NUCLEAR PERFORMANCE OPTIMIZATION OF THE MOLTEN-SALT FUSION BREEDER

J. D. Lee and B. R. Bandini

This Paper Was Prepared For Submittal To The 7th Topical Meeting on the Technology of Fusion Energy, MGM Grand Hotel, Reno, NV; American Nuclear Society; June 15-19, 1986

June 5, 1986

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
NUCLEAR PERFORMANCE OPTIMIZATION OF THE MOLTEN-SALT FUSION BREEDER

J. D. Lee
Lawrence Livermore National Laboratory
University of California
Livermore, CA 94550
(415) 422-6734

B. R. Bandin
Pennsylvania State University
University Park, PA 16802
(412) 863-6465

UCRL--94037
DE86 013897

ABSTRACT

Improved nuclear analysis, including the treatment of resonance and spatial self-shielding, coupled with an optimization procedure, has resulted in an improved performance estimate for the molten salt blanket. Net U-233 breeding ratio ranges between 0.58 and 0.63, and blanket energy multiplication ranges between 1.8 and 1.9.

INTRODUCTION

The principal activity of the Fusion Breeder Project is the conceptual design and analysis of fissile-fuel-producing blankets for fusion reactors. In FY84, we developed and analyzed a conceptual design of a blanket containing Be pebbles for neutron multiplication, molten salt (MS) (70 mol% LiF + 18 mol% ThF4 + 12 mol% BeF2) in steel tubes for tritium and U-233 breeding, and helium for cooling (Ref. 1). Molten salt is an attractive fuel form, because it allows online refueling and low-cost processing, and it requires no fuel fabrication. Figure 1 is an artist's drawing of this blanket.

In this study, our objective was to maximize specific U-233 breeding (stow/MeV) in the helium-cooled molten-salt blanket, while including the effects of resonance self-shielding and the heterogeneous makeup of the blanket. The U-233/Th-232 ratio in the salt was set at 0.0011, while the Li-6/Li ratio was varied to maintain a tritium-breeding ratio of 1.06. The U/Th ratio of 0.0011 was recommended by Grimes at Oak Ridge National Laboratory (ORNL) and is supported by Hine et al. (Ref. 2). We also examined performance sensitivity to structural fraction and protactinium (Pa) in the MS.

METHODS AND RESULTS

The one-dimensional discrete ordinates code ANISN (Ref. 3) and the ENDF-B5-based VITAMIN-E (Ref. 4) cross-section library (a 171-neutron-group, 38-gamma-group library, distributed by ORNL), were used for the neutron transport calculations. The MACKLIB-IV (Ref. 5) KERMA-factor library from Argonne National Laboratory (ANL) was used to calculate energy deposition.

To perform the neutronic optimization of this blanket, we used ANISN in conjunction with a gradient-ascent optimization scheme to maximize the neutronic figure of merit Fnet/M (the net production of fissile material divided by the net blanket energy multiplication) by raising or lowering the blanket salt-volume fraction at the expense of the blanket Be-volume fraction. During this optimization, we maintained a constant tritium-breeding ratio by varying the Li-6 enrichment in the molten salt.

To make the calculations more economical, the 171-neutron-group and 38-gamma-group structure of the raw VITAMIN-E library was collapsed to a smaller structure. A series of preliminary 174N-38G calculations were performed to obtain representative neutron and gamma spectra over which to collapse the VITAMIN-E group structure. We used a full blanket cylindrical model, similar to Fig. 1, to obtain the spectra. The cross sections...
were disadvantage-factor weighted by separate one-dimensional cylindrical-cell calculations. Modules of the ORNL cross-section preparation system AMPX-III (Ref. 6) were used to prepare the 17AM-38G VITAMIN-E cross sections for use in the unit-cell calculations. First, we employed the BOMAMI-2 module to resonance self-shield each of the unit-cell cross sections, using the one-dimensional cylindrical molten-salt unit cell (Fig. 3). Next, we used the MITAML, ALPO, and GIP modules to obtain separate 17AM-38G group, independent ANISN libraries for each unit cell. Two P3-S8 ANISN 17AM-38G unit cells were then run to obtain disadvantage-factor-weighted cross sections for use in the P3-S8 ANISN full-blanket spectral calculation. Both the neutron and gamma spectra were plotted at 20 positions in the blanket. We chose three representative neutron and gamma spectra for use in collapsing the 17AM-38G library to a smaller group structure. The materials making up the first wall and the Be-containing zones were then collapsed to a 70M-15G group structure over the chosen spectrum in each of the zones. The collapsing spectrum in the Be zone is shown in Fig. 4. We chose the 70M-15G group structure by examining plots of the macroscopic total cross section in each of the three blanket materials and plots of various vacuum.

Fig. 1. One module of a helium-cooled molten-salt blanket.
microscopic reaction cross sections of special importance, [e.g., Be (n,2n), Th-232 (n,Y), U-233 (n,Y), U-233 (n,fission)]. Group boundaries were chosen at energies where a large change in any of the above-mentioned cross sections were observed.

We used this collapsed 70N-15G VITAMIN-E-based cross-section set for P4-S12 cylindrical unit-cell calculations at the Fe = 3% and Fe = 5% Fnet optima, determined by an intermediate set of unit-cell-optimization calculations. An example of this unit cell is shown in Fig. 3. The 70N-15G cross sections used in these calculations were resonance self-shielded with the BONAMI-2 module, using the LWR pin-cell configuration. In addition, neutron and gamma KERMA factors for each element in the unit cell were obtained from MACKLIB-IV. The results of these unit-cell calculations can be seen in Table 1.

These two 70N-15G AMISN unit-cell calculations were then used to disadvantage-factor weight the cross sections for use in two P4-S8 full-blanket homogenized-material calculations. The results of these latter calculations appear in Table 2.

Next, we optimized the complete blankets for maximum Fnet/M at a tritium-breeding ratio of 1.06. Because direct use of the 70N-15G group structure in the optimization procedure is too costly, the two previously described Fe = 5% and Fe = 3% AMISN full-blanket calculations were used to zone collapse the 70N-15G group structure to a more compact 9N-1G format. Table 3 shows summaries of the Fnet/M optimizations for the Fe = 5% and Fe = 3% full blankets.

Lastly, we ran a 70N-15G calculation to determine the effect of placing Pa-233 in the blanket in a state of radioactive decay equilibrium, with its production by Th-232 (n,gamma) reactions, a state that would exist when Pa-233 is not removed from the blanket during reprocessing. The equilibrium Pa-233 concentration was derived from the Th-232 (n,gamma) reaction rate in our 70N-15G, Fe = 5% optimum full-blanket calculation, assuming a blanket-neutron wall loading of 2 MW/m². This concentration of Pa-233 was first self-shielded and disadvantage-factor weighted, then placed in the 70N-15G Fe = 5% optimum full-blanket AMISN calculation, with no other changes. The results of this new calculation can be seen in Table 4 under the title "Fe = 5% with Pa-233." As shown, the addition of...
Table 1. Reactions per fusion neutron for Fe - 3% and 5% structure molten-salt unit cells. (Note: \(F_{\text{net}} = T F + F'_{\text{net}} \))

<table>
<thead>
<tr>
<th>(Fe) Tube</th>
<th>Li-6 (T) F</th>
<th>(F'_{\text{net}}) Th((n,f)) U((n,f)) M</th>
<th>(F_{\text{net}})</th>
<th>F-19 Be Fe (\text{Capt.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.616 0.0296 1.42 0.504 0.489</td>
<td>1.90 0.0109 0.00257 0.0160</td>
<td>1.95 0.207 0.0293 1.13 0.200</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.794 0.0685 1.41 0.463 0.452</td>
<td>1.86 0.0125 0.00161 0.00971</td>
<td>1.83 0.198 0.0323 0.974 0.136</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{Capt.} \) = Neutron capture reaction

Table 2. Reactions per fusion neutron for Fe - 3% and 5% structure full-blanket models at respective unit cell \(F_{\text{net}} \) optimum. (Note: \(F_{\text{net}} = T F + F'_{\text{net}} \))

<table>
<thead>
<tr>
<th>(Fe) Tube</th>
<th>Li-6 (T) F</th>
<th>(F'_{\text{net}}) Th((n,f)) U((n,f)) M</th>
<th>(F_{\text{net}})</th>
<th>(\text{Capt.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.29 0.468 0.451</td>
<td>1.75 0.00971 0.00238 0.0147</td>
<td>1.88 0.365 0.0639</td>
<td>0.182 0.261 1.00 0.0190</td>
</tr>
<tr>
<td>5</td>
<td>1.32 0.435 0.425</td>
<td>1.74 0.0111 0.00151 0.00909</td>
<td>1.77 0.385 0.0395</td>
<td>0.125 0.269 0.866 0.0122</td>
</tr>
</tbody>
</table>

Pa-233 causes the blanket net fissile production to drop by about 2% and lowers the other reactions by less than 1%. Therefore, the addition of Pa-233 to the calculation causes no significant variation in any of the neutronic results, implying that all conclusions made from the previous calculations without Pa-233 remain valid.

SUMMARY

Results of this work are encouraging. The deleterious effects of using the intermediate thorium-density molten salt (18 vs 27 mol% ThF₄), adding additional structure to the blanket, and using a more rigorous method to treat spatial self-shielding were

Table 3. Summary of AMISM 9M-1G \(F_{\text{net}}/M \) optimization of Fe - 3% and 5% structure full-blanket model.

<table>
<thead>
<tr>
<th>Step</th>
<th>OR Tube</th>
<th>Salt vol. Li-6 Li</th>
<th>(F_{\text{net}}/M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm)</td>
<td>fraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.0578</td>
<td>0.0178</td>
</tr>
<tr>
<td>8</td>
<td>2.16</td>
<td>0.296</td>
<td>0.0389</td>
</tr>
<tr>
<td>9</td>
<td>2.29</td>
<td>0.317</td>
<td>0.0446</td>
</tr>
<tr>
<td>10</td>
<td>2.32</td>
<td>0.331</td>
<td>0.0310</td>
</tr>
<tr>
<td>11</td>
<td>2.39</td>
<td>0.350</td>
<td>0.0349</td>
</tr>
<tr>
<td>19</td>
<td>3.50</td>
<td>0.763</td>
<td>0.181</td>
</tr>
<tr>
<td>(5 vol% Fe case)</td>
<td>1</td>
<td>1.00</td>
<td>0.0578</td>
</tr>
<tr>
<td>8</td>
<td>2.16</td>
<td>0.296</td>
<td>0.0386</td>
</tr>
<tr>
<td>9</td>
<td>2.29</td>
<td>0.317</td>
<td>0.0447</td>
</tr>
<tr>
<td>10</td>
<td>2.32</td>
<td>0.331</td>
<td>0.0310</td>
</tr>
<tr>
<td>19</td>
<td>3.50</td>
<td>0.763</td>
<td>0.204</td>
</tr>
</tbody>
</table>
most likely negated by optimization. With a 3-vol% Fe structure in addition to the salt tubes, specific breeding maximized at 33-vol% salt with a net fissile breeding (Fnet) of 0.63 (H breeding is 1.06) and a blanket energy multiplication (M) of 1.91. The initial estimate for this blanket concept was Fnet = 0.6 and M = 1.6 (Ref. 1).

Optimization of nuclear performance proved to be important. As seen in Fig. 5, Fnet climbs dramatically from the starting point of 5-vol% salt, more than doubling at 30-vol% salt. Because M is dropping at this point with the increasing salt-volume fraction, the figure of merit, Fnet/M, maximizes at a salt fraction of 33 vol%.

To determine the sensitivity of this blanket to structure, the blanket was re-optimized with a structure-volume fraction of 5 vol%, resulting in an Fnet of 0.59 and an M of 1.84. Thus, increasing structure from 3 to 5 vol% results in a 3.3% decrease in Fnet/M.

We also used the optimized 5-vol% Fe structure case to see how the presence of Pa in the salt affects performance. This is of interest because the preferred salt-processing method, fluorination only, does not remove Pa. Our appraisal was performed by adding Pa to the salt in such quantities as to be in secular equilibrium with its production rate, assuming a neutron wall loading of 2 MW/m²; as a result, Fnet dropped 2.7% to 0.58, while M did not change.

With this study, we made good progress in the analysis and optimization of this blanket. Our results show that this blanket has good breeding promise, and the methodology developed will allow us to take the next step—a combined nuclear/economic optimization in which the production cost of U-233 is minimized by optimizing nuclear and cost-sensitive parameters together. Parameters to be optimized include Be-multiplier zone thickness, moderator zone thickness, salt-volume fractions in each of these zones, Li6/Li4 ratio in the salt to maintain tritium-breeding ratio (T) at 1.06, and shield thickness. The trade-off between Be and SiC zone thicknesses is a trade-off between more neutron multiplication and less high-cost Be. The trade-off between blanket and shield thickness and total blanket and shield thickness is a trade-off between higher blanket performance and smaller bore, lower cost magnets, as well as blanket and shield costs. This optimization should be done while keeping total nuclear power constant and/or not exceeding a maximum capital cost. In addition, wall loading will not be allowed to exceed a predetermined upper bound, such as 2 MW/m², to reflect heat transfer limitations. Future work should also include three-dimensional analysis of the full blanket to benchmark the one-dimensional methods developed here. We look forward to doing this future work.

REFERENCES

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, processes, or services by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.