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1.0 SUMMARY 

Transverse fatigue cracking of polymeric matrix materials is important 
in laminated, continuous-fiber composite structures because it determines 

(in part) the rate at which damage accumulates toward failure of the 
composite. The phenomenon can be described as the propagation of an array of 
parallel cracks that effectively "shield" each other by shear lag effects. 
Such a problem is stochastic, and is usually approached via Monte Carlo 
methods. Individual crack propagation within the array is usually addressed 

with an empirical Paris-type equation. 

The purpose of this report is to begin development of an alternative and 
more closed-form mathematical solution that should be more useful for real
time simulations, such as monitoring damage in aircraft structures. In this 
regard, the Monte Carlo method is replaced by a stochastic modeling 
superstructure based on "fractional Brownian motion.M The Paris equation is 
replaced by a scaling equation proposed to relate fatigue cycle number to 
individual crack growth. Both of these two model elements are based on 
fractals. 

A recursive relationship is developed to describe the dependence of the 
numbers of cracks on fatigue cycles and stress. Very limited preliminary 
calculations indicate that this new model is capable of reproducing the major 
features of transverse matrix fatigue cracking, including the dependence on 

laminate thicknesses, the delay in cycles until the first few cracks form, 
and the accumulation of transverse cracks toward a saturation value. 
Additional calculations would be expected to verify the model. However, the 
reader should note that this brief work is very exploratory in nature, and 
can make no claim of rigor. There are many rather tenuous assumptions that 
must be justified in future work. 

Finally, it should be noted that this report presumes the reader to have 
prior knowledge of the basic essentials of composite fatigue and fractals. 
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2.0 INTRODUCTION 

Fatigue concepts for composite laminates have been reasonably well 
developed from.a continuum mechanics perspective . For example, Talreja 
(1981) has described fatigue-life diagrams for composite laminates with 
polymeric matrix materials in terms of three basic damage regimes. In a 
simplified form that ignores all recognized delamination phenomena, these 
regimes are dominated by fiber breakage, matrix cracking, and the fatigue 
limit of the matrix material. Each mechanism is confined to a particular 
strain or loading regime (Figure 1) • 

... 
0 
c: 
'iii .... 
Q5 
.>I! 
('II 
Q) 

Q. 

In (cycles) 

Figure 1. Fatigue-life diagram for composites. 

It is evident that matrix cracking is an important damage evolution 
mechanism because it determines the allowable strain or loading as a function 
of accumulated fatigue cycles. In comparison, the other mechanisms may 
appear relatively constant with cycle number. 

Much data has been collected to understand composite fatigue mechanisms, 
and observations have been generalized. For example, Wang, et al . {1984), 
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argue that "for polymer-based, continuous fiber systems, the fundamental mode 
of damage usually involves matrix cracking as the first sign of failure.•• 
They further state that "clearly, the ability to analytically describe the 
crack formation and distribution characteristics by a general methodol ogy is 
an essential first step towards assessing the various effects [that matrix 
cracking can have] on laminate properties,• such as strength and stiffness. 
A particular case studied by Wang, et al. (1984), was transverse matrix 
cracking of [02/90m]s continuous-fiber laminates (m = 2,3) 1n the AS-3501-06 
graphite-epoxy system. A schematic of these transverse matrix fatigue cracks 
is shown in Figure 2. As fatigue cycles advance, the number of matrix cracks 
accumulate as in Figure 3. These data are representative of the phenomenon 
to be modeled in the present work. 

(J ... ~ .... -

oo P1ies 

90° P1ies 

oo Plies 

Figure 2. Schematic view of multiple transverse cracks. 

The mechanics of the growth of such an array of cracks appears 
uncertain. Wang, et al. (1983), noted that partially developed cracks (crack 
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length "2a" less than laminate thickness "2h") were rarely observed in post
test examinations. This would appear consistent with the brittle nature of 
the epoxy matrix, resulting in unstable crack growth fro~ small flaws of 
sizes less than the fiber diameters. These flaws were not measured by 
Wang, et al. (1982, 1983, 1984), because they could not be observed by 
optical microscopy. They chose to describe this array of microflaws with an 
"effective flaw" concept where crack lengths (a) and spacings (s) both 
assumed normal distributions, as shown in Figure 4. This, in turn, permitted 
the use of l i near elastic fracture mechanics (LEFM) to describe the growth of 
the "effective flaws" into transverse matrix cracks of length a=h. 

10 

iE 262 MPa 

~ 
>-

;!::! 
1/) 

c 
Q) 

5 0 
~ 207 MPa 
u 
ca ... 
(.) 

179 MPa 

0 
1 2 3 4 5 6 

In (cycles) 

Figure 3. Experimental transverse crack density versus 
fatigue cycle N for [02/903]s composites. 

Individual crack growth rates were computed with a form of the Paris Law, 
specialized for brittle materials: 

da ., [ili•ill] P dN a: G c 
(1) 

where N is cycle number, Gc is the critical energy release rate for t he 
material, G is the available energy release rate for a crack of length 
depends on the local "shielded" stress u., and a: and p are empirical 

a and 
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----~~~-----~---------~:~----~~ I -------------------------------------------------------------

Crack Length (2a) 

CraCk Spacing (S) 

Figure 4. Hypothetical effective flaw distributions in 
the 90° layer of a [0/90]s composite. 

constants. Shielding is caused by shear lag effects from adjacent cracks, 
and is briefly described in the next section. 

Wang, et al. (1984), simulated the evolution of matrix crack density 
(Figure 3) using a Monte Carlo approach that applied Equation (1) to each 
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propagating "effective flaw" in turn. However, the initial "effective flaw" 
distributions for a and s were specified at the outset of each simulation to 
ensure that the model reproduced the behavior in Figure 3. For example, the 
mean and standard deviation for the initial "flaw" size a0 were 0.64h and 
O.l6h, respectively, for the [02/902]s composite. Flaws of such sizes would 
seem observable, and thus contradict their statement of non-observability. 

The result was a rather complex empirical approach that is valid only 
for the data base used to fit the empiricisms. This approach seems 
inconsistent with the statement by Wang, et al. (1984), that N ••• for a given 
laminate under a given class of loading, the matrix cracking pattern is 
essentially mechanically reproducible, with perhaps a certain statistical 
variation only." If the problem is that simple, perhaps a simpler model may 
thus be justified. For field applications such as real-time simulation of 
damage accumulation in an aircraft structure, a more useful and simpler model 
would be a set of equally empirical curve fits. A more desirable alternative 
would be to incorporate some measure of predictive capability for other 
loading and cyclic conditions. This exploratory paper attempts to begin 
development of such a "simpler, more predictive" model, with fewer 
empiricisms. 

6 
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3.0 MODEL DEVELOPMENT 

3.1 ELEMENTS OF THE MODEL 

The five basic elements of the proposed new model are: 
(l) a submodel for fractional Brownian motion, which establishes the new 

model "superstructure" or overall mathematical form, 
(2) a similarity relationship between a single crack•s length, fts growth 

increment, and the fatigue cycle number, and which replaces the 
empirical Paris equation, 

(3) an approximation for the •available ' strain energy release rate• (G0 ) for 
an individual isolated crack, 

(4) an equation to account for the reduction in G0 caused by "shielding,• or 
shear lag effects from neighboring cracks, and 

(5) a relationship between the crack growth increment (Aa) and the far field 
strain (e) for single cracks. 

Each of these elements is described in more detail in the following 
paragraphs. 

3. 1.1 Fractional Brownian Motion {FBM) 

This model can most simply be viewed as an extension of the probability 
arguments used to develop the basic diffusion equation. However, instead of 
the usual exponent l/2, as in (Dt) 112 where D is the diffusion coefficient, 
we have the Hurst exponent H, where 0 ~ H ~ 1. The significance of H is as 
follows. For H = 1/2, the successive steps of a random walk are uncorrelated 
or independent (truly random). For other values of H, successive steps have 
long range correlations. 1/2 ( H ~ 1 implies "persistence," where an 
increasing (decreasing) process will continue to increase (decrease). 
0 ~ H ( 1/2 implies "antipersistence,• where an increasing (decreasing) 
process will tend to decrease (increase) with time. Most natural phenomena 
are persistent, with H : 0.72. This is described in more detail in 
Feder (1988), Chapters 8-10. It is interesting to note that this model was 
first developed in 1968. 
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Equation (9.22) of Feder (1988) expresses the form of this model that is 
most useful for the present analysis: 

(2) 

where B is the vertical height and t is the horizontal position on a two 
dimensional plot of stochastic data, such as Figure 5. b 1s a scale factor 
for the horizontal axis. This figure shows a striking visual resemblance to 
the crack array in Figure 4 above. This resemblance can be pursued further 
to construct a fractional Brownian motion (FBM) model for the crack array by 
letting B be the crack length (a), and t be the axial position along the 
composite (X). The positions bt, t, and 0 can then be designated by the 
crack locations x3, x2, and x1, where x1 is an arbitrary reference. It can 
then be shown that b = x3 - X2 = AX, so that the "geometric• FBM takes the 
form 

(3) 

This equation expresses the relationship that the ratio of crack lengths 
at two axial positions (X2 and x3) is correlated with their spacing to the 
power H. Equation (3) thus provides motivation for the application of FBM 
to the problem of an array of propagating parallel cracks. This equation was 
investigated in the earlier stages of this work, but was abandoned because of 
numerous difficulties described below. Realization that FBM applied to many 
types of two dimensional plots of stochastic data led to more useful forms 
that will be described in later sections. 

It should be noted that the aforementioned general applicability of FBM 
has a price: it is valid only •;n distribution•, or 1n the mean. That is, 
individual values forB chosen for the left side of Equation (2) usually do 
not equal bH, where H is the mean value for the entire data set. Only the 

H average of many such B choices will equal b • Consequently, B values must be 
chosen carefully to be useful. It will be seen that the method of choice is 

not well defined. 
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Figure 5. Plots of the fractional Brownian motion function in 
Equation (2) for H = 0.9 (top), H = 0.7 (middle), and 
H ~ 0.5 (bottom). Vertical axis is B (or a), horizontal 
axis is t (or X). 

3.1.2 Proposed Replacement for the Paris Law 

The Paris law in Equation (1) expresses the concept that fatigue cracks 
appear to continue growth even when the strain energy release rate (G) is 
less than i ts critical value (Gc) for the initiation of crack growth from 
static conditions. This concept may be visualized as the accumulation of 
microdamage at the crack tip, and may be consistent with the viscoelastic 
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nature of the epoxy matrix material in Wang's studies. In this regard, a 
truly flat matrix fatigue limit as shown in Figure 1 may not actually exist 
because the polymer chains undergo some finite •rearrangement• on each 
fatigue loading cycle. Such "rearrangements" can be interpreted as 
microdamage, but verification of these arguments is a subject for future 
work. 

Although the Paris law has historically been quite useful in the study 
of fatigue fracture, it suffers from the need to calibrate empirical 
parameters, such as «and p in Equation (1). These empiricisms require a 
significant data base, and sometimes limit applications to the same or 
similar materials and conditions. However, an alternative that may reduce 
the number of empiricisms may be available. This alternative can be 
developed from Equations (6)-(8) in the paper by Williford (1988). Based on 
the self-similarities between the crack length (a), its growth increment 
(Aa), the characteristic size (L0 ) of the microdamage, and the total damage 
length (lt), the following relationship was found: 

.!:t = [__!] D (4) 
L0 Aa 

D is the fractal dimension of the damage, and is described below. lt is the 
sum of all microdamage increments across the crack front, Lt • Nl0 , where N 
is the number of such microdamage increments. If it is assumed that one L0 

is incurred for each fatigue cycle, as in a linear damage accumulation rule, 
then Equation (4) describes the number of fatigue cycles to cause a crack of 
length a to advance by Aa. 

If it is further assumed that the microdamage increments L0 accumulate 
in a more or less random manner across the crack front (see Figure 6), the 
distribution of microdamage will form a fractal of dimension D, where 
2 ~ D ~ 3. A plan view of the crack tip damage will have dimension 1 ~ D ~ 2 
(see Williford 1989). The propagating damage of such a plan view may be 
quite similar to the two dimensional FBM plot for the crack array described 
in the last section. Assuming such similarity, the FBM for the crack tip 
damage will have the same H as the crack array. Further, the relationship 
between D and H is known for such two-dimensional representations: D = 2-H 
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(Feder 1988). This proposal is depicted in Figure 6, and results in the 
following equation. 

where AN is the number of elapsed fatigue cycles to cause the crack to 
advance by Aa, and 0 ~ H ~ 1. 

2a 

I l 
/ 1'•', 
Perspective View of Crack 

Other Cracks Viewed 
Edge On 

\ 

Axial Poshion, x 

Figure 6. Similarities between crack tip m1crodamage and 
the crack array: Dcrack tip ~ Darray z 2-H. 

(5) 

Equation {5) appears to yield reasonable results when integrated to 
investigate the behavior of a versus N, as follows. Rearranging and assuming 
we can let the A go to differentials, we have 

where q ~ 
1 

2-H 

(6) 

(7) 
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Integration of the left side of Equation (6) is straightforward, but the 
right side requires the fractional calculus (Oldham and Spanier 1974). This 
integration is performed in Appendix A. The result is: 

' for the expected value H : 0.7Z. The exponential behavior of crack length 
with fatigue cycle number seems consistent with observation (e.g., see 
Williford 1987), as depicted in Figure 7. The above preliminary mathematical 
form for Equation (8) will be useful in subsequent investigations of the FBM 
model for the propagating array of cracks, even though it lacks dependence on 
stress. This dependence is also treated in Appendix A, but it must be 
stressed that these integrations are not verified at this writing. 

3.1.3 Strain Energy Release Rate 

The strain energy release rates (G) for the cracks shown in Figures (Z) 
and (4) are affected by the bounding 0° plies of the composites. Wang, et 
al. (1984) give the G0 for an individual crack with no neighboring cracks as 

G = C Ez t o e 

~~ 

Figure 7. Exponential behavior of Equation (8), typical of 
fatigue data. 

lZ 

(9) 



where E is the mean or far field strain, t is the ply thickness (2h = mt 
where m is the number of 90° plies), and Ce 1s shown in Figure 8 
(Wang, et al. 1982) . The reduction in G0 as the crack length approaches the 
90° layer thickness is caused by transfer of the axial load to the bounding 
0° plies. Ce, and thus G0 , are approximately linear up to a/h values of 

about 2/3. Wang, et al. (1982) found the a/h values corresponding to 

... 
)( 

8--------------------------------------------, 

6 

2 

(2h .. mt) 

0~----~------~------~------~------~------._~ 
0 0.5 1.0 1.5 2.0 2.5 3.0 

Crack Length/Ply Thickness (alt) 

Figure B. Mechanical load shape functions (Ce) plotted versus 
relative crack length (a/t), where t is ply thickness 
(2h = mt). 
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unstable crack growth to be 2/3 to 1 for the fatigue load ranges of interest: 
36-53 ksi for [o2/902Js and 26-38 ksi for [02/ 903Js· Although these crack 
lengths are slightly larger than the linear range forCe, a linear 
relationship will be assumed for G0 : 

(10) 

where c1 is a constant for each composite. This linear approximation 1s 
justified on the basis that crack propagation to full length (a=h) when a is 
near the unstable regime usually requires few fatigue cycles. This is a 
negligible error in relation to the number of fatigue cycles needed to 
propagate the crack from the initial flaw to its unstable length. Also, the 
observance of few partially developed cracks 1n post-test examinations 
indicates that the unstable length may be less than the Wang, et al. (1982) 
computed values, so that the linear approximation for G0 may be valid over 
the entire stable fatigue crack propagation regime. 

3.1.4 Shear Lag Effects (Crack Shielding) 

This effect is depicted in Figure 9. Because of load transfer to the 
bounding 0° plies, a crack that is sufficiently near a pre-existing crack 
will have its G value lowered from that of a single crack (G0 ). The 
reduction factor was called R by Wang, et al. (1982), and should not be 
confused with the R ratio of fatigue analysis nor the R curve of crack 
stability analysis. R is defined in Figure 9 as R ~ G2/G1, and can be 
approximated by 

R = 1.0092 [1-exp(-0.3966X/ h)] (11) 

where 6X is the axial spacing between cracks . When the cracks are assumed to 
be more or less uniformly spaced along the length of the composite 
AX = 1/ (n-1) : 1/n for large n. R for the nth crack is thus 

R = 1.0092 [1-exp(-0.396/ nh)] (12) 
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Figure 9. Ratio of strain energy release rates for a crack 
occurring a distance 6X from a prior crack. 

12 14 

When there are only two cracks, the second crack has a G value described by 

The third and subsequent cracks will have neighbors on each s1de, and a G 
value described by 

15 
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where i = 3,4,5, ••• ,n. It is assumed that the effects of second nearest 
neighbor cracks are shielded by the first nearest neighbor cracks. This R is 
based on prior work by Isida (1971) for an array of parallel cracks, and the 
second nearest neighbor effect described above is thus implicit in Wang's R. 
However, it should be noted that Isida's analysis was apparently for cracks 
of equal length. In subsequent sections, cracks of unequal lengths will be 
addressed. It is assumed that the above R correlation is approximately 
correct for such an array, but this 1s a question needing verification in 
future work. 

3.1.5 Crack Growth-Strain Relationship 

The G values described above contain a term in the mean or far field 
strain, e2• Although this strain can be transformed into a far field stress 
by e = u/E in the elastic regime, other opportunities may be realized by a 
relationship between strain and the crack length parameters: e2 « Aa/a. 
This relationship has limited use as yet because the analysis is incomplete. 
However, it is developed here for completeness. 

In Williford (1989), an analysis of an equation for the fracture energy 
{the J integral) in terms of the fracture surface dimension Ds, 

revealed that for the average case 05 = 2.5, the material constant C has 
units of toughness or stress intensity, K. Equation (15) thus reduces to 

J = K Aa112 

From fracture mechanics, we have for plane stress 

K = Y~Jra 

and 

16 

(15) 

(16) 

(17) 

(18) 



• 

Combining Equations (16) and (18) gives 

and with u = E<, then 

Substituting Equation (17) for K gives 

~ 22 = ~v < a 

, or 

which is the desired relationship, 

(19) 

(20) 

(21) 

It is interesting to note that substitution of Equation (21) into 
Equation (5) yields a version of the Coffin-Manson relation: <ANt = c2, 

where t = 1/2(2-H) = 0.39 and c2 = 1/Yl~. The exponent t is smaller than 
Coffin-Manson's for piastic strain (t = 0.5), and larger than Morrow's for 
elastic strain (t = 0.1), so the above fractal approach appears to yield an 
"average" exponent. Also note that AN above is not the cycles to failure, 
ANf, as in the Coffin-Manson formulation. See Meyers and Chawla (1984, 

p. 697) for further details. 

3.1.6 Closure 

The above Equations (2), (8), (10), (12), (14), and (21) are assembled 
in the next section to explore the possibilities of an improved model for 
fatlgue crack accumulation in composite laminates. Results are as yet 
incomplete, so only preliminary calculations are available for analysis. The 
lack of rigor in this early stage of development should also be noted again 
to maintain the proper perspective for these results. 
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3.2 ASSEMBlY OF A CANDIDATE MODEl 

Some motivation for considering use of the FBM correlation in Equation 
(2) as a model superstructure will probably be of benefit for the reader. 
The original proposal was to develop a crack array propagation model from 
Equation (4) alone. Approximately one-third of the project effort was 
expended trying to do this, without success. It was the introduction of FBM 
concepts that finally permitted definition of the exponent 0 In Equation (4), 
and subsequent development of Equations (5) and (8). However, Equation (5) 
alone still does not adequately describe the crack array, as seen from the 
following simplified analysis. Rearranging Equation (5) and dividing by AN 
gives 

where p " (3-H)/(2-H) • 1.78 for the anticipated H of 0.72. The 
approximation Aa " hAn relates the crack growth increment to the increment in 
the number of cracks in the array (An). With a approximated as the average 
value h/2, the above equation becomes 

From Figure 3, the value of An/AN can be estimated for given increments in 
the fatigue cycle numbers (AN). This value is approximately An/AN~ 10/AN, 
or An/AN • AN-1• The above equation gives An/AN • AN- 1•78 , and results in a 
discrepancy of about four orders of magnitude for AN • 1000. Even very small 
values for H result in a discrepancy of about three orders of magnitude. 
Although the proposed Paris law replacement may be adequate for propagation 
of a single crackt this does not appear so for an array of cracks. This was 
the motivation that led to consideration of fractional Brownian motion (FBM) 
as a model superstructure in which to insert the proposed Paris law 

replacement. 
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3.2.1 Selection of MOdel Superstructure 

Recalling that FBM is applicable to a wide range of two-dimensional 
plots of stochastic data, it seems evident that a number of possible model 
superstructures may be chosen. Designating the left side of Equation (2) as 
B[Y(Z)], and the right side as (AZ)H, some possible FBM model superstructures 
for the present crack array are 

B[a(X)] • AXH (22) 

B[Aa(X)) • AXH (23) 

B[G(N)] • ANH (24) 

B[AU(N)] = ANH (25) 

where AU • GAa in Equation (25). Although more candidates are possible, only 
the above four were investigated in this brief exploratory work. A summary 
of the results of this investigation follows. 

An FBM for Equation (22) can be obtained by substituting Equation (10) 
into Equation (14), solving for the a1(x1), and substituting these into 
Equation (2). The result is 

' - 1 

- 1 

H = AX 23 (26) 

where Ax23 is the spacing between the second and third successive cracks 
under consideration. Recalling that AX ~ 1/n, where n is the number of 
cracks per unit length, and that R is an exponent1al function of 1/n, 
solution of this implicit equation would appear difficult. Also, although 
stress dependence can be included viae= q/E, there is no means to introduce 
the dependence on fatigue cycle N. Most importantly, the unknown G values 
for each crack are retained in the mode1. Elimination of these G values 
requires either that they be known or that they simply be equal so that their 
ratio is unity. The only condition available for a unity G ratio is if both 

• cracks are at the critical state G • Gc. However, the Paris-type approaches 
discussed in Section 3.1.2 permit crack propagation by microdamage 
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accumulation when G ( Gc. The condition G = Gc is thus considered overly 
restrictive, and possibly self-contradictory. Equation (23) can be developed 
into a similar model with G ratios by substituting Equation (21) into 
Equation (10) and proceeding as above. In either case the troublesome G 
ratios remain, even if the right sides of Equations (22) and (23) are defined 
as in Equations (24) and (25). The direct geometric approach for 
constructing the FBM superstructure [described for Equation (3)] was thus 
abandoned. 

Equations (24) and (25) yield more useful results. FBM superstructures 
for these equations can be constructed as above, and give for Equation {24) 

~g, 
2 fs] ~. - 1 R, <, a, H 
2 = 6N23 

~g, f•] ~. - 1 R, <, a, 

(27) 

and for Equation (25) 

[E• f·r ~3Aa3 - 1 R, <, a1Aa 1 H = 6N23 

[E' f•] 2 
~2Aa2 - 1 R, <, a1Aa 1 

(28) 

The relative merits of these two equations are discussed next. 

Both Equations (27) and (28) assume that there exist three successively 
developing cracks somewhere in the array that satisfy the FBM assumptions for 
the mean H value for the array. Recall that this is actually a probabilistic 
statement, with presently unknown probability and tolerance for H. This is a 
subject for investigation. in future work. 

Both Equations (27) and (2B) designate the scale factor b of Equation 
(2) as 6N23 , the number of elapsed fatigue cycles between the completion of 

crack 2 and the completion of crack 3. This designation seems reasonable at 
present, but better alternatives may be found in future work, such as the 
cycles between completions of Aa3 and Aa2• 
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Both Equations (27) and (28) are implicit in the number of cracks (n), 
but both contain n on only one side of the equation. This may facilitate 
solutions~ Both presently contain the cycle increment AN23 in explicit form 
on the right side of the equation, which permits use of the equation as a 
tool for predicting when the next crack will occur. In this sense, Equations 
(27) and (28) are recursive. Note that R3 = f(n}, R2 = f(n-1}, and 
R1 • f(n-2). However, this explicitness in AN23 will be lost in subsequent 
analyses described below. 

Both equations appear to relate an energy parameter (G or AU) to an 
independent variable (N), and both permit introduction of stress dependence 
via e = u/E. The incremental formulation of both sides of Equation (26) 

seems intuitively appealing, and may have acceptable fractal foundations 
according to Vossf method of "successive random addit1onsu (Feder, 1988, p. 
180). With a1 given by Equation (8), the unknown products aiAa; In Equation 
(28) could be defined by ai(da;/dN;)ANi, but this Introduces an additional 
complexity that is presently not justified by the preliminary nature of 
Equation (8). For this reason, Equation (27) was selected for this 
exploratory investigation because of its relative simplicity. However, 
future work may address Equation (28) as an alternative formulation of the 
model. 

3.2.2 Exploratory Calculations 

Having selected Equation (27) for further investigation, it seemed 
prudent to briefly explore its behavfor numerically before proceeding. 
Substituting in the R equations and converting strains to stresses, Equation 
(27) takes the form 

- 1 

(29) 
- 1 

where C1 = 79.2 for the [02/902] 5 composite, and C1 • 52.8 for the [02/903Js 
composite. The subscripts i = 3,2,1 on the a1 and o; correspond to the 
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present, the last, and the next to the last cracks respectively: n2 = n-1, 
n1 = n-2. It has also been assumed that the Young's Moduli (E;) are 
approximately equal because the cracks are successive, and thus cancel out of 

Equation (29). This should be verified in future work. 

The first numerical exploration concerned estimation of the number of 
cycles, N = EANz3• for the beginning of matrix cracking. Because of 
singularities in the n2 and n1 terms, this was estimated for the third (or 
later) crack that formed. Calculations were performed on a programmable hand 
calculator. The limited accuracy of this calculator frequently resulted in 
the "onset of crack array development" being defined for the fourth or fifth 
crack~ 

Because the q 1
2a1 terms were unknown, it was assumed that all far field 

stresses were constant, as in constant loading fatigue, and that the ai/a1 
ratios were unity to represent incipient completion of the "last• crack. A 
constant value of H = 0.72 was assumed because this has been observed for 
many natural phenomena (Feder, 1988). The smallest number of cracks that 
could be solved for the [02/903Js composite was 4.4. For consistency with 
the assumption aita1 • I, this limited definition of the "onset• condition as 
n=S. For this composite, the number of cycles to reach five cracks was 
computed to be 5208, compared to about 100 cycles estimated from the plotted 
fatigue data of Wang, et al. (1984) for 38 ksi loading. For the [02/902ls 
composite, the earliest solution was at 3.3 cracks, and five cracks were 
computed at 35131 cycles, compared to about 2100 cycles at 38 ksi from the 
plotted data of Wang, et al. (1984). These are the only two fatigue data 
sets at the same stress, and there is no stress calibration between the above 
computations and data, It is therefore impossible to determine with 
certainty if the proposed model is biased toward overprediction. All that 
can be said is that the dependence of cracking on the 90" layer thickness 
(2h} seems to be correctly represented by the model: a thicker go• layer 
cracks earlier because it can store more strain energy than the thinner 
design. 

The apparent overprediction of cycles to reach a given number of cracks 
may be caused by the rather crude assumption that the ratios (~i/~1> 2 and 
(a;ta1} were unity. Defining these ratios as Cit for i = 2,3, additional 

2 exploratory calculations were performed for the condition C31 = C21 , for 
22 
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reasons which will become apparent later in this writing. Results were that 
the above data for cycles to five cracks could be reproduced with c21 = 12 

for the [o2;9o3Js composite, and c21 • 110 for the [02/902Js composite. This 
corresponds to stress ratios between two successive cracks of 12 to 110. and 
does not appear reasonable. This effect must therefore originate primarily 
from the ai;a1 ratios. A physical interpretation Is that later cracks must 
reach appreciably longer lengths before unstable growth occurs. The longer 
lengths required are caused by the shielding effect as crack numbers (n) 
increase. It should be noted that if this is true, the linear approximation 
for G0 in Equation (10) is probably inadequate unless the initial microflaws 
are less than 1/110 of the 90" layer thickness. Although this may be 
reasonable; it has not been checked in the present work because of limited 
project resources and time. Also note that the above results for the ~~onset 

condition" could be checked with other FBM models such as Equation (26), 
because widely separated cracks at small n may permit cancellation of the 
nearly equal Gi values. These are questions to be addressed in future work. 

A final series of calculations were performed to investigate the 
behavior of Equation (29) at larger n. For c21 = c31 = 1, the number of 
cycles between cracks approaches unity at large n. This is too rapid a crack 
accumulation rate to match the data in Wang, et al. (1984). However, the 
above arguments using other values for c21 , with c31 • c21

2, indicated that 
crack accumulation rates may slow substantially as n increases. Although 
these calculations are very preliminaryt the approach to an asymptot1c number 
of cracks in the array may thus be possible to model if a suitable equation 
for the ai/a1 ratios can be found in terms of the elapsed number of cycles, 
ANz3• The search for this equation continues in the next subsection. 

3.2.3 Inclusion of Proposed Paris Law Replacement 1n the Model 

It should first be recalled that the form of Equation (8) is uncertain 
and has not been verified at this writing, so that subsequent discussion is 
tenuous at best. 

The purpose of including Equation (8) in the model is to eliminate the 
unknown crack length ratios ai/a1, i = 2,3. This equation is repeated here 
for convenience: 
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a • exp [(AN)r] 
ao (30) 

where AN • N-N0 is the number of fatigue cycles to propagate the crack from 
an initial length a0 to a final length a, and r • 0.22 for the assumed value 
of H • 0.72. The exponential form reproduces typical fatigue behavior, while 
the small exponent r provides a slightly asymptotic or damped characteristic 
at large AN. The latter condition effectively prevents the crack growth rate 
from becoming prematurely Infinite and producing another mathematical 
singularity. Another possible value for the exponent r(! is discussed in 
Appendix A for a stress-dependent version of Equation (30). 

There is an Equation (30) for each crack that appears in the FBM, so 
insertion of this equation into Equation (29) requires the subscript i • 
1,2,3 for each a and AN. Assuming that all three cracks began from the same 
initial flaw size a0 , substitution of Equation (30) into Equation (29) 
results in 

t ] z 1-exp -C1 n 1-expl-c,~ 
(31) 

[AN,r - AN 1r] - 1 

where a constant is omitted from the exponential terms containing the AN;, 
for clarity. Also note that AN3 on the right side of Equation (31) replaces 
AN23 , because they are equal if the third crack begins propagation 
immediately after the second crack reaches a2•h. 

Although Equation (31) is no longer explicit in AN3, it appears to 
retain a predictive capability by virtue of its recursive nature. Howevert 
it is clear that further work is needed to determine AN 1 and AN2, and thus to 
better define the "onset condition," so that this predictive capability can 
be verified and put into practice in the field. One possible approach Is to 
develop relationships between the AN1, such as the simple linear 
extrapolation AN3r-AN1r = 2 (AN2r-AN1r), which leads to the assumption 
c31 = c21

2 employed in the last subsection for numerical explorations. 
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Future work will probably also require the approximations n2 • n3-1+6 and 
n1 = n3-2+6, where 6 is a small but finite number that prevents numerical 
singularities in the R ratios. 

ln any event, the use of the proposed replacement for the Paris law in 
the B(G) • ANH version of the FBM model for the propagating crack array 
introduces exp(ANr) terms that appear quite capable of attaining values of 
12 to 110, which were found necessary to match the data in the last 
subsection. 

3.2.4 Closure 

Equation (31) would thus appear to have a good chance of reproducing all 
major features of the data of Wang, et al. (1982, 1984), including the 
dependence on the 90" layer thickness, the delay in fatigue cycles until the 
first few cracks form, crack accumulation toward a saturation value, and 
dependence on the stress level. However, testing and verification of 
Equation (31) will require access to more extensive computing facilities, and 
is precluded by the limited resources of this project. 
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4,0 DISCUSSION AND CONCLUSIONS 

The foregoing analysis can make no pretense of rigor. The words 
kassume 1' and ~approximaten were those most frequently used to develop 
Equation (31). This was necessary in order to propose a workable candidate 
for a new model that departs substantially from accepted practice. Although 
such an approach is sometimes necessary and often useful in an exploratory 
analysis, it leaves many questions open for further scrutiny. Some of these 
questions of rigor are outlined below. 

(a) The FBH model is only valid "in the mean", so that the choice of three 
successive cracks that satisfy the model for the mean Hurst exponent (H) 
requires at least a probabilistic qualification, and eventually a proof 
that this is in fact possible. 

(b) The value of H = 0.72 was assumed because this value is exhibited by 
many natural phenomena, but it is unknown if fatigue fracture of an 
engineered material such as a composite can be considered •natural." 
The value of H needs experimental verification, with the hope that it 
will at least remain a constant rather than vary with fatigue cycles, 

(c) The assumption that aN = Lt/L0 in the proposed Paris law replacement 
seems tenuous if each cycle produces only one increment of microdamage 
l 0 , as in a linear damage rule. Probabilistically, occasions of two, 
three, or even zero increments in a given cycle seem as likely, and may 
eventually require a more generalized interpretation of the ratio lt/l0 • 

This is probably related to the behavior of the fatigue limit for the 
polymer matrix material, which also needs clarification. 

(d) The assumption of self-similarity between individual crack tip damage 
and the array of crack growth increments in the proposed Paris 
replacement should be experimentally verified. 

(e) Due to time and resource constraints, integration of the proposed Paris 
replacement in Equation (8) was not verified. This is a crucial 
relationship that must be proven rigorously before any further progress 
can be made. Also see Appendix A for the inclusion of stress dependence 
in Equation (8). 

26 



(f) The linearized approximation for the strain energy release rate equation 
needs further investigation because of the large ai/a1 ratios found in 
Section 3.2.2. 

(g) The crack shielding effects described by the R value in Equation (12) 
should be verified for neighboring cracks of unequal lengths. 

(h) Other FBM approaches, such as Equation (25), should be attempted to 
determine if the model superstructure is as general as claimed. It 
should be possible to achieve the same predictive capability and results 
with such alternative approaches. In particular, prediction of the 
"onset condition" should be verified as described in Section 3.2.2. 

(i) The proposed model in Equation (31) assumes that the Young's Moduli are 
nearly equal for successive cracks, and thus cancel out. This should be 
verified. The proposed model also contains no explicit dependence on 
other fatigue loading characteristics, such as the stress cycle 
amplitude, and this should be included in future work. 

(j) Other hidden or less obvious assumptions that will surface in future 
investigations should be addressed. An example is that a clearer 
definition of AN3 may be needed. Most mysterious is the lack of 
critical material properties, such as ~c or Gc• in the model. This is 
unusual for a fracture problem. 

Future work should address the above questions in order of priority, as 
follows. Items (e), (j), (b), and (a) are highest priority, and their 
resolution will permit numerical testing of Equation (31). Items (d), (h), 
and (c) are second priority, while items (f), (g), and (i) are lowest 
priority. 

In spite of the above difficulties, Equation (31) appears to show 
promise for providing the desired simplified model in a recursive form. 
Preliminary calculations indicated that it has the capability of reproducing 
all major features of the transverse matrix fatigue cracking data base that 
was analyzed. It is therefore recommended that work continue in the future 
so that this model can be better understood. A long-term goal is to develop 
similar predictive capabilities for other composite damage forms, such as 
delamination. 
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APPENOIX A 
fURTHER NOTES ON THE PROPOSEO PARIS lAW 

REPLACEMENT 

Integration of Equation (6) via the fractional calculus is as follows. 
Equation (6) can be expressed in the form 

da 1 
a · {dN)• (A.l) 

where q • 1/ (2-H) (A.2) 

If it is assumed that the numerator I in Equation (A.l) is actually the qth 
order fractional differential of the Heaviside unit step function (HS), then 
in the notation of the fractional calculus, we have the following 
differential form: 

dlna = dq(HS) (A.3) 
(dN)q 

where q = 0.78 > 0 for H • 0.72. Integrating both sides of this equation to 
order unity gives 

(A.4) 

where s • q-1 • -0.22, and negative orders signify integration in the 
notation of the fractional calculus. Because s ( 0, an integral thus rema1ns 
on the right side of Equation (A.4). Performing this integration gives 
(Oldham and Spanier, 1974, p. 105): 

(A.S) 

where f(l-s) = f(l.22) = 0.91. The final form is thus 

(A.6) 
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Another problem with Equation (8) is that there is no dependence on 
stress. This can be included in an approximate fashion by the use of 
Equation (21), which is actually valid only for H • 0.5, as follows. From 
Equation (5), we have 

Aa = 

a 

From Equation (21) and E = u/E, Equation (A.7) becomes 

A a - = 
a 

Again letting the A go to differentials, we have 

a 
[ uY~r J 

2/3 da - = 1 

(dN)r 

(A.7) 

(A.8) 

(A. 9) 

where r = 2q/3 = 0.52. Invoking the above Heaviside argument and 
integrating as before, with the term in brackets taken as constant, gives 

(N-N0fs] 
r(l-s) 

(A.lO) 

where s = r-1 = -0.48 for H = 0.12. The generally small values of u/E are 
compensated by a larger exponent for N. 

It should be noted again that these methods of "integration" are not 
verified at this writing. However, it does seem possible to incorporate the 
stress dependence In the proposed Paris law replacement. 
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