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ABSTRACT 

A pressure t r ans i en t  technique for t racking 
the advance of co ld .va te r  f ronts  during v a t e r  
flooding and geothermal in jec t ion  operat ions has 
been developed. The technique is based on the  
concept t ha t  the  steady s t a t e  pressure buildup i n  
the  reservoi r  region ins ide  the  f ront  can be 
calculated by a f l u i d  sk in  f8ctor.  By analyzing 
successive pressure f a l l o f f  t e s t s ,  the  advance of 
the f ront  i n  the  reservoi r  can be monitored. 
The v a l i d i t y  of the  method is demonstrated by 
appl icat ion t o  three  numerically simulated da ta  
sets, a nonisothermal step-rate in jec t ion  t e s t ,  
a se r i e s  of pressure f a l l o f f s  i n  a multilayered 
reservoir ,  8nd a series of pressure f a l l o f f  t e s t s  
in a v a t e r  flooded o i l  reservoir .  

INTRODUCTION 

During both geothemal  and v a t e r  f looding 
operat ions it is important t o  know the  pos i t ion  
of t h e  in te r face  or f ront  between the  injected 
and i n  s i t u  f lu ids .  Since the  injected f lu id  
usual ly  has a d i f f e ren t  v i scos i ty ,  dens i ty  and 
r e l a t i v e  permeabili ty than tha t  of the in  s i t u  
f lu id ,  in jec t ion  c rea tes  8 r a d i a l l y  s 
heterogeneity around the  w e l l .  

Pressure t r ans i en t s  d u r i  
f a l l o f f ,  i n  systems v i t h  radial d i s c o n t i n u i t i e s  
created by f lu id  in jec t ion ,  h8ve been r tudied by 
numerous researchersl-12. These s tudies  have 
shovn tha t  under a v a r i e t y  of spec i f i c  conditionr.  
the reservoi r  propert ies  and the sk in  f ac to r  
can be determined from in jec t ion  test or f a l l o f f  
data.  
region around the well  created by cold v a t e r  
in jec t ion  in to  a hot re rervoi r  could be math 
i c t l l y  t rea ted  by a thermal sk in  factor .  
extended t h i s  concept to develop a method of 
f ront  tracking during co ld  v a t e r  in jec t ion  
in to  a hot water reservoir .  A generalized 
formulation of the  f l u i d  sk in  fac tor  and hou it 
can be used fo r  f ront  t racking is developed i n  
t h i s  paper. 

Benson and B o d v a r s s o n ~ ~  shoved tha t  the  
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BACKGROUND 

Pressure t r ans i en t s  during in jec t ion  of f lu ids  
v i t h  d i f f e ren t  proper t ies  are character ized by one 
of two types of behavior: 

(1) Moving front-dominated behavior, during vhich 
the  very ea r ly  time pressure t r ans i en t s  correspond 
t o  the  proper t ies  of the  reservoi r  f l u id  and t h e  l a t e  
time t r & s i e n t s  t o  the  propert ies  of t h e  injected 
f luid9 10 # 13 

(2) 
havior which i r  characterized by tvo slopes,  t h e  
f i r s t  corresponding t o  the f lu id  proper t ies  of 
the  region inside the  front  and t h e  second t o  the  
propert ies  of the reservoi r  f l u i d  outs ide  of t h e  
front.13 

This study appl ies  t o  pressure t r ans i en t s  char- 
ac te r ized  by the composi tereservoir  behavior. 

C.mposite reservoi r  ( s ta t ionary  f ront )  be- 

The therrnal skin fac tor ,  which can be gene- 
a l i r e d  t o  a f lu id  .kin fac tor ,  is bes t  explained 
by considering the  presrure  buildup and f a l l o f f  
due t o  nonisothermal inject ion.  Figure 1 shows 
numerically simulated pressure buildup da ta  fo r  a 
s t ep  rate test during which 20.C water is injected 
in to  a 2SO.C reservoi r  (a  mobil i ty  cont ras t  of 
near ly  10). For comparison, i so theraul  in jec t ion  
at  20'c and 2SO.C. fo r  i den t i ca l  r t e p  r a t e  t e r t s ,  
are a l so  shown. 
pressure buildup fo r  the noniso th~rmal  test is 
less than tha t  f o r  2O'C isothermal in jec t ion  
and grea te r  than tha t  for  isothermal ZSO'C 
inject ion.  In other  wordr, r e l a t i v e  t o  the  hot 
r e ~ e w o i r ,  t he  cold water c rea tes  an addi t ional  
buildup component t ha t  depends on the  mobili ty 
cont ras t  between the  tvo f lu ids .  The thermal 
rk in  f8ctor  i r  derived in  the  same vay as t h e  
mechanical sk in  f ac to r  and can be expressed 

Note t h a t  the  magnitude of the 

8s 

(1) 

The present study discusses  a method of f ront  
tracking. which requires  successive pressure f a l l -  
o f f  t es t r ,  or s tep  r a t e  in jec t ion  tests be conducted. 
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PRESSURE TRANSIENT METHOD FOR FRONT TRACKING 

( 5 )  

The method is based on the  re la t ionship  between the  
increasing r a d i a l  dis tance t o  t h e  in jec t ion  f ront  and 
the resu l tan t  changes i n  t h e  f l u i d  sk in  f a c t o r  
(defined below). 

APPROACH 

An expression f o r  the  f l u i d  sk in  f a c t o r  can be 
derived a n a l y t i c a l l y  by considering the  steady 
s t a t e  pressure response i n  a two-fluid composite 
reservoir .  In  t h i s  paper, t h e  f l u i d  sk in  f a c t o r  
i s  derived and then its use as a method of  
f ront  t racking is developed. 
and v a l i d i t y  of the  method is demonatrated by 
analyzing numerically simulated pressure f a l l o f f  
data  in  both nonisothermal l iqu id  water and 
oil-water systems. Two computer programs are 
used, PT and STMLD. Both use t h e  i n t e g r a l  
f ini te-difference method f o r  d i s c r e t i z i n g  t h e  
medium and formulating the  governing equations.16 

The a p p l i c a b i l i t y  

PT solves both the  mass and energy balance 
equations in  a water-saturated porous andfor 
f ractured medium. The f l u i d  v iscos i ty ,  densi ty ,  
compressibil i ty,  and thermal expansivi ty  are a l l  
calculated in te rna l ly  as functions of temperature 
and pressure t o  within 1% of t h e i r  cor rec t  value. 
The code has been val idated against  many a n a l y t i c  
so lu t ions  and f i e l d  data.  A deta i led  descr ip t ion  
of PT is given by Bodvarsson17. 

STMFLD is a multidimensional, fully-implicit  
numerical model f o r  simulating steam and water 
flooding of hydrocarbon reservoirs18. The 
model formulation includes two hydrocarbon com- 
ponents, thus,  t h r e e  mass- and one energy-balance 
equations a r e  solved f o r  each gr id  block. Both 
PT and STMFLD use an e f f i c i e n t ,  d i r e c t  so lu t ion  
technique19. 

THEORY 

The present study is  appl icable  t o  a reser- 
voir /wel l  system which is shown schematically i n  
Figure 2. We assume t h a t  t h e  reservoi r  is: 

(1) 
a b i l i t y ,  heat  capaci ty ,  and thermal conductivity;  

(2 )  hor izonta l ,  i n f i n i t e ,  and bounded above and 
below by impermeable and insu la t ing  s t ra ta ;  

( 3 )  f u l l y  saturated with one o r  more l iqu ids ;  

(4) f u l l y  penetrated with a f i n i t e  radius  w e l l  
bore. 

uniform and has a constant porosi ty ,  perme- 

The near-well region may have a d i f f e r e n t  perme- 
a b i l i t y  than t h e  reservoir but it must remain 
unal tered throughout inject ion.  

The e f f e c t s  of grav i ty  are neglected in  t h e  
study. In  la ter  sec t ions  the  p o s s i b i l i t y  of 
applying t h i s  method t o  a layered or fractured 
reservoir  is discussed. 

The front  t racking methods discussed here  
a r e  appl icable  to reservoirs described above 
when the  pressure t r a n s i e n t s  behave l i k e  those of  
a composite reservoi r  system. A deta i led  discussion 

of when t h e  pressure t r a n s i e n t s  for nonisothermal 
in jec t ion  behave l i k e  those of a composite system 
is given by Benson and Bodvarsson13. Pressure 
f a l l o f f s  always behave according to ' the composite 
system model ( s ta t ionary  f ront )  therefore ,  the  
emphasis of t h i s  paper is  on the ana lys i s  of 
pressure f a l l o f f  tests. 

The steady-state pressure buildup i n  a two- 
f l u i d  composite system with a s ta t ionary  f ront  is  
given by 

r -I 

( 2 )  

J 
By rearranging and adding and subs t rac t ing  t h e  
term In rf/rw, equation (2)  can be wr i t ten  

c - 
( 3 )  

W 

L 4 
By analogy to  t h e  mechanical sk in  fac tor ,  t h e  
f l u i d  sk in  f a c t o r  can be defined 

w 
(4) 

I f  there  is a region of mechanical damage o r  
enhancement around the wellbore, t h e  steady-state 
pressure buildup has three  components, one 
due t o  t h e  mechanical skin,  another due t o  
the flooded region, and a t h i r d  one due t o  the  
reservoir. Assuming t h a t  t h e  near-well region 
has been flooded, the  steady-state pressure drop 
can be expressed as 

P 

krokuiPo - 5 -I( krikslloPi ) rw 
1 

A 
For mst p r a c t i c a l  cases ,  the  term In  rf/rs 
can be approximated by rf/rw and once again,  
the  concept of  a f l u i d  sk in  f a c t o r  can be used. 
It is a l s o  of i n t e r e s t  to  note  t h a t  the t o t a l  
apparent sk in  f a c t o r  has  two components, t h a t  
is 

r 
'a =(k  krokuiPo .k u P - ')lnT+ s 'f 

r r s o i  w 

I n  t h i s  expression the  t r u e  mechanical sk in  of 
the w e l l  is combined with f luid-related components. 

In  order  t o  use t h e  f l u i d  sk in  f a c t o r  as a 
f ront  t racking too l ,  a t es t  and ana lys i s  procedure 
must be developed t h a t  w i l l  allow d i f f e r e n t i a t i o n  
between the  mechanical and f l u i d  sk in  fac tors  of 
a well. I n  cases where t h e  f ront  between t h e  
injected and r e s e r v o i r  f l u i d  moves as a function 
of tfr2, which is t h e  c a s e . f o r  most processes 
considered i n  porous medium, such a procedure 
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can be developed as follows. 
of the front  can be expressed as 

The r a d i a l  posi t ion 

1 /2 
'f = (3) 

where a is a constant of proport ional i ty  t h a t  
depends on the mass-and energy-balance equations 
governing the displacement process. For exmple ,  

pwcw 

'ac, 
a -  - 

and 

€or nonisothermal in j ec t ion  and waterflood dis- 
placement re rpe c t ivel y . 2o s 21 
term Qt can be replaced by the cumulative in j ec t ion  
Z and s u b s t i t u t i n g  t h i s  expression i n t o  Equation 
(4). we see t ha t  

Xot ing th8  t the  

since the second logarithmic term is a constant,  it is 
clear t ha t  a p lo t  of the  logarithm of t he  cumulative 
inject ion versus the  f l u i d  skin f ac to r  w i l l  r e s u l t  i n  
semilog s t r a i g h t  l i n e  with a s lope of 

J n t i l  m r e  than a sing1 
injected i n t o  the  formation t C  * zrW2H) the  
Eluid rk in  f ac to r  is Lero. Therefore, i f  8uCCeL- 
l ive pressure f a l l o f f  t e t t s  are conducted, a f t  
increas ingly l a r g e r  quant i t ies  of cumulative 
in j ec t ion ,  the calculated apparent s k b  values 
h e n  plot ted versus t h e  logarithm o f  t he  cumulative 
inject ion,  w i l l  r e s u l t  i n  a s t r a i g h t  l i n e  of r lope n.. 
rhe intercept ,  evaluated when the f l u i d  skin f ac to  
cquals zero (C = w r w  2 
nechanical sk in  f a c t o  

y i e ld  the apparent 

rhe f lu id  sk in  f ac to r  can then be evaluated from 

From the f l u i d  sk in  f ac to r ,  the r a d i a l  dis tance t o  the 

(13) (1.151 s f /n )  r = r W e  .f 

I n  Tsble 1, the  r a d i a l  dis tance t o  the f ron t  
is given as a function of 1.151sf/n. 
values of t h i s  term, there  is good resolut ion of 
the r s d i s l  dis tance t o  the  front .  However, at  large 

For small 

3 

values of.1.151 s f /n ,  small e r r o r s  i n  the calculated 
f lu id  sk in  f ac to r  r e s u l t  i n  large e r r o r s  i n  the 
computed r a d i a l  dis tance t o  the  front.  
the f ront  t racking method discussed i n  t h i s  paper 
is most useful  f o r  f ron t  tracking during the 
ea r ly  phases of inject ion.  

Therefore, 

EXAMPLES 

Examples are given which demonstrate the applica- 
t i o n  of t h i s  method t o  three d i f f e ren t  s i t ua t ions ,  
(1) a s t e p  r a t e  i n j ec t ion  test when 20'c va t e r  i s  
injected i n t o  a 250'C reservoir ,  (2) t h ree  successive 
pressure f a l l o f f  tests in  a multi layer resewoir ,and 
(3)  two successive pressure f a l l o f f  t e s t s  i n  a 
waterf looded reservoir .  

Step Bate In j ec t ion  Tes t  

The following simulation was run t o  demonstrate 
f ront  tracking during a s t e p  r a t e  i n j ec t ion  t e s t .  
Three rbc-hour s teps ,  with in j ec t ion  r a t e l  of .1 
kg/s, .2 kg/s, and .3 kg/s were followed by a complete 
shutin.  The r h l a t e d  pressure data  are s h m  i n  
Figure 1. Table 2 lists the r e se rvo i r  and f l u i d  
propert ies  used in  the simulation. The pressure data  
from s t e p  1 are not s u i t a b l e  fo r  the type of analysis  
proposed i n  t h i s  paper because the movin thermal 
f ront  dominates the pressure t r ans i en t s l f  . Data from 
s t eps  2, 3, and 4 ( f a l l o f f )  are su i t ab le  f o r  t h i s  
8nalpsis.  
pressure f a l l o f f  a r e  shovn i n  Figure 3. Conventional 
awltirate theory is used i n  the  analysis.  
da t a  from iden t i ca l  s t e p  tests in  isothermal 20'C and 
250'C r e se rvo i r s  are a l s o  shown. 

A semilogarithmic p lo t  of the data  from the  

For comparii 

The t h e  a t  which shut in  occurs coincides with 
the l e f t  ax i s  of the graph. 
a f t e r  shu t in  the data  follow a slope which corresponds 
t o  the propert ies  of the injected 20'C f lu id .  A t  
approximately 35 seconds the da t a  begin t o  depart  
from t h e - f i r s t  slope and a f t e r  several  minutes become 
iden t i ca l  t o  the  f a l l o f f  i n  the  isothermal 250'C 

two-fluid composite r e s e w o i r s .  
the pressure t r ans i en t s  depart  from the f i r s t  slope 
can be estimated from the  radius  of invest igat ion 

A t  very ea r ly  times 

This two-slope behavior is t yp ica l  of 
The time a t  which 

(14) 

For r e l a t i v e l y  small cold spots  (up t o  10 m) the  f i r s t  
slope is usual ly  masked by vel lbore storage,  hence 
the observed semilog s t r a i g h t  l i n e  w i l l  correspond t o  
Eluid propert ies  of the reservoir .  It is t h i s  second 
rlope vhich must be used t o  ca l cu la t e  t he  r e se rvo i r  
permeability and apparent rkin factor .  From t h i s  
slope (PIJ and its extrapolat ion t o  obtain 
P i t ,  t he  r e se rvo i r  permeabili ty and the  apparent 
skm f ac to r  a re  calcu1ated: 

. 183Qou0 

mokroH 
k t  (15) 

n. 
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o r  i n  the  case of a s t e p  r a t e  t e s t  

k = .183 - 
mokroH 

(17) 

and - - 
kkro - log - - Qo (Pwf - 5 s )  

sa = l.151[(Q On - Q o  n-1 ) m 0 9uBtrw 2 
(18) 

Just p r io r  t o  the pressure f a l l o f f ,  t he  front 
has advanced 1.6 m i n to  the formation. The calculatec 
permeability is  
f ac to r ,  19.8. A s imi la r  ana lys i s  of s t eps  2 and 3 
yielded the same transmissivity and apparent sk in  
values of 14 and 18.9, respectively.  These apparent 
sk in  values versus the logarithm of the cumulative 
in j ec t ion  a re  shown in  the lowest curve of Figure 4. 
As expected, they f a l l  on a s t r a i g h t  l i n e  with a slope 
of 7.95, which is in good agreement with the 
value calculated by Equation (101, 8.05. 
r ad ia l  distances t o  the f ront  were calculated f o r  
each s t e p  using Equation (13). 
values of .65 m, 1.2 m and 1.5 m agree w e l l  with 
the  observed values of .7 m, 1.3 m and 1.6 ut. 

m2 and the apparent sk in  

The 

The calculated 

Iden t i ca l  s t e p  t e s t s  were run f o r  wells with 
mechanical sk in  f ac to r s  of 2 and 5. The calculated 
apparent sk in  f ac to r s  a re  a l so  shovn i n  Figure 4 and 
display s imi l a r  behavior t o  t h a t  of the w e l l  with a 
skin fac tor  of zero, except the  in te rcepts  a t  a 
cumulative in jec t ion  of rrw2H a re  displaced. 
For both of these cases, t he  f lu id  f ac to r  must be 
calculated from Equation (12). 
analysis is ident ica l  t o  t h a t  for  a w e l l  v i t h  a 
nechanical sk in  fac tor  of zero. 

The remainder of the 

It is important t o  note tha t  i f  the mechanical 
skin factor of a w e l l  changes in  response t o  
in jec t ion ,  the slope of the l i n e  on the sa versus C 
curve w i l l  not be equal t o  tha t  given by Equation 
(10).  Similarly,  i f  the movement of the f ront  cannot 
De expressed as a simple function of t/r2, the 
PlOpe w i l l  a l so  d i f f e r  from tha t  predicted by t h a t  
squat ion. 

Layered Reservoir 

In order t o  determine the app l i cab i l i t y  of the 
,reposed f ront  t racking  method t o  a layered reservoi r ,  
:he pressure f a l l o f f  following in jec t ion  of 5O'C 
ra te r  i n t o  a 250'C three-layer reservoi r  was simulated 
Ihe reservoi r  and f l u i d  proper t ies  used a re  listed in  
lable 2. A schematic of the reservoi r  is shown in 
zigure 5. 

Pressure f a l l o f f s  were simulated a f t e r  th ree  
i i f f e ren t  periods of in jec t ion  at a r a t e  of 30 kg/s; 
lo4 s ,  2 . 5  x lo4 s and 105 s. Horner graphs of 
Each f a l l o f f  a re  shown i n  Figure 6. 
iondimensionalizing the data using ( t  + At)/At causes 
a 1 1  of the data to  f a l l  on one curve. A l l  the da ta  
l i sp lay  typ ica l  two-fluid composite-reservoir 
Dehavior. 
shown on the graph for each of the f a l l o f f  tests. 

Note tha t  by 

Also note tha t  the values of P i r  a re  

The data =an be analyzed t o  obtain the average 
permeability fk) from the slope corresponding t o  the 
reservoi r  f l u id  ro erties. The calculated value of 

, 6.7 x l0-IE 3, i s  very c lose  t o  the cor rec t  

D FOR FRO" TRACKING 

value of 6.66 x 
a l s o  be calculated using Equation (161, i f  
i s  subs t i tu ted  fo r  k. The calculated values of the 
apparent sk in  are 9.73, 11.23 and 13.44. A plot of 
t h e  apparent sk in  values is  shown in  Figure 7 .  Once 
again, the  da ta  f a l l  on a s t r a i g h t  l ine .  The slope 
of the l i n e  is 3.71, vhich is c lose  t o  the value of 
3.61 computed using Equation (10). 
ex t rapola tes  t o  a value of zero when the cumulative 
in jec t ion  equals t rv2H.  
t he  zero sk in  value used in the simulation. 

mz. The apparent sk in  can 

The l i n e  

This is cons is ten t  with 

In Figure 8, the  r a d i a l  distance t o  the thermal 
f ront  is  shown in  each of the  three  layers.  
the  front has extended f a r thes t  from t he  w e l l  i n  the 
mOSt permeable layer.  
f ron t  a f t e r  each period of in jec t ion  can be calculated 
from Equation (13). The respec t ive  values are 2.2 m, 
3.5 m, and 7.1 m. Comparison between these values 
and those shown in Figure 7 ind ica tes  t ha t  the values 
predicted from Equation (13) a r e  midway between the 
d is tance  t o  the  f ron t  i n  the  more permeable stratum 
and the  d is tance  t o  the  f ron t  i n  the less permeable 
strata. This cannot be considered a rigorous ana lys i s  
of f ront  pene t ra t ion  in  layered formations. 
however, ind ica te  t h a t  the  small-scale heterogeneity 
prevalent i n  most formations w i l l  not s ign i f i can t ly  
reduce the e f fec t iveness  of t h i s  method fo r  front 
tracking. 

Hater Flood Fa l lo f f  

Note tha t  

The r a d i a l  d i s tance  t o  the 

It does, 

There a re  two major d i f fe rences ,  important t o  
pressure t r ans i en t  ana lys i s ,  between cold water 
i n j ec t ion  in to  a hot-water reservoi r  and cold water 
i n j ec t ion  in to  an o i l  reservoi r .  F i r s t ,  i n  general ,  
the water has a higher mobili ty t h a t  the in s i t u  o i l ,  
thus the f l u i d  sk in  fac tor  has a negative ra ther  than 
a pos i t ive  value. Second, water flooding usually 
r e s u l t s  in a d i f fuse  region behind the f ront  where 
the water s a tu ra t ion  va r i e s  from sw = 1 - sor 
imrnediately adjacent t o  the w e l l  t o  another value a t  
the f ront ,  which is governed by the  r e l a t ive  mobili t ie:  
and cap i l l a ry  pressure. In comparison, cold water 
in jec ted  i n t o  a hot reservoi r  r e s u l t s  in a nearly 
uniform temperature around the wll with a r e l a t i v e l y  
small t r a n s i t i o n  zone tha t  separates the cold and hot 
regions. 

A numerical simulation of the pressure f a l l o f f  
s f t e r  isothermal water flooding of an o i l  reservoi r  
demonstrates the  app l i cab i l i t y  of the  front tracking 
nethod discussed in  t h i s  paper. 
f l u i d  proper t ies  used a re  l i s t e d  in Table 2. The 
r e l a t ive  permeability of the o i l  and water phases 
were calculated from simple X-curves as follows: 

The reservoi r  and 

k- m kri (s - .3)/.7 
W 

kro 1 - sw/.8 (19b) 

l'he i r reducib le  o i l  and water sa tura t ions  are .2 and 
.3 ,  respectively.  Using the f lu id  properties l i s t e d  
in Table 2 and the  r e l a t i v e  permeability curves given 
above, a Buckley-Leverett ana lys i s  of the flooding 
process pred ic t s  an average water sa tura t ion  of 
approximately 0.45 behind the  f ront  and ,38 a t  the 
front 20. 

Horner p lo t s  of the simulated pressure f a l l o f f s  
a f t e r  lo5 s and 106 s of water flooding a t  a r a t e  
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of .05 kg/s are shown i n  Figure 9. As expected, t he  
same two-slope behavior, t yp ica l  of a composite 
system, is  observed. In t h i s  case hovever, t h e  f i r s t  
slope is smaller than the  second, indicat ive of a 
more mobile inner region. The s lope of the f i r s t  
s t r a i g h t  l i n e  corresponds t o  the f lu id  propert ies  of 
t h e  water for  a r e l a t i v e  permeabili ty evaluated a t  
the  i r reducible  o i l  saturat ion.  This r e s u l t s  from 
the  f ac t  t ha t  the  reservoi r  rock immediately ad jacent 
t o  the wellbore is rapidly flooded by many pore 
volumes of water and consequently the  o i l  sa tura t ion  
rapidly approaches the  i r reducib le  o i l  saturat ion.  
Since the region immediately adjacent t o  the well  is 
so important t o  the pressure t r ans i en t s  observed 
a t  the wel l ,  i t  is t h i s  f u l l y  swept region which 
controls  t h e  early-time t r ans i en t s  and governs the 
s teady-state  pressure change associated with the 
f l u i d  skin factor .  

The slope on the semilogarithmic s t r a igh t  l i n e  of 
:he simulated da ta  can be analyzed t o  determine the 
eormation permeability. 
i t  the i r reducib le  o i l  sa tura t ion  and ho evaluated 
i t  the  o i l  s a tu ra t ion  i n  the  undisturbed resemoif, 
:he apparent skin values can be calculated by Equation 
:16). 
:a lculated f o r  t he  pressure f a l l o f f s  following los s 
ind lo6 s of in jec t ion ,  respectively.  
,f the l i n e  on the  apparent sk in  fac tor  VI. cumulative 
tnject ion curve is -1.01, uhich is in good agreement 
r i th  the  value of -1.05 calculated from Equation 
,101. 

From Pis, hi evaluated 

Apparent sk in  values of -1.77 and -2.78 are 

The slope 

The r ad ia l  dis tance t o  the f ront  can be calculat tc  
Irom t he  apparent sk in  fac tor  using Squation (13). 
Ladial d i s t a n c e s  to the f ront  of .9 m and 2.1 m a re  
:alculated a f t e r  in jec t ion  fo r  los I m d  lo6 I, 
*espect ively.  The sa tu ra t ion  p ro f i l e s  i n  the 
.eservoir are shown in  Figur 
.nstance, the calculated d i s  
x c u t s  a t  a water sa tura t ion  of approximately .5S, 
warly  midway between the i r reducible  o i l  sa tura t ion  
md undisturbed reservoi r  saturat ion.  
lemonstrates t ha t  even though the simple composite 
.erervoir  -de1 is not s t r i c t l y  appl icable  to water- 
'lood displacement, t he  completely swept near-well  
.egion dominates the  pressu ponse and therefore  
1110~s successful app l i ca t i  
.echniqut . 

This example 

the  f ront  t racking 

'ROKT TRACKING IN FRACTURED RESERVOIRS 

In the  above discussion we have only considered 
iorous medium, single-phase reservoirs .  However, most 
:eothennal reservoi rs ,  and many o i l  resarvoi t s ,  are 
!racture-dominmted. Also, there  may be the addi t iona l  
:omplexity of a gas phase flowing i n  the reservoir .  
:bus, the  extent  t o  which the  methodology developed in  
. h i s  paper is rpp l i cab l t  t o  t h  
I i tua t  ions need 

complex 

nd Bodvarsson and Eenson2 
itudied nonisothermal in j ec t ion / f a l lo f f  tests in  
:eservoirs with horizontal  fractures. In t h e i r  
itudies f lu id  flow t rkes  place in  the  f rac tures  and 
:he rock a a t r i x  conducts heat  t o  the f rac ture  f lu ids .  
tn t h e  case of in jec t ion  tests, the pressure t rans ien t  
la ta  can be analyzed using the  conventional Their-type 
nethods, providing the  average f lu id  propert ies  ( 0 ,  U) 
i re  used (i.e., t he  f lu id  propert ies  should be 
:alculated based on the  average temperature, Tave 9 

L/2(Tin + Tr) ) .  The reason for  t h i s  k t ha t  a 
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f rac ture  system, t h e  s eed of the cold water f ront  is 
proportional t o  r4/t.2e The f a l lo f f  data  can be 
analyzed i n  the manner discussed above; however in  
es t imat ing the  r a d i a l  dis tance t o  the cold water 
f ront  on& d a t  consider the advancement r a t e  of the  
cold water f ront  a lon the  f rac tures  given by 
Bodvarsson and TsangZ& 

In the  case of a reservoi r  with an ex is t ing  
cold spot (i.e., a f t e r  considerable inject ion)  
the in j ec t ion / f a l lo f f  test da ta  should be analyzed 
using the  f lu id  proper t ies  corresponding t o  the hot 
reservoir  f l u ids  .23 Therefore, with some modification, 
the proposed f ront  t racking method should be applicable 
to fractured and/or f ractured porous mediums. 

:ONCLUSIONS 

A method fo r  t t ack ing  f ronts  during waterflooding 
)r geothermal in jec t ion  operations has been developed. 
b e  method is based on the  concept of a f l u i d  skin 
Factor. This f ront  t racking lPethod requires  tha t  
:onventional pressure f a l lo f  f tests be conducted a f t e r  
increasing periods of in jec t ion .  
liven which demonstrate appl icat ion of the method to: 
I) step-rate  in jec t ion  t e s t s ;  2) f a l l o f f  tests in  
layered reservoirs, and 3 )  f a l l o f f  tests i n  waterfloodel 
:eservoirs. 

Three examples a re  

The method is most successful ly  applied ear ly  
luring waterflood or geothermal in jec t ion  operat ions 
rhen the  reso lu t ion  of the  r ad ia l  distance t o  the front  
is grea tes t .  The technique is appl icable  t o  many 
:--fluid composite systems in  which the  mvement of 
:he front depends on t / r2 .  f t  may also be possible ,  
r i th  minor modifications,  t o  extend t h i s  method t o  
Fractured rystems where the front  advances a t  a r a t e  
:hat is proportional to t / r4 .  

?OMENCLANRE 

a - constant  of proport ional i ty  (-1 
c - heat  capacity (J/kg.*C) 
c - cumulative in jec t ion  t 3 )  

f r ac t iona l  flow of water 
reservoi r  thickness (m) 
permeabili ty (m2) 
r e l a t i v e  permeabili ty (-1 

k - average permeabili ty (3) 
absolute  value of t h e  slope on the  l i nea r  
segment of the  semilogarythmic plot  (Palcy) 
pressure (Pa) 
f loving pressure pr ior  t o  shut-in (Pa) 

Pis - extrapolated pressure a t  one second a f t e r  
shut-in (Pa) 

q - mass flow rate (kg/s) 
Q - volumetric flow r a t e  (&/SI 
Q~ 
rc - radius  of the  cold spot (m) 

re - r a d i a l  dis tance t o  constant pressure boundary ( 
rf - r a d i a l  dis tance t o  the front  (a) 
rs - radius  of t h e  damaged or enhanced region (m) 

- volumetric in jec t ion  r a t e  a t  s t e p  n(m31s) 
n 
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rw - w e l l  r a d i u s  (m) 

s - s k i n  f a c t o r  (-1 
sa - apparent  s k i n  f a c t o r  
sf - f l u i d  s k i n  f a c t o r  (-1 
s, - apparent  mechanical s k i n  f a c t o r  
s - i r r e d u c i b l e  o i l  s a t u r a t i o n  

st - thermal s k i n  f a c t o r  (-1 
sw - water s a t u r a t i o n  (-1 
t - time ((11 
T - temperature ('C) 

GREEK LETTERS 

o r  

- t o t a l  system compress ib i l i ty  (Pa-1) zt - d i f f e r e n c e  
X - thermal conduct iv i ty  (J/s.m.'C) 
Y - v i s c o s i t y  (Pa.s) 
P - d e n s i t y  (kg/m3) 
0 - p o r o s i t y  (-1 

Susbcr i p t s  

a - a q u i f e r  
f - f r o n t  
i - i n s i d e  t h e  f r o n t  
i n  - i n j e c t i o n  
o - o u t s i d e  t h e  f r o n t  
r - r e s e r v o i r  
u - water 
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Table 1. Radial distances to the front for several 

values of 1.151sf/n (well  radius = .1 m). t, 

1.151 sf/n 

01 
02 
03 
04 
05 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 

0.11 m 
0.12 m 
0.13 m 
0.15 m 
0.16 m 
0.27 m 
0.74 m 
2.00 m 
5.46 m 
14.84 m 
40.34 m 
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Table 2. Reservoir and fluid properties used in the numerical simulations. 
b 

c 
Parameter Step Rate Test Layered Reservoir Water Flood 

k (m2) 10-14 5 x 10-14, 10-13, 5 10-14 10-13 
H (m) 1 10, 10, 10 10 + (-1 .2 .2 .2 
Cr (J/kg'C) 1000 1000 1000 
Pr ( kg/m3 2200 2200 2200 
x (J/kg'C's) 2.0 2.0 2.0 

=W (m) .1 .1 .1 
S (-1 0 ,  2, 5 0 0 

Bt (Pa-1) 1 10-9 variable variable 

20 
250 
1 
1005 

1 
800 

10'3 

10-4 

50 
50 
1 
996 

1 
800 

5.4 10-4 

10-4 

20 
20 
.714 
1005 

.750 
800 

10-3 

10-2 
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F i g u r e  1 .  Simulated pressure buildup data during three steprate tests; 
isothermal 25OOC injection, nonisothermal injection of 2OoC 
water into a 25OOC reservoir and isothermal 2OoC injection. 



20 O C  into 25OOC 

X B L l t l I  -2664 

Figure 3.  Pressure falloff data following the step-rate injection test 
shown i n  Figure 1 .  
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Figure 2. Schematic of w e l l  and reservoir system. 
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Figure 4 .  Calculated apparent skin factors VS. the logarithm of the 
cumulative injection for the step-rate test.  
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Figure 5 .  Schematic of the 3-layer reservoir used for simulation of 
5OoC injection into a 250OC reservoir. 
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Figure 60 Hornet plots of pressure buildup data, i n  a 3-layer reservoir, 
following iniection of 50% water into a 2 5 0 V  reservoir. 

9 

8 



. 16 

14 

I2 

2 

0 

Figure 7 .  Apparent skin factors VS. cumulative i n ~ e c t i o n  for 5OoC 
inlect ion into a 3-layer 25OOC reservoir. 
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Layer 1 

Layer i 

Layer 3 

Distance (m) 
10 

Figure 8.  Radial distance the thermal front in a three layer 
reservoir after lo4,, 2.5, x 10% and 105s of injection 
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o Pressure falloff after 10% 
A Pressure falloff after 10% 

Figure 9 .  Homer plots of the pressure fal loffs  after water flooding 
for 10’s and 106s at  a rate of 05 ks/s. 
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Figure 10. Saturation rofiles i n  a water flooded o i l  reservoir after 
10% and 10 g s of injection. 




