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1.0 SUMMARY

Transverse fatigue cracking of polymeric matrix materials is important
in laminated, continuous-fiber composite structures because it determines
(in part) the rate at which damage accumulates toward failure of the
composite. The phenomenon can be described as the propagation of an array of
parallel cracks that effectively “shield" each other by shear lag effects.
Such a problem is stochastic, and is usually approached via Monte Carlo
methods. Individual crack propagation within the array is usually addressed
with an empirical Paris-type equation.

The purpose of this report is to begin development of an alternative and
more closed-form mathematical solution that should be more useful for real-
time simulations, such as monitoring damage in aircraft structures. In this
regard, the Monte Carlo method is replaced by a stochastic modeling
superstructure based on "fractional Brownian motion.* The Paris egquation is
replaced by a scaling equation proposed to relate fatigue cycle number to
individual crack growth. Both of these two model elements are based on
fractals.

A recursive relationship is developed to describe the dependence of the
numbers of cracks on fatigue cycles and stress, Very limited preliminary
calculations indicate that this new model is capable of reproducing the major
features of transverse matrix fatique cracking, including the dependence on
laminate thicknesses, the delay in cycles until the first few cracks form,
and the accumulation of transverse cracks toward a saturation value.
Additional calculations would be expected to verify the model. However, the
reader should note that this brief work is very exploratory in nature, and
can make no claim of rigor. There are many rather tenuous assumptions that
must be justified in future work.

Finally, it should be noted that this report presumes the reader to have
prior knowledge of the basic essentials of composite fatigue and fractals.






















































Combining Equations (16) and (18] gives
kal’? = ¥ (19)

and with o = Eg, then

22 - Kefe {20)

Substituting Equation (17} for X gives

1/2

ha = Yeyya , or
gx_% = x¥le? (21}

which is the desired relationship,

It is interesting to note that substitution of Equation (21) into
Equation {5) yields a version of the Coffin-Manson relation: e&ﬁt = Lo,
where t = 1/2{2-H} = 0.39 and C; = 1/¥ix. The exponent t is smailer than
{offin-Manson's for plastic strain {t = 0.5), and larger than Morrow’'s for
elastic strain (t = 0.1}, so the above fractal approach appears to yield an
"average” expanent, Also note that AN above i not the cycles to failure,
ANg, a3 in the Coffin-Manson formulation. See Meyers and Chawla {1984,

p. 537} for further details.

3.1.6 tClosure

The above tquations (2), {(8), (10), (12}, {14}, and (21) are assembled
in the pext section ftc explore the possibilities of an improved model for
fatigue crack accumulation in composite laminates. Results are as yet
incompiete, s0 only preliminary calculations are available for analysis. The
tack of rigor in this early stage of development should also be noted again
to maintain the proper perspective for these results,

17



3.2 ASSEMBLY OF A CANDIDATE MODEL

Some motivation for considering use of the FBEM corvelation in Eguation
{2} as & model superstructure will probably be of benefit for the reader.
The original proposal was to develop a crack array propagation model from
Fquation {4} alone. Approximately one-third of the project effort was
expended trying to do this, without success. It was the imtroduction of FBM
concepts that finally permitted definition of the exponent § in Equation {4},
and subseguent development of Equatizns {5) and {8}, However, Equation (5}
alone still does not adequately describe the crack array, as sesn from the

following simplified analysis., Rearranging Equation (5} and dividing by AN
gives

B2 - a(w)P

where p = {3-H)/{2~H) = 1.78 for the anticipated H of 0.72, The
approximation Bfa = hdn relates the ¢rack growth increment to the increment in
the number of cracks in the array {Aa}. With a approximated as the average
value h/Z, the above equatian becomes

i oz g5 (any7le8
From Figure 3, the value of An/AN can be estimated for given increments in
the fatigue cycle numbers (AN}. This value is approximately An/3N = 10/AN,
or A/BN « BN, The above equation gives Mn/AN « 58"1‘?8, and results in a
discrepancy of about four orders of magnitude for AN = 1000. Even very small
values for H result in a discrepancy of about three orders of magnitude.
Although the proposed Paris law replacement may be adequale for propagation
of a single crack, this dees not appear so for an array of cracks. This was
the motivation that Jed to consideration ¢f fractional Brownian motion (FEM)
as a model superstructure in which to insert the proposed Paris law
replacement.
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3.2.1 Selection of Model Superstructure

Recalling that FBM is applicable to a wide range of two-dimensional
piots of stochastic data, it seems evident that a number of possibie model
superstructures may be chosen. Designating the left side of Equatfon {2} as
BRY{(2)], and the right side as (ﬁzjﬁ, some possible FBM model superstructures
for the present ¢rack array are

Bla()] = axP (22)
Blaa()] = ax! (23)
Bla(n)] = &N (24)
Blau(n)] = ant (25)

where AU = Gaa in Equation {25). Although more candidates are possible, only
the above four were investigated in this brief exploratory work. A summary
of the resulfs of this investigation follows.

An FBM for Fquation {22} can be obtained by substituting Equation (10)
inte Equation (14}, solving for the a1(xi}, and substituting these into
Equation {2}, The result is

Gy [R1gy ?
s b - 1
6y {3353] H

S P (26)
PR I SY-P
Gy | Ryk,

where 4Xy3 is the spacing between the second and third successive cracks
under consideration, Recalling that &X = 1/n, where n 15 the number of
cracks per unit length, and that R is an exponential function of 1/n,
soiution of this implicit equation would appear difficult, Also, although
stress dependence can be included via € = o/E, there is no means to introduce
the dependence on fatigue cycle N, Most importantly, the unknown 6 values
for each crack are retained in the model., Elimination of these G values
requires either that they be known or that they simply be equal so that their
ratio is unity. The only condition available for a unity G ratio is if both
cracks are at the critical state 6 = G.. However, the Paris-type approaches
discussed in Section 3.1.2 permit crack propagation by microdamage
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accumulation when G < G.. The condition G = G. is thus considered overly
restrictive, and possibly self-contradictory. Equation {23) can be developed
into a similar model with G ratios by substituting Equation (21) into
Equation (10) and proceeding as above. In either case the troublesome G
ratios remain, even if the right sides of Equations (22) and (23) are defined
as in Equations (24) and (25). The direct geometric approach for
constructing the FBM superstructure [described for Equation (3)] was thus
abandoned.

Equations (24) and (25) yield more useful results. FBM superstructures
for these equations can be constructed as above, and give for Equation (24)

2
Ry €5 4 _
R1 € a1 H
— 2 = AN23 (2?)

Ry €20 " 22 _ 4
Ry 1] &

and for Equation (25)

[Ba Es] ‘ aday

Rl €4 alﬂal H

™ 7 = ﬂN23 (28)
Ry €] " 2p8a, _
R1 €1 alﬂal

The relative merits of these two equations are discussed next.

Both Equations (27) and (28) assume that there exist three successively
developing cracks somewhere in the array that satisfy the FBM assumptions for
the mean H value for the array. Recall that this is actually a probabilistic
statement, with presently unknown probability and tolerance for H. This is a
subject for investigation in future work.

Both Equations (27) and (28) designate the scale factor b of Equation
(2) as AN,3, the number of elapsed fatigue cycles between the completion of
crack 2 and the completion of crack 3. This designation seems reasonable at
present, but better alternatives may be found in future work, such as the
cycles between completions of Aay and Aa,.

20



Both Equations {27} and {28} are implicit in the number of cracks {n},
but both contain n on gnly one side of the equation, This may facilitate
solutions. Both presently contain the cycle increment AN,q in explicit form
on the right side of the eguation, which permits use of the eguation as a
taol for predicting when the next crack will occur. In this sense, Eguations
(27} and (28) are recursive. Note that Ry = f(n}, Ry = f(n-1), and
Ry = f(n-2), However, this explicitness iy ANpg will be lost in subsequent
analyses described below,

Both equations appear to relate an energy parameter (G or AU} to an
independent variable (N}, and both permit introduction of stress dependence
via € = ¢/E. The incremental formulation of both sides of Equation {28)
seems intuitively appealing, and may have acceptable fractal foundations
according to Voss' method of “successive random additions®™ (Feder, 1988, p.
180}, With a; given by Equation {8}, the unknown products ajAa; in Equation
(28} could be defined by a;(da;/dNy)AN;, but this introduces an additional
complexity that is presently not justified by the preliminary nature of
Eguation (8). For this reason, Eguation {27) was selected for this
exploratory investigation because of its relative simplicity. However,

future work may address Equation {28) as an alternative formulation of the
model.

3.2.2 txploratory Calculations

Having selected Equation {27) for further investigatfon, it seemed
prudent to briefly explore its behavior numerically before proceeding.
Substituting in the R equations and converting strains to stresses, Equation
{27} takes the form

1-exp(-C, /n) 2 2
_1-ex;}(~€i/?n-z))] {ga] a1

iwexpgwﬁgign-lgg < oy z Ay -1
t-exp{-Cy/in-2 7y ay

where C; = 79,2 for the [0,/90,], composite, and C; = 52.8 for the [0,/904]
composite. The subscripts 1 = 3,2,1 on the 3; and oy correspond to the

21
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present, the Tast, and the next to the last cracks respectively: ny = a-1,
By = -2, It has also been assumed that the Young's Modult (E;) are
approximately equal because the cracks are successive, and thus cance) out of
Equation {29). This should be verified in future work,

The first numerical exploration concerned estimation of the number of
cycies, R = LAN54, for the beginning of matrix cracking. Because of
singularities in the n, and ny terms, this was estimated for the third (or
later} crack that formed. Calculations were performed on & programmable hand
calculator, The limited accuracy of this calculator frequently resulted in

the “onset of crack array development® being defined for the fourth or fifth
crack.,

Because the 01231 terms were unknown, it was assumed that al) far field
stresses were constant, as in constant Joading fatigue, and that the a;/a,
ratios were unity fo represent incipient completion of the “"last® ¢rack. A
constant value of H = §,72 was assumed because this has been observed for
many natural phenomena {Feder, 1988). The smallest number of cracks that
could be solved for the [0,/9041; composite was 4.4, For consistency with
the assumption a;/a; = 1, this limited definition of the "onset™ condition as
n=5, For this composite, the number of ¢ycles to reach five cracks was
computed to be 5208, compared to about 1008 cycles estimated from the plotied
fatigue data of Wang, et al. {1984} for 38 ksi loading. for the [0,/905]
composite, the earliest solution was at 3.3 <racks, and five ¢racks were
computed at 35131 cycles, compared to about 2100 cycles at 38 ksi from the
plotted data of Wang, et al, (1984), These are the only two fatigue data
sets at the same stress, and there s no stress calibration betwsen the above
computations and data, It is therefore impossible to determine with
certainty if the proposed model is biiased toward overprediction. All that
can be said is that the dependence of cracking on the 507 layer thickness
{2h)} seems to be correctly represented by the model: a thicker 90° layer
cracks earlisr because it can store more strain energy than the thinner
design.

The apparent overprediction of cycles to reach a given number of cracks
may be caused by the rather crude assumption that the ratios {ai/al)z and
(2;/a1) were unity. Defining these ratios as Cyy for 1 = 2,3, addit10na1
gxploratory calculations were performed for the condition Cyy = sz , for
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reasons which will become apparent later in this writing., Resulis were that
the above data for cycles to five ¢racks could be reproduced with Cy, = 12
for the [05/904]; composite, and Cpy = 110 for the [05/90,], composite, This
carresponds to stress ratios between two successive cracks of 12 to 110, and
does not appear reasonable. This effect must therefore originate primarily
from the ay/a, ratios. A physical interpretation is that later cracks must
reach appreciably longer iengths before unstable growth occurs, The longer
Tengths required are caused by the shielding effect as crack numbers {n)
increase. It should be noted that 1T this is true, the linear approximation
for G, in Equation {10} is probably inadequate unless the initial microflaws
are less than 1/11C of the 90° layer thickness. Although this may be
reasonable, it has not been checked in the present work because of limited
project resources and time. Also note that the above results for the “onset
condition” could be checked with other FBM models such as Eguation (26),
because widely separated cracks at small n may permit cancellation of the
nearly equal G; values. These are guestions to be addressed in future work.

A final series of calculations were performed to investigate the
behavior of Equation (29) at Targer n. For Cyy = C3y = 1, the number of
cycles between cracks approaches unity at large n. This is too rapid a crack
accumuiation rate to match the data in Wang, et al, (1984}, However, the
above arguments using other values for €5y, with Cgy = szz, indicated that
crack accumulation rates may slow substantially as n increases. Although
these calculations are very preliminary, the approach to an asymplotic number
of ¢racks in the array may thus be possible t¢ model if a suitable equatfon
for the a;/a; ratios can be found in terms of the elapsed number of cycles,
Miys. The search for this equation continues in the next subsection.

3.2.3 Inciusion of Proposed Paris Law Replacement in the Model

It should first be recalled that the form of Eguation (8) is uncertain
and has not been verified at this writing, so that subseguent discussion is
tenugus at best,

The purpose of including Eguation {8} in the mpdel is to eliminate the

unknown crack length ratios ag/aq, 1 = 2,3, This equation is repeated here
for convenience:
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2 «exp [(aN)) (30}
O

where AN = N-N, 15 the number of fatigue cycles to propagate the crack from
an initial length a5 to a final length a, and r = 0.22 for the assumed value
of ¥ = 0,72, The exponential form reproduces typical fatigue behavior, while
the small exponent r provides a slightly asymptotic or damped characteristic
at Jarge AN. The latter condition effectively prevents the crack growth rate
from becoming prematurely infinite and producing ancther mathematical
singularity. Another possible value for the exponent rf s discussed in
Appendix A for a stress-dependent version of Equation (30).

There is an Equation {30) for each crack that appears in the FBM, so
insertion of this equation {nto Equation (29} requires the subscript 1 =
1,2,3 for each a and AN, Assuming that all three cracks began from the same
initial flaw size a,, substitution of Equation (30} into Equation {(29)
results in

P V4
sttty [ oo
' ”éﬁs (31)

' P 7.
1-exp{-C,/{n~1 o o r
[1-exp%~€§?§n~2;%] {3;] exp [AN; - AN,T) -1

where a constant is omitted from the exponential terms containing the AN;,
for clarity. Also note that ANy on the right side of Equation (31} replaces
&Nyq, because they are equal if the third crack begins propagation
immediately after the second crack reaches a,=h.

Although Equation (31) is ne longer explicit in ANq, it appears to
retain a predictive capability by virtue of its recursive nature. However,
it 1s clear that further work is needed to determine AN, and &K, and thus te
better define the "onset condition,” so that this predictive capability can
be verified and put into practice in the field. One possible approach is to
develop relationships between the BNy, such as the simple Tinear
extrapolation a&3r-£ﬂlr w 2 (ﬁﬁ2r~bﬂlr}, which leads to the assumption
Cay = 6232 employed in the last subsection for numerical explorations.
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Future work will probably also require the approximations n. = ny-1+9 and
Ny = ny~2+f, where & is a small but finite number that prevents numerical
singularities in the K ratios,

Ir any event, the use of the proposed replacement for the Paris law in
the B8{6} = ANH version of the £BM model for the propagating crack array
introduces exp(AN") terms that appear quite capable of attaining values of
12 to 110, which were found necessary to match the data in the last
subsection,

3.2.4 Closure

Equation (31) would thus appear to have a good chance of reproducing all
major features of the data of Wang, et al. (1982, 1683}, including the
dependence on the 90° layer thickness, the delay in fatigue cycles until the
first few cracks form, crack accumulation toward a saturation value, and
dependence on the stress level, However, testing and verification of
Equation (31) will require access to more extensive computing facilities, and
is precluded by the 1imited resources of this project.
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4,0 DISCUSSION AND CONCLUSIONS

The foregoing analysis can make no pretense of rigor, The words

*assume” and "approximate” were those most frequently used to develop
Equation {31). This was necessary in order to propese a workable candidate
for a new model that departs substantially from accepted practice. Although
such an approach is sometimes necessary and often useful in an exploratory
analysis, it Teaves many guestions open for further scrutiny, Some of these
questions of rigor are outlined below,

(a}

(b

{c]

{d}

(e)

The FBM model is only walid "in the mean®, so that the choice of three
successive cracks that satisfy the model for the mean Hurst exponent {H)
requires at least a probahilistic qualification, and evertually a proof
that this is in fact possible,

The value of H = 0.72 was assumed because this value is exhibited by
many natural phenomena, but 1t is unknown if fatigue fracture of an
engineered material such as a composite can be considered *"natural.”
The value of H nesds experimental verification, with the hope that it
will at least remain a constant rather than vary with fatigue cycles.
The assumption that AN = sziﬁ in the proposed Paris law replacement
seems tenuwous {f each cycle produces only one increment of microdamage
Ly as in a linear damage rule. Probabilistically, occasions of two,
three, or even zero increments in a given c¢ycle seem as likely, and may
eventually require a more generalized interpretation of the ratic L /L.
This is probably related to the behavior of the fatigue limit for the
polymer matrix material, which also needs clarification.

The assumption of self-similarity between individual ¢rack tip damage
and the array of crack growth increments in the proposed Paris
replacemant should be experimentaily verified.

Due to time and resource constraints, integration of the proposed Paris
replacement in Equation (B) was not verified, This is a crucial
relationship that must be proven rigorously before any further progress
can be made. Alsc see Appendix A for the inclusion of stress dependence
in Equation (8).
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(f} The linearized approximation for the strain energy release rate eguation
needs further investigation because of the large aj/a; rattos found in
Section 3.2.2.

{g} The crack shielding effects described by the R value in Egquation (12)
should be verified for neighboring cracks of unequal lengths.

{h} Other FBM approaches, such as Equation (25), should be attempted to
determine if the wodel superstructure is as general as claimed. It
should be possible to achieve the same predictive capability and rvesults
with such alternmative approaches. In particular, prediction of the
“onset condition” should be verified as described in Section 3.2.2.

(i} The proposed mode) in Equation (31) assumes that the Young's Modulf are
nearly egual for successive cracks, and thus cancel out., This should be
verified. The proposed model also contains no explicit dependence on
other fatigue loading characteristics, such as the stress cycle
ampiitude, and this should be included in future work,

{j] Other hidden or Tess obvious assumptions that will surface in future
investigations should be addressed. An example is that a clearer
definition of ANy may be needed. Most mysterious is the lack of
critical material properties, such as o, or 6., in the model. This is
unusua! for a fracture problem,

Future work should address the above gquestions in order of priority, as
follows. Items (e}, (3}, {b), and {a) are highest priority, and their
resolution will permit numerical testing of Equation (31). Items {d}, (h},
and {c} are second priority, while items {f}, (g), and (i} are lowest
priority.

In spite of the above difficulties, Equation {31} appears to show
promise for providing the desired simplified model in a2 recursive form.
Preliminary calculations indjcated that it has the capability of reproducing
all major features of the transverse matrix fatigue cracking data base that
was analyzed. It is therefore recommended that work continue in the future
s¢ that this model can be better understood. A long-term goal is to develop
similar predictive capabilities for other composite damage forms, such as
delamination.
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APPENDIX A
FURTHER RDTES ON THE PROPOSED PARIS LAM
REPLACEMENT

Integration of Equation (6) via the fractional calculus is as follows.
Fquation (6) can be expressed in the form

da 1
where g~ 1/{2-H) . {A.2}

If it 15 assumed that the numerator 1 in Eguation (A.1} is actually the gth
order fractional differential of the Heaviside unit step function (M3}, then
in the notation of the fractional calculus, we have the following
differential form:

dina = S8 (8.3)
(an)®

where g = 0,78 > 0 for B = 0.72., Integrating both sides of this eguation to
order unity gives

ln(%;—} . %21 (A.4)

where 5 = g~1 = -0,22, and negative orders signify integration in the
netation of the fractional calculus. Because s ¢ 4, an integral thus remains
on the right side of Equation (A.4). Performing this integration gives
{Qidham and Spanier, 1974, p. 105}):

& - exp[ﬁ§:§5lﬁs} {A.5)
a, r{i-s)

where T{1~s} = I'{1.22} = 0.81, The final form is thus

- = exp [1.1 (N-HQ}U‘zz}

3y

(A.6)
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Another problem with Equation {8} is that there {s no dependence on
stress. This can be included in an approximate fashion by the use of

fguation (21}, which is actually valid only for H = 0.5, as follows. From
Equation {5), we have

ba | {ég]yz [Wﬁ]lfz -y d (A7)

a 3 Aa

From Equation (21) and € = oft, Eguation (A.7) becomes

;ﬁ__ﬁ_ " oYix éﬁ-q 233 (A‘a}
a E

Agatn Jetting the 4 go to differentials, we have

da [aY&r' 2/3 1
a £ ()’

{(A.9)

where r = 2g/3 = 0,52, Invoking the above Heaviside argument and
integrating as before, with the term in brackets takem as constant, gives

& - ex;z[(f'f-ﬁm{)2”3 (N-Hp) MS] (A.10)
g E F{1-s)

wherg § = r~1 = -0.48 for H = 4,72, The generally small values of o/E are
compensated by a larger exponent for N.

It should be noted again that these methods of "integration” are not
verified at this writing. However, it does seem possible to incorporate the
stress dependence in the proposed Paris law replacement,
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