A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using ...
continued below
Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.
Descriptive information to help identify this report.
Follow the links below to find similar items on the Digital Library.
Description
A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using a simple model (Z/sub eff/ = const) that is self-consistently altered while the plasma equilibrium is iterated. For beam-heated discharches the beam deposition profile is determined by means of a Monte Carlo scheme and the slowing down of the fast ions by means of an analytical solution of the Fokker-Planck equation. The code also carries out an electron power balance and calculates various confinement parameters. The code is described and examples of its operation are given.
This report is part of the following collection of related materials.
Office of Scientific & Technical Information Technical Reports
Reports, articles and other documents harvested from the Office of Scientific and Technical Information.
Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.
Zurro, B.; Wieland, R.M.; Murakami, M. & Swain, D.W.ZORNOC: a 1 1/2-D tokamak data analysis code for studying noncircular high beta plasmas,
report,
March 1, 1980;
Tennessee.
(digital.library.unt.edu/ark:/67531/metadc1092667/:
accessed April 25, 2018),
University of North Texas Libraries, Digital Library, digital.library.unt.edu;
crediting UNT Libraries Government Documents Department.