('CINF- 59011-4

BNL-NCS--43160

DE90 001017

001 1 - ...¹³

Prepared for Pure Applied Chem.

Total Half-lives for Selected Nuclides*

NORMAN E. HOLDEN National Nuclear Data Center Brookhaven National Laboratory

Abstract - Measurements of the half-lives of ³H, ¹⁰Be, ¹⁴C, ²⁸Al, ⁴⁰K, ³⁹Ar, ⁵³Mn, ⁸⁷Rb, ⁸²Nb, ¹²⁹I, ¹³⁸La, ¹⁴⁷Sm, ¹⁷⁶Lu, ¹⁷⁴Hf, ¹⁸⁰Ta, ¹⁸⁷Re, ¹⁸⁶Os, ¹⁹⁰Pt, ²⁰⁴Pb, ²¹⁰Pb, ²¹⁰Po, ²²²Rn, ²²⁴Th, ²²⁸Ra, ²²⁷Ac,

 228 Ra, 226 Th, 230 Th, 232 Th, 231 Pa have been compiled and evaluated. The effect of the 14 C half-life value on carbon dating ages is discussed as well as the stability of 204 Pb.

I. Introduction

In the past, many compilations and evaluations of half-lives have been made which have uncritically accepted authors' values and uncertainties. They have merely recommended weight-averaging reported results. This evaluation attempts to reanalyse each experiment in the literature including an estimate of the standard deviation utilizing, where possible, an estimate of the systematic error. The long-lived nuclides of light elements are of interest for their use in dating methods and for calculating cosmic-ray exposure ages of meteorites. The heavy mass nuclides are of interest in determining geological ages using the Re-Os or the Lu-Hf dating methods, in supplying information on the natural radioactive decay chains and in the case of tantalum because it represents the first long-lived state which is actually an isomer.

The impact of the recommended ¹⁴C half-life of 5715 years on the carbon dating technique, which uses the Libby value of 5568 years, will be discussed. Also the possible primordial occurrence of ⁹²Nb is now definitely ruled out by the recommended half-life of 3.7×10^7 years. Based on the recommended ²⁶Al half-life value, the ²¹Ne production rate for calculating cosmic-ray exposure ages remains too high, compared to rates using the ⁵³Mn and ¹⁰Be half-life values. It is shown that ²⁰⁴Pb, which was previously thought to be radioactive, is stable.

*Research carried out under the auspices of the U.S. Department of Energy, Contract No. DE-AC02-76CH00016.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

It will be noted that many of the uncertainties recommended here considerably exceed, by up to an order of magnitude, uncertainties quoted by individual authors in their publications; e.g. ³H, ²¹⁰Po, ²²²Rn, ²²⁷Ac, and ²²⁸Th.

The general procedure followed in this paper has been to review each experiment and to revise the published values for the latest estimates of various parameters originally reported by the authors; e.g. improved data on branching ratios assumed, on the half-lives of other nuclides involved, on the isotopic abundance in a natural sample, the nuclidic masses and the physical constants such as the Avogadro's constant. When detailed information on uncertainties was available in each experiment, the standard deviation was combined with one third of the systematic error to provide the uncertainty quoted in the table. The result of this procedure should be that the limit of error of the half-life would be obtained from the sum of the systematic error plus three standard deviations; i.e. 3σ . Where there was no adequate discussion of the systematic error and the total error was extremely small; e.g. 0.1 percent or less, a systematic error of 0.1 percent was estimated. One third of this amount, about 350 parts per million (ppm), was added to the published error to obtain the figure given in the various tables. The uncertainty listed for the recommended value in each table was calculated from a weighted average of the listed measurements using a variance weighting technique; either the reciprocal square of the author's reported uncertainty, or as revised according to the above scheme. Exceptions to the weighted average rule had to be made for some nuclides and will be discussed under the appropriate section for those nuclides. In such cases, recommendations were made using either a selected value considered superior to other listed measurements, or a weighted average was calculaterd for each of the different experimental techniques used and an unweighted average of these half-lives was recommended. All of the tables indicate the particular method chosen.

II. The Light Elements (A < 100)

For ³H, a number of measurements have been reported for which the precision only is given. The reported values disagee by 20 to 30 standard deviations. The different techniques were weight-averaged and an unweighted average of these numbers was recommended.

For ¹⁴C, Mann¹ discussed the problem of retention of a small amount of high specific activity ($\approx 0.02\%$) carbon dioxide during the gas dilution phase. This systematic effect could cause up to a 30% spread in the resulting half-life and was eliminated by substituting a clean flask during subsequent dilution phases. Earlier measurements, which varied from 4700-7200 years, were performed either with very low enrichment (a few percent) or with the above mentioned dilution process with large systematic error. These results were discarded. In Mann's revision² of his earlier measurement, he mentions a discrepancy between mass spectrometric determination of the amount of ¹⁴C atoms. Samples which were run at NBS and Aldermaston showed a lower reading on one of the three machines at NBS. Mann noted that the result obtained on the mass spectrometer at AWRE agreed with the results on the two other NBS instruments but chose not to use this information. In my analysis, I have averaged the results on the samples from all four instrument which has slightly lowered Mann's half-life. A weighted average gives 5692 ± 20 years, while an unweighted average gives 5715 ± 24 years. The unweighted average is recommended because the wide variation in authors estimates of systematic error sources tends to penalize those who do the best job of error analysis. The standard deviation is expanded to account for the variation in the weighted and unweighted averages and to allow for undisclosed systematic errors.

It should be noted that although the fifth (Godwin³) and sixth (Johnson⁴) International Carbon-14 Conferences recognized that the best available half-life at that time for the decay of radiocarbon was 5730 ± 40 years, the measurers of radiocarbon dates would continue to use 5568 years realizing that to obtain the correct dates, a factor of 1.03 must be used. The factor now becomes 1.026 with this recommended half-life.

For ³⁹Ar, the weighted average is 268 ± 8 years, where the 3% systematic error has been used rather than the 1% statistical error usually associated with this half-life.

For ⁴⁰K, the two significant decay branches of electron capture, ec, and negative beta decay, β , have been separately averaged and the total half-life has been calculated from the two decay constants. Most of the experiments have been reported at the 1% accuracy level. One similar experiment claims an accuracy of 0.1%. An unweighted average is recommended to treat all experiments on an equal level.

For ⁵³Mn, the early measurements assumed a constant cosmic ray flux over a period of 10 million years, which is a questionable assumption. Those early measurements have not been used.

For ⁶²Nb, Makino's result⁵ for the specific activity measurement as reported is in error. The half-life should be $3.98 \pm 0.76 \times 10^7$ years. In Nethaway's measurement⁶, he ignores all other measured (n,2n) cross section values for producing the m-state except his own⁷. The author notes a 10% effect is involved in treating the cross section for producing the long lived state. The author averages all total (n,2n) cross sections from 13 to 15 MeV, but selects the peak cross section for m-state production at 14.8 MeV. In this paper, I have renormalized the ²³⁸U (n,f) flux monitor to the latest value of the Evaluated Nuclear Data File ENDF/B-V and I have recalculated the half life on the basis of 13-15 MeV average (n,2n) cross section difference for total and m-state production as well as 14.8 MeV differences. The former gives 3.79×10^7 years and the latter 4.02 x 10^7 years. An average is selected to represent this experiment.

III. The Medium Elements (100 < A < 200)

For ¹²⁹I, the most accurately quoted results are either unpublished or contain no details. An unweighted average of all data is recommended.

For ¹⁷⁶Lu, the two measurements which were performed with enriched samples do not agree. The difference is between four and seven standard deviations. An unweighted is recommended.

For i^{74} Hf, i^{80} Ta, and i^{38} Os, the most recent measurement has been selected in each case. This corresponds to either the only value, a value which is far superior to other measurements or it is a higher upper limit to the total half-iffe.

For 187 Re, an unweighted average is recommended to take account of the measurement by Naldrett⁸, which is significantly lower than the other values.

4

IV. The Heavy Elements (200 < A)

For ²⁰⁴Pb, Riezler⁹ used a nuclear emulsion technique to measure a sample of ²⁰⁴Pb enriched to 27.0%. A peak was found between 8 μ and 9 μ in the emulsion, which from Faraggi's range energy curves¹⁰ was attributed to an alpha energy of 2.6 MeV. The latest mass data on ²⁰⁴Pb, ²⁰⁰Hg, and ⁴He imply an available alpha energy of 1.93 MeV, *i.e.* a peak below 6.5 μ . The peak has to be due to something other than the alpha decay of ²⁰⁴Pb. There is no evidence that ²⁰⁴Pb is radioactive. The most recent theoretical work¹¹ predicts a half-life value of 4.5 x 10³⁵ years compared to Riezler's measurement of 1.4 x 10¹⁷ years.

For ²¹⁰Pb, the two most accurately quoted measurements do not agree. The difference is between seven and seventeen standard deviations. An unweighted average has been recommended.

For 210 Po, 222 Rn, 227 Ac and 228 Th, the recommended value is based on a weighted average of the measurements but the quoted value for the uncertainty has been increased to 0.1% (see discussion of results section).

For 230 Th, the results of Hyde¹² and Attree¹³ have been revised with the latest parameters as well as with the assumption that all the thorium in their samples, which was not 230 Th, was 232 Th. Meadows¹⁴ has recalculated all of the earlier measurements based on 228 Ra to the presently accepted half life of 1600 years.

For ²³²Th, the recommended value is based on a weighted average of all measurements. The uncertainty has been increased from 0.5% to 0.7% to account for systematic errors.

V. Discussion of Results

In most cases, the recommended values and uncertainties in the tables are based on variance weighted averages. The recommended values listed are given in units of second (s), day (d), and year (a). Although it has been previously discussed¹⁵, some words on the problem of error estimation can not be stated too often. ,

Various measurements in the tables below quote uncertainties that both disagree with and exclude many other good measurements from consideration. Undoubtedly, systematic errors have not been carefully considered in these publications. If one uses variance weighting indiscriminately in such cases, one penalizes the authors who attempt the difficult task of estimating the systematic error, while benefiting the authors who make no such attempt to determine all of their sources of error, (an admittedly difficult task). Some authors below have reported values and later revised their results of the same experiment by as much as twenty standard deviations. Statistically speaking, the two results could not have been estimating the same parameter.

In the review of nuclear data by the International Atomic Energy Agency¹⁶, their general comment on uncertainties included a statement questioning the validity of any presently stated uncertainties of less than 0.1% for half-lives. The same criteria has also been applied here in a few cases. No half-life has been recommended with an accuracy of better than 0.1%. The rationale for this rule is that systematic errors up to ten times smaller than the total statistical uncertainty quoted could have an appreciable effect on that total uncertainty, if there were a number of such errors. Recommending values at accuracy levels of a few hundred parts-per-million (ppm) would imply that all potential errors in the experiment at the level of ten ppm had been investigated, documented and their effect on the result taken into account. An experiment, in which such a thorough study has been both performed and documented, has yet to be reoported to my knowledge. In addition, many of these very precise results are based on the examination of only one sample.

The recommended data are given in the following tables.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Jenks ¹⁷ 12.46 \pm 0.1He growthJones ¹⁸ 12.41 \pm 0.15 \pm 0.25absolute countingJones ¹⁹ 12.262 \pm 0.008He growth; precision only; rev. errorPopov ²⁰ 12.57 \pm 0.18calorimetryMerritt ²¹ 12.31 \pm 0.13absolute countingJordan ²² 12.346 \pm 0.007Calorim.; precision only; rev. errorJones ²³ 12.25 \pm 0.03He growthRudy ²⁴ 12.323 \pm 0.008calorim.; precision only; rev. errorUnterweger ²⁵ 12.43 \pm 0.05tritiated H ₂ O; countingSimpson ²⁶ 12.32 \pm 0.03 $\frac{1}{2}$ countingBudick ²⁷ 12.29 \pm 0.15ctg.; no details; σ x 1.5	Author *	$T_{u}/(a)$	Comment
Oliver 12.38 ± 0.03 Neut.irradiated Li; He growthOliver 12.38 ± 0.04 Tritiated H20; He growth	 Jenks ¹⁷ Jones ¹⁸ Jones ¹⁹ Popov ²⁰ Merritt ²¹ Jordan ²² Jones ²³ Rudy ²⁴ Unterweger ²⁵ Simpson ²⁶ Budick ²⁷ Oliver ²⁸ Oliver ²⁹	12.46 ± 0.1 $12.41 \pm 0.15 \pm 0.25$ 12.262 ± 0.008 12.57 ± 0.18 12.31 ± 0.13 12.346 ± 0.007 12.25 ± 0.03 12.323 ± 0.008 12.43 ± 0.05 12.32 ± 0.03 12.29 ± 0.15 12.38 ± 0.03 12.38 ± 0.04	He growth absolute counting He growth; precision only; rev. error calorimetry absolute counting Calorim.; precision only;rev. error He growth calorim.; precision only;rev. error tritiated H_2O ; counting counting ctg.; no details; $\sigma \ge 1.5$ Neut.irradiated Li; He growth Tritiated H_2O ; He growth

Table 1. Total Half-life of ³H

Recommended Value 12.32 ± 0.03 a; Unweighted Average of Techniques

Table 2 Total Half-life of ¹⁰Be

Author	$T_{4}/(10^{6} a)$	Comment
Hughes ³⁰	2.0 ± n.u.	Revised from 2.9; not used
McMillian ³¹	2.5 ± 0.5	see ref. 33; not used
Yiou ³²	1.55 ± 0.3	
McMillian ³³	1.71 ± 0.34	revision of 31
Emery ³⁴	1.6 ± 0.2	no details; $\sigma \ge 1.5$
Makino ³⁵	1.48 ± 0.15	
Hofmann ³⁶	1.51 ± 0.06	accelerator mass spectrom.
Weighted Average	$1.52 \pm 0.05 \times 10^8$ a;	Recommended Value

Table 3 Total Half-life of ¹⁴C

Author	$T_{u}/(a)$	Comment
Libby ³⁷	5568 ± 30	Weighted Average of 3 (1949/50) values
Mann ¹	5760 ± 50	not used; revised; see ref. 2
Watt ³⁸	5780 ± 65	mass spec., prop. ctg.
Olsson ³⁹	5680 ± 40	mass spec., prop. ctg.
Godwin ³	5730 ± 40	not used; avg. of 1, 38, 39
Hughes ²	5730 ± 50	revision of 1
Bella ⁺⁰	5660 ± 30	
Emery ³⁴	5736 ± 84	no details; $\sigma \propto 1.5$
Recommended Value	5715. ± 30. a;	Unweighted Average

Table 4 Total Half-life of ²⁶Al

• •

.

•

Author '	$T_{h}/(10^{5} a)$	Comment
Rightmire ⁺¹	7.1 ± 0.3	Revised using ref.42,43
Norris ⁺⁺	7.1 ± 0.2	GeLi; Mass Spectrometry
Middleton ⁴⁵	7.0 ± 0.6	Mass Spectrometry
Thomas ⁺⁸	7.8 ± 0.5	not used; GeLi; verified others
Recommended Value	$7.1 \pm 0.2 \times 10^5$ a;	Weighted Average

. .

.

Table 5 Total Half-life of 39Ar

Author	$T_{h}/(a)$	Comment
Zeldes ⁺⁷ Stoenner ⁺⁸	265 ± 30 268 ± 8	Revised ³⁷ Ar T4 by Kishore ⁴⁹
Recommended Value	268. ± 8. a;	Weighted Average

Author "	$T_{\rm b}/(10^9 {\rm a})$	Comment
Orban ⁵⁰	0.5	not used; ec; cloud chamber
Gleditsch ⁵¹	$11. \pm 2.$	not used; ec; GM ctr.
Ahrens ⁵²	11.6 ± 0.2	not used; ec; radiogenic
Graf ⁵³	1.48 ± 0.07	not used; B; GM ctr.
Stout ⁵⁴	1.29 ± 0.08	not used; β ; GM ctr.
Floyd ⁵⁵	1.54 ± 0.39	not used; total; GM ctr.
Sawyer ⁵⁸	12. ± 1.	not used; ec; stilbene crystal
Graf ⁵⁷	12. ± 2.	not used; ec; GM ctr.
Spiers ⁵⁸	1,18	not used; total; ion cham., GM
Faust ⁵⁹	1.14 ± 0.10	not used; total;
Sawyer ⁶⁰	1.27 ± 0.05	not used; total; 4π ctr
Houtermans ⁶¹	1.31 ± 0.07	not used; total; 4π ctr.
Smaller ⁶²	1.76 ± 0.05	not used; β ; KI crystal
Delanev ⁸³	1.24 ± 0.01	not used: β
Good ⁶⁴	1.46 ± 0.03	β ; KI crystal
Burch ⁶⁵	11.7 ± 0.5	not used: ec: ion chamber
Suttle ⁶⁶	1.34 ± 0.03	not used: B
	13.4 ± 0.2	not used: ec
Kono ⁶⁷	1.36 ± 0.05	ß; KI crystal
Backenstoss ⁶⁸	11.3 ± 0.5	not used; ec: Nal crystal
McNair ⁶⁹	1.44 ± 0.01	B: Nal crystal
Wetherill ⁷⁰	12.2 ± 0.6	not used; ec; radiogenic
Wetherill ⁷¹	11.7 ± 0.4	ec: radiogenic
Kellv ⁷²	1.46 ± 0.03	B: KI crystal
Saha ⁷³	12.3 ± 0.6	ec: Nal; stilbene
· · ·	1.37 ± 0.04	ß
Glendenin ⁷⁴	1.40 ± 0.015	B: liquid scint.
Fleishman ⁷⁵	1.45 ± 0.4	B: scint. gel
Brinkman ⁷⁶	1.36 ± 0.02	B: liquid scint.
Leutz ⁷⁷	12.2 ± 0.3	ec: Nal. Csi. Ki
20 4 7 2	1.40 ± 0.002	ß
Feuerbake ⁷⁸	1.41 ± 0.02	ß: scint. gel
DeRuytter ⁷⁹	12.2 ± 0.2	ec: Nal
Egelkraut ⁸⁰	11.8 ± 0.5	ec: KI. Nal
224121 4 4 4	$1 40 \pm 0.07$	8
Venkataramajah ⁸¹	1.31 ± 0.06	r not used: ß
Gonal ⁸²	$1 13 \pm 0.06$	not used: <i>B</i>
Cesana ⁸³	12.3 ± 0.04	ec; GeLi
ecommended Value	$1.26 \pm 0.01 \times 10^{9}$ a:	Unweighted Average

• •

Table 6 Total Half-life of ⁴⁰K

.

.

•

Table 7 Total Half-life of ⁵³Mn

•

•

Author '	$T_{y}/(10^{6} a)$	Comment
Sheline ⁸⁴	2.	not used
Kaye ⁸⁵	1.9 ± 0.5	not used
Hohifelder ⁸⁶	10.8 ± 4.5	not used
Matsuda ⁸⁷	2.9 ± 1.2	not used
Hondo ⁸⁸	3.7 ± 0.2	revised; mass spec, spec. act.
Woelfle ⁸⁹	3.8 ± 0.6	revised; act. σ
Heimann ³⁰	3.7 ± 0.4	revised; ⁵³ Mn/ ²⁶ Al in meteorites
Weighted Average	$3.7 \pm 0.2 \times 10^8 a;$	Recommended Value

.

.

Table 8 Total Half-life of ⁸⁷Rb

Author	$T_{4}/(10^{10} a)$	Comment
Orban ⁵⁰	4.45	not used; Cloud chamber
Strassmann ⁹¹	4.45	not used; Pure ⁸⁷ Sr in Rb mica
Eklund ⁹²	5.8 ± 1.0	not used; Geiger ctr.
Haxel ⁹³	6.9 ± 0.7	not used; Geiger ctr.
Kemmerich ⁹⁴	6.0 ± 0.6	not used; Geiger ctr.
Curran ⁹⁵	6.15 ± 0.3	not used; Prop. ctr.
Lewis ⁹⁸	6.0 ± 0.3	not used; Scint. ctr.
Flinta ⁹⁷	6.2 ± 0.2	not used;
MacGregor ⁹⁸	6.2 ± 0.3	not used; enriched ⁸⁷ Rb
Geese-Baehnisch ⁹⁹	4.3 + 0.3 - 0.2	not used;
Fritze ¹⁰⁰	$4.6 \pm 0:5$	not used; Geolog. ⁸⁷ Sr/ ⁸⁷ Rb
Aldrich ¹⁰¹	5.0 ± 0.2	not used; Geolog. ⁸⁷ Sr/ ⁸⁷ Rb
Libby ¹⁰²	5.07 ± 0.2	not used; Geiger ctr.
Flynn ¹⁰³	4.7 ± 0.1	not used; Liq. scint. ctr.
Ovchinnikova ¹⁰⁴	5.0 ± 0.2	not used; Geolog. ⁸⁷ Sr/ ⁶⁷ Rb
Rausch ¹⁰⁵	4.72 ± 0.08	not used; 4π prop. ctg.
McNair ¹⁰⁸	5.25 ± 0.10	not used; 4π ctg.
Egelkraut ¹⁰⁷	5.82 ± 0.1	not used; Scint. ctr.
Beard ¹⁰⁸	5.53 ± 0.10	not used; Scint. ctr.
Leutz ¹⁰⁹	5.80 ± 0.12	not used; Scint. ctr.
Kovach ¹¹⁰	4.77 ± 0.10	not used; Scint. ctr.
Thode ¹¹¹	4.60 ± 0.06	not used; Mass spec.
Brinkman ⁷⁶	5.22 ± 0.15	not used;
McMullen ¹¹²	4.72 ± 0.04	not used; Mass spec.
Neumann ¹¹³	4.88 + 0.06 - 0.10	4π prop. ctg.
Davis ¹¹⁴	4.89 ± 0.04	McMullen revised
Akatsu ¹¹⁵	5.56 ± 0.025	not used

Recommended Value 4.88 ± 0.05 x 10¹⁰ a; Unweighted Average

Author •	$T_{\mu}/(10^7 a)$	Comment
Apt ¹¹⁶	17	not used
Makino ⁵	3.5 ± 0.4	revised
Nethaway ^e	3.9 ± 0.5	revised
Weighted Average	$3.7 \pm 0.5 \times 10^7$ a;	Recommended Value

.

Table 9 Total Half-life of ⁹²Nb

• • • • • •

.

Table 10 Total Half-life of ¹²⁹I

Author	$T_{\rm H}/(10^7 {\rm a})$	Comment
Katcoff ¹¹⁷	1.72 ± 0.09	prop. ctr., mass spec.
Russel ¹¹⁸	1.56 ± 0.06	
Emery ¹¹⁹	1.57 ± 0.06	No details; σ x 1.5
Kuhry ¹²⁰	1.97 ± 0.14	Liq. scint.
ecommended Value	$1.7 \pm 0.1 \times 10^7$ a;	Unweighted Average

•

Author '	$T_{4}/(10^{11} a)$	Comment	
Turchinetz ¹²¹	1.15 ± 0.1	not used; revised	
Glover ¹²²	1.13 ± 0.04	not used; revised	
DeRuytter ¹²³	1.04 ± 0.02	not used	
Ellis ¹²⁴	1.53 ± 0.3	not used; revised; GeLi	
Marsol ¹²⁵	1.23 ± 0.18	revised; GeLi	
Cesana ⁸³	1.25 ± 0.12	not used; revised; GeLi	
Taylor ¹²⁶	1.25 ± 0.12	revised; GeLi	
Sato ¹²⁷	1.03 ± 0.04	GeLi	
Norman ¹²⁸	1.05 ± 0.05	revised; GeLi	
Masuda ¹²⁹	2.5 ± 0.2	not used; β^{-} ; radiogenic	
Weighted Average	$1.06 \pm 0.04 \times 10^{11} a;$	Recommended Value	

. .

Table 11 Total Half-life of ¹³⁸La

.

.

•

Table 12 Total Half-life of ¹⁴⁷Sm

Author	$T_{4}/(10^{11} a)$	Comment
Hevesy ¹³⁰	1.8	not used; Geiger ctr.
Herzfinkiel ¹³¹	2.0	not used; ion chamber
Mader ¹³²	1.5	not used; Ion chamber
Libby ¹³³	0.91	not used
Hosemann ¹³⁴	1.5 ± 0.1	not used; geiger ctr.
Cuer ¹³⁵	1.3 ± 0.1	not used; nucl. emulsion
Picciotto ¹³⁶	0.99 ± 0.05	not used; nucl. emulsion
Beard ¹³⁷	1.25 ± 0.06	not used; 4π geiger ctr.
Leslie ¹³⁸	1.15 ± 0.03	not used
Beard ¹³⁹	1.06 ± 0.04	lig. scint.: corrected for wrong Sm
Karras ¹⁴⁰	1.13 ± 0.05	not used; ion chamber
Mac Farlane ¹⁴¹	1.15 ± 0.05	not used
Wright ¹⁴²	1.05 ± 0.02	not used: liquid scintillator
Donhoffer ¹⁴³	1.04 ± 0.03	not used: Liquid scintillator
Valli ¹⁴⁴	1.08 ± 0.02	not used: Ion.chamber.liquid scint
Gupta ¹⁴⁵	1.06 ± 0.02	97% enriched
Al-Bataina ¹⁺⁶	1.05 ± 0.04	97.5% enriched
Weighted Average	$1.06 \pm 0.02 \times 10^{11} a;$	Recommended Value

.

-

Author '	$T_{h}/(10^{10} a)$	Comment
Heyden ¹⁴⁷	4 .	not used; GM ctr.
Libby ¹⁴⁸	7.3 ± 2.	not used; GM ctr.
Flammerfeld ¹⁴⁹	2.4	not used; GM ctr.
Arnold ¹⁵⁰	2.15 ± 0.10	not used; NaI
Dixon ¹⁵¹	4.56 ± 0.3	not used; prop. ctr.
Glover ¹⁵²	2.1 ± 0.2	not used; Nal
Herr ¹⁵³	2.17 ± 0.35	not used; radiogenic
Mc Nair ¹⁵⁴	3.6 ± 0.1	not used; NaI
Brinkman ⁷⁸	3.59 ± 0.05	not used; NaI, $\beta\gamma$ coin.
Donhoffer ¹⁴³	$2.18 \pm 0.06^{\frac{14}{14}}$	not used; liquid scint.
Sakamoto ¹⁵⁵	5.0 ± 0.3	not used: NaI
Prodi ¹⁵⁶	3.27 ± 0.05	not used: liquid scint.
Boudin ¹⁵⁷	3.3 ± 0.5	not used: radiovenic
Komura ¹⁵⁸	3.79 ± 0.03	71% enriched: GeLi, Nal
Norman ¹⁵⁹	4.08 ± 0.24	GeLi
Seuigna ¹⁰⁰	3.59 ± 0.05	54.4% enriched: vv coin.
Patchett ¹⁸¹	3.57 ± 0.14	radiogenic
Sato ¹⁶²	3.78 ± 0.02	GeLi
Recommended Value	$3.8 \pm 0.1 \times 10^{10} a;$	Unweighted Average

.

.

•

•

Table 13 Total Half-life of 176Lu

:

Table 14 Total Half-life of ¹⁷⁴Hf

Author	$T_{4}/(10^{15} a)$	Comment	
Riezler ¹⁶³ Mac Farlane ¹⁴¹	4.3. n.u. 2.0 ± 0.4	naturai sample 10.14% enriched	
Recommended Value	$2.0 \pm 0.4 \times 10^{15}$ a;	Selected Value	

Table 15 Total Half-life of 180 Ta

Author	$T_{H}/(10^{15} a)$	Comment
Eberhardt ¹⁶⁴	> 0.00099	β^- branch
Bauminger ¹⁸⁵	> 0.023 ± 0.007	electron capture branch
	> 0.017 ± 0.006	β^- branch
Eberhardt ¹⁶⁸	> 0.000046	K capture branch
Sakamoto ¹⁵⁵	$> 0.015 \pm 0.005$	electron capture branch
Ardisson ¹⁶⁷	> 0.021	electron capture branch
Norman ¹⁸⁸	> 0.056	elect. capt. branch
	> 0.056	β^{-} branch
Cumming ¹⁶⁹	> 1.2	
Recommended Value	$> 1.2 \times 10^{15} a;$	Selected Value

Author '	$T_{\eta}/(10^{15} a)$	Comment	
Viola ¹⁷⁰	2.0 ± 1.1	61.27% enriched	
Recommended Value	$2.0 \pm 1.1 \times 10^{15} a;$	Selected Value	

•

Table 16 Total Half-life of 186Os

Table 17 Total Half-life of 187Re

Author	$T_{\mu}/(10^{11} a)$	Comment
Naldrett ¹⁷¹	40. ± 10.	not used; geiger ctr.
Sugarman ¹⁷²	40.~70.	not used; geiger ctr.
Dixon ¹⁷³	>1000.	not used; prop. ctr.
Suttle ¹⁷⁴	> 1.	not used; geiger ctr.
Herr ¹⁷⁵	0.05-2.5	not used; radiogenic
Herr ¹⁷⁸	~ 0.8	not used; radiogenic
Walton ¹⁷⁷	2.1 ± 0.5	not used; geiger ctr
Naldrett ¹⁷⁸	3.2 ± 0.7	not used; geiger ctr.
Herr ¹⁷⁰	0.62 ± 0.07	not used: radiogenic
Kocol ¹⁸⁰	0.79	not used: geiger ctr., only 1 meas
Wolf ¹⁸¹	1.2 ± 0.4	not used; geiger ctr.
Hirt ¹⁸²	0.43 ± 0.05	radiogenic
Brodzinski ¹⁸³	0.66 ± 0.13	not used: prop. ctr.
Watt ¹⁸⁴	~ 0.3	not used: low backed. meas.
Luck ¹⁸⁵	0.45 ± 0.02	radiogenic
Naldrett ⁸	0.35 ± 0.04	liquid scintillator
Lindner ¹⁸⁶	0.435 ± 0.013	mass spectrometry

Recommended Value $4.2 \pm 0.2 \times 10^{10}$ a; Unweighted Average

Table 18 Total Half-life of ¹⁹⁰Pt

Author	$T_{\mu}/(10^{11} a)$	Comment
Hoffmann ¹⁸⁷	5.	not used
Porschen ¹⁸⁸	10.	not used; nuclear emulsion
Mac Farlane ¹⁴¹	6.9 ± 0.5	0.76% enriched
Petrzhak ¹⁸⁹	4.7 ± 1.7	Natural Pt.; ion chamber
Graeffe ¹⁹⁰	5.4 ± 0.6	natural + enriched Platinum
Al-Bataina ¹⁺⁶	6.65 ± 0.28	natural Platinum
Weighted Average	$8.5 \pm 0.3 \times 10^{11}$ a;	Recommended Value

2

Author "	$T_{y}/(10^{17} a)$	Comment
Kohman ¹⁹¹	≥ 0.3	Slight indication of activity
Riezler ⁹	1.4	$E\alpha = 2.6$ Mev > available energy
Recommended Value	Stable	

. .

Table 19 Total Half-life of ²⁰⁴Pb

Stable

•

Table 20 Total Half-life of ²¹⁰Pb

Author	$T_{\mu}/(a)$	Comment
Antonoff ¹⁹²	16.5	not used; ZnS ctg.
Albrecht ¹⁹³	22.5 ± 0.4	not used
Curie ¹⁹⁴	22.	not used
Joliot-Curie ¹⁹⁵	23.	not used; a ctg.
Wagner ¹⁹⁸	25.	not used; ion chamb.; 0.7 year ctg.
Tobailem ¹⁹⁷	19.40 ± 0.35	not used; 1/3 year ctg.
Merritt ¹⁹⁸	22.4 ± 0.4	4π prop. ctr., 5½ years ctg.
Harbottle ¹⁹⁹	20.4 ± 0.3	ion chamber: 3/4 year ctg.
Pate ²⁰⁰	23.3 ± 0.5	4π prop. ctr., 5 years ctg.
Eckelmann ²⁰¹	21.4 ± 0.5	geol
Imre ²⁰²	22.85 ± 0.70	S counting
Ramthun ²⁰³	21.96 ± 0.51	calorimetry
Von Gunten ²⁰⁴	22.2 ± 1.0	prop. counter
Hoehndorf ²⁰⁵	22.26 ± 0.11	a spectrometry
Recommended Value	22.6 ± 0.1 a;	Unweighted Average

Table 21 Total Half-life of ²¹⁰Po

Author	$T_{\mu}/(d)$, Comment
Schweidler ²⁰⁶	136.5	counted 6 years
Curie ²⁰⁷	140.	γ counted 4 year
Dorabialska ²⁰⁸	137.6 ± 0.6	calorimetry, α counting
Sanielevici ²⁰⁹	138.7 ± 0.6	calorimetry
Beamer ²¹⁰	138.3 ± 0.14	calorimetry
Ginnings ²¹¹	138.39 ± 0.14	calorimetry
Curtis ²¹²	138.37 ± 0.098	a ctg.; revised error
Eichelberger ²¹³	138.376 ± 0.05	calorimetry; revised error

Recommended Value 138.4 ± 0.1 d; Weighted Average with Uncertainty Rule

... •.

•

Author	T ₄ , '(d)	Comment
Bothe ²¹⁴	3.825 ± 0.004	revised error
Curie ²¹⁵	3.823 ± 0.003	revised error
Tobailem ²¹⁶	3.825 ± 0.006	icn chamber; revised error
Marin ²¹⁷	3.8229 ± 0.0017	Counted 54 T _w ; revised error
Robert ²¹⁸	3.825 ± 0.005	revised error
Shimanskaia ²¹⁹	3.83 ± 0.03	Calorimetry
Butt ²²⁰	3.82351 ± 0.0017	Nal; counted 40 T_{μ} ; revised error
Recommended Value	3.823 ± 0.004 d;	Weighted Average with Uncertainty Rule

. .

Table 22 Total Half-life of 222Rn

• • • •

• •

Table 23 Total Half-life of ²²⁴Th

Author	T ₄ /(s)	Comment
Tove ²²¹	1.05 ± 0.05	Scintillation detector
Valli ²²²	1.03 ± 0.05	semi-conductor
Ibowski ²²³	1.05 ± 0.02	a spectrometry
Weighted Average	1.05 ± 0.02 s;	Recommended Value

Table 24 Total Half-life of ²²⁶Ra

Author	$T_{4}/(a)$	Comment
Watson ²²⁴	1608.	not used; calorimetry
Braddick ²²⁵	1603.	not used; a current
Curie ²²⁸	1590.	not used; ion current
Ward ²²⁷	1599.	not used; no. $\alpha' \epsilon$ emitted
Meitner ²²⁸	1590.	not used; calorimetry
Gleditsch ²²⁹	1691.	not used; growth rate
Guenther ²³⁰	1603.	not used; He prod.
Kohman ²³¹	$1622. \pm 13.$	no. a's emitted
Gorshkov ²³²	1573.	not used; calorimetry
Sebaoun ²³³	1617. ± 12.	no. a's emitted
Gorshkov ²³⁴	$1577. \pm 9.$	calorimetry
Martin ²³⁵	$1602. \pm 8.$	calorimetry
Ramthun ²³⁸	1599. ± 7.	calorimetry
Weighted Average	$1599. \pm 4. a;$	Recommended Value

Author *	T ₄ /(a)	Comment
Joliot-Curie ²³⁷	21.7	not used
Hollander ²³⁸	22.0 ± 0.3	ion chamber
Tobailem ²³⁹	21.6 ± 0.4	ion chamber
Shimanskaya ²⁴⁰	21.2 ± 0.8	calorimetry
Robert ²⁴¹	21.6 ± 0.3	calorimetry
Jordan ²⁴²	21.773 ± 0.012	calorimetry; revised error
Recommended Value	$21.77 \pm 0.02 a;$	Weighted Average with Uncertainty Rule
Recommended Value Table 26 Total Half-	21.77 ± 0.02 a; # life of ²²⁸ Ra	Weighted Average with Uncertainty Rul
Recommended Value Table 26 Total Half- Author	21.77 ± 0.02 a; if life of ²²⁸ Ra T ₄ /(a)	Weighted Average with Uncertainty Rule Comment
Recommended Value Table 26 Total Half- Author Curie ²⁴³	$\frac{21.77 \pm 0.02 \text{ a;}}{\frac{4}{5}}$ life of ²²⁸ Ra $T_{h}/(a)$ 6.7	Weighted Average with Uncertainty Rule Comment not used
Recommended Value Table 26 Total Half- Author Curie ²⁺³ Dudley ²⁴⁴	$21.77 \pm 0.02 \text{ a;}$ $\frac{4}{5}$ life of ²²⁸ Ra $T_{h}/(a)$ 6.7 5.7 ± 0.2	Weighted Average with Uncertainty Rule Comment not used
Recommended Value Table 26 Total Half- Author Curie ²⁺³ Dudley ²⁺⁴ Mays ²⁺⁵	$21.77 \pm 0.02 \text{ a;}$ $\frac{11}{5}$ $\frac{11}{10}$ $\frac{11}{1$	Weighted Average with Uncertainty Ruli Comment not used

.

.

.

Table 25 Total Half-life of ²²⁷Ac

Table 27 Total Half-life of ²²⁸Th

Author	T ₄ /(a)	Comment
Meitner ²⁴⁸	1.91 ± 0.02	
Kirby ²⁴⁷	1.910 ± 0.002	α counting, 2 years
Mays ²⁴⁸	1.908 ± 0.004	γ counting
Mays ²⁴⁸	1.924 ± 0.020	a counting
Jordan ²⁴⁹	1.9131 ± 0.0020	Calorim.; 9.3 years; rev. error
Hoppes ²⁵⁰	1.9113 ± 0.0021	revised error
Recommended Value	1.912 ± 0.002 a;	Weighted Average with Uncertainty Rule

Author '	$T_{y}/(10^{4} a)$	Comment
Soddy ²⁵¹	7.42	Meadows recalculation
Soddy ²⁵²	7.14 ± 0.36	Meadows recalculation
Soddy ²⁵³	7.69 ± 0.30	Meadows recalculation
Curie ²⁵⁴	8.23 ± 0.25	not used
Soddy ²⁵⁵	7.32 ± 0.37	Meadows recalculation
Hyde ¹²	7.99 ± 0.34	26.4% enriched
Attree ¹³	7.61 ± 0.14	12.11% enriched
Meadows ¹⁴	7.538 ± 0.030	99.65% enriched
Weighted Average	$7.54 \pm 0.03 \times 10^4$ a;	Recommended Value

· ·

Table 28 Total Half-life of ²³⁰Th

• •

•

Table 29 Total Half-life of ²³²Th

Author	$T_{4}/(10^{10} a)$	Comment
Kovarik ²⁵⁸	1.39 ± 0.03	
Senftle ²⁵⁷	1.42 ± 0.07	Na(I)
Piciotto ²⁵⁸	1.39 ± 0.03	nuclear emulsion
Macklin ²⁵⁹	1.45 ± 0.05	incidental to cross section meas.
Farley ²⁶⁰	1.41 ± 0.014	ion-chamber α spectrometry
LeRoux ²⁶¹	1.40 ± 0.007	liquíd scintillator
Weighted Average	$1.40 \pm 0.01 \times 10^{10} a_{\rm c}$	Recommended Value

Table 30 Total Half-life of ²³¹Pa

Author	$T_{4}/(10^{4} a)$	Comment
Von Grosse ²⁸²	3.2 ± 0.3	not used
Van Winkle ²⁶³	3.43 ± 0.03	not used; α counting
Kirby ²⁸⁴	3.248 ± 0.026	calorimetry
Brown ²⁸⁵	3.234 ± 0.023	a counting
Robert ²⁶⁶	3.276 ± 0.011	Calorimetry
Recommended Value	$3.25 \pm 0.01 \times 10^4$ 2;	Unweighted Average

۰.

References

- 1. W. B. Mann, W. F. Marlow, E. E. Hughes, Appl. Radiat. Isot. 11, 57 (1961).
- 2. E. E. Hughes, W. B. Mann, Appl. Radiat. Isot. 15, 97 (1964).
- 3. II. Godwin, Nature 195, 984 (1962).

.

- 4. F. Johnson, Science 149, 1326 (1965).
- 5. T. Makino, M. Hondo, Geochim, Cosmochim, Acta 41, 1521 (1977).
- 6. D. R. Nethaway, A. L. Prindle, R. A. Van Konynenberg, Phys. Rev./C 17, 1409 (1978).
- 7. D. R. Nethaway, J. Inorg. Nucl. Chem 40, 1285 (1978).
- 8. S. N. Naldrett, Can. J. Phys. <u>62</u>, 15 (1984).
- 9. W. Riezler, G. Kauw, Z. Naturforschg. 13a, 904 (1958).
- 10. H. Faraggi, Ann. Phys. (Paris) 6, 325(1951).
- 11. B. Al-Bataina, J. Jaenecke, Phys. Rev./C 37, 1667 (1988).
- 12. E. K. Hyde, "The Transuranium Elements", National Nuclear Energy Series, Pt. II, 1435 (1949), McGraw-Hill Publ. -New York.
- 13. R. W. Attree, M. J. Cabell, R. L. Cushing, J. J. Pieroni, Can. J. Phys. 40, 194 (1962).
- 14. J. W. Meadows, R. J. Armani, E. L. Callis, A. M. Essling, Phys. Rev./C 22, 750 (1980).
- 15. N. E. Holden, Pure Appl. Chem. 61, 1483 (1989).
- 16. C. W. Reich, R. Vaninbroukx, Int. Atomic Energy Agency Report, IAEA-TEC-DOC-336, 275 (1985).
- 17. G. H. Jenks, F. H. Sweeton, J. A. Ghormley, Phys. Rev. 80, 990 (1950).
- 18. W. M. Jones, Phys. Rev. 83, 537 (1951).
- 19. W. M. Jones, Phys. Rev. 100, 124 (1955).
- 20. M. M. Popov, U. V. Gagarinskii, M. D. Sevin, I. P. Mikhalenko, lu. M. Morozov, At. Energia 4, 296 (1958).
- 21. J. S. Merritt, J. G. V. Taylor, Chalk River Report AECL-2510 (1966).
- 22. K. C. Jordan, B. C. Blanke, W. A. Dudley, J. Inorg. Nucl. Chem. 29, 2129 (1967).
- 23. P. M. S. Jones, J. Nucl. Materials 21, 239 (1967).
- 24. C. R. Rudy, K. C. Jordan, Mound Facility Report MLM-2458 (Dec. 22, 1977).
- 25. M. P. Unterweger, B. M. Coursey, F. J. Schima, W. B. Mann, Appl. Radiat. Isot. 31, 611 (1980).
- 26. J. J. Simpson, Phys. Rev./C 35, 752 (1987).
- 27. B. Budick, H. Lin, Bull. Am. Phys. Soc. 32, 1063 (1987).
- 28. B. M. Oliver, H. Farrar IV, M. M. Bretscher, Appl. Radiat. Isot. 38, 959 (1987).
- 29. B. M. Oliver, M. M. Bretscher, H. Farrar IV, Appl. Radiat. Isot. 40, 199 (1989).
- 30. D. J. Hughes, C. Eggler, C. M. Huddleston, Phys. Rev. 71, 269 (1917).
- 31. E. M. McMillian, Phys. Rev. 72, 591 (1947).
- 32. F. Yiou, G. M. Raisbeck, Phys. Rev. Lett. 29, 372 (1972).
- 33. E. M. McMillian, Phys. Rev./C 6, 2296 (1972).
- 34. J. F. Emery, S. A. Reynolds, E. I. Wyatt, G. I. Gleason, Nucl. Sci. Eng. 48, 319 (1972).
- 35. T. Makino, R. Gensho, M. Honda, Shitsuryo Bunseki (Mass Spectroscopy) 23, 33 (1975).
- H. J. Hofmann, J. Beer, G. Bonani, H. R. Von Gunten, S. Raman, M. Suter, R. L. Walker, W. Woelfli, D. Zimmermann, Nucl. Inst. Meth. B29, 32 (1987).

- 37. W. F. Libby, "Radiocarbon Dating", 2nd Ed., Univ. Chicago Press (1955).
- 38. D. E. Watt, D. Ramsden, H. W. Wilson, Appl. Radiat. Isot. 11, 68 (1961).
- 39. I. U. Olsson, I. Karlen, A. H. Turnbull, N. J. D. Prosser, Ark. f. Fys. 22, 237 (1962).
- 40. F. Bella, M. Alessio, P. Fratelli, Nuovo Cim, 58B, 232 (1968).
- 41. R. A. Rightmire, T. P. Kohman, H. Hintenberger, Z. Naturforschg. 13a, 847 (1958).
- 12. E. A. Samworth, E. K. Warburton, G. A. P. Engelbertink, Phys. Rev./C 5 138 (1972).
- 43. I. Sykora, P. Povinec, Nucl. Inst. Meth. B27, 467 (1986).
- 44. T. L. Norris, A. J. Gancarz, D. J. Rokop, K. W. Thomas, J. Geophys. Res. 88 (supplement) B333 (1983).
- 45. R. Middleton, J. Klein, G. M. Raisbeck, F. Yiou, Nucl. Inst. Meth. 218, 430 (1983).
- 46. J. H. Thomas, R. L. Rau, R. T. Skelton, R. W. Kavahagh Phy. Rev./C 30 385 (1984).
- 47. H. Zeldes, B. H. Ketelle, A. R. Brosi, C. R. Fultz, R. F. Hibbs, Phys. Rev. 86, 811 (1952).
- 18. R. W. Stoenner, O. A. Schaeffer, S. Katcoff, Science 148, 1325 (1965).
- 49. R. Kishore, R. Colle, S. Katcoff, J. B. Cumming, Phys. Rev./C 12, 21 (1975).
- 50. G. Orban, Sitzb. Akad. Wiss. Wien Abt. IIa, 140, 121 (1931).
- 51. E. Gleditsch, T. Graf, Phys. Rev. 72, 640 (1947).
- 52. L. H. Ahrens, R. D. Evans, Phys. Rev. 74, 279 (1948).
- 53. T. Graf, Phys. Rev. 74, 831 (1948).
- 54. R. W. Stout, Phys. Rev. 75, 1107 (1949).
- 55. J. J. Floyd, L. B. Borst. Phys. Rev. 75, 1106 (1949).
- 56. G. A. Sawyer, M. L. Wiedenbeck, Phys. Rev. 76, 1535 (1950).
- 57. T. Graf, Rev. Sci. Inst. 21, 285 (1950).
- 58. F. W. Spiers, Nature 165, 356 (1950).
- 59. W. R. Faust, Phys. Rev. 78, 624 (1950).
- 60. G. A. Sawyer, M. L. Wiedenbeck, Phys. Rev. 79, 490 (1950).
- 61. F. G. Houtermans, O. Haxel, J. Heintze, Z. Physik 128, 657 (1950).
- 62. B. Smaller, J. May, M. Freedman, Phys. Rev. 79, 940 (1950).
- 63. C. F. G. Delaney, Phys. Rev. 81, 158 (1951).
- 64. M. L. Good, Phys. Rev. 81, 891 (1951).
- 65. P. R. J. Burch, Nature 172, 361 (1953).
- 66. A. D. Suttle, W.F. Libby, Anal. Chem. 27, 921 (1955).
- 67. S. Kono, J. Phys. Soc. Japan 10, 495 (1955).
- 68. G. Backenstoss, K. Goebel, Z. Naturforschg. 10a, 920 (1955).
- 69. A. McNair, R. N. Grover, H. W. Wilson, Phil. Mag. 1, 199 (1956).
- 70. G. W. Wetherill, G. J. Wasserberg, L. T. Aldrich, G. R. Tilton, R. J. Havden, Phys. Rev. 103, 987 (1956).
- 71. G. W. Wetherill, Science 126, 545 (1957).
- 72. W. H. Kelly, G. B. Beard, R. A. Peters, Nucl. Phys. 11, 492 (1959).
- 73. N. K. Saha, J. B. Gupta, Proc. Natl. Inst. Sci. India 26 No. 5 (1960).
- 74. L. E. Glendenin, Ann. N.Y. Acad. Sci. 91, 166 (1961).
- 75. D. G. Fleishman, V. V. Glazunov, Sov. At. En. 12, 338 (1962).
- 76. G. A. Brinkman, A. H. W. Aten, Jr., J. Th. Veenboer, Physica 31, 1305 (1965).
- 77. H. Leutz, G. Schulz, H. Wenninger, Z. Phys. 187, 151 (1965).

- ٠
- 78. I. Feuerhaker A. Hinzpeter, Naturwiss, 53, 272 (1966).
- 79. A. W. DeRuytter, A. H. W. Aten, Jr., A. Van Dulmen, C. Krol-Konig, E. Zuidema, Physica 32, 991 (1966).
- 80. K. Egelkraut, H. Leutz. Physik Verhandl. 11, 67 (1966).
- 81. P. Venkataramaiah, H. Sanjeevaiah, B. Sanjeevaiah, Ind. J. Pure Appl Phys. 9, 133 (1971).
- 82. K. Gopal, H. Sanjeevaiah, B. Sanjeevaiah, Am. J. Phys. 40, 721 (1972).
- 83. A. Cesana, M. Terrani, Anal. Chem. 49, 1156 (1977).
- 84. R. K. Sheline, J. E. Hooper, Nature 179, 85 (1957).
- 85. J. H. Kaye, P. J. Cressy, J. Inorg. Nucl. Chem. 27, 1889 (1965).
- 86. J. J. Hohlfelder, Phys. Rev. 136, 1126 (1969).
- 87. H. Matsuda, S. Umemoto, M. Hondo, Radiochimica Acta 15, 51, (1971).
- 88. M. Hondo, M. Imamura, Phys. Rev./C 4, 1182 (1971).
- 89. R. Woelfle, W. Herr, U. Herpers, Radiochimica Acta 18, 207 (1972).
- 90. M. Heimann, P. P. Parekh, W. Herr, Geochim. Cosmochim. Acta 38, 217 (1974).
- 91. F. Strassmann, E. Walling, Ber. d. dtsch. Chem. Ges. 71B, 1 (1938)
- 92. S. Eklund, Arkiv Mat. Astron. Fysik A33, #14 (1946)
- O. Haxel, F. G. Houtermans, Z. Phys. 124, 705 (1948); see also O. Haxel, F. G. Houtermans, M. Kemmerich, <u>Phys. Rev. 74</u>, 1886 (1248).
- 94. M. Kemmerich, Z. Phys. 126, 399 (1949).
- 95. S. C. Curran, D. Dixon, H. W. Wilson, Phys. Rev. 84, 151 (1951).
- 96. G. M. Lewis, Phil. Mag. 43, 1070 (1952).
- 97. J. Flinta, S. E. Klund, Arkiv Fysik 7, 401 (1953).
- 98. M. H. MacGregor, M. L. Wiedenbeck, Phys. Rev. 94, 138 (1954).
- 99. I. Geese-Baehnisch, E. Huster, Naturwiss. 21, 495 (1954); see also I. Geese-Baehnisch, Z. Physik, 142, 565 (1955).
- 100. K. Fritze, F. Strassmann, Z. Naturforschg. 11a, 277 (1956).
- 101. L. T. Aldrich, G. W. Wetherill, G. R. Tilton, G. L. Davis, Phys. Rev., 103, 1045 (1956).
- 102. W. F. Libby, Anal. Chem. 29, 1566, (1957).
- 103. K. F. Flynn, L. E. Glendenin, Phys. Rev., 116, 744 (1959)
- 104. G. V. Ovchinnikova, Geochemica, 5, 392 (1959).
- 105. W. Rausch, W. Schmidt, Phys. Verhandl 11, 66 (1960).
- 106. A. McNair, H. W. Wilson, Phil. Mag. 6, 563 (1961).
- 107. K. Egelkraut, H. Leutz, Z. Physik, 161, 13,(1961).
- 108. G. B. Beard, W. H. Kelly, Nucl. Phys. 28, 570 (1961).
- 109. H. Leutz, H. Wenninger, K. Ziegler, Z. Physik. 169, 409 (1962).
- 110. A. Kovách, Acta Phys. Hung. 17, 341 (1964).
- 111. H. G. Thode, McMaster Univ. Reactor Research Report NP 15037, B27 (1965)
- 112. C. C. McMullen, K. Fritze, R. H. Tornlinson, Can. J. Phys., 44, 3033 (1966).
- 113. W. Neumann, E. Huster, Z. Physik 270, 121 (1974).
- 114. D. W. Davis, J. Gray, G. L. Cumming, H. Baadsgaard, Geochim, Cosmochim, Acta 11 1745 (1977).
- 115. E. Akatsu, Radioisotopes 30 647 (1981).
- 116. K. E. Apt, J. D. Knight, D. C. Camp, R. W. Perkins, Geochim. Cosmochim. Acta 38, 1485 (1974).
- 117. S. Katcoff, O. A. Schneffer, J. M. Hastings, Phys. Rev. 82, 688 (1951).

- 118. H. T. Russel, Oak Ridge National Laboratory Report ORNL-2293 (1957).
- 119. J. F. Emery, S. A. Reynolds, E. I. Wyatt, Nucl. Sci. Eng. 48, 319 (1972).
- 120. J. G. Kuhry, G. Bontems, Radiochem. Radioanal. Lett. 15, 29 (1973).
- 121. W. Turchinetz, R. W. Pringle, Phys. Rev. 103, 1000 (1956).
- 122. R. N. Glover, D. E. Watt. Phil Mag. 2, 49 (1957).
- 123. A. W. DeRuytter, A. H. W. Aten, Jr., A. Van Dulmen, C. Krol-Konig, E. Zuidema, Physica 32, 991 (1966).
- 124. J. L. Ellis, H. E. Hall Jr. Nucl. Phys., A179, 540 (1972).
- 125. C. Marsol, F. Armanet, G. Ardisson, Compt. Rend. 274, 904 (1972).
- 126. H. W. Taylor, R. J. Bauer, J. Phys. Soc. Japan 47, 1395 (1979).
- 127. J. Sato, J. Hirose, Radiochem. Radioanal. Lett. 46, 145 (1981).
- 128. E. B. Norman, M. A. Nelson, Phys. Rev./C 27, 1321 (1983).
- 129. A. Masuda, H. Shimizu, S. Nakai, A. Makishiwa, S. Rahti, Planet Sci. Lett. 89, 316 (1988).
- 130. G. Hevesy, M. Pahl. R. Hosemann, Z. Physik 83, 43 (1933).
- 131. M. Herzfinkiel, A. Wroneberg, Compt. Rend. 199, 133 (1934).
- 132. M. Mader, Z. Physik 88, 601 (1934).
- 133. W. F. Libby. Phys. Rev. 46, 196 (1934).
- 134. R. Hosemann, Z. Physik 99, 405 (1936).
- 135. P. Cuer, G. M. G. Lattes. Nature 158, 197 (1946).
- 136. E. Picciotto. Compt. Rend. 229, 117 (1949).
- 137. G. Beard, M. L. Wiedenbeck. Phys. Rev. 95, 1245 (1954).
- 138. G. E. Leslie. (M. S. Thesis North Carolina State College 1954, see also Nucl. Sci. Abst. 10, 1099 (1956).
- 139. G. Beard, W. H. Kelly, Nucl. Phys. 8, 207 (1958).
- 140. M. Karras, M. Nurmia, Nature 185, 601 (1960).
- 141. R. D. MacFarlane, T. P. Kohman, Phys. Rev. 121, 1758 (1961).
- 112. P. M. Wright, E. P. Steinberg, L. E. Glendenin, Phys. Rev. 123, 205 (1961).
- 143. D. Donhoffer, Nucl. Phys. 50, 489 (1964).
- 144. K. Valli, J. Aaltonen, G. Graeffe, M. Nurmia, R. Poeyhoenen, Ann. Acad. Sci. Fenn. Ser. A, No. 177 (1965).
- 145. M. C. Gupta, R. D. MacFarlane, J. Inorg. Nucl. Chem. 32, 3425 (1970).
- 146. B. Al-Bataina, J. Jaenecke, Radiochim. Acta 42, 159 (1987).
- 147. M. Heyden, W. Wefelmeier, Naturwiss. 26, 612 (1938).
- 148. W. F. Libby, Phys. Rev. 56, 21 (1939).
- 149. A. Flammersfeld, Z. Naturforschg, 2a, 86 (1947); see also A. Flammersfeld, J. Mattauch, Naturwiss, 31, 66 (1943).
- 150. J. R. Arnold, Phys. Rev. 92, 743 (1954).
- 151. D. Dixon, A. McNair, S. C. Curran, Phil. Mag. 15, 683 (1954).
- 152. R. N. Glover, D. E. Watt, Phil. Mag. 2, 699 (1957).
- 153. W. Herr, E. Merz, Z. Nat. 13a, 268 (1958).
- 154. A. McNair, Phil. Mag., 6, 851 (1961).
- 155. K. Sakamoto, Nucl. Phys. A103, 134 (1967).
- 156. V. Prodi, K. F. Flynn, L. E. Glendenin, Phys. Rev. 188, 1930 (1969).
- 157. A. Boudin, S. Deutsch, Science, 168, 1219 (1970).
- 158. K. Komura, K. Sakamoto, S. Tanaka, Nucl. Phys. A198, 73 (1972).

- 159. E. B. Norman, Phys. Rev./C 21, 1109 (1980).
- 160. A. P. Sguigna, A. J. Larabee, J. C. Waddington, Can. J. Phys. 60, 361 (1982).
- 161. P. J. Patchett, Geochim. Cosmochim. Acta 47, 81 (1983).
- 162. J. Sato, Y. Ohoka, T. Hirose Radiochem. Radioanal. Lett. 58, 263 (1983).
- 163. W. Riezler, G. Kauw, Z. Naturforschg. 14a, 196 (1959)
- 164. P. Eberhardt, J. Geiss, C. Lang, W. Herr, E. Merz, Z. Naturforschg., 10a, 796 (1955).
- 165. E. R. Bauminger, S. G. Cohen, Phys. Rev. 110, 953 (1958).
- 166. P. Eberhardt, P. Signer, W. Herr, E. Merz, Z. Naturforschg., 13a, 1004 (1958).
- 167. G. Ardisson, Radiochem. Radioanal. Lett., 29, 7 (1977).
- 168. E. B. Norman, Phys. Rev./C 24, 2334 (1981).
- 169. J. B. Cumming, D. E. Alburger, Phys. Rev./C 31, 1494 (1985).
- 170. V. E. Viola Jr, C. T. Roche, M. M. Minor, J. Inorg. Nucl. Chem. 37, 11 (1975).
- 171. S. N. Naldrett, W. F. Libby, Phys. Rev., 73, 487 (1948).
- 172. N. Sugarman, H. Richter, Phys. Rev., 73, 1411 (1948).
- 173. D. Dixon, A. McNair, <u>Puil. Mag.</u>, <u>45</u>, 1099 (1954); see also D. Dixon, A. McNair, S. C. Curran, <u>J. Phys. Rad.</u>, <u>16</u>, 538 (1955).
- 174. A. D. Suttle, Jr., W. F. Libby, Phys. Rev. 95, 866 (1954).
- 175. W. Herr, H. Hintenberger, H. Voshage, Phys. Rev., 95 1691 (1954).
- 176. W. Herr, E. Merz, Z. Naturforschg., 10a, 613 (1955).
- 177. J. R. Walton, Diss. Abst., 17, 2438 (1957).
- 178. S. N. Naldrett, Ann. N.Y. Acad. Sci., 72, 215 (1958).
- 179. W. Herr, E. Merz, Z. Naturforschg., 134, 231 (1958).
- 180. H. Kocol, Nucl. Sci. Abst. 15, 3864 (1964).
- 181. C. J. Wolf, W. H. Johnston, Phys. Rev., 125, 307 (1962).
- 182. B. Hirt, G. R. Tilton, W. Herr, W. Hoffmeister, Hely. Phys. Acta 35, 320 (1962).
- 183. R. L. Brodzinski, D. C. Conway, Phys. Rev. <u>138</u>, 1368 (1965).
- 184. D. E. Watt, R. N. Glover, Phil. Mag. 7, 105 (1962).
- 185. J. M. Luck, C J. Allegre, Nature 302, 130 (1983).
- 186. M. Lindner, D.A. Leich, R.J. Borg, B.P. Russ, J.M. Bazan, D.S. Simons, A.R. Date, Nature 320 246 (1986).
- 187. G. Hoffmann, Z. Physik, 7, 254 (1921).
- 188. W. Porschen, W. Riezler, Z Naturforschg, 11a, 143 (1956).
- 189. K. A. Petrzhak, M. I. Yakunin, Sov. Phys. JETP 14, 1265 (1962).
- 190. G. Graeffe, Ann. Acad. Sci. Fennicae Ser. A VI. 128, 1 (1963).
- 191. T. P. Kohman, Proc. Conf. Nucl. Processes in Geological Settines, Williams Bay, Wisconsin, Sept. 21-23 (1953).
- 192. G. N. Antonoff, Phil. Mag. 19, 825 (1910).
- 193. E. Albrecht, Mitt. Ra. Inst. 123 Wien, Ber. IIa 28 (1919).
- 194. M. Curie, I. Curie, J. Phys. Rad. 10, 385 (1929).
- 195. I. Curie, J. Phys. Rad. 10, 388 (1929).
- 196. F. Wagner, Argonne Nat'l Lab. Rpt. ANL-4490, 5 (1950).
- 197. J. Tobailem, J. Phys. Rad. 16, 235 (1955).
- 198. W. F. Merritt, P. J. Champion, R. C. Hawkings Can. J. Phys. 35, 16 (1957).

- 199. G. Harbottle, J. Inorg. Nucl. Chem. 12, 6 (1959).
- 200. B. D. Pate, D. C. Santry, L. Vaffe, Can. J. Chem. 37, 1000 (1959).
- 201. W. R. Eckelmann, W. S. Broecker, J. L. Kulp, Phys. Rev. 118, 698 (1960)
- 202. L. Imre, G. Fabry, I. Dezsi Magy. Tud. Akad. Kem. Tud. Oszt. Kozlemen. 19, 1 (1963).

ł

- 203. H. Ramthun, Z. Naturforschg. 19a, 1064 (1964).
- 204. F. R. von Gunten, A. Wyttenbach, H. Dulakas, J. Inorg. Nucl. Chem. 29, 2826 (1976).
- 205. A. Hoehndorf, Z. Naturforschg. 24a, 612 (1969).
- 206. E. V. Schweidler, Verh. deutsch Phys. Ges. 14, 539 (1912).
- 207. M. Curie, J. Phys. Rad. 1, 12 (1920).
- 208. A. Dorabialska, Roczniki Chem. (Poland) 11, 475 (1931).
- 209. A. S. Sanielevici, J. Chimie Phys. 33, 779 (1936).
- 210. W. H. Beamer, W. E. Easton, J. Chem. Phys. 17, 1298 (1949).
- 211. D. C. Ginnings, A. F. Ball, D. T. Vier, J. Res. NBS 50, 75 (1953).
- 212. M.L. Curtis, Phys. Rev. 92, 1489 (1953).
- 213. J.F. Eichelberger, K.C. Jordan, S.R. Orr, J.R. Parks, Phys. Rev. <u>96</u>, 719 (1954).
- 214. W. Bothe, Z. Phys. 16, 266 (1923).
- 215. I. Curie, C. Chamie, J. Phys. Rad. 5, 238 (1924).
- 216. J. Tobailem, Compt. Rend. (Paris) 233, 1360 (1951).
- 217. J. Robert, J. Phys. Rad. 17, 605 (1956).
- 218. P. C. Marin, Brit. J. Appl. Phys. 7, 188 (1956).
- 219. N. S. Shimanskaia, Instr. Exptl. Techniques 2, 283 (1956).
- 220. D. K. Butt, A. R. Wilson, J. Phys./A 5, 1248 (1972).
- 221. P. A. Tove, Arkiv Fysik 13, 549 (1958).
- 222. K. Valli, E. K. Hyde, J. Borggreen, Phys. Rev./C 1, 2115 (1970).
- R. Ibowski, W. Scholz, J. Bisplinghoff, H. Ernst, J. Rama Rao, T. Mayer-Kuckuk, Juelich Report JUEL-SPEZ-15 19 (1978).
- 224. S. W. Watson, M. C. Henderson, Proc. Roy. Soc. A118, 318 (1928).
- 225. H. J. J. Braddick, H. M. Cave, Proc. Roy. Soc. A121, 367 (1928).
- 226. I. Curie, F. Joliot, Compt. Rend. (Paris) 187, 43 (1928).
- 227. F. A. B. Ward, C. E. Wynn-Williams, H. M. Cave, Proc. Roy. Soc. A125, 713 (1929).
- 228. L. Meitner, W. Ortmann, Z. Phys. 60, 143 (1930).
- 229. E. Gleditsch, E. Foeyn, Am. J. Sci. 29, 253 (1935).
- 230. P. Guenther, Z. Phys. Chem. A185, 367 (1939).
- T. P. Kohman, D. P. Ames, J. Sedlet, "The Transuranium Elements". <u>National Nuclear Energy Series</u>, <u>Vol. 1V-14B</u>, 1675 (1949), McGraw-Hill Publ. New York.
- 232. G. V. Gorshkov, N. S. Shimanskaya, Sov. At. En. 1 (5), 86 (1956).
- 233. W. Sebaoun, Ann. Phys. (Paris) 1, 680 (1956).
- 234. G. V. Gorshkov, Z. G. Gretchenko T. A. Hinskaya, B. S. Kuznetsov, N. S. Shimanskaya, Sov. At. En. 7, 912 (1959).
- 235. G. R. Martin, D. G. Tuck, Int. J. Appl. Radiat. 1sot. 5, 141 (1959).
- 236. H. Ramthun, Nuklemik 8, 244 (1966).
- 237. I. Joliet-Curie, G. Bouissieres, Cahiers Phys. 26, 1 (1944).