Tritium-field betacells

PDF Version Also Available for Download.

Description

Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be to hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. Many using low power flux beta emitters, wide bandgap semiconductors ... continued below

Physical Description

Pages: (16 p)

Creation Information

Walko, R.J.; Lincoln, R.C.; Baca, W.E. (Sandia National Labs., Albuquerque, NM (USA)); Goods, S.H. (Sandia National Labs., Livermore, CA (USA)) & Negley, G.H. (AstroPower, Inc., Newark, DE (USA)) January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Betavoltaic power sources operate by converting the nuclear decay energy of beta-emitting radioisotopes into electricity. Since they are not chemically driven, they could operate at temperatures which would either be to hot or too cold for typical chemical batteries. Further, for long lived isotopes, they offer the possibility of multi-decade active lifetimes. Two approaches are being investigated: direct and indirect conversion. Direct conversion cells consist of semiconductor diodes similar to photovoltaic cells. Beta particle directly bombard these cells, generating electron-hole pairs in the semiconductor which are converted to useful power. Many using low power flux beta emitters, wide bandgap semiconductors are required to achieve useful conversion efficiencies. The combination of tritium, as the beta emitter, and gallium phosphide (GaP), as the semiconductor converter, was evaluated. Indirect conversion betacells first convert the beta energy to light with a phosphor, and then to electricity with photovoltaic cells. An indirect conversion power source using a tritium radioluminescent (RL) light is being investigated. Our analysis indicates that this approach has the potential for significant volume and cost savings over the direct conversion method. 7 refs., 11 figs.

Physical Description

Pages: (16 p)

Notes

OSTI; NTIS; GPO Dep.

Source

  • 26. intersociety energy conversion engineering (IECE) conference, Boston, MA (United States), 3-9 Aug 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91014666
  • Report No.: SAND-91-1364C
  • Report No.: CONF-910801--8
  • Grant Number: AC04-76DP00789
  • Office of Scientific & Technical Information Report Number: 5582186
  • Archival Resource Key: ark:/67531/metadc1092659

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Description Last Updated

  • May 16, 2018, 1:40 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Walko, R.J.; Lincoln, R.C.; Baca, W.E. (Sandia National Labs., Albuquerque, NM (USA)); Goods, S.H. (Sandia National Labs., Livermore, CA (USA)) & Negley, G.H. (AstroPower, Inc., Newark, DE (USA)). Tritium-field betacells, article, January 1, 1991; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc1092659/: accessed October 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.