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ABSTRACT
The total transverse energy (kinetic plus potential) of a self-pinched
beam may be used to predict the final equilibrium radius when the beam is
mismatched at injection. The dependence of potential energy on the current
profile shape is characterized by a dimensionless parameter C{z}, variations

of which are correlated with the change of emittance,
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MOTIVATION

In experiments with charged particle beams and also their simulation, it
often happens that there is a large mismatch with respect to the equilibrium
conditions at injection, It has been the {unfounded) practice to predict the
final equilibrium radius by applying the Bennett pinch condition assuming
emittance is conserved. The result can easily be in error by an order of
magnitude, On the other hand it is desirable to be able to predict the radius
within a factor of two, for example to design a differentially pumped
transition section. It has been found that the results of simuTation are in
fair agreement with predictions based on the conservation of transverse energy
rather than conservation of emittance. There is an analogy witn an ideal gas
released suddenly into a vacuum vessel. The resultant equilibrium pressure of
the gas, may be determined by equating the initial and final energies. The
entropy of the gas which has a resemblence to emittance, increases in the
process. It is stressed that energy conservation is only approximate for the
beam because eddy currents are induced in the background plasma; these
represent an external drain. This problem is partly removed by allowing the
eddy current to be described by a neutralization factor. But the factor must
be constant to obtain a conserved energy. Thus the results will only be
approximate, but they appear to be much more reliable than those obtained by

assuming conservation of emittance,

PHYSICAL MODEL
We consider a thin disk of N particles moving at constant velocity (Bec) in
the z direction. The equations of motion for the transverse coordinates and

velocity of the ith particle are
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The betatron frequency is written in the convenient form
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where ig = fymc3/q is the Alfven current and

r
Iy = { dr' 2mr’ Jb(r', z) (4)
3]
is the beam current contained inside radius r. The effect of a counterflowing
eddy current is represented by the constant neutralization factor (1 - f).
The guantity Ibr is a functiorn of both z and r, but Ibr(r + o) = Ib’ the
constant net beam current.
Various mean quantities are defined for the N particles of the disk, e.g.,
oz

r- =R" = % mean squared radius, (5}
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If an averaged quaniity is a function of r(i) and z enly, then the mean can
be written as an integral over r, weighted by the beam current density. We

have for example,

® Zr d
R (z) = J[ dr("r b)rz . (N
0

Iy

The quantity kﬁzr2 i¢ also of this form and can actually be explicitly

evaluated independent of the form of Jb and the value of R:
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If a function depends on v(]) then its mean cannot generally be cast inte an

integral over r.

The Energy Integral

1f fm is constant then the N particles of the disk behave as a closed
system and there is a conserved total enargy integral {(W). The form of W is

most easily derived starting from the velocity moment of Eq. (2): '

S kgz(l[(i)i . Z)(fi)_ im)’ (10)
The disk mean of Eq. (10} is

2 —m— e ae
d v 2. _ (11)

The rhs of Eq. (11) depends only linearly on 3(1) - ér; this velocity
deperdence may be removed as follows. At each point r we define the mean
radial velocity

| ('I) /é

~

v .
Chy = Bt (12)

The primed sums over (i) include only particles close to a particular value of
r. Thus {v.) is a function of r and z, and is the Tocal mean flow velocity

if the disk is considered to be a fluid, Equation (11) takes the form
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- K <Vr'> r

® nr Jb 2
- dr( i )kB <vr>r . {13)
0

The local mean flow ve]ocity(vr) is related to the beam profile through

ala
N
™=

the continuity eauation
b_ 13
- FwE T (D (14)

We integrate once in r fo obtain

" 83, (r', 2)
r Jb("r) = - J dr' r 5 . {15)
0
The rhs of Eq. (15) is conveniently written using Ip, (see Eq. 4):
)
L <vr> = . azbr . (16)

which states the obvious fact that the flux of particles through a surface at
radius r equals the negative rate of change of the number of particles inside
radius r.

Eliminating (vI_) from Egq. (13) with Eq. (16) we have

N
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k Sy 91

d V- _ B br

ZT J L P (17)
0

Substituting from Eq. (3) for kﬁa, this becomes
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A cutoff at large radius r = b is inserted to avoid having to deal with an
infinite constani--this does not affect any physical result. Then the rhs of
Eq. (1?8) is a complete derivitive in z:

2

b
2 1 [ I s
d v- _ b d dr { "br
GT‘TA(I'fm)EJ F’(*g) : (19)
0
The conserved total emergy is
b
v b ar (Tor)
W= - T;' (1 - T ) ;r—(fg—) = constant . (20)

Relation of W to Envelope Equation and Emittance Change

The beam disk is also described by an envelope equation for R; for the

(1)

case at hand this is

(21)

where the emittance (E) is defined as
2 2 {2 sy 2
E° =R | v ‘(ai) i (22)

It is known that if the beam profile does not change shape then E: is
constant. When the profile does change we may use the energy integral to
evaluate the change of emittance.

The energy can be written in the follawing farm:

2 —ss

S IGE £ - (23)
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Here we have substituted ﬁazrz = {1 - fm) Ib/IA and explicitly

removed the dominant log(R) dependence from the integral over r. The

dimensionless parameter (({z) characterizes the profile shape and may be

calculated for any particular Jb(r, z) from its defining formula:
b

f 1 ? 2

_ dr { “br b

=z -7 —_—| = +]og — .
J)r(lb) (RZ>

Exampie: (flat profile)}

—_— 0<r < a
J = ma ,
b =

0 r>a

[E O0<r<a |,

2
or ¢ °
Ib 1 r>a

2

R =2 .

™

Then Eq. (24) gives
a
2.2 2
- drfr dr 2, . b
Crrat = - 2] r‘(‘?) -2 ]r‘_(l) * ‘°9(‘2—/
a
0

2

1 b 2b
i 109(——)+ 109(—-)
7 : RJ
= - 1+ l0g(2) = + .103147 .

Other profiles give values of C in the range (see Table 1)

0=Cx Cflat ’

with non-pathological cases in the range

(24)

(25a)

{25b)

(25¢)

(25d)

(26)



= (.15 + .04) . . (27)
From Eqs. (72) and (23) we have

2
F 2 77 By ¢
W = 7 (R -2 K [109 (ﬁ)' 7 ] . (28)

Here the prime notation denotes d/dz. Taking the derivitive of Egq. (28) and

substituting from the envelope eguation for R" we have

2' 2 1 5 o ( ' ]
E 43 £ 2 R c
0 =20 = = - = R' + 2R'| = = - =
2 a3 [ 3 - J 2
. (29)
. E 22 ~,
= =5 + kB r- C* .
R
Thus we have the desired relation
R (30)
As shape changes, emittance also changes. The correlation of emittance
change with R must be such that damping of oscillations occurs in the small
amplitude domain., This has been modeled with the phenomenglogical
re1at10n(1)
s Tk 2,2 g2 o
S - S (31)
2Z2R
(F'+ks )
Comparison with Eq. {30) yields
Cl = 4 EGR ) (32)

£ +i728)
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The appropriate value of o has been estimated to be (1)

I I T T (33)

Table 1 includes values of o along with values of C for several beam

profiles.



TABLE I
Profile Name Jb/Ib Xbr”b* ! R l__ C @ -
i ;
Flal Wz - r) i a | .1931a7 {0
na? a? 1 VZ f
» ¥
2 3 i
Parabolic 2 r r’ l/r a ¢ . 181946 .149071
—= {1-—5B(a-r)} 2 [(-—) -5 —] - i
naz ( aZ az 2(34> /3 i
|

™~
g
[~
ur%
o

Bow1 2 (r r '
_(, H(a-r) | &¢ .155465 | .258199
na’ a2) a*
: 2,02 2,,2 .
Gaussian TR (1 e TR ) . R 115931 | .388237
1rR2 i
|
a4 2\4 5 Lo
(Bowl) _52 <r_2 H(a-r)| (% wg a .0823215 | .436435
m3° \a aZ |
Annulus G(EH_{-]_ a) H(r - a) a 0 indeterminate
* !b
]—'l =1 when r > a = beam edge
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Determination of Beam Radius Resulting from a Mismatch at Injection

We consider a beam which is ot matched to its edquilibrium state at z = 0,

,.e. the conditions

g =R'"(0) , (34a)
EO2 kG Zré

0 =R"(a) = -3 R . (34b}
RO s}

are not satisfied {for given initial emittance EO). The beam thken
oscillates in radius (with profile changing in some cowplicated manner we do
not compute). Eventually the beam settles into an equilibrium state of its
own chosing, satisfying Eqs. (34a, 34b) but with new values of the variables
(R¢

constancy of W). Thus we have four eauations fos the final state:

and Ef), W is constant (we assume eddy currents have not ruined the

R% =0, (35a)
2
2 E
V.o = °f )2
r 5 +(r;) 2, (350)
r
2 22
E k “r
£ .8 . , (35¢c)
3 R
Rf f

?
C
o] 22 b
kT [“’9 (=) 2_0_] - (35¢)
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These equations are sufficient ip determine the four guantities Rf', Vf, Ef,

and Rf

small enough to neglect--this is especially the case for a Targe amplitude

mismatch bezause the possible range of € is small (see table 1).

Example: Beam injected cold at a neck. We have:

£,-0 >
RE=0
Ry 20
2
£
v s m)2=0 .
0 R a
(o]

Fquations 35 (a-d) yield

R =0

)
f

2.7
-k-%i— - kBZrE [‘]og (th)?) - ;—f-] = - kBZ,-? [109 (E%;) - 29]

Selving for Re we have

R 2
1og<—°§)= 1+{C - Co) .
Re

Assuming (Co - Cf) < 1,

if (Cf - Co) is known. Generally (Cf - CO) is not known but it may be

{36a)
(36b)

{(36c)

{36d)

(37a)

(37b)

(37d)

(38)
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RO
22 = /B = 164872 , (39)
f
77,2
k,“r= R
E;2 = korf R =(——8 — ) ) (40)

By contrast, if we had assumed E2 = constant = 0 instead of constant energy,

we would have found Rf = 0.

v



References

1.

E. P. Lee and S.

-15-

S. Yu "Model of Emitiance Growth in a Self-Pinched

Beam ," Lawrence Livermore Laboratory Report UCID 18330, December 3, 1979,

NOTICE

This report was prepared by the UCLLL as an ac-
counlt of work sponsored jointly by the U.S. Depart-
ment of Friergy and the Delense Advanced Rescatch
Projects Agency, Neither the U.S, Government. nor
any of its employees, dor any of its contractors, sub-
coniractors, of their employces, makes any waranty,
express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or
uselulness of any informution, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

NOTICE

Reference 1o u company or product name does nal im-
ply uppravul or recommendation of the product by the
University of Cclifornia, the U.S. Depantment of
Energy or the Defense Advanced Rescarch Projects
Agency.



