the
interface. Each mesh point within one half mesh spicing of the interface
is moved to the nearest locatjon horirontally or vertically where the

interface intersects a mesh line. The interface is now well approximated
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by the cell edges and diagonals on the new mildly distorted mesh, as seen

in the example in Fig. 4.

Fig. 4a. Original underlying mesh Fig. 4b. Locally adjusted mesh
and interface. is aligned with the interface.

Fig. 4. A simple local adjustment of the mesh aligns it with the front so
the interface is located only along cell edges or diagonals.

The PDEs are then solved on the new grid tresting the mesh points on
the interface as a moving boundary; the toundary conditions are determined
by the appropriate jump conditions. The correct solution values for the
possibly multivalued solution along the interface are easily selected.
Also, the discrete approximations to the equations at the few irregular
mesh points n 'r the interface are easily derived on each time step [19].
If the finite volume method is being used, the solution jumps across the
interface are taken into account in the rurface integrals. In many PDEs,
accurate and efficient global solution algorithms are available if the

discontinuities occur only along mesh boundaries and diagonals {5].
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B. Lagrangian Methods

The next logical step is not to have a separate algorithm to track the
interface, but to subdivide the initial regions into discrete elements with
the cell boundaries aligned with the interfaces. The PDEs are then solved
cellvise snd the cell edges are all treated like interfaces and, therefore,
will continue to track the interface. As new interfaces are created, new
cells are added (or existing ones readjusted),; as the volume of existing
cells goes to 2zero, they are combined or deleted. In this manner,
numerical mixing between the d..fferent regions is avoided and varying size
structures that move with the solution are easily tracked.

Depending upon the goal of the calculation any one of several moving
mesh methods can be used away from the interface [6,8,10,13,17]}.
Unfortunately, unless the moving cells are allowed to change their nearest
neighbors in a calculation, then continual rezoning is necessary to prevert
the mesh distortion, in even the simplest fiows, from distroying the
accuracy of the calculation. This is shown for the very early stages of a
Rayleigh-Taylor Lagrangian calculstion on a '<gically rectangular grid in
Fig. 5. Soon after the time of this plot numerical errors caused the grid

lines to cross and the calculation to fail.

TSNS

‘ Fig. 5. Distorted l.agrangian mesh 1in
> the early stages of a Rayleigh-Taylor
am instability calculation.
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The grid distortion can be somewhat alleviated if only the mesh points
along specified interfaces are required to move with the interface. The
grid points away from tue interface are distributed to prevent mesh
tangling or to better resolve the structure of the smooth solution. In
addition, the mesh points along the interface can be redistributed along
the interface, using the surface tracking rezone methods described earlier,

The mesh targling is not caused by the Lagrangian equations, but is an
artifact of the mesh data structure. A more flexible data structure that
prevents mesh tangling is the neighborhood grid, where pointers are kept to
alJl the nearest neighbors of each mesh point. These are used to
approximate the equations locally using a finite element or finite volume
discrete approximation. As the mesh moves, the nearest neighbor pointers
are continually updated. Usually these reconnections alone will not
completely solve the problem of grid resolution and regularity, and some
form of rezoning is still necessary. But here, adding and deleting points
is much easier than on a logically rectangular or cuboid mesh.

The reconnecting moving neighborhood mesh has had considerable success
in fluid flows with material interfaces [7-9,27}. ‘'hese free Lagrangian
codes, as they are called, could easily be adapted for more complicated
flows where the interface moves with the shock or flame velocity rather
than just the underlying fluid velocity.

The major disadvantage of neighborhood meshes is the data structurc.
Most of the fast and accurate numerical methods (and multidimensional
plotting packages) are for logically rectangular and cuboid grids. The
accuracy of the discrete approximations of second derivative operators is

particulaily poor on ne{ghborhood grids.
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One of the more promising i1econnecting mesh algorithms retains a
logically rectangular or cuboid data structure by approximating the
solution on the dual mesh of a logically rectangular or cutoid reierence
mesh [13,17]). The dual mesh consists of one mesh point within each cell of

the reference mesh as shown in Fig. 6a.
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Fig. 6a. The reference Fig. 6b. The new dual Fig. 6¢c. The regular-
mesh and the dual comput- mesh after one time ized dual mesh.
ing mesh. step.

Fig. 6. The dual computing mesh is advanced according to the appropriate
moving mesh equations. At the end of each time step it is regularized as
in 6c.

At the beginning of every time step the mesh is regular (one grid
point per reference cell). The dual mesh is advanced, Fig. 6b, according
to the appropriate moving mesh equations for the interface Gepicted by a
solid line in Fig. 6. If desired, an underlying refereunce mesh can now be
chosen to resolve the solution. The mesh is then regularized, Fig. 6éc, by
adding new dual mesh points to empty cells or combining them in reference
cells with wore than one dusl mesh point. Ia this way, the calculation can
continue changing the nearest neighbors of the computing data points and

maintain a logically rectangular data structure.
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In addition, the dual mesh computing points can be tagged as special
interface points as shown in Fig. 7a. In Fig. 7b the dual mesh points have
been advanced forming some new mixed cells in the center. In the
regularization stage, Fig. 7c, these are combined conservatively to form

two new triple points.
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Fig. 7a. Original dual Fig. 7b. Predicted new Fig. 7c. Regularized
mesh marker points and dual m=2sh points. dual mesh and inter-
interface. face.

Fig. 7. Interface tracking on the dual mesh.

V. SUMMARY AND CONCLUSIONS

Most numerical methods for tracking interfaces are based on either
following the surface of the interface using marker points, calculating the
fractional volume of each region separated by the interfaces as they pass
over a reference grid, or moving control volumes aligned with the
interface,

The interface is advanced by solving a compatibility equation, usually
derived from an integral formulation of the weak form of the PDEs. The
smooth solution away from the interface is treated with standard
finite~difference or finite-element methods. 7The interaction of the smooth
rolution with the interface is accounted for by treating the interfaces as
a moving boundary with boundary conditions determined by compatible

equations.
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Reliable methods are available that approximate multiple interactions
in 1-D, simple interactions in 1- and 2-D, and isolated interfaces in
1-, 2-, and 3-D. Better methods are still needed for interacting
interfaces in 2- and 3-D. it is not yet clear which of the existing
methods will prove to be the most effective in these complicated

situations.
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