Design studies of the Moderated Thermonic Heat Pipe Reactor (MOHTR) concept

PDF Version Also Available for Download.

Description

Design studies, based primarily on neutronics analysis, have been conducted on a thermionic reactor concept that uses a combined beryllium and zirconium hydride moderator to facilitate the incorporation of heat pipe cooling into compact thermionic fuel element (TFE) based designs useful in the tens of kilowatts electrical power regime. The goal of the design approach is to achieve a single point failure free system with technologies such as TFEs, high-temperature heat pipes, and ZrH moderation, which have extensive test data bases and have been shown to be capable of long lifetimes. Beryllium is used to thermally couple redundant heat pipes ... continued below

Physical Description

Pages: (7 p)

Creation Information

Ranken, W.A. & Turner, J.A. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Design studies, based primarily on neutronics analysis, have been conducted on a thermionic reactor concept that uses a combined beryllium and zirconium hydride moderator to facilitate the incorporation of heat pipe cooling into compact thermionic fuel element (TFE) based designs useful in the tens of kilowatts electrical power regime. The goal of the design approach is to achieve a single point failure free system with technologies such as TFEs, high-temperature heat pipes, and ZrH moderation, which have extensive test data bases and have been shown to be capable of long lifetimes. Beryllium is used to thermally couple redundant heat pipes to TFEs and ZrH is added to reduce critical size. Neutronic analysis undertaken to investigate this design approach shows that greater reactivity can be achieved for a given geometry with a combination of the two moderator materials than with ZrH alone and that the combined moderator is much less sensitive to hydrogen loss than more traditional ZrH-moderated thermionic reactor designs. These and other analytical approaches have demonstrated the credibility of a heat pipe cooled thermionic reactor concept that has a reactor height and diameter of 60 cm and a reactor mass of 400 kg for 30-kWe power output. 14 refs., 8 figs.

Physical Description

Pages: (7 p)

Notes

OSTI; NTIS; GPO Dep.

Source

  • 26. intersociety energy conversion engineering (IECE) conference, Boston, MA (USA), 3-9 Aug 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91013307
  • Report No.: LA-UR-91-1592
  • Report No.: CONF-910801--3
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 5548012
  • Archival Resource Key: ark:/67531/metadc1092499

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • Feb. 10, 2018, 10:06 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Ranken, W.A. & Turner, J.A. Design studies of the Moderated Thermonic Heat Pipe Reactor (MOHTR) concept, article, January 1, 1991; United States. (digital.library.unt.edu/ark:/67531/metadc1092499/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.